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Partial duals of plane graphs, separability
and the graphs of knots

IAIN MOFFATT

There is a well-known way to describe a link diagram as a (signed) plane graph, called
its Tait graph. This concept was recently extended, providing a way to associate a set
of embedded graphs (or ribbon graphs) to a link diagram. While every plane graph
arises as a Tait graph of a unique link diagram, not every embedded graph represents
a link diagram. Furthermore, although a Tait graph describes a unique link diagram,
the same embedded graph can represent many different link diagrams. One is then
led to ask which embedded graphs represent link diagrams, and how link diagrams
presented by the same embedded graphs are related to one another. Here we answer
these questions by characterizing the class of embedded graphs that represent link
diagrams, and then using this characterization to find a move that relates all of the
link diagrams that are presented by the same set of embedded graphs.

05C10, 57M15; 57M25, 05C75

1 Overview

1.1 Introduction and motivation

There is a classical and well-known way to associate a (signed) plane graph, called a
Tait graph (or checkerboard graph or 2–face graph), to the diagram of a link: start
with a checkerboard colouring of a link diagram (ie colour each face black or white
in such a way that adjacent faces are of different colour); place a vertex in each black
face; add an edge between vertices corresponding to incident black faces; and sign
the edges to record the crossing type (see Section 3.1 and Figure 3). Tait graphs are
a standard tool in knot theory. They provide a bridge between knot theory and graph
theory, and have found numerous applications in both of these areas.

Since there are exactly two possible checkerboard colourings of a link diagram, every
link diagram admits exactly two (signed) Tait graphs. Moreover, these two graphs are
geometric duals of each other (see Section 2.3 for a definition of duality, noting that
duality changes the sign of an edge). Also, as a unique link diagram can be obtained
from every signed plane graph, every signed plane graph arises as a Tait graph (see
Section 4.3). Thus Tait graphs have the following properties:
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(T1) The two Tait graphs associated with a link diagram are geometric duals.

(T2) Every signed plane graph is the Tait graph of a link diagram.

(T3) A Tait graph gives rise to a unique link diagram.

Recently, in [6], Dasbach, Futer, Kalfagianni, Lin and Stoltzfus (see also Turaev [20])
extended the idea of a Tait graph by associating a set of embedded graphs to a link
diagram. In this construction, each embedded graph arises by assigning one of the
two possible smoothings at each crossing of the link (see Section 3.2 and Figure 5).
The Tait graphs of a link diagram appear in this set of embedded graphs. One of the
key advantages to this approach of using nonplane graphs to describe links is that it
provides a way to encode the crossing structure of a link diagram in the topology of the
embedded graph, rather than by using signs on the edges. This idea has proved to be
very useful and has found many recent applications in knot theory, such as to the Jones
and HOMFLY-PT polynomials by Chmutov and Pak [4], Chmutov [3], Chmutov and
Voltz [5], Dasbach et al [6], Moffatt [19; 17] and Vignes-Tourneret [22], Khovanov
homology by Champanerkar, Kofman and Stoltzfus [2] and Dasbach et al [6], knot
Floer homology by Lowrance [15], Turaev genus by Abe [1], Lowrance [15] and
Turaev [20], quasi-alternating links by Widmer [23], the coloured Jones polynomial by
Futer, Kalfagianni and Purcell [11], the signature of a knot by Dasbach and Lowrance [8],
the determinant of a knot by Dasbach et al [6; 7] and hyperbolic knot theory by Futer,
Kalfagianni and Purcell [10].

Given the breadth of applications, understanding the structure of the set of embedded
graphs of a knot is a fundamental and important problem. By considering the proper-
ties (T1)–(T3) of Tait graphs, we are led to ask what the corresponding properties for
the more general embedded graphs of a link diagram are:

(Q1) How are the embedded graphs of a link diagram related to each other?

(Q2) Which embedded graphs arise as embedded graphs of a link diagram?

(Q3) What is the relation between link diagrams that are presented by the same signed
embedded graphs?

Here we answer these three questions, and in doing so we introduce and develop a
theory that relates the structure and the topology of an embedded graph.

1.2 Overview of results

The answer to (Q1) was given by Chmutov [3]: just as Tait graphs are geometric duals,
all of the embedded graphs of a link diagram are partial duals. Partial duality is a
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recent extension of the concept of geometric duality. Loosely speaking, a partial dual
of an embedded graph is obtained by forming its geometric dual with respect to only a
subset of its edges (see Section 4.1). Partial duality was introduced by Chmutov [3]
to relate various realizations of the Jones polynomial as a graph polynomial (see also
Moffatt [19]). It has since found several applications to knot theory, graph theory and
physics (see Chmutov [3], Ellis-Monaghan and Moffatt [9], Huggett and Moffatt [12],
Huggett, Moffatt and Virdee [13], Krajewski, Rivasseau and Vignes-Tourneret [14],
Moffatt [19; 17; 18] and Vignes-Tourneret [21; 22]), and it appears to be a fundamental
operation on an embedded graph.

While every plane graph arises as a Tait graph of a link diagram (Property (T2)), it is
not the case that every embedded graph represents a link diagram. Question (Q2) is
therefore nontrivial. A solution to (Q2), however, arises through connections with Tait
graphs: since Tait graphs belong to the set of embedded graphs of a link diagram, it
follows that an embedded graph represents a link diagram if and only if it is the partial
dual of a plane graph. Thus (Q2) can be reformulated as the graph theoretical problem
of characterizing partial duals of plane graphs. We characterize this class of embedded
graphs in terms of separability. We say that an embedded graph G is a 1–sum of two
nontrivial subgraphs P and Q if GDP[Q, and P\Q is a single vertex (see Figure 7
and Section 5.1). In Section 5 we introduce the concept of a plane-biseparation, which,
loosely speaking, says that an embedded graph can be constructed by 1–summing
plane graphs from two sets, PA and QA , in such a way that every 1–sum involves
exactly one graph in PA and exactly one in QA . Our first main result (cf Theorems 6.1
and 8.8) characterizes the partial duals of plane graphs, and hence answers (Q2):

Main Theorem 1 An embedded graph is the partial dual of a plane graph if and only
if it admits a plane-biseparation. Consequently, an embedded graph represents a link
diagram if and only if it admits a plane-biseparation.

This theorem also provides an interesting connection between the structure of an
embedded graph and the genus of its partial duals. This connection is further developed
in [16].

Moving on to (Q3), we first note that while every Tait graph represents a unique link
diagram (Property (T1)), this is not the case for embedded graphs: an embedded graph
can represent many different link diagrams. Given an embedded graph G , to recover a
link diagram it represents, one first has to obtain a plane partial dual, and then, from
this, form a link diagram. An embedded graph can have many plane partial duals, and
the fact that an embedded graph can represent many different link diagrams is a direct
consequence of this. Thus to answer (Q3), we need to relate plane partial duals. To do
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this we introduce a simple move on embedded graphs called a dual of a join-summand
move (see Definition 7.2). We then prove (cf Theorem 7.3) that this simple move relates
all plane partial duals:

Main Theorem 2 Let G and H be plane graphs. Then G and H are partial duals if
and only if they are related by dual of a join-summand moves.

We then apply this theorem in Section 8 to answer (Q3) by relating all of the link
diagrams represented by the same embedded graphs. We define a summand-flip to be a
move on a link diagram that “flips over” a connected sum component of a link diagram
(see Figure 13 and Definition 8.3). We prove:

Main Theorem 3 Link diagrams D and D0 are represented by the same set ribbon
graphs if and only if they are related by a sequence of summand-flips.

This theorem appears as Theorem 8.4. In particular, this means that if D and D0 are
represented by the same embedded graphs, then they represent the same link diagram.

This paper is structured as follows. In Section 2 we review some properties of embedded
graphs and their representations. In Section 3 we recall the construction of Tait graphs
and the embedded graphs of a link diagram. In Section 4, we describe partial duality,
its relation to link diagrams, and use it to reformulate (Q2) and (Q3). In Section 5
we introduce plane-biseparations and other related decompositions of ribbon graphs.
Section 6 contains the characterization of partial duals of plane graphs in terms of
plane-biseparations. In Section 7 we study and relate plane partial duals. Finally, in
Section 8, we provide answers to (Q1)–(Q3).

The graph theoretical results presented here are of interest in their own right, and a
reader interested in only these results may prefer to skip the knot theory, reading only
Sections 2, 4.1 and 5–7.

2 Embedded graphs

In this section we review our basic objects of study: embedded graphs, ribbon graphs,
and arrow presentations. Our terminology is standard, and a reader familiar with ribbon
graphs, their realizations as cellularly embedded graphs and arrow presentations, and
with geometric duality may safely skip this section.
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Cellularly embedded graph Ribbon graph Arrow presentation

Figure 1. Three descriptions of the same embedded graph

2.1 Embedded graphs and their descriptions

2.1.1 Cellularly embedded graphs An embedded graph G D .V .G/;E.G//�†

is a graph drawn on surface † in such a way that edges only intersect at their ends.
The arcwise-connected components of †nG are called the regions of G , and regions
homeomorphic to discs are called faces. If each of the regions of an embedded graph G

is a face we say that G is a cellularly embedded graph. An example of a graph cellularly
embedded in the torus is given in Figure 1. Note that if a cellularly embedded graph
G �† is not connected, then each component of G is cellularly embedded in a distinct
component of †.

The genus a cellularly embedded graph is the genus of the surface it is embedded in. A
plane graph is a graph that is cellularly embedded in a genus zero surface, ie each of
its components is cellularly embedded in a sphere S2 .

Two embedded graphs, G�† and G0�†0 are equivalent if there is a homeomorphism
from † to †0 that sends G to G0 , preserving the graph structure. As is standard, we
consider embedded graphs up to equivalence.

2.1.2 Ribbon graphs One of the difficulties when working with a cellularly em-
bedded graph G is that deleting one of its edges may result in a graph that is not
cellularly embedded. More generally, if G �† is cellularly embedded, then although
a subgraph H of G is embedded in †, it need not be cellularly embedded. In order to
get around this difficulty we work in the language of ribbon graphs. Ribbon graphs
correspond to cellularly embedded graphs, but have the advantage that subgraphs (and
minors) of ribbon graphs are also ribbon graphs – a property that is vital here.

Definition 2.1 A ribbon graph G D .V .G/;E.G// is a (possibly nonorientable)
surface with boundary represented as the union of two sets of topological discs, a
set V .G/ of vertices, and a set of edges E.G/ such that

(1) the vertices and edges intersect in disjoint line segments;
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(2) each such line segment lies on the boundary of precisely one vertex and precisely
one edge;

(3) every edge contains exactly two such line segments.

Ribbon graphs are considered up to homeomorphisms of the surface that preserve the
vertex-edge structure.

A ribbon graph is said to be orientable if it is orientable as a surface. Here we will
only consider orientable ribbon graphs. The genus, g.G/, of a ribbon graph is the
genus of G as a punctured surface. A ribbon graph is plane if it is of genus zero. We
emphasize that here a plane ribbon graph need not be connected.

Ribbon graphs are easily seen (and well-known) to be equivalent to cellularly embedded
graphs. Intuitively, if G is a cellularly embedded graph, a ribbon graph representation
results from taking a small neighbourhood of the cellularly embedded graph G . On the
other hand, if G is a ribbon graph, we simply sew discs into each boundary component
of the ribbon graph to get the desired surface. See Figure 1.

A ribbon graph H D .V .H /;E.H // is a ribbon subgraph of G D .V .G/;E.G// if
H can be obtained by deleting vertices and edges of G . If V .H /D V .G/, then the
ribbon subgraph H is a spanning ribbon subgraph of G . If A�E.G/, then the ribbon
subgraph induced by A, denoted GjA , is the ribbon subgraph of G that consists of the
edges in A and their incident vertices. We will often regard a ribbon subgraph H as
being embedded in G , and will often identify the vertices and edges of H with the
corresponding vertices and edges in G .

Throughout the paper we use Ac WDE.G/nA to denote the complement of A�E.G/.

2.1.3 Arrow presentations At times we will find it particularly convenient to repre-
sent ribbon graphs as arrow presentations.

Definition 2.2 (Chmutov [3]) An arrow presentation consists of a set of circles, each
with a collection of disjoint, labelled arrows, called marking arrows, lying on them.
Each label appears on exactly two arrows.

An arrow presentation is shown in Figure 1.

Two arrow presentations are considered equivalent if one can be obtained from the
other by reversing the direction of all of the marking arrows which belong to some
subset of labels, or by changing the labelling set. The circles in an arrow presentation
are considered up to homeomorphism. We consider all arrow presentations up to
equivalence.
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A ribbon graph can be obtained from an arrow presentation as follows. View each
circle as the boundary of a disc. Each disc becomes a vertex of the ribbon graph. Edges
are then added to the vertex discs in the following way. Take an oriented disc for each
label of the marking arrows. Choose two nonintersecting arcs on the boundary of each
of the edge discs and direct these according to the orientation. Identify these two arcs
with two marking arrows, both with the same label, aligning the direction of each arc
consistently with the orientation of the marking arrow. This process can be illustrated
pictorially thus:

Conversely, to describe a ribbon graph G as an arrow presentation, start by arbitrarily
labelling and orienting the boundary of each edge disc of G . On the arc where an edge
disc intersects a vertex disc, place an arrow on the vertex disc, labelling the arrow with
the label of the edge it meets and directing it consistently with the orientation of the
edge disc boundary. The boundaries of the vertex set marked with these labelled arrows
give the arrow marked circles of an arrow presentation. See Figure 2 for an example,
and [3] for further details.

12

3 1

1

2

2

3

3

Figure 2. Equivalence of arrow presentations and ribbon graphs

2.2 Signed embedded graphs

A ribbon graph or a cellularly embedded graph G is said to be signed if it is equipped
with a mapping from its edge set E.G/ to fC;�g (so a sign “C” or “�” is assigned
to each edge of G ). An arrow presentation is said to be signed if there is a mapping
from the set of labels of the arrows to fC;�g. The equivalence between cellularly
embedded graphs, ribbon graphs and arrow presentations clearly extends to their signed
counterparts.
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We will often want to consider embedded graphs that are obtained from signed embedded
graphs by forgetting the signs. We will refer to such embedded graphs as being unsigned.
At times we will also use the term “unsigned” to emphasize that a ribbon graph is not
equipped with signs. This double use of the term should cause no confusion.

2.3 Geometric duals

The construction of the geometric dual G��† of a cellularly embedded graph, G�†,
is well known: form G� by placing one vertex in each face of G and embed an edge
of G� between two vertices whenever the faces of G they lie in are adjacent.

If G has k components, G1; : : : ;Gk , and is cellularly embedded in a surface, then each
component of the graph is cellularly embedded in a connected component of the surface,
and therefore duality acts disjointly on components of the graph: G� DG�

1
t � � � tG�

k
.

There is a natural bijection between the edges of G and the edges of G� . We will use
this bijection to identify the edges of G and the edges of G� .

Geometric duals have a particularly neat description in the language of ribbon graphs.
If G is a ribbon graph, then its geometric dual G� is obtained from G in the following
way: regard G D .V .G/;E.G// as a punctured surface. By filling in the punctures
using a set of discs denoted V .G�/, we obtain a surface without boundary †. G� is
then the ribbon graph with vertex set V .G�/ and edge set E.G/ obtained as †nV .G/.
Observe that any decorations on the boundary of G give decorations on the boundary
of G� . We will use this fact later.

By definition, duality changes the sign of an edge in a signed ribbon graph. That is, if G

is a signed ribbon graph or signed embedded graph, with A�E.G/ its set of positive
edges, and Ac its set of negative edges, then G� is also signed, but A�E.G�/ is its
set of negative edges and Ac �E.G�/ is its set of positive edges.

3 The graphs of a link diagram

In this section we start by reviewing the construction of a Tait graph and its basic
properties. We then describe the extension of Tait graphs to the ribbon graphs of a link
diagram due to Turaev [20] and Dasbach, Futer, Kalfagianni, Lin and Stoltzfus [6]. By
considering the fact that the ribbon graphs of a link diagram extend Tait graphs, we
are then led to ask in what ways the basic properties of Tait graphs extend to the more
general ribbon graphs of a link diagram.

Algebraic & Geometric Topology, Volume 12 (2012)
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3.1 Tait graphs

Let D � S2 be a link diagram. We consider all link diagrams up to isotopy of S2 . By
a checkerboard colouring of D , we mean the assignment of the colour black or white
to each region of D in such a way that adjacent regions are assigned different colours.
The Tait sign of a crossing in a checkerboard coloured link diagram is an element of
fC;�g which is assigned to the crossing according to the following scheme:

C �

A Tait graph, T .D/, is a signed plane graph constructed from D as follows: checker-
board colour the link diagram, place a vertex in each black region and add an edge
between two vertices whenever the corresponding regions of D meet at a crossing;
weight each edge of the graph with the Tait sign of the corresponding crossing. An
example of a link diagram and its Tait graph is given in Figure 3.

�

�

�

C
C

C
C

Figure 3. Forming a Tait graph T .D/ of a link diagram D

Since there are two possible checkerboard colourings of D , every diagram D has
exactly two associated (signed) Tait graphs. The following facts about Tait graphs are
well known and readily seen to be true.

(T1) The two Tait graphs associated with a link diagram are geometric duals.

(T2) Every signed plane graph is the Tait graph of a link diagram.

(T3) A Tait graph gives rise to a unique link diagram.

For the first property, we recall that duality switches the sign of an edge. For the third
property, note that D is recovered from T .D/ by equipping the medial graph of T .D/

with a crossing structure determined by the Tait signs (this will be discussed in more
detail in Section 4.3).
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3.2 The ribbon graphs of a link diagram

In this subsection we describe the extension of the concept of a Tait graph from [6]
(see also Turaev [20]). In this construction a set of ribbon graphs, which includes the
Tait graphs, is associated to a link diagram.

Let D�S2 be a link diagram. Assign a unique label to each crossing of D . A marked
A–splicing or a marked B –splicing of a crossing c is the replacement of the crossing
with one of the schemes shown in Figure 4.

c −
−

c
c +

−
−

+

c

c

A crossing in D A marked A–splicing A marked B–splicing

Figure 4. Splicing a crossing in a link diagram

Notice that we decorate the two arcs in the splicing with signed labelled arrows that
are chosen to be consistent with an arbitrary orientation of the sphere S2 . The labels
of the arrows are determined by the label of the crossing, and the signs are determined
by the choice of splicing.

A state, � , of a link diagram is an assignment of a marked A– or B –splicing to each
crossing. Observe that a state is precisely an arrow presentation of a ribbon graph. We
will denote the ribbon graph corresponding to the state � of D by G.D; �/. These
ribbon graphs are the ribbon graphs of a link diagram:

Definition 3.1 (Dasbach et al [6]; Turaev [20]) Let D be a link diagram. Then the
set Gs.D/ of signed ribbon graphs associated with D is defined by

Gs.D/ WD fG.D; �/ j � is a marked state of Dg:

If G 2Gs.D/, then we say that G is a signed ribbon graph of D , and we will also
say that G presents D .

A example of a ribbon graph G.D; �/ for a state � of a link diagram D is given in
Figure 5. In this figure, for clarity, lines are used to emphasize the type of splicing, and
the labelled arrows are omitted.

The (unsigned) ribbon graphs from [6] are obtained by forgetting the signs in the
constructions above. We let G.D/ denote the set of ribbon graphs obtained from Gs.D/

by forgetting the signs, and call G 2 G.D/ a ribbon graph of D . For many of the
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�

C
C C

A link diagram D A state � of D The ribbon graph G.D; �/

Figure 5. A link diagram D , a state � of D and the corresponding ribbon
graph G.D; �/

questions we are interested in here, the signs of a ribbon graph of a link diagram are
irrelevant, and so we work with the unsigned ribbon graphs.

The following proposition states that the ribbon graphs of a link diagram do indeed
generalize Tait graphs.

Proposition 3.2 (Dasbach et al [6]) Let D be a link diagram, then both of the Tait
graphs of D are in Gs.D/.

Proof Given a checkerboard colouring of the diagram, we can recover one of the Tait
graphs by, at each crossing, choosing the splicing in which the arcs follow the black
faces of the diagram (ie take a B –splicing at each positive crossing, and an A–splicing
at each negative crossing). The other Tait graph is recovered by following the white
faces (ie by taking an A–splicing at each positive crossing, and a B –splicing at each
negative crossing).

Remark 3.3 For each diagram D , Gs.D/ contains exactly two elements in which
all of the edges are of a single sign, either C or �. These ribbon graphs are obtained
by choosing the state that consists wholly of B–splicings, or wholly of A–splicings,
respectively. If the sign on every edge of a ribbon graph is equal, then we may unsign
it without losing any information. The all-B and all-A ribbon graphs from [6] can be
obtained from these two ribbon graphs by forgetting the signs. These unsigned ribbon
graphs play a key role in the applications of the ribbon graphs of a link diagram to knot
theory.
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3.3 Three questions

Our motivation comes from the Properties (T1)–(T3) of Tait graphs. We are interested
in how these fundamental properties extend to the more general ribbon graphs of a
link diagram. In particular we ask and answer the following three questions about
the ribbon graphs of link diagrams. These questions are the natural extensions of
Properties (T1)–(T3) of Tait graphs.

(Q1) How are the ribbon graphs of a link diagram related to each other?

(Q2) Which ribbon graphs arise as ribbon graphs of a link diagram?

(Q3) What is the relationship between link diagrams that are presented by the same
set signed ribbon graphs?

The answer to (Q1) is known and the relation between the ribbon graphs of a link
diagram is described in the following section.

Questions (Q2) and (Q3) are more interesting than the analogous questions for Tait
graphs, which are answered by (T2) and (T3). For example, by considering all three
crossing link diagrams, one can quickly verify that the ribbon graph shown on the right-
hand side of Figure 8 does not arise as the ribbon graph of a link diagram. Also, with a
little more work, one can find examples of distinct link diagrams that are presented by
the same ribbon graphs.

4 A framework for answering Questions (Q1)–(Q3)

Partial duality, introduced by Chmutov in [3], is an extension of geometric duality.
Our interest in partial duality here lies in the fact that it provides a graph theoretical
framework for addressing Questions (Q1)–(Q3). In this section we describe partial
duality, use it to answer (Q1), and then to reformulate (Q2) and (Q3).

4.1 Partial duality

Loosely speaking, a partial dual is obtained by forming the geometric dual of an
embedded graph only at a subset of its edges. Formally:

Definition 4.1 (Chmutov [3]) Let G be a ribbon graph and A�E.G/. Arbitrarily
orient and label each of the edges of G . (The orientation need not extend to an
orientation of the ribbon graph). The boundary components of the spanning ribbon
subgraph .V .G/;A/ of G meet the edges of G in disjoint arcs (where the spanning
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ribbon subgraph is naturally embedded in G ). On each of these arcs, place an arrow
which points in the direction of the orientation of the edge boundary and is labelled by
the edge it meets. The resulting marked boundary components of the spanning ribbon
subgraph .V .G/;A/ define an arrow presentation. The ribbon graph corresponding to
this arrow presentation is the partial dual GA of G .

If G is a signed ribbon graph, then GA is a signed ribbon graph whose signs obtained
from G by switching the sign of every edge in A. That is, if e is an edge of G with
sign ", then the corresponding edge in GA has sign �" if e 2A, and " if e …A.

Example 4.2 A ribbon graph G equipped with an arbitrary labelling and orientation
of its edges is shown as Step 1 of Figure 6. For this example we take AD f2; 3g. The
marked spanning ribbon subgraph .V .G/;A/ is shown as Step 2 of Figure 6. The
boundary components of this spanning ribbon subgraph define an arrow presentation,
shown as Step 3. The corresponding ribbon graph is shown as Step 4. This is the partial
dual Gf2;3g of G .

1
2

3

1 1

2

2

3

3

Step 1 Step 2

1 1

2 2

3 3 1

2

3

Step 3 Step 4

Figure 6. Forming the partial dual of a ribbon graph as in Example 4.2

Additional examples of partially dual graphs can be found, for example, in Chmutov [3],
Moffatt [17; 18] and Vignes-Tourneret [21].

We will use the following basic properties of partial duals.
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Proposition 4.3 (Chmutov [3]) Let G be a ribbon graph and A;B �E.G/. Then

(1) G∅ DG ;

(2) GE.G/ DG� , where G� is the geometric dual of G ;

(3) .GA/BDGA�B , where A�B WD .A[B/n.A\B/ is the symmetric difference
of A and B ;

(4) partial duality acts disjointly on components, ie

.P tQ/A D .PA\E.P//t .QA\E.Q//:

It is worthwhile noting that (3) allows for partial duals to be formed one edge at a time.

For a set X and an element x , we write Xnx for Xnfxg.

4.2 Partial duals and the graphs of links: solution to (Q1)

Tait graphs are geometric duals of one another (Property (T1)). The following proposi-
tion, which appeared in [3] and implicitly in [19], states that all of the ribbon graphs
in Gs.D/ are partial duals of one another. In particular, since Tait graphs are in Gs.D/,
the ribbon graphs of a link diagram are all partial duals of its Tait graphs.

Proposition 4.4 (Chmutov [3]) Let D be a link diagram. Then a signed ribbon
graph G presents D (that is, G 2 Gs.D/) if and only if G is a partial dual of a Tait
graph of D .

Proof Taking the partial dual with respect to an edge e changes an arrow presentation
as follows:

e e
˙

˙
�e

e�

This is readily seen to correspond to the change in the state of a link diagram caused
by switching between A– and B–splicings at the crossing corresponding to e as in
Figure 4.

The following corollary provides a reformulation our motivating questions (Q1)–(Q3)
in terms of the graph theoretical language of partial duals of plane graphs. It is in this
language that we work to answer the outstanding questions, (Q2) and (Q3).

Corollary 4.5 G is the (signed or unsigned) ribbon graph of a link diagram if and
only if it is a partial dual of a (signed or unsigned) plane graph.

Proof The corollary follows immediately from Proposition 4.4 and Property (T2).
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4.3 Partial duals of plane graphs: a graph theoretical framework for (Q2)
and (Q3)

Having described a solution to (Q1), we turn out attention to (Q2) and (Q3).

Corollary 4.5 provides the graph theoretical formulation of (Q2) in which we will
answer it.

(Q2 0 ) Which ribbon graphs are the partial duals of plane graphs?

Having found a workable reformulation of (Q2), we turn our attention to (Q3). In order
to tackle this question we need to understand how, if we are given a signed ribbon
graph G , we can recover the link diagrams that have G as their signed ribbon graph.
We begin by describing how this is done for plane ribbon graphs.

Let G be a signed plane ribbon graph. We can construct a link diagram on G by drawing
the following configuration on each of its edges, and connecting the configurations by
following the boundaries of the vertices of G :

C and �

Since G is topologically a punctured sphere, capping off the punctures of G then gives
a link diagram D.G/ on the 2–sphere. We will call D.G/ the link diagram associated
with G . Clearly, the two Tait graphs of D.G/ are G and G� , and D.T .D//DD .

Now suppose that G is a (not necessarily plane) signed ribbon graph and that it is the
ribbon graph of some link diagram. We want to find the set D.G/ of link diagrams that
have G as a signed ribbon graph. By Proposition 4.4, G presents a link diagram D if
and only if it is the partial dual of a Tait graph of D . Then, since every signed plane
graph is a Tait graph of a link diagram, it follows that

(1) D.G/D fD.GA/ jA�E.G/ and GA is planeg:

Although there is a unique link diagram associated with a pair of Tait graphs, in general,
a ribbon graph can have many plane partial duals, and D.G/ can contain more than
one distinct link diagram.

Question (Q3) therefore asks for the relation between D.G/ and D.H /, where G

and H are both partially dual plane graphs. This leads to the graph theoretical question:

(Q3 0 ) If G and GA are both plane graphs, how are they related to each other?
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We now turn our attention to the solutions of (Q2 0 ) and (Q3 0 ). In Section 5 we discuss
1–sums of ribbon graphs and introduce plane-biseparations - a simple variation on the
notion of separability of a graph. These give a natural way to decompose a ribbon
graph into plane graphs. Then, in Section 6, we answer (Q2 0 ), and hence (Q2), by
showing that partial duals of plane graphs are completely characterized by the existence
of plane-biseparations. We then apply this result in Section 7 to answer (Q3 0 ), which,
in turn, is used to answer (Q3) in Section 8.

Remark 4.6 The relation between the ribbon graphs of a link diagram was a primary
motivation for the introduction of partial duality by Chmutov in [3]. Similarly, Tait
graphs and their relation to medial graphs also provided the primary motivation of
twisted duality, a generalization of duality introduced by Ellis-Monaghan and Mof-
fatt [9]. If G and H are embedded graphs and Gm and Hm are their embedded medial
graphs, then G and H must be Tait graphs of Gm and Hm . It then follows that Gm

and Hm are equal as embedded graphs if and only if G and H are geometric duals.
Thus we can take the point of view that the relation of equality as embedded graphs
generates the relation of geometric duality. This point of view suggests that other
concepts of equality of embedded graphs will generate other concepts of duality. In [9]
it was show that equality as abstract graphs generates twisted duality, and that equality
as combinatorial maps generates partial duality. In addition, [9] contains a way to
construct the Tait graphs of noncheckerboard colourable 4–regular embedded graph.

5 1–sums and decompositions of ribbon graphs

In this section we discuss separability and 1–sums of ribbon graphs. These are natural
extensions of the corresponding operations for graphs. We will go on to introduce the
concept of a plane-biseparation and of a plane-join-biseparation. We will see that these
types of separations of a ribbon graph give characterizations of ribbon graphs that have
plane partial duals, providing a connection between the genus of a partial dual and
separability.

5.1 1–Sums of ribbon graphs

Let G be a ribbon graph, v 2 V .G/, and P and Q be nontrivial ribbon subgraphs
of G . Then G is said to be the 1–sum of P and Q, written P ˚Q, if G D P [Q

and P \QD fvg. The 1–sum is said to occur at the vertex v , and P and Q are the
1–summands. See Figure 7. Note that we do not require the ribbon graphs G , P or Q

to be connected.
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P Qv v P Qv P Qv

Ribbon graphs P and Q A 1–sum P ˚Q A join P _Q

Figure 7. A 1–sum and a join of two ribbon graphs

Example 5.1 Two examples of a 1–sum G D P ˚Q, and their 1–summands are
shown in Figure 8. Observe that while example on the left can be written as a 1–sum
of two plane ribbon graphs, the example on the right cannot (although it is the 1–sum
of three plane ribbon graphs).

G D
D P

DQ

G D

D P

DQ

Figure 8. Two examples of 1–sums. The example on the left is a plane-
biseparation, while that on the right is not.

Although G D P ˚Q if and only if this identity holds for their underlying abstract
graphs, it is important to keep in mind that the topologies of G , P and Q can be
quite different (for example, if P consists of one vertex and one edge and is orientable,
then P ˚ P could be of genus 0 or 1 depending on the particular 1–sum). Also,
if G D P1˚Q1 D P2˚Q2 with the 1–sum occurring at the same vertex then the
topological properties of P1 and Q1 , and P2 and Q2 can be quite different (for
example, the genus 2, orientable ribbon graph with one vertex and four edges with
cyclic order .a b a b c d c d/ can be written as a 1–sum of two subgraph of genus 1,
or of two subgraphs of genus 0, or of one subgraph of genus 1 and one of genus 0).

Here we are interested in expressions of G as 1–sums of ribbon graphs. We say that
G can be written as a sequence of 1–sums if G contains subgraphs H1; : : : ;Hl such
that

(2) G DH1˚H2˚H3˚ � � �˚Hl WD .� � � ..H1˚H2/˚H3/˚ � � �˚Hl/:

Observe that, in the expression (2), the Hi ’s are nontrivial ribbon subgraphs that
cover G ; for each i ¤ j , Hi and Hj have at most one vertex in common; and that if

Algebraic & Geometric Topology, Volume 12 (2012)



1116 Iain Moffatt

a 1–sum occurs at a vertex v in the sequence, then v is a separating vertex (but not
necessarily a cut vertex) of the underlying abstract graph of G . We consider sequences
of 1–sums for G to be equivalent if they differ only in the order of 1–summation.
(Note that only some reorderings of the 1–summands in a sequence of 1–sums are
possible.) We consider all sequences of 1–sums up to this equivalence.

We now introduce our main structural decomposition of a ribbon graph: a plane-
biseparation. The intuitive idea behind Definition 5.2 is that G has a plane-biseparation
giving rise to PA and QA if both PA and QA are plane and G can be obtained by
1–summing the components of PA and QA to each other in such a way that every
1–sum occurs at a distinct vertex and involves a component of PA and a component
of QA .

Definition 5.2 Let G D .V;E/ be a connected ribbon graph and A � E.G/. In
addition, let PA DGjA be the ribbon subgraph induced by A, and QA DGjAc be the
ribbon subgraph induced by AcDE.G/nA. We say that A defines a plane-biseparation
if either

(1) ADE or AD∅, and PA or QA is plane (in which case the plane-biseparation
is said to be trivial), or

(2) PA and QA are plane and G can be written as a sequence of 1–sums of the
components of PA and QA such that every 1–sum occurs at a different vertex
of G and involves a component of PA and a component of QA .

If G is not connected, we say that A defines a plane-biseparation if the restriction
of A to any component of G defines a plane-biseparation of that component.

The length of a nontrivial plane-biseparation is the length of its sequence of 1–sums,
and the length of a trivial plane-biseparation is defined to be 1. We will say that G

admits a plane-biseparation if A defines a plane-biseparation for some A�E.G/.

Note the roles of PA and QA in a plane-biseparation are interchangeable, and that A

defines a plane-biseparation of G if and only if E.G/nA also defines one.

As the set A in a plane-biseparation is completely determined by PA , we can, and will,
specify plane-biseparations by giving PA or QA , referring to the triple .G;PA;QA/

as a plane-biseparation of G .
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Example 5.3 A plane-biseparation of a ribbon graph is illustrated below.

G D

D PA

DQA

Note that G only admits one other plane-biseparation: that defined by E.G/nA.

Example 5.4 A plane-biseparation is illustrated below.

G D

D PA

DQA

Note that G admits several other plane-biseparations, two of which are shown in
Figure 12.

The 1–sum on the left in Figure 8 can also be regarded as a plane-biseparation. The
ribbon graph on the right in this example does not admit a plane-biseparation.

5.2 Joins

The join operation is a simple, special case of the 1–sum operation.

Definition 5.5 Suppose G D P ˚Q with the 1–sum occurring at v . If there is an
arc on the boundary of v with the property that all edges of P incident to v intersect
it on this arc, and that no edges of Q intersect this arc, then G is said to be the join of
P and Q, written G D P _Q. (See Figure 7.)

The join is also known as the “one-point join”, a “ map amalgamation” and the
“connected sum” in the literature.

We will see in Section 7 that plane-join-biseparations, defined below, provide a charac-
terization of plane partial duals of plane graphs.
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Definition 5.6 Let G D .V;E/ be a ribbon graph and A � E.G/. We say that A

defines a plane-join-biseparation if G can be written as G DH1 _ � � � _Hl , where
l � 1, such that

(1) each Hi is plane;

(2) AD
S

i2I E.Hi/, for some I � f1; : : : ; lg.

It is worth emphasizing that the joins in Definition 5.6 need not occur at distinct vertices.
Also the Hi may themselves be joins of ribbon graphs.

Just as with plane-biseparations, we can specify plane-join-biseparations by giving
PA DGjA and QA DGjAc .

Example 5.7 A plane-join-biseparation is illustrated below.

G D

D PA

DQA

Note that, since genus is additive under the join operation, a ribbon graph G admits a
plane-join-biseparation if and only if it is plane.

The following lemma relates plane-biseparations and plane-join-biseparations for plane
graphs. This result will be useful later.

Proposition 5.8 Let G be a plane ribbon graph. A subset A � E.G/ defines a
plane-biseparation if and only if it defines a plane-join-biseparation.

Proof It is enough to prove the proposition for connected ribbon graphs, so assume
that G is connected.

We prove necessity by induction on the number of edges. If jE.G/j D 0 or 1 the result
is trivial. Suppose that the assertion holds for all ribbon graphs with fewer than k

edges. Now suppose that jE.G/j D k and A�E.G/ defines a plane-biseparation. If
A defines a trivial plane-biseparation the result is obvious. If A defines a nontrivial
plane-biseparation, suppose that a 1–sum occurs at a vertex v in the plane-biseparation.
Since G is plane and a 1–sum occurs at v it follows that the boundary of v can be
partitioned into two arcs p and q which have the properties that an edge of G meets p
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and an edge meets q ; and that any path between a half-edge of G that is incident
to p and a half-edge that is incident to q must pass though v . It follows from this
that we can write G DK _J with the join occurring at v . Furthermore, A\E.K/

defines a plane-biseparation of K , and A\E.J / defines a plane-biseparation of J .
By the inductive hypothesis, A\E.K/ defines a plane-join-biseparation of K , and
A \ E.J / defines a plane-join-biseparation of J , and it follows that A defines a
plane-join-biseparation of G .

Conversely, let G D H1 _ � � � _Hl and A D
S

i2I E.Hi/. Then, since each Hi is
plane and the join of plane ribbon graphs is plane, setting PA to be the spanning ribbon
subgraph of G induced by A, and QA to be the ribbon subgraph induced by E.G/nA

determines the required plane-biseparation.

5.3 Partial duals of 1–sums

We are especially interested in connections between 1–sums and partial duals. In
general, partial duality does not preserve 1–sums. However, in this paper we will see
that 1–sums and partial duals are closely related. This subsection contains two key
lemmas on partial duals of 1–sums.

Lemma 5.9 Let G be a ribbon graph such that G D P ˚Q, where Q is a plane
ribbon graph. Then the genus of GE.Q/ is equal to the genus of P . Moreover, if the
1–sum occurs at v , then every vertex in V .P /nv is also a vertex of GE.Q/ .

Proof Without loss of generality, assume that G is connected. Suppose that the
1–sum occurs at the vertex v . Let vP and vQ denote the copies of v in P and Q,
respectively. G D P ˚Q is obtained from P and Q by identifying vP and vQ . Let
� W vQ! vP denote the identifying map, and let �j@ , denote the restriction of � to
the boundary.

We begin by cellularly embedding P into a surface †, and Q into the 2–sphere, S2 ,
in such a way that vQ consists of the southern hemisphere, and the equator of S2 is
the boundary of vQ . (For an example of these embeddings see Figure 9.)

The partial dual GE.Q/ D .P ˚Q/E.Q/ can be formed from the embeddings of P

and Q in the following way.
(1) Form the dual Q� � S2 of Q� S2 . (Note that Q� lies entirely in the northern

hemisphere of S2 .)

(2) Delete the vertex vP � P �†. Also delete the southern hemisphere of S2 to
obtain an embedding of Q� in a disc D.

(3) Identify the boundaries of D and †nvP using �j@ . (Note the boundaries of
†nvP and vP are equal, and that the boundaries of D and vQ are equal.)
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(For an example of the formation of the partial dual in this way see Figure 9.) This
results in a cellular embedding of GE.Q/ D .P ˚Q/E.Q/ in †. Finally, since P and
GE.Q/ can both be cellularly embedded in †, they must be of the same genus. It is
obvious from this construction that every vertex in V .P /nv is also in GE.Q/ .

v

vP

G D P ˚Q P

vQ

Q Q�

GE.Q/ Redrawing GE.Q/

Figure 9. An example of the construction used in the proof of Lemma 5.9

Although, in general, partial duality does not preserve 1–sums, it does preserve joins.
To see this, suppose G D P _Q with the join occurring at the vertex v . The boundary
of v can be partitioned into two arcs p and q such that the edges of P intersect v
on p , and the edges of Q intersect v on q . Let a and b be the two points on the
boundary of v where p and q meet.

In the formation of the partial dual GA , following Definition 4.1, there is a boundary
cycle ˛ of .V .G/;A/ that contains both a and b and this is the only boundary cycle
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of .V .G/;A/ that can contain marking arrows that have labels belonging to both E.P /

and E.Q/. Moreover, the points a and b partition ˛ into two arcs p0 and q0 , with
p0 containing no E.Q/–labelled arrows, and q0 containing no E.P /–labelled arrows.
The boundary cycle ˛ corresponds to a vertex v0 of GA and p0 corresponds to an arc
on a vertex of P . It is then clear that v0 and p0 determine an expression of GA as the
join PE.P/\A _QE.Q/\A . This discussion is summarized by the following lemma.

Lemma 5.10 Suppose G is a ribbon graph that can be expressed as the join GDP_Q,
and that A�E.G/. Then

GA
D .P _Q/A D PA0

_QA00

;

where A0 WDA\E.P /, A00 WDA\E.Q/, and the joins act naturally with respect to
partial duality.

6 Partial duals of plane graphs and plane-biseparations

In this section we characterize partial duals of plane graphs in terms of plane-bisepar-
ations, which is the first of our main results. We then go on to determine how all of the
plane-biseparations of a ribbon graph into two plane graphs are related to one another.

6.1 A characterization of the partial duals of a plane graph

Theorem 6.1 Let G be a ribbon graph and A � E.G/. Then GA is a plane ribbon
graph if and only if A defines a plane-biseparation of G .

Proof Without loss of generality, assume that G is connected.

First, suppose that GA is a plane ribbon graph. Cellularly embed GA in the plane and
form an arrow presentation for .GA/A D G by taking the set of closed curves that
follow the boundary components of the spanning subgraph .V .G/;A/, and marking
them with labelled arrows in the way described in Definition 4.1. This results in a set
of marked nonintersecting closed plane curves, each of which corresponds to a vertex
of G . Denote this set of marked plane curves by S . Each labelled arrow in S touches
an edge of G and is labelled by that edge. Whenever a pair of arrows touches the same
edge draw a line through that edge that connects the two arrows (see Figure 10). We
call these lines the labelling lines.
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G The boundaries of .V .G/;A/

The 1–summands arising from A

The 1–summands arising from E.G/nA

The partial dual GA

Figure 10. An example of a construction used in the proof of Theorem 6.1

Each closed plane curve divides the plane into a bounded interior and an unbounded
exterior region. If c and c0 are closed plane curves, then we say that c0 is included in c

if c0 is in the interior of c , and that c0 is directly included in c if it is included in c and
there is no other closed plane curve that is included in c and includes c0 . Furthermore,
we say that a labelling line is directly included in c if it lies in the region of the plane
bounded by c and the curves that are directly included in c .
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Let S0 be the set of marked plane curves obtained by taking all curves in S that meet
the unbounded region of the plane and removing all arrows that are not connected by
a labelling line that lies in the unbounded region. If S0 D S , then letting QA be the
ribbon subgraph corresponding to the arrow presentation S0 and PA D∅ gives the
required plane-biseparation of G .

Otherwise, let c1; : : : ; cr denote the marked plane curves in S . For each i D 1; : : : ; r ,
let Si denote set of marked plane curves obtained by taking ci and all curves directly
included in it, and then removing all arrows that are not connected by a labelling line
directly included in ci .

Let fS�1 ; : : : ;S�sg be the set of marked curves obtained by deleting any sets from
fS1; : : : ;Sr g that contain curves without marking arrows on them. Each Si , for
i 2 f0; �1; : : : ; �r g, is an arrow presentation that is equivalent to a plane ribbon subgraph
of G . It is clear from the construction that G can be written as sequence of 1–sums of
S0;S�1 ; : : : ;S�s . Furthermore, for each i and j , Si and Sj can either be disjoint or
intersect in a single vertex; all edges of Si are either in A or they are all in E.G/nA;
and if Sj shares a vertex with Si , then exactly one of Si and Sj will have all its edges
in A and the other will have all its edges in E.G/nA. Thus, letting PA consist of
all of the Si with edges in A, and letting QA consist of the remaining Si gives the
required plane-biseparation. (An example of the above argument is given in Figure 10.)

Conversely, suppose that A determines a plane-biseparation of G . We will prove
that GA is plane by induction on the length of a plane-biseparation. If A defines a
plane-biseparation of length 1 the result is trivial, and if A defines a plane-biseparation
of length 2 then GA is plane by Lemma 5.9.

Now suppose that the assertion holds for all ribbon graphs and edge sets that define a
plane-biseparation of length less than l .

Suppose that G is a ribbon graph, A�E.G/, and H1˚H2˚� � �˚Hl is the sequence of
1–sums in the plane-biseparation determined by A. Suppose also that Hl and Hi share
a vertex. Without loss of generality, let E.Hl/�A. (We may assume this since GA

is plane if and only if GE.G/nA D .GA/� is, and since A defines a plane-biseparation
if and only if E.G/nA does.) Then

GE.Hl / D .H1˚H2˚ � � �˚Hl�1˚Hl/
E.Hl /

D .H1˚H2˚ � � �˚ .Hi ˚Hl/˚ � � �˚Hl�1/
E.Hl /

D .H1˚H2˚ � � �˚ .Hi ˚Hl/
E.Hl /˚ � � �˚Hl�1/;

where the second and third equalities use the facts that Hl is the last term in the
sequence of 1–sums, and that, by Lemma 5.9, if the 1–sum Hi ˚Hl occurs at v then
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all other vertices of Hi are also vertices of .Hi ˚Hl/
E.Hl / . Also by Lemma 5.9,

.Hi ˚Hl/
E.Hl / is plane so the above expression gives plane-biseparation of GE.Hl /

of length l � 1. Moreover, this plane-biseparation is determined by AnE.Hl/ �

E.GE.Hl //. By the inductive hypothesis, it then follows that .GE.Hl //AnE.Hl /DGA

is plane, as required.

We conclude this section by noting a few immediate corollaries of Theorem 6.1.

Corollary 6.2 An embedded graph G is a partial dual of a plane graph if and only if
there exists a plane-biseparation of G .

Corollary 6.3 Let k � 2. If a ribbon graph G contains a k –connected, nonplane
ribbon subgraph, then G is not a partial dual of a plane graph.

Corollary 6.4 Partial duals of plane graphs are planar.

Corollary 6.5 If a graph contains a K5 – or K3;3 –minor then no embedding of it is a
partial dual of a plane graph.

6.2 Relating plane-biseparations of G

By Theorem 6.1, we see that understanding partial duals of plane graphs is equivalent
to understanding plane-biseparations. In this subsection we determine how all plane-
biseparations of a ribbon graph are related to each other.

In general, a ribbon graph can admit many plane-biseparations. However, it turns out
that any two plane-biseparations of a ribbon graph are related in a very simple way.
Roughly speaking, the only choice that one can make in the construction of a plane-
biseparation is whether to place a join-summand in PA or in QA . In this subsection
we will make this statement precise and relate all of the different plane-biseparations
that a ribbon graph G admits.

We begin by defining an operation on a subset of edges of a ribbon graph that will
allow us to relate all of the plane-biseparations that it admits.

Definition 6.6 For r � 1, suppose that G DK1 _K2 _ � � � _Kr , is a ribbon graph.
Let A�E.G/ and A0 D A�E.Ki/, for some i . We say that A and A0 are related
by toggling a join-summand. (See Figure 11.)

The following theorem provides a simple move that relates all of the plane-biseparations
admitted by a ribbon graph.
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Figure 11. Toggling a join-summand, and the ribbon subgraphs induced by
A and A0

Theorem 6.7 Suppose that G is a ribbon graph and that A;B � E.G/ both define
plane-biseparations. Then A and B are related by toggling join-summands.

Example 5.4 gave a plane-biseparation of a ribbon graph G . Two other plane-bisepar-
ations of this ribbon graph are shown in Figure 12. It is easily checked that the edge
sets defining the three plane-biseparations are related by toggling join-summands.

Figure 12. Two plane-biseparations of a ribbon graph

We give some preliminary results needed to prove Theorem 6.7.

Algebraic & Geometric Topology, Volume 12 (2012)



1126 Iain Moffatt

Definition 6.8 A ribbon graph is prime if it can not be expressed as the join of two
ribbon graphs.

The following result states that every ribbon graph admits a unique factorization into
prime ribbon subgraphs.

Proposition 6.9 Every ribbon graph G can be written as a sequence of joins of the
form G D H1 _ � � � _Hl , where each Hi is prime, and l � 1. Moreover, any other
expression of G as joins of prime join-summands can only differ from this by the order
of the join-summands in the sequence.

The straight forward proof of this proposition is omitted.

We also need the following lemma.

Lemma 6.10 Let G be a prime, connected ribbon graph. Then either G does not
admit a plane-biseparation, or it admits exactly two.

Proof Suppose that G admits a plane-biseparation. We will show that the assignment
of any edge to either A or E.G/nA completely determines a plane-biseparation of G ,
and that this plane-biseparation is defined by A.

At each vertex vi , partition the set of incident half-edges into blocks Ai;1;Ai;2;Ai;3; : : :

according to the following rules: place two half-edges in the same block if and only if
there is a path in G between the two half-edges that does not pass through the vertex vi .

We will now show that the blocks at vi give rise to exactly two possible assignments
of the incident edges to the sets A and E.G/nA and that these assignments are
complementary.

If there is only one block Ai;1 at vi then, between every pair of half-edges in Ai;1 ,
there is a path in G that does not pass through vi . It then follows that there can not
be a 1–sum occurring at vi in any plane-biseparation (as v would not be a separating
vertex).

Now suppose that the partition at vi contains more than one block and these blocks
are A1; � � � ;Ad . Arbitrarily choose one of the cyclic orders of the half-edges incident
to vi . We say that two blocks Ap and Aq interlace each other if there are half-edges
e; e0 2Ap and f; f 0 2Aq such that we meet the edges in the order e; f; e0; f 0 when
travelling round the vertex vi with respect to the cyclic order.
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Observe the following:

� Every block Ap interlaces at least one other block Aq . (Otherwise Ap defines
a join-summand and so G is not prime.)

� If B is a set of blocks and xB is the complementary set of blocks, then a block
in B interlaces a block in xB . (Otherwise B and xB define a join and so G is
not prime.)

� In any plane-biseparation all of the half-edges in a block must belong to A

or they all belong to E.G/nA. (Since there is a path in G that does not pass
through vi between every pair of half-edges in a block.)

� In any plane-biseparation the half-edges in interlacing blocks must belong to dif-
ferent sets A or E.G/nA. (Otherwise, since G is prime, the plane-biseparation
would contain a nonplane orientable 1–summand.)

From these observations it follows that assigning any edge incident to vi to either A

or to E.G/nA determines a unique assignment of every edge that is incident to vi to
either A or to E.G/nA. Thus the 1–sum at vi in the plane-biseparation is determined
by the assignment of a single edge to A or E.G/nA.

From the two cases above, and since G is connected, the assignment of any edge e

to A will determine a unique plane-biseparation, and the assignment of e to E.G/nA

will determine a unique plane-biseparation, and the result follows.

We can now prove the main result of this subsection.

Proof of Theorem 6.7 It is enough to prove the theorem for connected ribbon graphs,
so assume that G is connected. Suppose that A defines a plane-biseparation of G . By
Proposition 6.9, G admits a unique prime factorization: G DH1_ � � � _Hr , for some
r � 1.

Every plane-biseparation of G is uniquely determined by choosing a plane-biseparation
of Hi for each i . Also choosing a plane-biseparation for each subgraph Hi results
in a plane-biseparation of G . By Lemma 6.10, each Hi admits exactly two plane-
biseparations and these are related by toggling the edges of Hi that are in A, and those
that are not in A. Thus any plane-biseparation can be obtained from any other one by
toggling join-summands.

We note the following corollary of Theorem 6.7.

Corollary 6.11 For r � 1, let G DK1 _K2 _ � � � _Kr be a ribbon graph. Suppose
that A�E.G/ defines a plane-biseparation of G . Then A0 DA�E.Ki/ also defines
a plane-biseparation of G for each i .
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7 Partially dual plane graphs

In this section we examine partially dual plane graphs, answering (Q3 0 ). We characterize
plane partial duals and give a simple local move on ribbon graphs that relates them.
This local move will be a key result in the solutions to our motivating (Q3), which we
answer in the next section.

The first result in this section is the restriction of the characterization of partial duals
given in Theorem 6.1 to plane graphs.

Theorem 7.1 Let G be a plane ribbon graph and A�E.G/. Then GA is also a plane
ribbon graph if and only if A defines a plane-join-biseparation of G .

Proof By Theorem 6.1, GA is plane if and only if A defines a plane-biseparation
of G . Since G is plane, by Proposition 5.8, this happens if and only if A defines a
plane-join-biseparation of G .

We will now define a move that relates all of the plane partial duals of a ribbon graph.
This move will play a key role in our applications to knot theory in Section 8.

Definition 7.2 Let G be a ribbon graph such that G DH1_H2 . We will say that the
ribbon graph GE.H2/ DH1 _H E.H2/

2
DH1 _H�

2
is obtained from G by taking the

dual of a join-summand. The corresponding move on the set of ribbon graphs is called
the dual of a join-summand move. Furthermore, we define an equivalence relation “�”
on the set of ribbon graphs by setting G �H if and only if there is a sequence of dual
of a join-summand moves taking G to H , or if H DG or G� .

The following theorem shows that the dual of a join-summand move provides a way to
determine all of the plane partial duals of a plane graph.

Theorem 7.3 Let G and H be plane graphs. Then G and H are partial duals if and
only if G �H .

To prove the theorem, we need the following lemma.

Lemma 7.4 Let G be a ribbon graph, G D H1 _ � � � _Hk , and A D
Sk

iDl E.Hi/.
Then G �GA .
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Proof Let K1; : : : ;Kp be the nontrivial components of G �E.H1 _ � � � _Hl�1/.
Then G can be written as H1 _ � � � _Hl�1 _K1 _ � � � _Kp , where no joins involve
two vertices of the Ki ’s. It follows that

GA
D .H1 _ � � � _Hl�1 _K1 _ � � � _Kp/

A
DH1 _ � � � _Hl�1 _K�1 _ � � � _K�p ;

where the second equality follows by Lemma 5.10. From this identity it follows that
GA can be obtained by dual of a join-summand moves which act on K1; : : : ;Kp , and
so G �GA .

Proof of Theorem 7.3. Sufficiency is obvious. To prove necessity, assume that
H DGA . Since both G and GA are plane, by Theorem 7.1, A defines a plane-join-
biseparation of G . If AD∅ or E.G/ the result is trivial, so assume that this is not
the case. We then have that G DH1 _ � � � _Hl , for l � 2.

Let Ai D A \ E.Hi/. In the sequence .A1; : : : ;Al/, suppose the first nonempty
set occurs at position �1 and, as we read along the sequence, toggles between being
nonempty and empty at positions �2 , . . . ,�r in this order. Letting Bi D

Sl
jDi Aj , then,

using Proposition 4.3, we can write

GA
D .H1 _ � � � _Hl/

A
D .� � � ..H1 _ � � � _Hl/

B�1 /B�2 � � � /B�r ;

and it follows from Lemma 7.4 that G �GA .

8 Relating the ribbon graphs of a link diagram

In this final section we apply the graph theoretical results of Sections 6 and 7 to answer
Questions (Q2) and (Q3).

8.1 Link diagrams with the same graph

Although there is a unique link diagram associated with a Tait graph, in general, a
ribbon graph can have many plane partial duals, and therefore D.G/ can contain more
than one distinct link diagram, ie many distinct link diagrams can give rise to the same
set of ribbon graphs. In this subsection we determine how these link diagrams are
related to each other. We will see that the summand flip move, defined below, relates
all link diagrams that are presented by the same ribbon graphs.

Let D1 � S2 and D2 � S2 be link diagrams. The connected sum D1 # D2 � S2 of
D1 and D2 is the link diagram formed by, for i D 1; 2, choosing a disc Di on S2

that intersects Di in an arc ˛i , deleting the interior of each Di , and identifying the
boundaries of S2nD1 and S2nD2 in such a way that each end point of ˛1 is identified
with a distinct endpoint of ˛2 . This process is illustrated in the following figure.
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a

b
c

a

b
c

D1 D2

a

b
c

a

b
c

D1 D2

D1 and D2 D1 # D2

For reference later, we record the following two well-known (and obvious) results.

Lemma 8.1 Let G be a plane graph such that G DH1 _H2 . Then D.H1 _H2/D

D.H1/ # D.H2/. Moreover, there is a natural correspondence between the arc on
H1 _H2 that defines the join, and the arcs on D.H1/ and D.H2/ used to form the
connected sum.

Lemma 8.2 Let G be a signed plane ribbon graph. Then D.G/DD.G�/.

Definition 8.3 Let D1 and D2 be link diagrams. Then we say that D1 and D2 are
related by a summand flip if and only if D2 can be obtained from D1 by the following
process: orient S2 and choose an disc D in S2 whose boundary intersects D1

transversally in exactly two points a and b . Cut out D and glue it back in such a way
that the orientations of D and S2nD disagree and the points a on the boundaries of
D and S2nD are identified, and the points b on the boundaries of D and S2nD are
identified. See Figure 13.

We will say that two link diagrams D1 and D2 are related by summand-flips, written
D1 �D2 , if and only if there is a sequence of summand-flips taking D1 to D2 .

a

b
c

a

b
c

D D0

a

b
c

a

b
c

D D0 D D0

D1 DD # D0 Cut, flip and glue D2

Figure 13. A summand-flip

The following theorem is the main result of this section. It describes how link diagrams
arising from the same ribbon graph are related.

Theorem 8.4 Let G be a signed ribbon graph and D 2 D.G/. Then D0 2 D.G/ if
and only if D �D0 .
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The proof of this result appears at the end of this subsection. It will follow from
Lemma 8.6 below. Before giving the proof of Theorem 8.4, we note a straight-forward,
but important, corollary.

Corollary 8.5 Let D;D0 2 D.G/. Then the links corresponding to D and D0 are
isotopic.

Theorem 8.4 will follow from Lemma 8.6, which relates the dual of a join-summand
move on a ribbon graph (see Definition 7.2) to the summand-flip move on a link diagram.

Lemma 8.6 Let G and G0 be signed plane graphs. Then D.G/�D.G0/ if and only
if G �G0 .

Proof It is enough to show that G and G0 are related by a single dual of a join-
summand move if and only if D.G/ and D.G0/ are related by a single summand-flip.
Suppose that G and G0 are related by a single dual of a join-summand move. Then
we can write G DH1_H2 and G0DH1_H�

2
D .H1_H2/

E.H2/ . If H1\H2D v ,
we can form the partial dual .H1 _H2/

E.H2/ in the following way:

(1) Detach E.H1/[ .V .H1/nv/ from the vertex v by “cutting” along the intersec-
tions of H1 and v . Record the position of the detached edges by using labelled
marking arrows in such a way that H1_H2 can be recovered by identifying the
arrows of the same label on H2 and E.H1/[ .V .H1/nv/.

(2) Form the dual H�
2

of H2 , retaining the labelled arrows on the boundary.

(3) Attach E.H1/[ .V .H1/nv/ to H�
2

by identifying the arrows of the same label.
The resulting ribbon graph is .H1 _H2/

E.H2/ .

This process is illustrated in Figure 14.

H1 H2
H1 H2

a

b
c

a

b
c

H1 H�2

a
b
c

a
b
c

H1 H�2

Figure 14. Forming .H1 _H2/
E.H2/ as in the proof of Lemma 8.6
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The ribbon graph G D H1 _H2 is plane so it admits a unique embedding in the
sphere S2 . We consider how the above construction of the partial dual .H1_H2/

E.H2/

acts on the embedded ribbon graph H1 _H2 � S2 . Start off with an embedding
of H1 _H2 in S2 where the vertex v forms the southern hemisphere. Detaching
E.H1/[ .V .H1/nv/ gives an embedding of H2 in S2 with marking arrows recording
how H1 was attached. Since v � H2 � S2 is the southern hemisphere, the dual
H� � S2 is embedded in the northern hemisphere with the marking arrows sitting
on the equator. Finally, to attach and embed H1 (in order to obtain an embedding of
H1 _H�

2
D .H1 _H2/

E.H2/ in S2 ) we “flip over” H1 and embed it in the southern
hemisphere using the identifying arrows. The resulting embedding of .H1_H2/

E.H2/

is obtained from the embedding of H1_H2 by a single dual of a join-summand move
acting on H1 . The argument is illustrated in Figure 15.

H1 H2

v

H1

H2

v

b a b a

H1 H�
2

b a

b a H1

H�
2

Figure 15. Embedding .H1 _H2/
E.H2/ as in the proof of Lemma 8.6

Since the embeddings of GDH1_H2 and G0DH1_H�
2

in S2 are unique, it follows
that the embeddings of G and G0 are related as in Figure 15. The lemma then follows
by considering the corresponding link diagrams D.G/ and D.G0/ as illustrated in
Figure 16. Since the link diagrams D.H�

2
/ and D.H2/ are equal by Lemma 8.2, it

follows that G and G0 are related by a single dual of a join-summand move if and
only if D.G/ and D.G0/ are related by a single summand-flip. This completes the
proof of the lemma.

Remark 8.7 Lemma 8.6 does not say that the medial ribbon graphs of G and G0 are
equal. (See [9] for details on the relations between medial graphs and partial duals.) To

Algebraic & Geometric Topology, Volume 12 (2012)



Partial duals of plane graphs, separability and the graphs of knots 1133

H1 H2

v dual of a join-summand

H�
2

H1

D
.H

1
_

H
2
/

T
.D
.H

1
/

#
D
.H

2
//

D
.H

1
_

H
� 2
/

T
.D
.H

1
/

#
D
.H
� 2
//

a

b
c

a

b
c

D.H1/ D.H2/

flipping a summand

c c

v

D.H�
2
/

D.H1/

Figure 16. A figure used in the proof of Lemma 8.6

see why this is, notice that in the proof of Lemma 8.6 the interior and the exterior of the
vertex v , where the join occurs, are “switched”. This switching may add half-twists to
the edges. Consequently, twists may be added to the medial graphs. For link diagrams
this switching is not a problem since links are one dimensional. In particular, this
means that Lemma 8.6 does not contradict the well-known fact that the medial graphs
of G and H are equal if and only if H DG or H DG� .

Proof of Theorem 8.4. By Equation (1), D;D0 2 D.G/ if and only if D D D.H /

and D0 DD.H A/, where H is a partial dual of G , and H and H A are both plane
graphs. By Theorem 7.3, this happens if and only if H �H A . Finally, by Lemma 8.6,
H �H A if and only if D DD.H /�D.H A/DD0 .

8.2 Answering our motivating questions

Recall our motivating questions:
(Q1) How are the ribbon graphs of a link diagram related?
(Q2) Which ribbon graphs arise as ribbon graphs of a link diagram?
(Q3) What is the relation between link diagrams that are presented by the same signed

ribbon graph?
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These questions ask for the extensions of the well-known, basic properties of Tait
graphs, (T1)–(T3), to the ribbon graphs of a link diagram.

We will now summarize the solutions to (Q1)–(Q3).

Question (Q1) This was answered in [19] and by Chmutov in [3], and comes from
Proposition 4.4: the ribbon graphs of a link diagram are all partial duals of each other.

Question (Q2) Corollary 4.5 provides a graph theoretical formulation of (Q2): which
ribbon graphs are the partial duals of plane graphs? By applying Theorem 6.1 we get
the following answer.

Theorem 8.8 A (signed) ribbon graph G presents a link diagram if and only if it
admits a plane-biseparation.

This result can also be used to deduce other structural results about the set of ribbon
graphs that present links.

Corollary 8.9 Let k � 2. If a ribbon graph G contains a k –connected, nonplane
ribbon subgraph, then G is not the ribbon graph of a link diagram.

Corollary 8.10 If a graph contains a K5 – or K3;3 –minor then no embedding of it
presents a link diagram.

Question (Q3) This question was answered by Theorem 8.4, where it was shown that
all diagrams that are presented by the same signed ribbon graphs are related in a very
simple way: they are summand flips of one another. In particular, this means that (the
isotopy class of) every link in 3–space will define a unique set of ribbon graphs and so
link invariants may be defined on these sets.

We conclude with a few remarks on the graph theory that this study has introduced.
The connection between genus and separability of ribbon graphs that is opened up
by Theorem 6.1 is one of interest beyond the applications to knot theory given here.
In [16], a more general study of the connections between separability and the genus
of a partial dual is given. In particular, it is shown that Theorems 6.1, 6.7, and 7.3
can be extended to characterize partial duals of graphs in the real projective plane.
These characterizations of the genus of a partial dual in terms of separability, do not
extend beyond graphs in the plane and real projective plane. For higher genus graphs, a
concept that uses higher connectivity is required, and the characterization of the partial
duals of higher genus graphs is a work in progress.

Acknowledgements I would like to thank Scott Carter, Sergei Chmutov and Martin
Loebl for helpful conversations.
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