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Derived functors of nonadditive functors
and homotopy theory

LAWRENCE BREEN

ROMAN MIKHAILOV

The main purpose of this paper is to extend our knowledge of the derived functors of
certain basic nonadditive functors. The discussion takes place over the integers, and
includes a functorial description of the derived functors of certain Lie functors, as well
as that of the main cubical functors. We also present a functorial approach to the study
of the homotopy groups of spheres and of Moore spaces M.A; n/ , based on the Curtis
spectral sequence and the decomposition of Lie functors as iterates of simpler functors
such as the symmetric or exterior algebra functors. As an illustration, we retrieve
in a purely algebraic manner the 3–torsion components of the homotopy groups of
the 2–sphere in low degrees, and give a unified presentation of the homotopy groups
�i.M.A; n// for small values of both i and n .

18G55, 18G10; 54E30, 55Q40

1 Introduction

A great number of methods for computing the homotopy or the homology of a topo-
logical space begin with a mod p reduction, and this has proved to be very efficient
even though one then has to deal with an extension problem when reverting to integer
coefficients. However, such methods are not well-suited when one considers spaces
which are of an algebraic nature, such a Eilenberg–Mac Lane spaces. That a purely
functorial approach is possible in such a case was already apparent in the classical paper
of S Eilenberg and S Mac Lane [22], in which they explicitly compute the integral
homology of Eilenberg–Mac Lane spaces in low degrees. Their results are expressed in
terms of what they called the “new and quite bizarre functors” �.…/ and R.…/. These
functors became more intelligible with the advent of the Dold–Puppe theory of derived
functors of nonadditive functors [20], as they could then be interpreted as the left-
derived functors of the second exterior power functor and of the second divided power
functor respectively. Higher analogues of these new functors subsequently appeared in
related contexts in a number a places, particularly in the PhD theses of Mac Lane’s
students, R Hamsher [28] and G Decker [17]. However, this line of research was not
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vigorously pursued, though one should mention in this context the works of H Baues [2]
and of the first author [10], as well as the unpublished preprint of A K Bousfield [8].

In the present text, we compute in this functorial spirit certain unstable homotopy
groups of Moore spaces M.A; n/ and in particular of the corresponding spheres
Sn DM.Z; n/. This approach to the computation of the homotopy groups of spheres
is of particular interest, since much more structure is revealed when these homotopy
groups are described as special values at the group A D Z of appropriate functors.
Our method is in some sense quite classical, since it relies on D Kan’s construction
of the loop group GK of a connected simplicial set K and on E Curtis’ spectral
sequence determined by the lower central series filtration of GK . The initial terms in
this spectral sequence were described by Curtis in [15] in terms of the derived functors
of the Lie functors Ln . He showed in addition that these Lie functors are endowed
with a natural filtration, whose associated graded components are built up from more
familiar functors.

It follows from this description that a key ingredient in such an approach must be a good
understanding of the derived functors of the functor Ln . We are able to achieve this in
low degrees, where this is made possible by the fact that this Curtis decomposition of
the Lie functors reduces this problem to the computation of derived functors of iterates
of certain elementary functors (particularly the degree r symmetric functor SPr , and
the related r –th exterior algebra and r –th divided power functors ƒr and �r ). In
order to deal with such iterates, we require a composite functor spectral sequence along
the lines of the standard Grothendieck composite functor spectral sequence described
for example in Weibel [47], but now for a pair of composable nonadditive functors.
Such a nonadditive composite functor spectral sequence has been discussed by D Blanc
and C Stover [6], but we give here a formulation of its initial terms which is better
suited to our computational objectives. In fact this spectral sequence degenerates in
our context at E2 , and may rather be thought of, for the functors which we consider,
as a symmetrization of the Künneth formula and its higher analogues à la Mac Lane
[34; 35]. It allows us to go beyond the computation of the derived functors of iterates
of ƒ2 considered in this context by the second author and I B Passi in [40].

In our quest for the explicit values of the Dold–Puppe derived functors of the Lie algebra
functors Lr for certain values of r , we deal with a number of questions of independent
interest. First of all, starting from the description of the derived functors of SPr and ƒr

given by F Jean (a student of the first author) in his thesis [30], we obtain a complete
description of these derived functors (as well as those of the divided power functor �r )
for r D 2, by a method different from that of H Baues and T Pirashvili in [5]. We
then go on to give a similarly complete and functorial description of the corresponding
derived functors of SP3; ƒ3 and �3 , and we deduce from this a functorial description
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of the derived functors LiL
3.A; n/ for all i and n. We also compute certain derived

functors of the quartic composite functors ƒ2ƒ2 and ƒ2�2 , and deduce from these
certain values of the derived functors LiL

4.A; n/.

We were led, in our quest for the derived functors of L4 , to an analogue for Lie
functors of the décalage morphisms. The latter are maps determined by the existence
of Koszul complexes, and which relate to each other the derived functors of SPr , ƒr

and �r . Just as ƒr may be viewed as a superanalogue1 of SPr , we need to introduce
a superanalogue Lr

s of the Lie functor Lr . It turns out that this must not be the naive
graded commutative version of the Lie functor, in which certain signs are changed in
the relations defining it. Instead, it is necessary to introduce in its definition, following
D Leibowitz in her unpublished thesis [33], an additional divided square operation
with respect to the Lie superbracket of odd degree elements. While there no longer
exist décalage isomorphisms between the Lie and super-Lie functors, there do exist
(in Bousfield’s terminology) canonical pension maps between them, which we call the
semi-décalage morphisms. These give us a refined description of the derived functors
of certain super-Lie functors.

We rely at some point on the knowledge of the homology of the complex C n.A/

associated to an abelian group A. This is the dual of the de Rham complex first
introduced in the present context by V Franjou, J Lannes and L Schwartz in [24]. We
refer to Mikhailov [39] for an explicit calculation of the values of the homology groups
H0C n.A/ for all n, as announced by Jean in [30], as well as for a description of all the
homology groups HiC

n.A/ when n< 8. The occurrence of 4–torsion in H1C 8.A/

and that of a Lie functor term in H1C 6.A/, suggests that there is no simple functorial
description of these groups for a general n.

In Section 11, we use these tools in order to achieve our goal of computing algebraically
certain homotopy groups of n–spheres and Moore spaces M.A; n/. The task at hand
is twofold. First of all, as we have said, one must compute the initial terms of the Curtis
spectral sequence, and for this we rely on our knowledge of the derived functors of
certain Lie functors and their superanalogues. The second part consists in understanding
certain differentials in the spectral sequence. We rely here upon various methods, some
based on the functoriality of our construction and on the fact that the differentials are
therefore natural transformations rather then mere group homomorphisms. Others are
more classical in spirit (the suspension of a Moore space, the comparison of a Moore
space with the corresponding Eilenberg–Mac Lane space, and so forth). We have at
times in this final section made use of known results concerning the homotopy of

1We prefer to call this the superanalogue, rather than the graded analogue as is more customary, since
all our functors are graded.
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Moore spaces for specific groups A, whenever this allowed us to progress with our
own investigations. It is quite striking to observe how far one can go in the description
of these homotopy groups, with only the knowledge of derived functors of quadratic
and cubical functors as the basic input.

In this final section we proceed in logical order, beginning with the homotopy groups
of S2 and M.A; 2/ and then moving on to M.A; n/ for increasing values of n. For
ADZ, some of our results follow in the stable range from the six author paper Bousfield
et al [9] where a more efficient spectral sequence is considered, which however depends
on the choice of a fixed prime p (see also Curtis [16]). As an illustration of our
methods, we begin by explaining how one may obtain in this way the known values
of the 3–torsion of �i.S

2/, for values of i up to 14. To have gone further, so as to
retrieve the classical results of H Toda [46] up to i D 22, would have obliged us to delve
further into the analysis of the spectral sequence. We also recover, and reinterpret, some
results of Baues and his collaborators [2; 21; 3]. In particular, we obtain by our methods
the results of Baues and Buth [3] concerning �i.M.A; 2// for i D 4, and give an
improved description of the unpublished results of Dreckmann for i D 5 [21] (see also
Baues and Goerss [4], and the recent Mikhailov and Wu [41]). Specializing to the case
AD Z=p , we obtain further information about the groups �i.M.Z=p; 2// whenever
the prime p is odd. By suspending these calculations, this gives us in particular a fully
functorial description of the graded components associated to a natural filtration of the
group �6.M.A; 3// which appears to be new. As a consequence of these computations,
we can recover the value of �5.M.Z=3; 2//, a significant case of the extension by
Neisendorfer [42] to the prime p D 3 of Cohen, Moore and Neisendorfer’s study [12]
of the homotopy of Moore spaces (this value had in fact already been obtained by
Leibowitz in [33]).

As a final example, we examine the low degree homotopy groups of M.Z=3; 5/ since
this allows us to exhibit in a simple context some of the techniques on which we relied
throughout this section. In fact, the reader may wish to begin with this case, before
going on to the more delicate unstable computations which precede it.

As will be apparent from this description of our paper, a number of our results in
homotopy theory have already appeared in one form or another in the literature, where
they are proved by very diverse methods. Our aim here is to show that these can all be
obtained by a uniform method, based solely on functorial techniques from homological
and homotopical algebra with integer coefficients. We expect that such an approach
to these questions will not only allow one to compute specific additional homotopy
groups, but more importantly will shed some new light upon their global structure.
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2 Derived functors

2.1 Graded functors

Let Ab be the category of abelian groups and A an object of Ab. For any chain
complex Ci , we will henceforth denote by C Œn� the chain complex defined by

C Œn�i WD Ci�n for all i .

In particular, the chain complex AŒn� is concentrated in degree n. In addition to the
graded tensor power functor ˝ WD

L
n�0˝

n , the symmetric power functor SP WDL
n�0 SPn , and the exterior power functor ƒ WD

L
n�0ƒ

n (the quotient of ˝A by
the ideal generated by elements x˝ x for all x 2 A), we will consider over Z the
following somewhat less well-known functors:

Divided power functors (See Roby [44].) �� D
L

n�0 �nW Ab! Ab. The graded
algebra ��.A/ is generated by symbols 
i.x/ of degree i � 0 satisfying the following
relations for all x;y 2A:

(1) 
0.x/D 1

(2) 
1.x/D x

(3) 
s.x/
t .x/D

�
sC t

s

�

sCt .x/

(4) 
n.xCy/D
X

sCtDn


s.x/
t .y/; n� 1

(5) 
n.�x/D .�1/n
n.x/; n� 1.

In particular, the canonical map A' �1.A/ is an isomorphism. The degree 2 compo-
nent �2.A/ of ��.A/ is the Whitehead functor �.A/. It is universal for homogenous
quadratic maps from A into abelian groups. The following additional relations in ��.A/
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are consequences of the previous ones:


r .nx/D nr
r .x/; n 2 Z

r
r .x/D x
r�1.x/

xr
D r !
r .x/


r .x/y
r
D xr
r .y/:

In addition, a direct computations implies that

�r .Z=n/' Z=n.r; n1/;

where the extended gcd .r; n1/ is defined by .r; n1/ WD lim m!1 .r; n
m/.

Lie functors LW Ab! Ab (See Curtis [14].) The tensor algebra ˝.A/ WD
L

n.˝
nA/

on a Z–module A is endowed with a Z–Lie algebra structure, for which the bracket
operation is defined by

Œa; b� WD a˝ b� b˝ a; a; b 2 ˝.A/:

One defines n–fold brackets inductively by setting

(2-1) Œa1; : : : ; an� WD ŒŒa1; : : : ; an�1�; an�:

We will denote ˝A, viewed as a Z–Lie algebra, by ˝.A/Lie. Let L.A/D
L

n�1 Ln.A/

be the sub-Lie ring of ˝.A/Lie generated by A. Its degree 2 and 3 components are
generated by the expressions

(2-2) a˝ b� b˝ a and a˝ b˝ c � b˝ a˝ cC c˝ a˝ b� c˝ b˝ a

where a; b; c 2A. L.A/ is called the free Lie ring generated by the abelian group A.
It is universal for homomorphisms from A to Z–Lie algebras. The grading of ˝.A/
determines a grading on L.A/, so that we obtain a family of endofunctors on the
category of abelian groups:

Li
W Ab! Ab; i � 1:

In particular,

(2-3) Li.Z/D 0

for all i > 1. For any free group F and i � 1, one has the natural Magnus–Witt
isomorphism (see Magnus [36] and Witt [49])

(2-4) 
i.F /=
iC1.F /' Li.Fab/;

where 
i.F / is the i –th term in the lower central series of F .
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Schur functors We will also consider the Schur functors

J n;Y n;En
W Ab! Ab; n� 2

defined by

J n.A/D kerfA˝SPn�1.A/! SPn.A/g; n� 2;

Y n.A/D kerfA˝ƒn�1.A/!ƒn.A/g; n� 2;(2-5)

En.A/D kerfA˝�n�1.A/! �n.A/g; n� 2 :

In particular,

(2-6) J 2.A/DE2.A/'ƒ2A and Y 2.A/' �2.A/

whenever A is free. The functors Y n.A/ are the Z–forms of the Schur functors S�.V /
associated to the partition �D .2; 1 : : : ; 1/ of the set .n/ (see Fulton and Harris [26,
Exercise 6.11] and Fulton [25, Chapter 8 (19)]). The functors J n.A/ and En.A/ are
two distinct Z–forms of the Schur functors S� associated to the partition �D .n�1; 1/

of .n/, which is the conjugate of the partition �.

The functors J n and their derived functors were considered by E Curtis [15] and
J Schlesinger [45]. Just as the quotient of a Lie ring L by the ideal generated by
all brackets is an abelian Lie ring, one can consider the metabelian Lie rings. These
are the quotients of L by the ideal generated by brackets of the form ŒŒ �; Œ ��. The
following proposition asserts that the functors J n , restricted to free abelian groups A,
are metabelian Lie functors:

Proposition 2.1 (Schlesinger) [45] Let A be a free abelian group and n� 2. The
4–term sequence

(2-7) 0! Ln.A/\L2L2.A/! Ln.A/
pn
�!A˝SPn�1.A/

rn
�! SPn.A/! 0

is exact, where rn is the multiplication, and the map pn is defined by

pnW Œm1; : : : ;mn� 7!m1˝ m2 � � �mn � m2˝ m1m3 � � �mn; where mj 2A 8j:

The projection

(2-8) Ln.A/ // // J n.A/

of Ln.A/ onto its image in A˝SPn�1 A will also be denoted pn , so that if we set

zJ n.A/ WD Ln.A/\L2L2.A/;
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the sequence (2-7) splits into a pair of short exact sequences:

0 // zJ n.A/ // Ln.A/
pn // J n.A/ // 0(2-9)

0 // J n.A/ // A˝SPn�1 // SPn.A/ // 0 :(2-10)

In particular,

(2-11) L2.A/'ƒ2.A/ and L3.A/' J 3.A/

since zJ n.A/ is trivial for nD 2; 3.

There is a natural transformation

ZŒA� �! �n.A/

which sends Œa� to 
n.a/. The algebra structure on ��.A/ determines for each n a
natural transformation

SPn.A/ �! �n.A/:

In addition, there are natural transformations:

fnW SPn.A/ ! ˝
n A(2-12)

a1 � � � an 7!

X
�2†n

ai1
˝ � � �˝ ain

gnW ƒ
n.A/ ! ˝

n A(2-13)

a1 ^ � � � ^ an 7!

X
�2†n

sign.�/ ai1
˝ � � �˝ ain

hnW �n.A/ ! ˝
n A(2-14)


r1
.a1/ � � � 
rk

.ak/ 7!
X

.i1;:::;in/

ai1
˝ � � �˝ ain

In these definitions of fn and gn we have set ij WD �.j /, whereas the .i1; : : : ; in/ in
the definition of hn range over the set of n–tuples of integers for which j occurs rj
times (1� j � k ). When A is free abelian, the induced morphism

hnW �n.A/! .˝nA/†n

from �n.A/ to the group of tensors invariant under the action of the symmetric group is
an isomorphism for all n� 1. By the universal property of the algebra ��.A/, hn may
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also be characterized as the map determined by the divided power algebra structure
on ˝ .A/, where the product in this algebra is defined by the shuffle product, and the
divided powers are characterized by the rule 
n.a/ WD a˝� � �˝a 2˝nA for all a 2A.

2.2 Derived functors

Let A be an abelian group, and F an endofunctor on the category of abelian groups.
Recall that for every n � 0 the derived functor of F in the sense of A Dold and
D Puppe [20] are defined by

LiF.A; n/D �i.FKP�Œn�/; i � 0

where P� ! A is a projective resolution of A, and K is the Dold–Kan transform,
inverse to the Moore normalization functor

N W Simpl.Ab/! C.Ab/

from simplicial abelian groups to chain complexes (see for example Weibel [47, Defini-
tion 8.3.6]). We denote by LF.A; n/ the object FK.P�Œn�/ in the homotopy category
of simplicial abelian groups determined by FK.P�Œn�/, so that

LiF.A; n/D �i.LF.A; n// :

We set LF.A/ WD LF.A; 0/ and LiF.A/ WDLiF.A; 0/ for all i � 0. When the func-
tor F is additive, the LiF.A/ are isomorphic by iterated suspension to LiCnF.A; n/

for all n, and coincide with the usual derived functors of F . As examples of these con-
structions, note that the simplicial models LF.L!M / of LFA and FK..L!M /Œ1�/

of LF.A; 1/ associated to the two-term flat resolution

(2-15) 0!L
f
!M !A! 0

of an abelian group A are respectively of the following form in low degrees:

(2-16) F.s0.L/˚ s1.L/˚ s1s0.M //

@0;@1;@2
�!�!�! � �

F.L˚ s0.M //
@0;@1
�!
�!
 �

F.M /

where the component F.M / is in degree zero, and

(2-17)
F.s0.L/˚ s1.L/˚ s2.L/˚

s1s0.M /˚ s2s0.M /˚ s2s1.M //

@0;:::;@3
�!�!�!�! � � �

F.L˚s1.M /˚s0.M //

@0;@1;@2
�!
�!
�!
 �
 �

F.M /

where the component F.M / is in degree 1. It follows from the definition of homology
that LiZ.A; n/'Hi.K.A; n/I Z/ for all n, where K.A; n/ is an Eilenberg–MacLane
space associated to the abelian group A.
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Derived functors of ˝n (See Mac Lane [35].) For n � 1, and abelian groups
A1; : : : ;An , we define2

Tori.A1; : : : ;An/ WDHi

�
A1

L
˝ � � �

L
˝An

�
; i � 0

where A
L
˝ B is the derived tensor product of the abelian groups A and B in the

derived category of abelian groups, as in Weibel [47, Section 10.6]. In particular,

Tor0.A1; : : : ;An/'A1˝ � � �˝An and Tori.A1; : : : ;An /D 0; i � n:

One sets

Tor.A1;A2/ WDTor1.A1;A2/ and TorŒn�.A/ WDTorn�1.A; : : : ;A/ (n copies of A):

While computations of such iterated Tor functors for specific abelian groups A are
elementary, an explicit functorial description of the multifunctors Tori is more delicate.
The Künneth sequence

0! Tor.A1;A2/˝A3! Tor1.A1;A2;A3/! Tor.A1˝A2;A3/! 0 ;

is functorial and exact but only splits unnaturally, as discussed in Mac Lane [34; 35].
The Eilenberg–Zilber theorem determines natural isomorphisms

Li ˝
n A' Tori.A; : : : ;A/ for all i � 0:

The group TorŒn�.A/ is generated by n–linear expressions �h.a1; : : : ; an/. Here the ai

live in the subgroup hA of elements a of A for which haD 0 .h> 0/, subject to the
so-called slide relations

(2-18) �hk.a1; : : : ; ai ; : : : ; an/D �h.ka1; : : : ; kai�1; ai ; kiC1; : : : ; kan/

for all i , where hkaj D 0 for all j ¤ i and hai D 0. The associativity of the derived
tensor product functor implies that there are canonical isomorphisms

TorŒn�.A/' Tor.TorŒn�1�.A/;A/; n� 2:

The description of derived functors Li ˝
n A for a general i follows from that of

TorŒn�.A/. For every abelian group A, n� 1; 1� i � n� 1, the group Li ˝
n .A/ is

by [35] the quotient

Li ˝
n .A/' TorŒiC1�.A/˝ .˝n�i�1.A//=Jac˝;

2In [34], Mac Lane uses the notation Trip.A1;A2;A3/ for the group Tor1.A1;A2;A3/ and
Tor.A1; : : : ;An/ for Torn�1.A1; : : : ;An/ .
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where Jac˝ is the subgroup of generalized Jacobi-type relations, generated by the
expressions

iC2X
kD1

.�1/k�h.x1; : : : ;cxk ; : : : ;xiC2/˝xk ˝xiC3˝ � � �˝xn

for all x1; : : : ;xn 2A.

Derived functors of SPn The natural transformation ˝n �! SPn induces a natural
epimorphism

(2-19) TorŒn�.A/!Ln�1 SPn.A/

sending the generators �h.a1; : : : ; an/ of TorŒn�.A/ to generators ˇh.a1; : : : ; an/ of

Sn.A/ WDLn�1 SPn.A/ :

The kernel of this map is generated by the elements �h.a1; : : : ; an/ with ai D aj for
some i ¤ j . It is shown by Jean in [30] that

(2-20) Li SPn.A/' .Li SPiC1.A/˝SPn�.iC1/.A//=JacSP;

where JacSP is the subgroup generated by elements of the form

iC2X
kD1

.�1/kˇh.x1; : : : ; yxk ; : : : ;xiC2/˝xky1 � � �yn�i�2

with xi 2 h A and yj 2 A for all i; j . The filtration of Z.A; n/ by powers of the
augmentation ideal determine a filtration on the homology groups Hr .K.A; n/IZ/,
whose associated graded pieces are the Lr SPs.A; n/ (see Breen [10]).

Derived functors of ƒn For any abelian group A and n� 1, we set

�n.A/ WDLn�1ƒ
n.A/:

Consider the action of the symmetric group †n on TorŒn�.A/, defined by

��h.a1; : : : ; an/D sign.�/ �h.a�.1/; : : : ; a�.n//

where ha1 D � � � D han D 0; ai 2 A; � 2 †n . We denote this action by †�n . The
natural transformations gn induces functorial isomorphisms between �n.A/ and the
†�n –invariants in TorŒn�.A/ [10; 30, Theorem 2.3.3]:

�n.A/' .TorŒn�.A//†
�
n :
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In particular,

(2-21) �n.Z=r/' Z=r :

for all n > 0 and �2.A/ is the functor �.A/ of Eilenberg–Mac Lane [22]. The
morphisms �h which described the Tor functors now symmetrize to homomorphisms

(2-22) �n
hW �n. hA/!�n.A/

for h� 1 and the group �n.A/ is generated by the elements

(2-23) !h
i1
.x1/� � � � �!

h
ij
.xj / WD �

n
h.
i1

.x1/ � � � 
ij .xj //

with ik � 1 for all k , and
P

k ik D n. These satisfy relations which may be thought
of, as in [10], as symmetrized versions of the slide relations (2-18). The following
description of the derived functors Liƒ

n.A/ is given in [30, Theorem 2.3.5]:

(2-24) Liƒ
n.A/' .�iC1.A/˝ƒ

n�i�1.A//=Jacƒ :

Here Jacƒ is the subgroup generated by the expressions

jX
kD1

!h
i1
.x1/� � � � �!

h
ik�1.xk/� � � � �!

h
ij
.xj /˝xk ^y1 ^ � � �yn�i�2

for all h, with
Pj

kD1
D i C 2. In particular, this implies that for any finite cyclic

group A

(2-25) Liƒ
n.A/D 0 for i ¤ n� 1:

Derived functors of �n Not all is known about derived functors of the divided power
functors. For an abelian group A, the double décalage isomorphism (described in
(2-41) below) determines a composite isomorphism

L1�2.A/'L5 SP2.A; 2/'H5.K.A; 2/;Z/

so that L1�2.A/ is isomorphic to the functor R.A/ of Eilenberg–Mac Lane [22,
Section 22], defined as

.Tor.A;A/˚�2.2A//=S;

where S is the subgroup generated by elements

�h.x;x/; x 2 hA; h 2N;


2.xCy/� 
2.x/� 
2.y/� �2.x;y/; x;y 2 2A:

More generally, we set
Rn.A/ WDLn�1�n.A/
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so that R2.A/DR.A/, even though this is inconsistent with the notation in Decker [17].
The sequence

(2-26) 0 �! SP2.A/ �! �2.A/ �!A˝Z=2 �! 0

is exact for any abelian group A, and derives to the short exact sequence

0!L1 SP2.A/!L1�2.A/! Tor.A;Z=2/! 0:

Analogous short exact sequences were obtained by Jean in [30, Section 3.1] for the
functor �3 :

0!L1 SP3.A/!L1�3.A/!.Tor.A;Z=2/˝A˝Z=2/˚Tor.A;Z=3/!0

0!L2 SP3.A/!L2�3.A/! Tor.A;Z=2/˝ Tor.A;Z=2/!0
(2-27)

2.3 Koszul complexes

Let f W P!Q be a homomorphism of abelian groups. For n�1 and any kD0; : : : ;

n�1 consider the maps

�kC1W ƒ
kC1.P /˝SPn�k�1.Q/!ƒk.P /˝SPn�k.Q/

defined, for pi 2P and qj 2Q, by

�kC1W p1^� � �^pkC1˝qkC2 � � � qn

7!

kC1X
iD1

.�1/kC1�ip1^� � �^ ypi^� � �^pkC1˝f .pi/ qkC2 � � � qn :

The associated Koszul complex is defined by

(2-28) Kosn.f /W 0!ƒn.P /
�n
!
Vn�1

.P /˝Q

�n�1
! � � �!P˝SPn�1.Q/

�1
!SPn.Q/!0 :

Dually, one defines maps

�kC1
W �kC1.P /˝ƒ

n�k�1.Q/!�k.P /˝ƒ
n�k.Q/; kD0; : : : ; n�1

by setting

(2-29) �kC1
W 
r1

.p1/ � � � 
rk
.pk/˝q1^� � �^qn�k�1

7!

kX
jD1


r1
.p1/ � � � 
rj�1

.pj / � � � 
rk
.pk/˝f .pj /^q1^� � �^qn�k�1 :
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These maps determine a dual Koszul complex:

(2-30) Kosn.f /W 0!�n.P /
�n

!�n�1.P /˝Q
�n�1

!� � �!P˝ƒn�1.Q/
�1

!ƒn.Q/!0

The complexes Kosn.f / and Kosn.f / are the total degree n components of the Koszul
complexes ƒ.P /˝SP.Q/ and �.P /˝ƒ.Q/ associated to a given homomorphism
f W P!Q. For a two-term flat resolution (2-15) of an abelian group A, the complexes
Kosn.f / and Kosn.f / represent the derived category objects L SPn.A/ and Lƒn.A/

respectively (see for example Köck [31]). In particular, when P is free abelian and f
is the identity map, both these complexes are acyclic.

For n�2, the derived category object L SPn�1.A/
L
˝A may be represented, for a

given 2–term flat resolution f W L!M of A, by the tensor product of Kosn.f / and
L!M , in other words as the total complex associated to the bicomplex:

ƒn�1.L/˝L //

��

� � � // L˝SPn�2.M /˝L //

��

SPn�1.M /˝L

��

ƒn�1.L/˝M // � � � // L˝SPn�2.M /˝M // SPn�1.M /˝M

The diagram LJ n.A/!L SPn�1.A/
L
˝A!L SPn.A/ in the derived category may

therefore be represented by the following diagram of (horizontal) complexes:

(2-31)

Y n.L/� _

��

� � // � � � // L˝SPn�1.M /˝M //
� _

��

J n.M /� _

��

ƒn�1.L/˝L

����

� � // � � � // L˝SPn�2.M /˝M

˚SPn�1.M /˝L

����

// SPn�1.M /˝M

����
ƒn.L/

� � // � � � // L˝SPn�1.M / // SPn.M /

The upper line

(2-32) Y n.L/ // � � � // L˝SPn�1.M /˝M // // J n.M /

in this diagram is a Koszul complex for the functors J n and Y n . A similar dia-
gram, whose lower line is the dual Koszul complex (2-30) for nD3 is described in
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Appendix A. For Koszul complexes associated to more general Schur functors, see
Lascoux [32, Lemma 1.9.1] and Akin, Buchsbaum and Weyman [1].

2.4 Pensions and décalage

Consider the homomorphisms

�nW ƒ
n.A/˝ƒn.B/!SPn.A˝B/;

�nW �n.A/˝SPn.B/!SPn.A˝B/

as in Bousfield [7, 7.4] and Akin, Buchsbaum and Weyman [1]. These are characterized
as the unique homomorphisms for which the corresponding diagrams

(2-33)

ƒn.A/˝ƒn.B/
�n //

gn˝gn

��

SPn.A˝B/

fn

��

�n.A/˝SPn.B/
�n //

hn˝fn

��

SPn.A˝B/

fn

��
.˝n.A//˝.˝n.B//

�n // ˝n.A˝B/ .˝n.A//˝.˝n.B//
�n // ˝n.A˝B/

commute, where �n is defined by

�nW .a1˝� � �˝an/˝.b1˝� � �˝bn/ 7!.a1˝b1/˝� � �˝.an˝bn/; ai 2A; bi 2B:

The map �n is given by the formula

(2-34) .a1^� � �^an/˝.b1^� � �^bn/ 7!
X
�2†n

sign.�/ .a1˝b�.1// � � � .an˝b�.n//

and �n satisfies

(2-35) �nW 
n.a/˝b1 � � � bn 7!.a˝b1/ � � � .a˝bn/:

Formula (2-35) makes it clear that the composite arrow

(2-36) ZŒA�˝SPn.B/�!�n.A/˝SPn.B/�!SPn.A˝B/

is the obvious one.

The maps �n and �n induce natural isomorphisms

Lƒn.A;m/
L
˝ƒn.Z; 1/'L SPn.A;mC1/

L�n.A;m/
L
˝SPn.Z; 2/'L SPn.A;mC2/:
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These derived pairings determine for all n�1, by adjunction with the volume element n–
cycle in ƒn.Z; 1/nDƒn.Zn/ and the corresponding element in SPn.Z; 2/ respectively,
a pair of functorial pension morphisms

Lƒj .A; n/Œj ��!L SPj .A; nC1/(2-37)

L�j .A; n/Œj ��!Lƒj .A; nC1/(2-38)

in the derived category. These maps induce isomorphisms on homotopy groups

Liƒ
j .A; n/

'
�!LiCj SPj .A; nC1/(2-39)

Li�j .A; n/
'
�!LiCj ƒ

j .A; nC1/:(2-40)

(see Bousfield [8]). The inverses of the maps (2-39) and (2-40) are iterated boundary
maps arising from the exactness of the Koszul complexes (see Quillen [43] and Illusie
[29, I 4.3.2]), and are known as décalage isomorphisms. By composition, the maps
(2-39) and (2-40) determine a family of double décalage isomorphism

(2-41) Li�j .A; n/'LiC2j SPj .A; nC2/ :

Similarly, the existence of Koszul sequences of type (2-32) determine for all j ; n�0

décalage isomorphisms

(2-42) LiY
j .A; n/'LiCj J j .A; nC1/

between the derived functor of J j and Y j .

3 The de Rham complex and its dual

Let A be an abelian group. For n�1, let Dn
�.A/ and C n

� .A/ be the complexes of
abelian groups defined by

Dn
i .A/DSPi.A/˝ƒn�i.A/; 0� i�n;

C n
i .A/Dƒ

i.A/˝�n�i.A/; 0� i�n;

where the differentials d i W Dn
i .A/!Dn

i�1
.A/ and di W C

n
i .A/!C n

i�1
.A/ are

d i..b1 � � � bi/˝biC1^� � �^bn/D

iX
kD1

.b1 � � �
ybk � � � bi/˝bk^biC1^� � �^bn ;

di.b1^� � �^bi˝X /D

iX
kD1

.�1/kb1^� � �^
ybk^� � �^bi˝bkX
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for any X 2�n�i.A/. The complex Dn.A/ is the degree n component of the classical
de Rham complex, first introduced in the present context of polynomial functors
by Franjou, Lannes and Schwarz [24] and denoted �n by Franjou [23]. The dual
complexes C n.A/ were considered by Jean [30]. We will call them the dual de Rham
complexes.

We will now give a functorial description of certain homology groups of these complexes
C n.A/.

Proposition 3.1 Let A be a free abelian.

(1) (Franjou [23]) For any prime number p , we have H0C p.A/DA˝Z=p , and
HiC

p.A/D0, for all i>0.

(2) Jean [30] There is a natural isomorphism

H0C n.A/'
M

pjn; p prime

�n=p.A˝Z=p/:

A proof of Proposition 3.1 (2) is given by one of us in Mikhailov [39].

The higher homology groups HiC
n.A/ are more complicated. Table 1 below, which is

a consequence of the main theorem in [39], gives a complete description of HiC
n.A/

for n�7 and A free abelian.

n H0C n.A/ H1C n.A/ H2C n.A/ H3C n.A/

8 �4.A˝Z=2/ � � �

7 A˝Z=7 0 0 0

6
�2.A˝Z=3/
˚�3.A˝Z=2/

ƒ2.A˝Z=3/
˚L3.A˝Z=2/

ƒ3.A˝Z=2/ 0

5 A˝Z=5 0 0 0
4 �2.A˝Z=2/ ƒ2.A˝Z=2/ 0 0
3 A˝Z=3 0 0 0
2 A˝Z=2 0 0 0

Table 1

For example, the isomorphism

(3-1) f W ƒ2.A˝Z=2/!H1C 4.A/

is defined, for representatives a; b2A of xa; xb2A˝Z=2, by

f W xa˝xb 7!a˝a
2.b/�b˝b
2.a/:
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3.1 Comparing the de Rham and Koszul complexes

For any free abelian group A, consider the following natural monomorphism of com-
plexes Kosn.A/

� � // C n.A/ :

(3-2)
ƒn.A/

� � // ƒn�1.A/˝A // � � � // A˝SPn�1.A/

��

// // SPn.A/

��
ƒn.A/

� � // ƒn�1.A/˝A // � � � // A˝�n�1.A/ // �n.A/

Let us denote the cokernel of this map by Dn.A/. We set

Wn.A/DcokerfSPn.A/!�n.A/g

so that the complex Dn.A/ is

ƒn�2.A/˝W2.A/!ƒn�3.A/˝W3.A/!� � �!A˝Wn�1.A/!Wn.A/:

Since the Koszul complex Kosn.A/ is acyclic, it follows that

HiC
n.A/'HiD

n.A/ for all n�0:

Proposition 3.1 implies in particular that the sequence

0!A˝A˝Z=2!W3.A/!A˝Z=3!0(3-3)

is exact (and splits naturally). For every n�2; m�0, we obtain the natural exact
sequence:

0!L SPn.A;m/!L�n.A;m/!LWn.A;m/!0(3-4)

Passing to homotopy groups and applying the décalage isomorphisms (2-39), (2-40),
this yields the long exact sequence:

(3-5) � � �!Li SPn.A;m/!LiC2n SPn.A;mC2/!LiWn.A;m/

!Li�1 SPn.A;m/!LiC2n SPn.A;mC2/!Li�1Wn.A;m/!� � �

Let X be a simplicial free abelian group and k�1; n�2 a pair of integers. If �i.X /D

0 for all i<k , then by Dold and Puppe [20, Satz 12.1]

(3-6) �i.SPn.X //D0

(
for i<n when kD1;

for i<kC2n�2 when k>1:

We will make use of exact sequence (3-5) and of the assertion (3-6) when we compute
certain derived functors of low degree polynomial functors.
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4 Derived functors of quadratic functors

For every abelian group A, the exactness of the sequence (2-26) implies that W2.A/'

A˝Z=2. Since this functor is additive in A, it follows immediately that

LiW2.A;m/'

8̂<̂
:

A˝Z=2 iDm;

Tor.A;Z=2/ iDmC1;

0 i¤m; mC1;

for all m. Let us define a new functor �2.A/ by

(4-1) �2.A/ WDƒ2.A/˚Tor.A;Z=2/:

The long exact sequence (3-5), the connectivity result (3-6), and the décalage formulas
(2-39) and (2-40) produce the following complete description of the derived functors
of the second symmetric power functor SP2 :

Proposition 4.1

Li SP2.A; n/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

SP2.A/ iD0; nD0;

S2.A/ iD1; nD0;

ƒ2.A/ iD2; nD1;

A˝Z=2 iDnC2; nC4; : : : ; nC2Œn�1
2
�;

Tor.A;Z=2/ iDnC3; nC5; : : : ; nC2Œn�1
2
�C1; i¤2n;

�2.A/ iD2n; n¤0 even;

�2.A/ iD2n; n¤1 odd;

R2.A/ iD2nC1; n¤0 even;

�2.A/ iD2nC1; n odd;

0 for all other i .

(4-2)

We will only sketch the proof of this computation in the present quadratic situation,
and will discuss the more elaborate case of cubical functors in the following section.
These quadratic results were also obtained in Baues and Pirashvili [5] by a different
method (see also Mikhailov and Passi [40, A.15]).

Proof The first two equations in the statement of Proposition 4.1 follow from the
definitions. By double décalage (2-41), there is an iterated isomorphism

�2.A/DL0�2.A; 0/'L4 SP2.A; 2/
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which determines the sixth equation in (4-2) for nD2. The general case of the sixth
equation then follows by induction when we consider the isomorphism L2n SP2.A; n/'

L2nC2 SP2.A; nC2/ from (3-5) for n even. Décalage also implies that

ƒ2A'L2 SP2.A; 1/

and the sequence (3-4) then determines a short exact sequence

0!L2 SP2.A; 1/!L2�2.A; 1/!Tor.A;Z=2/!0:

Consider the following diagram, in which the vertical arrows are the suspension maps:

0 // L1 SP2 A //

0
��

L1�2.A/ //

��

Tor.A;Z=2/ // 0

0 // L2 SP2.A; 1/ // L2�2.A; 1/ // Tor.A;Z=2/ // 0

The left-hand vertical arrow is trivial by Dold and Puppe [20, Korollar 6.6], since
all elements of L1 SP2 A are in the image of the arrow (2-19) for nD2. The lower
sequence is therefore split since it is the pushout of the upper one by the trivial map,
and a diagram chase makes it clear that this splitting is functorial. This proves the
seventh equation in Proposition 4.1 for nD3 by the double décalage isomorphism

L2�2.A; 1/'L6 SP2.A; 3/:

The general case of the seventh equation now follows by induction since (3-4) and
décalage imply that

Li SP2.A; n/'Li�2.A; n/'LiC4 SP2.A; nC2/

for all n. A similar discussion, in the next degree, shows that the eight and ninth
equations are also satisfied. The remaining fourth and fifth equations are proved by
considering once more the sequence (3-5), and observing that the functors Li SP2.A; n/

vanish by [20] whenever i is sufficiently large.

As a corollary, one finds that this computation (and even the inductive reasoning that
led to it) can be carried over by the décalage isomorphisms (2-39), (2-41) to the derived
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functors of ƒ2 and �2 . We simply state the result:

Liƒ
2.A; n/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

ƒ2.A/ iD0; nD0;

A˝Z=2
iDnC1; nC3; : : : ; nC2Œn�1

2
�C1;

i¤2n;

Tor.A;Z=2/ iDnC2; nC4; : : : ; nC2Œn�1
2
�;

�2.A/ iD2n; n odd;

�2.A/ iD2n; n¤0 even;

R2.A/ iD2nC1; n odd;

�2.A/ iD2nC1; n even;

0 for all other i .

(4-3)

Li�2.A; n/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

A˝Z=2 iDn; nC2; : : : ; nC2Œn�1
2
�; n>0;

Tor.A;Z=2/ iDnC1; nC3; : : : ; nC2Œn�1
2
�C1;

n>0; i¤2n;

�2.A/ iD2n; n even;

�2.A/ iD2n; n odd;

R2.A/ iD2nC1; n even;

�2.A/ iD2nC1; n odd;

0 for all other i .

(4-4)

5 The derived functors of certain cubical functors

It follows from (3-3) that

(5-1) W3.A/D.A˝A˝Z=2/˚.A˝Z=3/;

and this derives to an isomorphism

(5-2) LW3.A/'.A
L
˝A

L
˝Z=2/˚.A

L
˝Z=3/

in the derived category, from which the values of LiW3.A/ follow immediately (con-
sistently with the two equations (2-27)). This implies that

(5-3) LiW3.A; 1/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

A˝Z=3 iD1;

A˝A˝Z=2˚Tor.A;Z=3/ iD2;

Tor1.A;A;Z=2/ iD3;

Tor2.A;A;Z=2/ iD4;

0 for all other i ,
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and for n>1,

(5-4) LiW3.A; n/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

A˝Z=3 iDn;

Tor.A;Z=3/ iDnC1;

A˝A˝Z=2 iD2n;

Tor1.A;A;Z=2/ iD2nC1;

Tor2.A;A;Z=2/ iD2nC2;

0 for all other i .

Consider the map

L SP3.A; n/˝ZŒK.Z; 2/��!L SP3.A; nC2/

obtained from the pairing (2-36). The homology class 
3.i2/2�3.Z/'H6.K.Z; 2//
determines by adjunction a family of pension maps

(5-5) �3W Li SP3.A; n/!LiC6 SP3.A; nC2/;

which factor through the décalage isomorphisms (2-41):

Li SP3.A; n/!Li�3.A; n/
�
�!LiC6 SP3.A; nC2/:

These maps �3 are isomorphisms for i¤n�1; n; nC1; nC2; 2n�1; 2n; 2nC1; 2nC2.
In addition the sequence

0!L2nC2 SP3.A; n/!L2nC8 SP3.A; nC2/!Tor2.A;A;Z=2/(5-6)

!L2nC1 SP3.A; n/!L2nC7 SP3.A; nC2/!Tor1.A;A;Z=2/

!L2n SP3.A; n/ !L2nC6 SP3.A; nC2/!A˝A˝Z=2

!L2n�1 SP3.A; n/!L2nC5 SP3.A; nC2/

is exact by (3-5). Furthermore, for n>1,

LnC7 SP3.A; nC2/'Tor.A;Z=3/

LnC6 SP3.A; nC2/'A˝Z=3

by (3-6). Finally, according to Bousfield [8, Corollary 4.3], the maps (5-5) are split in-
jections for all i�0 and all n>1. The long exact sequence (5-6) therefore decomposes
for each n>1 into short exact sequences:

0!L2nC2 SP3.A; n/!L2nC8 SP3.A; nC2/!Tor2.A;A;Z=2/!0

0!L2nC1 SP3.A; n/!L2nC7 SP3.A; nC2/!Tor1.A;A;Z=2/!0

0!L2n SP3.A; n/ !L2nC6 SP3.A; nC2/ !A˝A˝Z=2!0
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and an isomorphism

L2nC5 SP3.A; nC2/'L2n�1 SP3.A; n/:

Example 5.1 Since the values taken by the derived functors of W3 in (5-3) and (5-4)
are distinct, we must consider the implications of (5-3) separately. Observe that exact
sequence (3-5) and the equations (5-3) imply that

L11 SP3.A; 3/D�3.A/;

L8 SP3.A; 3/DA˝A˝Z=2˚Tor.A;Z=3/;

L7 SP3.A; 3/DA˝Z=3;

and that the groups Li SP3.A; 3/ for iD9; 10 live in the long exact sequence

(5-7) 0!L1ƒ
3.A/!L10 SP3.A; 3/!Tor2.A;A;Z=2/

@
!ƒ3.A/

"3
!L9 SP3.A; 3/!Tor1.A;A;Z=2/!0 :

The diagram

ƒ3.A/
� � g3 //

o

��

˝3.A/

o

��

L3 SP3.A; 1/ // L3�3.A; 1/
h3 // L3˝

3.A; 1/

commutes, where the left-hand vertical arrow is the map (2-39), and the right-hand
one the corresponding obvious décalage map for tensor powers. It follows that the
composite map

ƒ3A
� // L3 SP3.A; 1/ // L3�3.A; 1/

"3

�
// L9 SP3.A; 3/

is injective so that the boundary map @ in (5-7) is trivial. The complete description of
the Li SP3.A; 3/ is therefore given by

Li SP3.A; 3/D

8̂̂̂̂
<̂
ˆ̂̂:
�3.A/ iD11;

A˝A˝Z=2˚Tor.A;Z=3/ iD8;

A˝Z=3 iD7;

0 i¤7; 8; 9; 10; 11;

and the exactness of the sequences

0!L1ƒ
3.A/!L10 SP3.A; 3/!Tor2.A;A;Z=2/!0

0!ƒ3.A/!L9 SP3.A; 3/!Tor1.A;A;Z=2/!0 :
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The discussion in Example 5.1 also applies to the derived functors Li SP3.A; n/ for
other values of n. Here is the complete description of these functors:

Theorem 5.2 Case I n�3 is odd.

Li SP3.A; n/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

A˝Z=3 nC4� i<2nC2; i�n�0 mod 4;

Tor.A;Z=3/ nC4� i<2nC2; i�n�1 mod 4;

A˝A˝Z=2 iD2nC2; n�1 mod 4;

Tor.A;Z=3/˚A˝A˝Z=2 iD2nC2; n�3 mod 4;

Tor1.A;A;Z=2/ 2nC3� i�3n�2; i�n�2 mod 4;

A˝Z=3˚Tor1.A;A;Z=2/ 2nC3� i�3n�2; i�n�0 mod 4;

�3.A/ iD3nC2;

0 for all other i .

In addition, the following sequences are exact:

0!Tor.A;Z=3/˚A˝A˝Z=2!Li SP3.A; 3/!Tor2.A;A;Z=2/!0;

2nC4� i�3n�1; i�n�1 mod 4;

0!A˝A˝Z=2!Li SP3.A; n/!Tor2.A;A;Z=2/!0;

2nC3� i�3n�1; i�n�3 mod 4;

0!L1ƒ
3.A/!L3nC1 SP3.A; n/!Tor2.A;A;Z=2/!0;

0!ƒ3.A/!L3n SP3.A; n/!Tor1.A;A;Z=2/!0:

Case II n>3 is even.

Li SP3.A; n/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

A˝Z=3 nC4� i<2nC2; i�n�0 mod 4;

Tor.A;Z=3/ nC4� i<2nC2; i�n�1 mod 4;

A˝A˝Z=2 iD2nC2; n�0 mod 4;

A˝Z=3˚A˝A˝Z=2 iD2nC2; n�2 mod 4;

Tor.A;Z=3/˚Tor1.A;A;Z=2/ 2nC3� i�3n�1; i�n�1 mod 4;

Tor1.A;A;Z=2/ 2nC3� i�3n�1; i�n�3 mod 4;

L1�3.A/ iD3nC1;

R3.A/ iD3nC2;

0 for all other i .
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In addition, the following sequences are exact:

0!A˝Z=3˚A˝A˝Z=2!Li SP3.A; n/!Tor2.A;A;Z=2/!0;

2nC4� i�3n�2; i�n�0 mod 4;

0!A˝A˝Z=2!Li SP3.A; n/!Tor2.A;A;Z=2/!0;

2nC4� i�3n�2; i�n�2 mod 4;

0!�3.A/!L3n SP3.A; n/!Tor2.A;A;Z=2/!0:

The corresponding description of the derived functors of ƒ3 and �3 now follows from
the décalage isomorphisms (2-39) and (2-40).

6 Some derived functors of SP4

We will now make use of the computation of the homology of the dual de Rham
complex C 4.A/ in Proposition 3.1 in order to investigate some of the derived functors
of SP4 . For A a free abelian group, let us now consider the following diagram with
exact rows and columns, which extends diagram (3-2) when nD4:

ƒ4.A/
� � // ƒ3.A/˝A // ƒ2.A/˝SP2.A/� _

��

// A˝SP3.A/� _

��

// // SP4.A/� _

��
ƒ4.A/

� � // ƒ3.A/˝A // ƒ2.A/˝�2.A/

����

// A˝�3.A/ //

����

�4.A/

����
ƒ2.A/˝A˝Z=2

� // A˝W3.A/ // W4.A/

By Proposition 3.1, this determines a functorial diagram of exact sequences:

(6-1)

SP2.A/˝A˝Z=2� _

��
H1D4.A/

� � // .A˝W3.A//=im.�/

����

// W4.A/ // // �2.A˝Z=2/

A˝A˝Z=3

The map (3-1) defines canonical isomorphisms

H1D4.A/'H1C 4.A/'ƒ2.A˝Z=2/'L1 SP2.A˝Z=2/:

Let us define a map

ıW ƒ2.A˝Z=2/!SP2.A/˝A˝Z=2 .�.A˝W3.A//=im.�//
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as follows, where a; b are representatives in A of the classes xa and xb2A˝Z=2:

ıW xa^xb 7!aa˝xb�bb˝xa:

It follows from this discussion that diagram (6-1) induces a short exact sequence

0!
SP2.A/˝A˝Z=2

ƒ2.A˝Z=2/
˚A˝A˝Z=3!W4.A/!�2.A˝Z=2/!0:

The filtration on �4.A/ provided by this description of W4.A/ is consistent with that
in Jean [30, Proposition 3.1.2]. Together with long exact sequence (3-5), it allows one
to compute derived functors of the functor SP4 by comparing them to those of �4 and
taking into account the double décalage. For example, one finds

L9 SP4.A; 3/'A˝Z=2;

L10 SP4.A; 3/'A˝A˝Z=3˚ƒ2.A˝Z=2/˚Tor.A;Z=2/;

L10 SP4.A; 4/'A˝Z=2;

L11 SP4.A; 4/'Tor.A;Z=2/:

7 Lie and super-Lie functors

We will now consider the structure theory of Lie and super-Lie functors.

7.1 The third Lie functor

For any free abelian group A, consider the Koszul resolution

(7-1) 0!ƒ3.A/!ƒ2.A/˝A
f
!A˝SP2.A/!SP3.A/!0;

in which the map f is defined by

f W a^b˝c 7!a˝bc�b˝ac; a; b; c2A :

This map decomposes as

(7-2) ƒ2.A/˝A
u // A˝A˝A

v // A˝SP2.A/

where

(7-3) uW a^b˝c 7!a˝b˝c�b˝a˝cCc˝a˝b�c˝b˝a

vW a˝b˝c 7!a˝bc; a; b; c2A:
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Since the expressions u.a^b˝c/ generate L3.A/, the long exact sequence (7-1)
decomposes as a pair of short exact sequences

0!ƒ3.A/!ƒ2.A/˝A!L3.A/!0(7-4)

0!L3.A/
p3
!A˝SP2.A/!SP3.A/!0 :(7-5)

In particular the map

(7-6)
L3.A/

p3 // // J 3.A/

Œa; b; c�
� // .a; b; c/

induced by the projection p3 (2-8) is an isomorphism.

Remark 7.1 (i) The sequences (7-4) and (7-5) both remain exact for an arbitrary
group A. This is due to the fact that (7-5) derives for any A to a long exact sequence
for which the arrow

�1

�
A

L
˝L SP2 A

�
�!L1 SP3 A

is surjective (as follows from the presentation (2-20) of L1 SP3 A).

(ii) There is a natural isomorphism

(7-7) L3.A/'E3.A/ WDkerf�2.A/˝A!�3.A/g :

This is obtained from the following prolongation of part of diagram (3-2) for nD3:

(7-8)

�1

�
A

L
˝A

L
˝Z=2

� � � //

��

�1

�
A

L
˝A

L
˝Z=2

�
˚Tor.A;Z=3/

��

L3.A/
� � //

��

SP2.A/˝A // //

��

SP3.A/

��
E3.A/

� � // �2.A/˝A //

����

�3.A/

����

// // A˝Z=3

A˝A˝Z=2 // .A˝A˝Z=2/˚A˝Z=3 // A˝Z=3

7.2 The Curtis decomposition

We will now consider higher Lie functors. Curtis gave in [14] a decomposition of
the functors Ln.A/ into functors SPn , J n and their iterates (see also Mikhailov and
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Passi [40]). For example, when A is a free abelian group we have the following
decompositions in low degrees:

L1.A/DA(7-9)

L2.A/DJ 2.A/

L3.A/DJ 3.A/

L4.A/DJ 2.J 2.A//˚J 4.A/

L5.A/D.J 3.A/˝J 2.A//˚J 5.A/

L6.A/DJ 3.J 2.A//˚J 2.J 3.A//˚.J 4.A/˝J 2.A//˚J 6.A/

L7.A/D.J 3.A/˝SP2.J 2.A///˚.J 5.A/˝J 2.A//

˚.J 2.J 2.A//˝J 3.A//˚.J 4.A/˝J 3.A//˚J 7.A/

L8.A/DJ 2.J 2.J 2.A///˚J 2J 4
˚.J 3.A/˝J 2.A/˝J 3.A//

˚J 5.A/˝J 3.A/˚J 4.J 2.A//˚.J 4.A/˝SP2.J 2.A///

˚.J 6.A/˝J 2.A//˚J 8.A/
:::

We will refer to these descriptions of the Lie functors as their Curtis decompositions. It
should be understood that the splittings into direct sums displayed here are not functorial,
and that all that exists functorially are filtrations of the Ln.A/, whose associated
graded components are the expressions displayed. As a matter of convenience, we
will nevertheless refer to these expressions as summands of the Lie functors. We have
already come across the cases nD2; 3 of these decompositions in Proposition 2.1).
The next two cases are the short exact sequences

0!ƒ2ƒ2.A/!L4.A/
p4
!J 4.A/!0(7-10)

0!ƒ2.A/˝J 3.A/!L5.A/
p5
!J 5.A/!0;(7-11)

where the left-hand arrows are respectively defined by

.a^b/^.c^d/ 7! ŒŒa; b�; Œc; d ��

.a^b/˝.c; d; e/ 7! ŒŒa; b�; Œc; d; e�� :

It is a general fact that the final term in the decomposition of Ln.A/ is always J n.A/,
the projection of Ln.A/ onto J n.A/ being the map pn (2-8).
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7.3 Super-Lie functors

We will now define super-Lie functors

(7-12) Ln
s W Ab!Ab; n�1 :

Definition 7.2 (Leibowitz [33]) A graded Lie ring with squares (GLRS for short) is
a graded abelian group BD

L1
iD0 Bi with homomorphisms

f ; gW Bi˝Bj!BiCj ;(7-13)
Œ2�
W Bn!B2n for n odd(7-14)

such that the following conditions are satisfied (for elements x2Bi ; y2Bj ; z2Bk ):

.1/ fx;ygC.�1/ij fy;xgD0(7-15)

.2/ fx;xgD0 for i even

.3/ .�1/ikffx;yg; zgC.�1/ji
ffy; zg;xgC.�1/kj

ffz;xg;ygD0(7-16)

.4/ fx;x;xgD0

.5/ .ax/Œ2�Da2xŒ2� for i odd; a2Z

.6/ .xCy/Œ2�DxŒ2�CyŒ2�Cfx;yg for iDj odd

.7/ fy;xŒ2�gDfy;x;xg for i odd:(7-17)

For an abelian group A, define Ls.A/ to be the graded Lie ring with squares freely
generated by A in degree 1. It may be defined as a GLRS together with a homomorphism
of abelian groups l W A!Ls.A/ such that for every map f W A!B with B a GLRS,
there is a unique morphism of GLRS d W Ls.A/!B such that f Dd ıl . The abelian
group Ls.A/ is naturally graded by Ls.A/D

L1
nD1 Ln

s .A/ and for any x2Ls.A/,
we set jxjDn whenever x2Ln

s .A/. The n–th graded piece Ln
s .A/ is called the n–th

super-Lie functor applied to A. In particular, there is a natural isomorphism

�2.A/'L2
s .A/


2.a/ 7!aŒ2�

analogous to the first isomorphism (2-11).

For any free abelian group A, a natural monomorphism

znW Ln
s .A/!˝

n.A/
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is defined inductively on homogeneous elements by setting

fx;yg 7!zjxj.x/˝zjyj.y/�.�1/jxjjyjzjyj.y/˝zjxj.x/;

xŒ2� 7!zjxj.x/˝zjxj.x/:

7.4 The third super-Lie functor

We will now adapt the discussion of Section 7.1 to the context of the super-Lie functors.
The relations (7-16) and (7-17) imply that the group L3

s .A/ can be identified with the
subgroup of A˝A˝A generated by the elements

(7-18) a˝b˝cCb˝a˝c�c˝a˝b�c˝b˝a; a; b; c2A;

which are the super analogues of the generators (2-2) of L3.A/. Let us now show that
there is a natural isomorphism

L3
s .A/'Y 3.A/(7-19)

ffa; bg; cg 7!a˝b^cCb˝a^c; a; b; c2A:

Consider, for any free abelian group A, the Koszul resolution Kos3.A/ (2-30):

(7-20) 0!�3.A/
i
!�2.A/˝A

xf
!A˝ƒ2.A/!ƒ3.A/!0;

where the maps xf and i are defined by

xf W 
2.a/˝b 7!a˝a^b; a; b2A;

i W

(

3.a/ 7!
2.a/˝a a2A;


2.a/b 7!
2.a/˝bCab˝a a; b2A:

The map xf factors as

�2.A/˝A
xu // A˝A˝A

xv // A˝ƒ2.A/(7-21)

xuW 
2.a/˝b 7!a˝a˝b�b˝a˝a;where

xvW a˝b˝c 7!a˝b^c; a; b; c2A:

It follows that
xu.ab˝c/Dffa; bg; cg; a; b; c2A

so that (7-20) decomposes as a pair of short exact sequences

(7-22) 0!�3.A/!�2.A/˝A!L3
s .A/!0

0!L3
s .A/!A˝ƒ2.A/!ƒ3.A/!0

Algebraic & Geometric Topology, Volume 11 (2011)



Derived functors of nonadditive functors and homotopy theory 357

similar to (7-4), (7-5). We see from the presentation (2-24) of L1ƒ
3A that these two

sequences remain exact when A is an arbitrary abelian group.

7.5 Higher super-Lie functors

There exists a decomposition of super-Lie functors analogous to the Curtis decom-
position of Lie functors, which we will now describe in low degrees. We begin by
defining inductively an extension of the Lie superbracket (7-13) to left-normalized
n–fold brackets, by setting

fa1; : : : ; angDffa1; : : : ; an�1g; ang:

The relations (7-15), (7-16) and (7-17) imply that the group Ln
s .A/ is generated by

the elements fa1; : : : ; ang for all ai 2A, together with elements bŒ2� for b2Lk
s .A/

(whenever k odd and nD2k ).

For all n�2 and abelian group A, a natural epimorphism xpnW Ln
s .A/!Y n.A/ is

defined by

fa1; a2; : : : ; ang 7!a1˝a2^� � �^anCa2˝a1^a3^� � �^an(7-23)

bŒ2� 7!0:(7-24)

Proposition 7.3 For any free abelian group A, the sequence of abelian groups

(7-25) 0!ƒ2�2.A/
j
!L4

s .A/
xp4
!A˝ƒ3.A/!ƒ4.A/!0

is exact, with j and xp4 respectively defined by

j W 
2.a1/^
2.a2/ 7!fa1; a2; a1; a2g(7-26)

xp4W fa1; a2; a3; a4g 7!a1˝a2^a3^a4Ca2˝a1^a3^a4:

The relations (7-15) and (7-16) imply that

fa1; a2; a1; a2gD�fa2; a1; a2; a1g; a1; a22A:

In addition

j W .
2.aCb/�
2.a/�
2.b//^
2.c/ 7!fa; c; b; cg�fb; c; a; cg; a; b; c2A;

so that the map j is well-defined.

Remark 7.4 For an arbitrary abelian group A, the isomorphism (2-6) no longer holds,
and the exact sequence (7-25) is replaced by an exact sequence

(7-27) 0!ƒ2Y 2.A/
j
!L4

s .A/!A˝ƒ3.A/!ƒ4.A/!0
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where j ..a1˝a1/^.a2˝a2//Dfa1; a2; a1; a2g. The following long exact sequence
describes the relation between the functors �2 and Y 2 in this general case:

0!R2.A/!Tor.A;A/!�2.A/!�2.A/!Y 2.A/!0:

Let us define a functor zY n by the short exact sequence

(7-28) 0 // zY n.A/
j // Ln

s .A/
xpn // Y n.A/ // 0 :

Sequence (7-27) asserts in particular that

(7-29) zY 4.A/Dƒ2Y 2.A/;

so we have the following superanalogue for nD4 of the short exact sequence (2-9):

(7-30) 0 // ƒ2Y 2.A/
j // L4

s .A/
xp4 // Y 4.A/ // 0 :

Similarly, the short exact sequence (7-28) for nD5, which is the superanalogue of
the decomposition (7-11) of L5.A/, is described more precisely by the short exact
sequence

(7-31) 0 // Y 3.A/˝�2.A/
h // L5

s .A/
xp5 // Y 5.A/ // 0 ;

where the arrow h is defined by

hW fa; b; cg˝
2.d/ 7!fa; b; c; d; dg :

Remark 7.5 One can show that there is a natural filtration on the term zY 6 , with
an associated graded component �2Y 3.A/, so that L6

s .A/ can have some 4–torsion
whenever there is some 2–torsion in the group A. In fact, this is a general phenomenon:
for all k�1, there may be some 4–torsion in L4kC2

s .A/ whenever A is a 2–torsion
group, whereas there will only be 2–torsion in all other components of the super-Lie
algebra Ls.A/.

7.6 Relations between Lie and super-Lie functors

Let A be a free abelian group and consider, for n�2, the natural monomorphisms

cnW Ln.A/!˝nA;

znW Ln
s .A/!˝

nA:
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For nD3 we have by (7-3), (7-18), for a; b; c2A:

c3W Œa; b; c� 7!a˝b˝c�b˝a˝c�c˝a˝bCc˝b˝a

z3W fa; b; cg 7!a˝b˝cCb˝a˝c�c˝a˝b�c˝b˝a:

For any pair of free abelian groups A and B , and n�2, we define a pair of morphisms

�nW Ln
s .A/˝ƒ

n.B/!Ln.A˝B/(7-32)

x�nW Ln.A/˝ƒn.B/!Ln
s .A˝B/(7-33)

for a1; : : : ; an2A and b1; : : : ; bn2B , by

�nW fa1; : : : ; ang˝b1^� � �^bn 7!

X
�2†n

sign.�/Œa1˝b�1
; : : : ; an˝b�n

�

x�nW Œa1; : : : ; an�˝b1^� � �^bn 7!

X
�2†n

sign.�/fa1˝b�1
; : : : ; an˝b�n

g :

For this definition of �n to be complete, we also need the following rule for �n

whenever nD2k with k odd:

fa1; : : : ; akg
Œ2�
˝b1^� � �^bn

7!

X
�2An

ŒŒa1˝b�1
; : : : ; ak˝b�k

�; Œa1˝b�kC1
; : : : ; ak˝b�2k

��:

Theorem 7.6 Let A and B be free abelian groups. The following diagrams with
arrows defined by (7-32), (7-33), (2-14) are commutative:

(7-34)

Ln
s .A/˝ƒ

n.B/

zn˝gn

��

�n // Ln.A˝B/

cn

��

Ln.A/˝ƒn.B/

cn˝gn

��

x�n // Ln
s .A˝B/

zn

��
.˝nA/˝.˝nB/

�n // ˝n.A˝B/ .˝nA/˝.˝nB/
�n // ˝n.A˝B/

Proof Let us begin by considering the first diagram (7-34) for nD2. The commuta-
tivity of diagram

�2.A/˝ƒ
2.B/

z2˝g2��

�2 // ƒ2.A˝B/

c2��

.A˝A/˝.B˝B/
�2 // .A˝B/˝.A˝B/

can be checked directly: for any a1;2A; b1; b22B :

�2ı.z2˝g2/.
2.a1/˝b1^b2/Dc2ı�2.
2.a1/˝b1^b2/

D.a1˝b1/˝.a1˝b2/�.a1˝b2/˝.a1˝b1/:
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By induction on n, we find that

zn˝gn.fa1; : : : ; ang˝b1^� � �^bn/

D

X
�2†n

sign.�/ znfa1; : : : ; ang˝b�1
˝� � �˝b�n

D

X
�2†n

sign.�/ zn�1fa1; : : : ; an�1g˝an˝b�1
˝� � �˝b�n

C.�1/n
X
�2†n

sign.�/ an˝zn�1fa1; : : : ; an�1g˝b�1
˝� � �˝b�n

:

Hence

�nı.zn˝gn/.fa1; : : : ; ang˝b1^� � �^bn/

D

nX
jD1

�n�1

 X
�Df�1;:::;�n�1g

2f1;:::;yj ;:::;ng

sign.�; j / zn�1fa1; : : : ; an�1g˝b�1
˝� � �˝b�n�1

!
˝.an˝bj /

C.�1/n
nX

jD1

.an˝bj /

˝�n�1

 X
�Df�1;:::;�n�1g

2f1;:::;yj ;:::;ng

sign.j ; �/ zn�1fa1; : : : ; an�1g˝b�1
˝� � �˝b�n�1

!

D

nX
jD1

 X
�Df�1;:::;�n�1g

2f1;:::;yj ;:::;ng

sign.�; j /
�
cn�1Œa1˝b�1

; : : : ; an�1˝b�n�1
�˝.an˝bj /

�.an˝bj /˝cn�1Œa1˝b�1
; : : : ; an�1˝b�n�1

�
�!

D

X
�2†n

sign.�/ cnŒa1˝b�1
; : : : ; an˝b�n

�Dcnı�n.fa1; : : : ; ang˝b1^� � �^bn/ :

One can prove in a similar manner that

(7-35) c2k ı�2k.fa1; : : : ; akg
Œ2�
˝b1^� � �^b2k/

D�2k ı.z2k˝g2k/.fa1; : : : ; akg
Œ2�
˝b1^� � �^b2k/ :

for an odd k , so that the commutativity of the first diagram (7-34) is proved. The
commutativity of the second diagram is proved in the same way: for nD2, it follows
from the commutativity of the diagram (2-33) and one then simply repeats the previous
computation for a general n, with appropriate changes in the signs of the various
expressions.
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For any pair of abelian groups A;B , we define a natural arrow:

ˇnW Y
n.A/˝ƒn.B/!J n.A˝B/(7-36)

ˇnW xpnfa1; : : : ; ang˝b1^� � �^bn 7!

X
�2†n

sign.�/pnŒa1˝b�1
; : : : ; an˝b�n

�;

a1; : : : ; an2A; b1; : : : ; bn2B:

Proposition 7.7 The following diagram with exact columns is commutative:

Y n.A/˝ƒn.B/� _

��

ˇn // J n.A˝B/� _

��

A˝ƒn�1.A/˝ƒn.B/

����

�0n // .A˝B/˝SPn�1.A˝B/

����
ƒn.A/˝ƒn.B/

�n // SPn.A˝B/ :

Here the map �n is defined by (2-34) and �0n is by

�0nW a1˝a2^� � �^an˝b1^� � �^bn

7!

X
�2†n

sign.�/ .a1˝b�1
/˝.a2˝b�2

/ : : : .an˝b�n
/ :

The proof of this proposition follows directly from the definition of the various maps.

8 Derived functors of Lie functors

It is asserted in Schlesinger [45] that if p is an odd prime then the groups LnCkLp.Z; n/
are p–torsion for all k , and in particular

(8-1) LnCkLp.Z; n/D

(
Z=p kD2i.p�1/�1; iD1; 2; : : : ; Œn=2�;

0 otherwise:

In the next three subsections, we will give a direct proof of this fact for pD3, in other
words show that

(8-2) LnCkL3.Z; n/D

(
Z=3 kD4i�1; iD1; 2; : : : ; Œn=2�;

0 otherwise;

and we will more generally compute in Theorem 8.2 the derived functors LnCkL3.A; n/

for a general abelian group A. Note that the derived functors of the Lie functors Lq
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are complicated when q a composite number. We refer to Mikhailov and Passi [40,
page 280] for a description of these derived functors in low degrees. One finds for
example that

LiL
8.Z; 1/D

(
Z=2 iD4; 5; 7;

0 i¤4; 5; 7:

The gap in the homotopy groups which occurs here for iD6 is the illustration of a
general phenomenon which, as we will see for example in (8-16), also occurs in more
elaborate contexts.

Returning to the pD3 case, let us first observe that for any abelian group A the exact
sequence (7-5) derives to a long exact sequence:

(8-3) !LiC1L3.A; n/!�iC1

�
AŒn�

L
˝L SP2.A; n/

�
!LiC1 SP3.A; n/

!LiL
3.A; n/!�i

�
AŒn�

L
˝L SP2.A; n/

�
!Li SP3.A; n/!

In addition, the isomorphism (2-42) implies that

(8-4) LiY
3.A; n/'LiC3 L3.A; nC1/; for all i�3:

8.1 The derived functors Li L3.A/

The Koszul sequence (2-32) associated for nD3 to a flat 2–term resolution f W L!M

of an abelian group A may be written as

0!L3
s .L/!L˝M˝L

ı
!L˝M˝M!L3.M /!L3.A/!0

where ı.l˝m˝l 0/D l˝m˝f .l 0/Cl 0˝f .l/˝m�l˝f .l 0/˝m; l; l 02L; m2M:

The three middle terms constitute a complex which represents the object LL3.A/ of
the derived category. In particular, if one considers the resolution Z m

!Z of Z=m, one
finds that

LiL
3.Z=m/D

(
Z=m iD1;

0 i¤1:

By (2-20), the natural transformation Tor.S2.A/;A/!S3.A/ is an epimorphism.
More generally, the exact sequence (8-3) provides the following description of the
derived functors of L3 :

L2L3.A/DkerfTor.S2.A/;A/!S3.A/g

0!kerfS2.A/˝A!L1 SP3.A/g!L1L3.A/!Tor.SP2.A/;A/!0

LiL
3.A/D0; i>2:
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8.2 The derived functors Li L3.A; 1/

The short exact sequence (7-22) derives to a long exact sequence

(8-5) � � �!LiC1L3
s .A; n/!�iC1

�
AŒn�

L
˝Lƒ2.A; n/

�
!LiC1ƒ

3.A; n/

!LiL
3
s .A; n/!�i

�
AŒn�

L
˝Lƒ2.A; n/

�
!Liƒ

3.A; n/!� � �

analogous to (8-3). For nD0 this reduces to the exact sequence

(8-6) 0!L2Y 3.A/!Tor.�2.A/;A/�3.A/

!L1Y 3.A/!�1

�
Lƒ2.A/

L
˝A

�
!L1ƒ

3.A/!0 :

This exact sequence is consistent with the results in Breen [10, Proposition 6.15],
and with the presentation (2-24) of the groups Liƒ

n.A/. The latter implies that the
composite arrow

(8-7) L1ƒ
2.A/˝A!�1

�
Lƒ2.A/

L
˝A

�
!L1ƒ

3.A/

is an epimorphism. The Künneth formula, together with the exact sequence (8-6),
determines a 3–step filtration of L1Y 3.A/. Taking into account the isomorphism (8-4)
for nD0, we obtain the following description of the derived functors LiL

3.A; 1/:

(8-8) L3L3.A; 1/'Y 3.A/

gr1 L4L3.A; 1/'gr1 L1Y 3.A/'cokerfTor.�2.A/;A/!�3.A/g

gr2 L4L3.A; 1/'gr2 L1Y 3.A/'kerf�2.A/˝A!L1ƒ
3.A/g

gr3 L4L3.A; 1/'gr3 L1Y 3.A/'Tor.ƒ2.A/;A/

L5L3.A; 1/'L2Y 3.A/'kerfTor.�2.A/;A/!�3.A/g

Remark 8.1 The natural map

(8-9) Tor.�2.A/;A/'�2

�
Lƒ2.A/

L
˝A

�
!�3.A/

in the exact sequence (8-6) is in general neither injective nor surjective. This can be
seen by considering the generators !h

i .x/ (2-23) of the groups �n.A/. We know by
Breen [10, 5.14] that the diagram

(8-10)

�2.hA/˝A

��

//

�2
h
˝1

��

�3.hA/

�3
h

��
Tor.�2.A/; A/ // �3.A/
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is commutative. It follows from the relation 
2.x/xD3 
3.x/ in �3.A/ that, with the
notation introduced in (2-23), the corresponding relation

!h
2 .x/�xD3!h

3 .x/

is satisfied in �3.A/ for all x2hA. In particular, this implies that the arrow (8-9) is
trivial for hD3 and ADZ3 . Moreover, it is asserted in Baues and Buth [3] that

(8-11) L1Y 3.Z=3/DZ=9:

We refer to Proposition A.1 in Appendix A for a proof by our methods of this assertion.

8.3 The derived functors Li L3.A; 2/

The décalage isomorphisms (2-39) and Künneth formula yield a description of the
groups

�r

�
L SPj .A; 2/

L
˝AŒ2�

�
as follows:

�2jC2

�
L SPj .A; 2/

L
˝AŒ2�

�
'�j .A/˝A

0!Li�2�j .A/˝A!�2jCi

�
L SPj .A; 2/

L
˝AŒ2�

�
!Tor.Li�3�j .A/;A/!0;

iD3; : : : ; jC1;

�3jC2

�
L SPj .A; 2/

L
˝AŒ2�/

�
'Tor.Lj�1�j .A/;A/

From (2-26) and (5-2) we have the following commutative diagram, a prolongation
of (7-8):

(8-12)

S2.A/˝A
� � //

��

�1

�
L SP2.A/

L
˝A

�
q

��

)) ))

// // Tor.SP2.A/;A/� _

��

L1 SP3.A/� _

R2.A/˝A
� � j //

����

�1

�
L�2.A/

L
˝A

�
t1

**

����

// Tor.�2.A/;A/

��
L1�3.A/

����
Tor.A;Z=2/˝A

� � // coker.q/

((

// Tor.A˝Z=2;A/

.Tor.A;Z=2/˝A/

˚Tor.A;Z=3/
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A diagram chase yields a canonical isomorphism coker.t1/' Tor.A;Z=3/: We obtain
the following description of a portion of the long exact sequence (8-3) for nD2, where
t2 WD t1ıj :

(8-13) R2.A/˝A
t2 // L1�3.A/ // L6L3.A; 2/

// �2.A/˝A // �3.A/ // // A˝Z=3

From this we may extract by (7-7) the upper short exact sequence in the following
commutative diagram, in which the vertical arrows are suspension maps:

Tor.A;Z=3/ � � //

o

��

L6L3.A; 2/

��

// // L3.A/

Tor.A;Z=3/ � // L7L3.A; 3/

(we refer to Theorem 8.2 for this description of L7L3.A; 3/). This determines a
functorial direct sum decomposition of L6L3.A; 2/DL3Y 3.A; 1/. In addition, we
may prolong diagram (8-13) by the following exact sequence:

0!L8L3.A; 2/!Tor.R2.A/;A/!R3.A/!L7L3.A; 2/!ker.t2/!0:

A diagram chase in the following diagram

Tor.S2.A/;A/
� � //

����

Tor.R2.A/;A/ //

��

Tor2.A;A;Z=2/ // // kerfS2.A/˝A

!R2.A/˝Ag

S3.A/
� � // R3.A/ // // Tor2.A;A;Z=2/

(in which we observe that the left-hand vertical arrow is surjective) then implies the
following two equalities:

kerfTor.S2.A/;A/!S3.A/gDkerfTor.R2.A/;A/!R3.A/g

cokerfTor.R2.A/;A/!R3.A/gDkerfS2.A/˝A!R2.A/˝Ag:
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Taking once more into account the décalage isomorphisms (8-4), this provides a
complete description of the functors LiL

3.A; 2/:

L5L3.A; 2/DL2Y 3.A; 1/DA˝Z=3

L6L3.A; 2/DL3Y 3.A; 1/DL3.A/˚Tor.A;Z=3/

gr1L7L3.A; 2/Dgr1 L4Y 3.A; 1/DkerfS2.A/˝A!R2.A/˝Ag

gr2L7L3.A; 2/Dgr2 L4Y 3.A; 1/DkerfR2.A/˝A!L1�3.A/g

gr3L7L3.A; 2/Dgr3 L4Y 3.A; 1/DTor.�2.A/;A/

L8L3.A; 2/DL5Y 3.A; 1/DL2L3.A/:

(8-14)

For all other values of i; LiL
3.A; 2/D0.

As an illustration of these results, we will now give an explicit description of the
isomorphism

(8-15) A˝Z=3
�
!L2Y 3.A; 1/ .DL2L3

s .A; 1//

occurring in the first equation of (8-14), even though this will not be used in the sequel.
Consider the simplicial model (2-17) of LL3

s .A; 1/ associated to a free resolution
(2-15) of A. The isomorphism (8-15) is induced by the map

A˝Z=3!L3
s .L˚s1.M /˚s0.L//=@0.

T3
iD1 @i/

defined, for a chosen lifting a to M of xa2A˝Z=3, by

xa 7!fs1.a/; s0.a/; s1.a/g:

In order for this map to be well-defined, we must verify that

3fs1.a/; s0.a/; s1.a/g2@0.ker.@1/\ker.@2/\ker.@3//:

This is true since the element

� WD3fs2s0.a/; s1s0.a/; s2s0.a/g�fs2s1.a/; s1s0.a/; s2s0.a/g

Cfs2s1.a/; s2s0.a/; s1s0.a/g

2L3
s .s0.A1/˚s1.A1/˚s2.A1/˚s1s0.A0/˚s2s0.A0/˚s2s1.A0//

satisfies the equations @i.�/D0; iD1; 2; 3 and @0.�/D3fs1.a/; s0.a/; s1.a/g.
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8.4 The derived functors Li L3.A;n/ for n�3

In each of the following three commutative diagrams, the exactness of the upper short
exact sequence follows from Proposition 4.1 and the exactness of the lower one from
Theorem 5.2. For n�3 odd:

�1

�
ƒ2.A/

L
˝A

� � � //

��

�3mC1

�
L SP2.A; n/

L
˝AŒn�

�
��

// // Tor2.A;A;Z=2/

L1ƒ
3.A/

� � // L3nC1 SP3.A; n/ // // Tor2.A;A;Z=2/

ƒ2.A/˝A
� � //

��

�3n

�
L SP2.A; n/

L
˝AŒn�

�
��

// // Tor1.A;A;Z=2/

ƒ3.A/
� � // L3n SP3.A; n/ // // Tor1.A;A;Z=2/

and for n>3 even:

�2.A/˝A
� � //

��

�3n

�
L SP2.A; n/

L
˝AŒn�

�
��

// // Tor2.A;A;Z=2/

�3.A/
� � // L3m SP3.A; n/ // // Tor2.A;A;Z=2/

The sequence (8-3) therefore determines the following exact sequences:

Case I n is odd �3.

0!L3nC2L3.A; n/!Tor.�2.A/;A/!�3.A/

!L3nC1L3.A; n/!�1

�
Lƒ2.A/

L
˝A

�
!L1ƒ

3.A/

!L3nL3.A; n/!ƒ2.A/˝A!ƒ3.A/!L3n�1L3.A; n/

Case II n is even.

0!L3nC2L3.A; n/!Tor.R2.A/;A/!R3.A/

!L3nC1L3.A; n/!�1

�
L�2.A/

L
˝A

�
!L1�3.A/

!L3nL3.A; n/!�2.A/˝A!�3.A/!L3n�1L3.A; n/

We may now summarize this discussion as follows:
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Theorem 8.2 Case I n is odd.

LiL
3.A; n/

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

kerfTor.�2.A/;A/!�3.A/g iD3nC2;

gr1 L3nC1L3.A; n/

Dkerf�1

�
Lƒ2.A/

L
˝A

�
!L1ƒ

3.A/g

gr2 L3nC1L3.A; n/

DcokerfTor.�2.A/;A/!�3.A/g

Y 3.A/ iD3n;

A˝Z=3 nC3� i<3n�1; i�nC3 mod 4;

Tor.A;Z=3/ nC4� i�3n�1; i�n mod 4;

and LiL
3.A; n/D0 for all other values of i .

Case II n is even.

LiL
3.A; n/

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

kerfTor.R2.A/;A/!R3.A/g iD3nC2;

gr1 L3nC1L3.A; n/

Dkerf�1

�
L�2.A/

L
˝A

�
!L1�3.A/g

gr2 L3nC1L3.A; n/

DcokerfTor.R2.A/;A/!R3.A/g

Tor.A;Z=3/˚L3.A/ iD3n;

A˝Z=3 nC3� i�3n�1; i�nC3 mod 4;

Tor.A;Z=3/ nC4� i<3n�1; i�n mod 4;

and LiL
3.A; n/D0 for all other values of i .

Note that in the computation of L3nL3.A; n/ for n odd, we relied on the surjectivity
of the map (8-7).

Example The previous discussion shows in particular that

(8-16) LiL
3.Z=3; 5/D

8̂<̂
:

Z=9 iD16;

Z=3 iD8; 9; 12; 13; 17;

0 otherwise:

A functorial description of some of these groups will be given in Lemma 11.2.
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For a given a free abelian group A and an integer n�2 the composite map

Ln.A/!˝n.A/!Ln.A/

is simply multiplication by n [45, Proposition 3.3]. It follows that for an odd prime p ,
the derived functors LiL

p.Z; n/ are p–groups (see (8-1)). The torsion part of the
derived functors can be usually be determined by general arguments. Recall that by
Bousfield [7, Corollary 9.5], if T W Ab!Ab is a functor of finite degree which preserves
direct limits, then LqT .A; n/ is a torsion group for every abelian group A, unless q

is divisible by n.

The p–components of the derived functors of Lp and J p are connected by the follow-
ing relation [45, Proposition 4.7]: for every prime p , there are natural isomorphisms

�i

�
Z=p

L
˝LLp.Z; n/

�
'�i

�
Z=p

L
˝LJ p.Z; n/

�
; i�0; n�2:

However the formulas for the full derived functors LiJ
p.Z; n/ are more complicated

than those for the functors LiL
p.Z; n/ (8-1). For example, we know by Theorem 8.2

that

LL5.Z; 3/'K.Z=5; 10/

so that by (4-3)

LJ 2.Z; 3/
L
˝LJ 3.Z; 3/'K.Z=3; 12/:

On the other hand LJ 3.Z; 3/'K.Z=3; 6/ by (8-1), and the values of the derived
functors LiJ

5.Z; 3/ now follow from those of L5.Z; 3/ and the Curtis decomposition
of L5 . One finds

LiJ
5.Z; 3/'

8̂<̂
:

Z=3 iD13;

Z=5 iD10;

0 i¤10; 13:

One can compute the groups LiJ
5.Z; n/ for a general n by similar methods. One

finds that LiJ
5.Z; n/ is isomorphic to LiL

5.Z; n/ for i�1 and even n, and that
LiJ

5.Z; n/ contains only 3–torsion and 5–torsion elements whenever n is odd. A
similar computation detects a nontrivial 11–torsion element in L29J 13.Z; 3/, whereas
the corresponding groups LiL

13.Z; 3/ are 13–torsion for all i .

9 Derived functors of composite functors

Consider a pair of composable functors

A G // B F // C
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between abelian categories, and in which the categories A and B have enough projec-
tives. In addition, we assume that G.A/ is of finite projective dimension for each object
A2A. When these functors are additive, the composite functor spectral sequence
discussed for example in Weibel [47, Section 5.8] describes the derived functors of
the composite functor GıF in terms of those of F and G , under the condition that
the objects G.P / are F –acyclic for any projective object P of A (we will refer to
this as the F –acyclicity hypothesis). We will now carry out a similar discussion when
G and F are no longer additive, in which case chain complexes must be replaced by
simplicial abelian groups.

Let P� be projective resolution of an object A2A. Following the notation of [47,
Section 5.7], we construct a Cartan–Eilenberg resolution P�:� of the simplicial ob-
ject G.P�/, with PB

p;� (resp. PZ
p;� , resp. PH

p;� ) the chosen projective resolution of
BpG.P�/ (resp. ZpG.P�/, resp. LpG.A/). By the Dold–Kan correspondence this
yields in particular a projective bisimplicial resolution of LG.A// which we will
also denote by P�:� , as well as a corresponding projective simplicial model PH

p;� for
the Eilenberg–Mac Lane spaces K.LpG.A/; p/. The two filtrations on the complex
associated to the bisimplicial object FP�:� determine a pair of spectral sequences with
common abutment �n.LFıLG.A//. The initial terms of the first of these are given by

(9-1) E2
p;qDLpCqF

 M
P

i qiDq

K.Lqi
G.A/; qi/

!
:

as in [6]. When the functor F is of finite degree, we may decompose this initial term
according to cross-effects of F , as in Dold and Puppe [20, Section 4.18], so that the
spectral sequence can be expressed as

(9-2) E2
p;qD

M
r�1

M
q1C���CqrDq

LpCqFŒr �.Lq1
G.A/; q1j � � � jLqr

G.A/; qr /

H)�pCq..LFıLG/.A// :

The F –acyclicity hypothesis, which here asserts that LiF.G.P //D0 for any projective
abelian group P and all i>0, implies that the morphism .LFıG/.P /�!FG.P / is
a quasi-isomorphism for any projective object P in A, and so is the induced map

(9-3) .LFıLG/.A/�!L.FG/.A/ :

The spectral sequence (9-2) can now be written as

(9-4) E2
p;qD

M
r�1

M
q1C���CqrDq

LpCqFŒr �.Lq1
G.A/; q1j � � � jLqr

G.A/; qr /

H)LpCq.FG/.A/ :
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Replacing the object A by the shifted derived category object AŒn�, in other words
by the Eilenberg–Mac Lane object K.A; n/, we may now compute under the same
hypotheses the derived functors Lr .FG/.A; n/ for all n. The F –acyclicity hypothesis
implies inductively that the quasi-isomorphism (9-3) determines a quasi-isomorphism

(9-5) .LFıLG/.A; n/�!L.FG/.A; n/

for all n�0, since we can choose as a simplicial model for K.A; n/ the bisimplicial
model

� � ��!K.A3; n�1/�!K.A2; n�1/�!K.A; n�1/�!feg

and work componentwise. Since no change is necessary in the discussion of spectral
sequence (9-2) when passing from the nD0 case to the general situation, we finally
obtain for any positive n, when F is of finite degree and the F –acyclicity hypothesis
is satisfied, a functorial spectral sequence:

(9-6) E2
p;qD

M
r�1

M
q1C���CqrDq

LpCqFŒr �.Lq1
G.A; n/; q1j � � � jLqr

G.A; n/; qr /

H)LpCq.FG/.A; n/ :

We now restrict ourselves to a special case, that in which F and G are endo-functors
on the category of abelian groups (or more generally the category of R–modules,
with R a principal ideal domain or even a hereditary ring). By construction, the total
complex of P�;� and the complex

L
q PH

q;� are both projective and have as homologyL
q LqG.A/Œq�, viewed as a complex with trivial differentials. It follows as in Dold

[19, Section II.4] that this identification of their homology may be realized by a chain
homotopy equivalence between the complexes, which in turn induces a simplicial
homotopy equivalence between the corresponding simplicial groups P and

L
q PH

q;� .
The induced homotopy equivalence between F.P / and F.PH

q;�/ makes it clear that in
this case the E2 term of the spectral sequence (9-6) is (noncanonically) isomorphic to
its abutment. It follows that the spectral sequence degenerates at the E2 level, so that
this proves the following proposition:

Proposition 9.1 Let F and G be a pair of endofunctors on the category of abelian
groups, with F of finite degree. Suppose that for any projective abelian group P ,
LqF.G.P //D0 whenever q>0. Then the spectral sequence (9-6) degenerates at E2 ,
and the graded components associated to the filtration on the abutment Lm.FG/.A/

of the spectral sequence are described by the formula

(9-7) grp LpCq.FG/.A; n/

'

M
r�1

M
q1C���CqrDq

LpCqFŒr �.Lq1
G.A; n/; q1j � � � jLqr

G.A; n/; qr / :
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When F is one of the functor SPs; ƒs or �s , such an assertion may also be deduced,
under the F –acyclicity hypothesis, from formula V (4.2.7) of Illusie [29].

9.1 The derived functors of ƒ2ƒ2

As an illustration of Proposition 9.1, we will now compute the derived functors of
the functor Li.ƒ

2ƒ2/.A; n/ for all for nD0; 1; 2. Such results are of interest to us,
since ƒ2ƒ2 is the first composite functor arising in the decomposition (7-9) of the Lie
functors LnA.

We know by (4-3) that

Liƒ
2.A/D

8̂<̂
:
�2.A/ iD1;

ƒ2.A/ iD0;

0 else;

Liƒ
2.A; 1/D

8̂<̂
:

R2.A/ iD3;

�2.A/ iD2;

0 else;

Liƒ
2.A; 2/D

8̂̂̂̂
<̂
ˆ̂̂:
�2.A/ iD5;

�2.A/ iD4;

A˝Z=2 iD3;

0 else;

Liƒ
2.A; 3/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

R2.A/ iD7;

�2.A/ iD6;

Tor.A;Z=2/ iD5;

A˝Z=2 iD4;

0 else;

(9-8)

Liƒ
2.A; 4/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�2.A/ iD9;

�2.A/ iD8;

Tor.A;Z=2/ iD6;

A˝Z=2 iD5; 7;

0 else;

Liƒ
2.A; 5/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

R2.A/ iD11;

�2.A/ iD10;

Tor.A;Z=2/ iD7; 9;

A˝Z=2 iD6; 8;

0 else;

with �2.A/ defined in (4-1). Proposition 9.1 yields Table 2 below for the functors
Liƒ

2ƒ2.A/.

The functors Ln.ƒ
2ƒ2/.A/ can be read off from the pCqDn line of Table 2. In

particular, there is a (nonnaturally split) short exact sequence

0�!ƒ2.A/˝�2.A/�!L1.ƒ
2ƒ2/.A/�!�2ƒ

2.A/�!0

which may be viewed as a symmetrized version of a Künneth formula for the expression

�1

�
Lƒ2.A/

L
˝Lƒ2.A/

�
:
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2 0 R2�2.A/

1 �2ƒ
2.A/ �2�2.A/˚Tor.ƒ2.A/;�2.A//

pD0 ƒ2ƒ2.A/ ƒ2A˝�2.A/
//

OO

qD0 1

Table 2: grp.LpCq.ƒ
2ƒ2/.A//

We now pass to the derived functors Ln.ƒ
2ƒ2.A; 1//. The values of these derived

functors are displayed in Table 3. They are obtained as above from the values (9-8) of
the derived functors of ƒ2 .

4 0 R2R2.A/ 0 0

3 �2�2.A/ �2R2.A/ 0 0

2 �2�2.A/ Tor.R2.A/;Z=2/ 0 0

1 �2.A/˝Z=2 R2.A/˝Z=2 0 Tor.�2.A/;R2.A//

pD0 0 0 0 �2.A/˝R2.A/
//

OO

qD2 3 4 5

Table 3: grp.LpCq.ƒ
2ƒ2/.A; 1//

When one also takes into account the values of Liƒ.A; n/ for nD4; 5, one finds the
values for the derived functors of ƒ2ƒ2.A; 2/ displayed in Table 4.

9.2 The derived functors of ƒ2�2

We will now carry out a similar discussion for the derived functors of ƒ2�2 . By (4-4),

(9-9) Li�2.A/D

8̂<̂
:

R2.A/ iD1;

�2.A/ iD0;

0 i¤0; 1;

Li�2.A; 1/D

8̂̂̂̂
<̂
ˆ̂̂:
�2.A/ iD3;

�2.A/ iD2;

A˝Z=2 iD1;

0 i¤1; 2; 3:
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6
0

0
R

2
�

2
.A
/

0
0

0
0

5
0

�
2
�

2
.A
/

�
2
�

2
.A
/

0
0

0
0

4
R

2
.A
˝

Z
=
2
/

�
2
�

2
.A
/

To
r.
�

2
.A
/;

Z
=
2
/

0
0

0
0

3
�

2
.A
˝

Z
=
2
/

�
2
.A
/˝

Z
=
2

�
2
.A
/˝

Z
=
2

0
0

0
0

2
A
˝

Z
=
2

To
r.
�

2
.A
/;

Z
=
2
/

To
r.
�

2
.A
/;

Z
=
2
/

0
0

0
0

1
A
˝

Z
=
2

�
2
A
˝

Z
=
2

�
2
.A
/˝

Z
=
2

0
To

r.
A
˝

Z
=
2
;�

2
.A
//

To
r.

A
˝

Z
=
2
;�

2
.A
//

To
r.
�

2
.A
/;
�

2
.A
//

p
D

0
0

0
0

0
.A
˝

Z
=
2
/˝
�

2
.A
/

A
˝

Z
=
2
˝
�

2
.A
/

�
2
.A
/˝
�

2
.A
/

//

OO

q
D

3
4

5
6

7
8

9

Table 4: grp.LpCq.ƒ
2ƒ2/.A; 2//
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Since �2.P / is torsion-free for any torsion-free group P , the derived functors of ƒ2�2

may be computed by formula (9-7). Tables 5 and 6 below may now be respectively
deduced from formulas (9-8) and (9-9).

2 R2R2.A/

1 �2�2.A/ �2R2.A/˚Tor.�2.A/;R2.A//

pD0 ƒ2�2.A/ �2.A/˝R2.A/

qD0 1

Table 5: grp.LpCq.ƒ
2�2/.A//

4 0 0 R2�2.A/ 0 0

3 0 �2�
2.A/ �2�2.A/ 0 0

2 R2.A˝Z=2/ �2�2.A/ Tor.�2.A/;Z=2/ 0 0

1 �2.A˝Z=2/ �2.A/˝Z=2
�2.A/˝Z=2
˚Tor.A˝Z=2; �2.A//

Tor.A˝Z=2; �2.A// Tor.�2.A/; �2.A//

0 0 0 A˝Z=2˝�2.A/ A˝Z=2˝�2.A/ �2.A/˝�2.A/

qD1 2 3 4 5

Table 6: grp.LpCq.ƒ
2�2/.A; 1//

The coincidence, up to changes in degree, between certain terms in Table 5 and those
in Table 3, and (more strikingly) between certain terms in Table 6 and those in Table 4
is explained by the décalage isomorphisms (2-40) between the derived functors of �2

and those of ƒ2 .

10 Derived functors of super-Lie functors

In view of (7-19), the décalage isomorphisms (2-42) and formulas (8-2) imply (for n�1):

(10-1) LnCkL3
s .Z; n/D

(
Z=3 kD4iC1; iD0; 1; : : : ; Œn�1

2
�;

0 otherwise:

We will now examine the relations between the derived functors of Ln and Ln
s . For

any free simplicial abelian group A� , the maps �n and x�n (7-32) induce arrows:

��nW �m

�
LLn

s .A�/
L
˝Lƒn.Z; 1/

�
!�m.LLn.A/˝ZŒ1�/; m�0

x��nW �m

�
LLn.A�/

L
˝Lƒn.Z; 1/

�
!�m.LLn

s .A/˝ZŒ1�/; m�0
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For A�DK.A;m/, these determine by adjunction pension maps

��nW LmLn
s .A; k/!LmCnLn.A; kC1/(10-2)

x��nW LmLn.A; k/!LmCnLn
s .A; kC1/:

which may be viewed as generalized décalage transformations, even though the maps ��n
are no longer isomorphisms. We will for this reason refer to such maps as semi-
décalage morphisms. Similarly, the pairing ˇn (7-36) determines a family of pension
isomorphisms (2-42) which we now denote �n :

(10-3) LmY n.A; k/
�n // LmCnJ n.A; kC1/ :

Proposition 7.7 now implies the following assertion:

Theorem 10.1 The following diagram is commutative:

LmLn
s .A; k/

//

��n
��

LmY n.A; k/

o�n

��
LmCnLn.A; kC1/ // LmCnJ n.A; kC1/

Let us now consider the boundary maps:

�mW LmJ n.A; k/!Lm�1
zJ n.A; k/;(10-4)

x�mW LmY n.A; k/!Lm�1
zY n.A; k/(10-5)

induced by the short exact sequences (2-9) and (7-28). The following proposition is a
corollary of Theorem 10.1:

Proposition 10.2 For m; n�1 and any abelian group A, the following diagram com-
mutes (where the lower left-hand arrow is �mCnC1 and the vertical arrows are décalage
and semi-décalage morphisms):

(10-6)

LmC1Y n.A; k/
x�mC1 //

o�n

��

Lm
zY n.A; k/ //

 n

��

LmLn
s .A; k/

xpn //

��n

��

LmY n.A; k/

o�n

��
LmCnC1J n.A; kC1/ // LmCn

zJ n.A; kC1/ // LmCnLn.A; kC1/
pn // LmCnJ n.A; kC1/
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We now suppose that n�2. The following diagram, in which the vertical arrows are
décalage maps, is commutative:

(10-7)

�2n

�
L SPn�1.A; 2/

L
˝AŒ2�

�
//

o
��

L2n SPn.A; 2/ // //

o

��

L2n�1J n.A; 2/

o

��
�n

�
Lƒn�1.A; 1/

L
˝AŒ1�

�
//

o
��

Lnƒ
n.A; 1/ // //

o
��

Ln�1Y n.A; 1/

o
��

�n�1.A/˝A // �n.A/ // // H0C n.A/

By Proposition 3.1, it now follows in particular that there exists a natural isomorphism

(10-8) L2n�1J n.A; 2/'
M
pjn

�n=p.A˝Z=p/;

which describes explicitly the right-hand terms in diagram (10-7).

10.1 The fourth Lie and super-Lie functors

We will now discuss certain derived functors of the functors L4 and L4
s . Recall that

by (7-10) and (7-29),

zJ 4.A/'ƒ2ƒ2.A/; zY 4.A/'ƒ2�2.A/:

for any free abelian A. By (10-8), the right-hand vertical arrows in diagram (10-7) for
nD4 are

(10-9) L7J 4.A; 2/
� // L3Y 4.A; 1/

�

u
// �2.A˝Z=2/ :

Proposition 10.3 For every abelian group A, the arrow

(10-10) L3Y 4.A; 1/
x�3 // L2ƒ

2�2.A; 1/

is a natural isomorphism between a pair of functors, both naturally isomorphic to
�2.A˝Z=2/.

Proof Let us first verify that the map x�3 (10-10) is surjective. Consider the simplicial
model (2-17) of Lƒ2�2.A; 1/ determined by a flat resolution (2-15) of A. We define
a map

�2.A˝Z=2/
v
�!L2ƒ

2�2.A; 1/
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explicitly as follows:

�2.A˝Z=2/ ! ƒ2�2.A1˚s0.A0/˚s1.A0//=@0.ker.@1/\ker.@2/\ker.@3//


2.xa/ 7! 
2.s0.a//^
2.s1.a//

for some lift a to M of xa2A˝Z=2. Under the natural transformation ƒ2�2�!L4
s

(7-26), the image of 
2.xa/ goes to the element

fso.a/; s1.a/; s0.a/; s1.a/g

in the term L4
s .L˚s0.M /˚s1.M // of the corresponding simplicial model for

LL4
s .A; 1/. The element

� WDfs1s0.a/; s2s0.a/; s1s0.a/; s2s0.a/g�fs1s0.a/; s2s0.a/; s1s0.a/; s2s1.a/g

2L4
s .s0.A1/˚s1.A1/˚s2.A1/˚s1s0.A0/˚s2s0.A0/˚s2s1.A0//

satisfies the equations @i.�/D0; iD1; 2; 3 and

@0.�/Dfs0.a/; s1.a/; s0.a/; s1.a/g2L4
s .A1˚s0.A0/˚s1.A0//:

It follows that the map L2ƒ
2�2.A; 1/!L2L4

s .A; 1/ is trivial so that, by exactness
of the upper line of diagram (10-6), the arrow x�3 is surjective.

We will now give a more explicit description of the target of x�3 . We have a natural
isomorphism

vW L2ƒ
2�2.A; 1/

� // �2.A˝Z=2/

since the only nontrivial term of total degree 2 in Table 6 is the expression �2.A˝Z=2/
in bidegree (1,1). We now have a pair of arrows u (10-9) and v , which provide natural
isomorphisms between both the source and target of x�3 and the group �2.A˝Z=2/.
We may now assume that A is finitely generated. In that case both source and target of
the surjective map x�3 are finite groups of the same order, so x�3 is an isomorphism.

We know by the description of homotopy groups of Lƒ2ƒ2.A; 2/ in Table 4 that there
is a natural projection L6ƒ

2ƒ2.A; 2/!�2.A˝Z=2/. The following proposition is a
consequence of Proposition 10.2 and Proposition 10.3:

Proposition 10.4 The group G WDL6ƒ
2ƒ2.A; 2/ is endowed with a 3–step descend-

ing filtration F iG .1� i�3/ for which the associated graded components are de-
scribed by

gri GD

8̂<̂
:
�2.A˝Z=2/ iD1;

Tor.�2.A/;Z=2/ iD2;

�2.A/˝Z=2 iD3:
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In addition, the projection w of G onto the highest graded component gr1 G is the
map arising from the edge-homomorphism in the spectral sequence (9-6) described
in Table 4. This surjection w is split, up to an isomorphism, by the boundary map

L7J 4.A; 2/
�7 //// L6ƒ

2ƒ2.A; 2/ provided by the decomposition (7-9) of L4.A/.

Proof The associated graded terms �2.A/˝Z=2 and Tor.�2.A/;Z=2/ in the line
pCqD6 of Table 4 give us the required description of F2GDker.w/. The previous
discussion provides us with a commutative diagram

�2.A˝Z=2/
'

u
// L3Y 4.A; 1/

o

��

'

x�3

// L2.ƒ
2�2/.A; 1/� _

 4

��
L7J 4.A; 2/

�7 // L6.ƒ
2ƒ2/.A; 2/

w // �2.A˝Z=2/

where the injectivity of the map  4 (10-6) is obtained by examining the behavior of
the decompositions (9-7) of its source and target under décalage. It remains to show
that the composite map

wı�7W L7J 4.A; 2/!�2.A˝Z=2/

is an isomorphism. When A is free abelian of finite rank, we have L6ƒ
2ƒ2.A; 2/'

�2.A˝Z=2/, so that the injective map

 4W �2.A˝Z=2/ ,!L6ƒ
2ƒ2.A; 2/

is a monomorphism between two finite groups of the same order. It follows that the map
wı�7 is an isomorphism whenever A is free abelian, and therefore an epimorphism
for an arbitrary abelian group A. Returning to the case of an abelian group A of finite
rank, we conclude that the epimorphism wı�7 is an isomorphism, since source and
target are finite groups of the same order. This implies that the corresponding assertion
is true for an arbitrary abelian group.

In the sequel, we will also need the following result, which follows since the only
nontrivial terms contributed by the Curtis decomposition to LiL

4.A; 2/ for i<7 are
those provided by the derived functors of ƒ2ƒ2 :

Corollary 10.5 The group L6L4.A; 2/ is canonically isomorphic to the direct sum
of the two following expressions:

gr1 L6L4.A; 2/DTor.�2.A/;Z=2/DTor.ƒ2.A/;Z=2/˚Tor2.A;Z=2;Z=2/

gr2 L6L4.A; 2/D�2.A/˝Z=2:
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11 Homotopical applications

11.1 Moore spaces and the Curtis spectral sequence

In this section we will review the Curtis spectral sequence, which will be our main tool
for homotopical applications of our theory. Recall that for any abelian group A and
n�2, a Moore space in degree n is defined to be a simply connected space X with
Hi.X /'A for iDn, and zHi.X /D0; i¤n. Such a Moore space will be denoted
M.A; n/ when in addition an isomorphism Hn.X /'A is fixed. The homotopy type
of M.A; n/ is determined by the pair .A; n/, since homology equivalence implies
homotopy equivalence for simply connected spaces. When A is free abelian with a
chosen basis, a Moore space M.A; n/ can be constructed as a wedge of n–spheres,
labelled by basis elements of A. For an arbitrary abelian group A and n�2, an
n–dimensional Moore space is constructed as follows: choose a 2–step free resolution
(2-15) of A with chosen bases. M.A; n/ can then be defined as the mapping cone (see
Gabriel and Zisman [27, VI 2]) of the induced map between the wedges of spheres
M.L; n/!M.M; n/. For any homomorphism of abelian groups f W A!B , it is
possible to construct a map �W M.A; n/!M.B; n/ such that Hn.�/Df . However,
the construction of the map � is not canonical and the construction of Moore spaces is
non-functorial. The canonical class in H n.M.A; n/;A/ induces a map

(11-1) M.A; n/�!K.A; n/

which is well-defined up to homotopy.

We will now recall the construction of the Curtis spectral sequence. Let G be a
simplicial group. The lower central series filtration on G gives rise to the long exact
sequence

�iC1.G=
r .G//!�i.
r .G/=
rC1.G//!�i.G=
rC1.G//!�i.G=
r .G//!� � �

This exact sequence defines a graded exact couple, which gives rise to a natural spectral
sequence E.G/ with the initial terms

E1
r;q.G/D�q.
r .G/=
rC1.G//

and differentials

d i
r;qW E

i
r;q.G/!Ei

rCi;q�1.G/:(11-2)

According to Curtis [15], for K a connected simplicial set and GDGK the associated
Kan construction as in May [37, Section 26], this spectral sequence Ei.G/ converges
to E1.G/ and

L
r E1r;q is the graded group associated to the filtration on �q.GK/
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induced by the lower central series filtration on K . Since GK is a loop group of K ,
this spectral sequence may be written as

(11-3) E1
r;q.K/ WD�q.
r .GK/=
rC1.GK//H)�qC1.jKj/:

The groups E1.G/ are homology invariants of K . By the Magnus–Witt isomorphism
(2-4), the spectral sequence (11-3) can be rewritten as

(11-4) E1
r;q.K/D�q.L

r .zZK;�1//H)�qC1.jKj/:

since the abelianization GKab WDGK=
2GK of GK corresponds to the reduced chains
zZK on K , with degree shifted by 1. When KDM.A; n/, zZK corresponds to an
Eilenberg–Mac Lane space K.A; n/ so that the spectral sequence is simply of the form

(11-5) E1
r;qDLqLr .A; n�1/H)�qC1.M.A; n// :

In particular,

E1
1;qD�q.K.A; n�1//D

(
A qDn�1;

0 q¤n�1:

For more information regarding this spectral sequence, see Curtis [15] and Mikhailov
and Passi [40, Chapter 5].

11.2 The 3–torsion of �n.S
2/

As a first illustration of our techniques, we will now discuss the 3–torsion components
of the homotopy groups of the sphere S2 . For this, consider the 3–torsion parts of the
various terms in the spectral sequence (11-5), with ADZ and nD2:

(11-6) E1
r;qDLqLr .Z; 1/)�qC1.S

2/:

From now on, we will denote by pA the p–torsion subgroup of an abelian group A

and by .p/A the quotient of A by the q–torsion elements, for all primes q¤p . We
will refer to this quotient group as the .p/–torsion group of A.

It is shown in [15] (see also [40, Propositions 5.33 and 5.35]) that

(11-7) LiJ
n.Z; 1/D

(
Z iD2; nD2;

0 otherwise:

This, together with the Curtis decomposition (7-9) of the Lie functors and the com-
putation of the groups Liƒ

2ƒ2.Z; 1/ in Table 3, implies that there is no 3–torsion
in any of the expressions LqLp.Z; 1/ for p<6. Let us show that the first nontrivial
3–torsion term in the spectral sequence (11-6) occurs in the group L5L6.Z; 1/. It
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follows from (11-7) and the Künneth formula that no 3–torsion is produced by either
of the factors J 6.Z; 1/ and J 4.Z; 1/˝J 2.Z; 1/ of L6.Z; 1/, nor is any contribution
made by J 2J 3.Z; 1/ since J 3.Z; 1/ is contractible. It thus follows from (11-7) and
(8-2) (or (8-14)) that

(11-8) LiL
6.Z; 1/'LiJ

3J 2.Z; 1/'LiL
3.Z; 2/'

(
Z=3 iD5;

0 i¤5:

We restate this result as

(11-9) LJ 3J 2.Z; 1/'K.Z=3; 5/:

More generally, the Curtis decomposition (7-9), together with (11-7) and (10-8),
implies that 3–torsion in the groups LqLr .Z; 1/ can only arise from components
of the decomposition of the form FJ 3k

J 2 and their tensor products (for functors
FDSPk or FDJ k ), so that there is no 3–torsion in the initial terms of (11-6)
unless 6jr . The analysis of the rD18 case is similar to that of rD6. The only
contribution to the 3–torsion in LqLr .Z; 1/, for q�14, comes from the derived
functors of J 3J 3J 2.Z; 1/, and by (11-9)

LiJ
3J 3J 2.Z; 1/'LiL

3.Z=3; 5/ :

These groups were computed in (8-16), so it now follows from the connectivity result
(3-6) that

3LqLr .Z; 1/DZ=3; rD18; qD8; 9(11-10)

3LqLr .Z; 1/D0; r¤18; 5<q<10:and

We refer to Mikhailov and Passi [40, Chapter 5] for a similar analysis of the 2–torsion
components in the spectral sequence (11-6).

For r¤12, the 3–torsion components of LqLr .Z; 1/ may all be computed by the
previous method so long as q�14, and indeed all of these components are trivial except
for those provided by (11-8) and (11-10). We will now consider in detail the case of the
12th Lie functor. We will need to introduce additional techniques in order to achieve a
complete understanding of the derived functors of L12 and of the differentials in the
spectral sequence (11-6) within the range q�14.

First observe that only the functors J 6J 2 , J 3J 2J 2 , J 2J 3J 2 , J 4J 2˝J 2J 2 may
give any contribution to the 3–torsion in LqL12.A; 1/ in degrees q�14. By (4-3) and
(8-14), the derived functors of J 3J 2J 2 and J 4J 2˝J 2J 2 are all 2–torsion groups
for ADZ. It follows that 3–torsion in LqL12.Z; 1/ within our range can only occur
in degrees qD10; 11. In fact we will now show that while J 6J 2.Z; 1/DK.Z6; 11/
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by (10-8), and so could in principle contribute to the 3–torsion of L11L12.Z; 1/, this
is not in fact the case:

Proposition 11.1 The groups .3/LqL12.Z; 1/D0 are trivial for all q�2.

Proof By (11-7), we may think of the Curtis decomposition of L12.Z; 1/ as reducing
to a short exact sequence

0 // J 2J 3J 2.Z; 1/ // L12.Z; 1/ // J 6J 2.Z; 1/ // 0

when only 3–torsion is considered. This induces following commutative diagram of
finite groups with exact horizontal lines, and boundary maps 3�11 :

(11-11)

3L11L12.Z;1/
� � //

3L11J 6J 2.Z;1/
3�11//

3L10J 2J 3J 2.Z;1/ // //
3L10L12.Z;1/

3L11L6.Z;2/
� � //

3L11J 6.Z;2/
3�11 //

3L10J 2J 3.Z;2/ // //
3L10L6.Z;2/

�2.Z3/ // �2.Z3/

In this diagram, the value of 3L11J 6.Z; 2/ was determined by (10-8) and that of
3L10J 2J 3J 2.Z; 1/ follows from (11-9) and (4-3).

Let us now consider the Curtis spectral sequence (11-4) for the space K WDK.A; n/

for some abelian group A:

(11-12) E1
r;qDLqC1Lr .zZK.A; n/;�1/H)�q.K.A; n�1//

We will now look at this in more detail for ADZ:

(11-13) E1
r;qDLqC1Lr .zZK.Z; n/;�1/H)�q.K.Z; n�1//

By Dold’s theorem [18, Theorem 5.1] , we may replace the expression ZK.Z; n/ in the
initial term of (11-13) by

L
i K. zHiC1.Z; n/; i/ so that the spectral sequence becomes

(11-14) E1
r;qD�qLr .

L
i K. zHiC1.Z; n/; i//H)ZŒn�1�

In particular,

(11-15) E1
1;qD

zHqC1.K.Z; n// :

We now consider the case nD3. The low-degree (3)-torsion integral homology groups
of K.Z; 3/ are well-known by Cartan [11] and Decker [17], in fact the only nontrivial
generators for such groups are the fundamental class i3 in degree 3, the degree 7
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suspension of element 
3.i2/2H6.K.Z; 2//, and their product in degree 10 (under
the multiplication induced by the H –space structure of K.Z; 3/):

n 3 4 5 6 7 8 9 10 11 12

.3/HnK.Z; 3/ Z 0 0 0 Z=3 0 0 Z=3 0 0

When nD3, Dold’s theorem also allows us to (non-functorially) compute the other
initial terms in (11-14), since within the range of values of q�11 we may replace
the expression zZK.Z; 3/ by the product of Eilenberg–Mac Lane spaces K.Z; 2/˚
K.Z=3; 6/˚K.Z=3; 9/. For rD2 we must therefore compute the homotopy of the
induced LJ 2.K.Z; 2/˚K.Z=3; 6/˚K.Z=3; 9//. No 3–torsion in the homotopy is
provided by the functor J 2 applied to any of the three summands, so the only nontrivial
terms are those coming from the cross-effect terms ZŒ2�˝Z=3Œ6� and ZŒ2�˝Z=3Œ9�,
in other words copies of Z=3 in degrees 8 and 11 respectively.

Similarly, in looking for the 3–torsion of the rD3 initial terms of (11-13) within
our range of values q�11, we need only consider the homotopy of LJ 3.K.Z; 2/˚
K.Z=3; 6//. Let us record here the functorial form of (8-16), for all n and a more
restricted range of values of k , as extracted from Theorem 8.2:

Lemma 11.2 For any abelian group A, and integer n>4,

3LnCkJ 3.A; n/D

8̂<̂
:

A˝Z3 kD3; 7;

Tor.A;Z=3/ kD4; 8;

0 kD2; 5; 6:

It follows that the summand LJ 3.Z; 2/ contributes a term Z=3 in degree 5 to the
3–torsion of E1

3;q
, while the summand LJ 3.Z=3; 6/ contributes a pair of terms Z=3

in degrees 9 and 10. In addition, since the second third cross-effect of the functor J 3

is the functor
J 3
Œ2�.AjB/'.A˝B˝A/˚.A˝B˝B/;

it contributes an additional term ZŒ2�˝Z=3Œ6�˝ZŒ2� to the homotopy group of
LJ 3.K.Z; 2/˚K.Z=3; 6// in degree 10, in other words a second factor Z=3 to the
initial term E1

3;10
of (11-14).

There is no contribution to the 3–torsion component of the initial terms of the spectral
sequence (11-13) for rD4; 5; 7; 8 since none of these numbers is a multiple of 3. If we
leave aside the case rD6 for the time being, the only initial terms which we still need
to consider are those for which rD9. In our range q�11, the only the summand of L9

which comes into play is J 3J 3 and by (8-16) the homotopy groups of LJ 3K.Z=3; 5/
contribute a pair of groups Z=3 to the 3–torsion of LL9.Z; 2/ in degrees 8 and 9.
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We collect in Table 7 the outcome of this discussion of the .3/–torsion components
of the initial terms of the spectral sequence (11-13) for nD3. Since all the terms in

r 1 2 3 4 5 6 7 8 9

.3/E
1
r;11

0 Z=3 0 0 0 � 0 0 �

.3/E
1
r;10

0 0 .Z=3/2 0 0 3L10L6.Z; 2/ 0 0 0

.3/E
1
r;9

Z=3 0 Z=3 0 0 0 0 0 Z=3

.3/E
1
r;8

0 Z=3 0 0 0 0 0 0 Z=3

.3/E
1
r;7

0 0 0 0 0 0 0 0 0

.3/E
1
r;6

Z=3 0 0 0 0 0 0 0 0

.3/E
1
r;5

0 0 Z=3 0 0 0 0 0 0

.3/E
1
r;4

0 0 0 0 0 0 0 0 0

.3/E
1
r;3

0 0 0 0 0 0 0 0 0

.3/E
1
r;2

Z 0 0 0 0 0 0 0 0

Table 7: The 3–torsion in the initial terms for the spectral sequence (11-13)
when nD3

the abutment of this spectral sequence vanish (except for a copy of Z in degree 2),
it follows by examining the possible differentials in the spectral sequence that the
term .3/L10L6.Z; 2/ survives all the way to E1

6;10
and must therefore be trivial.

Diagram (11-11) now makes it clear that .3/L11L12.Z; 1/D .3/L11L6.Z; 2/ also
vanishes. These were the only possibly nonvanishing terms within our range of degrees,
so that finally

(11-16) .3/LqL12.Z; 1/D0; q�14:

Remark 11.3 A direct computation shows that the triviality of L10L6.Z; 2/ is equiv-
alent to the assertion the class in L6

s .Z; 1/4 , of the element

�Dffs2s1s0.a/; s2s1s0.a/; s3s1s0.a/g; fs3s2s0.a/; s3s2s0.a/; s3s2s1.a/gg

�ffs2s1s0.a/; s2s1s0.a/; s3s2s0.a/g; fs3s1s0.a/; s3s1s0.a/; s3s2s1.a/gg

Cffs3s1s0.a/; s3s1s0.a/; s3s2s0.a/g; fs2s1s0.a/; s2s1s0.a/; s3s2s1.a/gg

is trivial, where a is a generator of ZD�1.K.Z; 1//. It would be of some interest to
find a specific element in L6

s .Z; 1/5 with boundary � .
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Let us now return to the spectral sequence (11-6), where we now know that E1
12;q
D0

for all q�14. The complete set of values of its initial terms in the range q�14 is
displayed in Table 8. The values of the various terms in this table are justified as

r 6 12 18 24 30 36 42 48 54 162

3L14Lr .Z; 1/ 0 0 0 0 0 0 0 0 0 Z=3

3L13Lr .Z; 1/ 0 0 Z=3 0 0 0 0 0 Z=3 0

3L12Lr .Z; 1/ 0 0 Z=3 0 0 0 0 0 Z=3˚Z=3 0

3L11Lr .Z; 1/ 0 0 0 0 0 0 0 0 Z=3 0

3L10Lr .Z; 1/ 0 0 0 0 0 0 0 0 0 0

3L9Lr .Z; 1/ 0 0 Z=3 0 0 0 0 0 0 0

3L8Lr .Z; 1/ 0 0 Z=3 0 0 0 0 0 0 0

3L7Lr .Z; 1/ 0 0 0 0 0 0 0 0 0 0

3L6Lr .Z; 1/ 0 0 0 0 0 0 0 0 0 0

3L5Lr .Z; 1/ Z=3 0 0 0 0 0 0 0 0 0

Table 8: The 3–torsion in the initial terms of the spectral sequence (11-6)

follows. Observe first of all that the vanishing of all terms E1
12;q

terms implies that
there are no nonzero terms E1

r;q whenever r is a multiple of 12. Nontrivial terms
with rD18 arise by applying the functor J 3 according to the rule of Lemma 11.2 to
the cyclic group 3E1

6;5
DZ=3, so that they are contributed by derived functors of the

summands J 3J 3J 2 of L18 . Applying one more functor J 3 to each of the two cyclic
groups E1

18;8
and E1

18;9
provides us, according to the same rule, with two additional

copies of Z=3 in the columns rD54. Finally, a last composition with a J 3 yields the
only nontrivial term in column rD162 within our range q�14. Our discussion makes
it clear that this cyclic group has been contributed by the appropriate derived functor
of the summands J 3J 3J 3J 3J 2 of L162 .

The following description of the 3–torsion in �i.S
2/ in the range i�11 is a conse-

quence of this discussion, once one takes into account the possible differentials in the
spectral sequence:

(11-17) 3�i.S
2/D

(
Z=3 iD6; 9; 10;

0 otherwise:

In addition,
�i.S

2/�Z=3; iD13; 14:
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We have recovered in this way by purely algebraic methods certain of Toda’s re-
sults [46]. In fact, it can be shown by comparing once more the differentials in a
spectral sequence for the Moore space (11-18) with those in the corresponding spectral
sequence for an Eilenberg–Mac Lane space, and by suspension arguments, that the
additional differentials d36

18;12
W Z=3!Z=3 and d36

18;13
W Z=3!Z=3˚Z=3 in (11-6)

are both monomorphisms. In this way, the entire description of the 3–torsion in �n.S
2/

up to degree 14 may be obtained algebraically.

11.3 Some homotopy groups of M.A; 2/

We now consider the spectral sequence (11-5) for nD2:

(11-18) E1
r;qDLqLr .A; 1/)�qC1M.A; 2/:

For rD3, some initial terms in this spectral sequence were computed in Section 8.2.
We will now study the terms E1

4;q
DLqL4.A; 1/. The short exact sequences (2-9)

and (7-10) derive to the horizontal lines of the two following commutative diagrams,
while the vertical ones arise from semi-décalage and the computations of the groups
Liƒ

2ƒ2.A; 1/ in Table 3:

L1Y 4.A/
x�1 //

o
��

ƒ2�2.A/
//

� _

��

L4
s .A/

// //

��

Y 4.A/

o
��

L5J 4.A; 1/
�4 // L4ƒ

2ƒ2.A; 1/ //

����

L4L4.A; 1/ // // L4J 4.A; 1/

�1

�
L�2.A/

L
˝Z=2

�
L2Y 4.A/

x�2 //

o
��

L1ƒ
2�2.A/

//
� _

��

L1L4
s .A/

//

��

L1Y 4.A/

o
��

L6J 4.A; 1/
�6 // L5ƒ

2ƒ2.A; 1/ //

����

L5L4.A; 1/ // L5J 4.A; 1/

Tor.R2.A/;Z=2/

(11-19)

The computation of the Liƒ
2ƒ2.A/ also implies that there are genuine décalage

isomorphisms

(11-20) LiL
n
s .A/'LiCnLn.A; 1/

for nD4 whenever i>2. The same is true for nD5 and all values of i by comparison
of the derived long exact sequences associated to the sequences (7-11) and (7-31). This
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discussion provides the justification3 for the values in the columns rD1; 2; 3; 5 of
Table 9, where the r –th column describes, as q varies in the range 1�q�7, the initial
terms E1

r;q in the spectral sequence (11-18).

The expressions in the second column of Table 9 follow from (2-11) and from the
computation (4-3) for nD1, and those in the third column from (8-4). The first
summand in the term E1

4;3
in the fourth column is provided by the subgroup ƒ2ƒ2.A/

of L4.A/ exhibited in (7-10), once the expression in position .2; 1/ in Table 3 is taken
into account, and its derived versions then occur above it. The second summand in
E1

4;3
arises from the décalage isomorphism (11-20) and a diagram chase in diagram

(11-19). Once more, its derived versions are then to be found above it.

We will now show how to find the terms of interest to us in columns 6 and 8, by the
methods of Section 9. Those in the sixth column in degrees qD4; 5 only depend on
the first two summands J 3J 2.A/ and J 2J 3.A/ of L6.A/. The term J 2J 3.A/ in
L6.A/ contributes an expression

L4.J
2J 3.A; 1//'L4ƒ

2.Y 3.A/; 3/'Y 3A˝Z=2

to E1
6;4

, since L2ƒ
2.A; 1/'�2A and L5J 3.A; 2/'A˝Z=3 (8-14). The same com-

putation provides the corresponding factor in E1
6;5

. Similarly, the term J 3J 2.A/ pro-
vides the expression �2.A/˝Z=3 in E1

6;5
, as L2ƒ

2.A; 1/'�2A and L5J 3.A; 2/'

A˝Z=3 (8-14). Finally, the term E1
8;4

comes from the term L4J 2J 2J 2.A; 1/ in
L4L8.A; 1/ by the same sort of reasoning. We already know that

L3ƒ
2ƒ2.A; 1/'�2.A/˝Z=2 :

This implies that

L4ƒ
2.ƒ2ƒ2.A; 1//'L4ƒ

2.�2A˝Z=2; 3/

and the result follows since

L4ƒ
2.�2A˝Z=2;3/'L6SP2.�2A˝Z=2;4/'H6.K.�2A˝Z=2;4//'�2A˝Z=2;

The last isomorphism follows by a direct calculation, or by reference to the well-know
Eilenberg–MacLane functorial stable isomorphism

H6.K.B; 4//'B˝Z=2 :

We refer to [40, Section 5.5] for a more complete discussion by one of us of the derived
functors of iterates of ƒ2 when ADZ.

3The validity of some of the higher entries in this table (as well as in Tables 15 and 17) is not verified
in the present text, nor are the results in question used here. We refer for the proofs of these assertions,
which have been included here for completeness, to the forthcoming [38] .
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1
2

3
4

5
6

7
8

9
1

0

7
0

0
0

L
3

L
4 s
.A
/

L
2

L
5 s
.A
/

To
r.

R
2
.A
/;

Z
=
3
/

˚
To

r.
L

2
Y

3
.A
/;

Z
=
2
/

˚
L

1
L

6 s
.A
/

L
7 s
.A
/

To
r.

R
2
.A
/
;
Z
=
2
/

˚
�

2
.L

4 s
.A
/

L ˝
Z
=
2
/

˚
�

2
.A
/
˝

Z
=
2

˚
L

4 s
.A
/
˝

Z
=
2

�
1
.L

Y
3
.A
/

L ˝
Z
=
3

L ˝
Z
=
3
/�

1
.L

5 s
.A
/

L ˝
Z
=
2
/

6
0

0
0

L
2

L
4 s
.A
/

L
1

L
5 s
.A
/

�
1

� L
�

2
.A
/

L ˝
Z
=
3
�

˚
�

2

� L
Y

3
.A
/

L ˝
Z
=
2
�

˚
L

6 s
.A
/

0

�
2

� L
�

2
.A
/

L ˝
Z
=
2

L ˝
Z
=
2
�

˚
�

1
.L

L
4 s
.A
/

L ˝
Z
=
2
/

Y
3
.A
/
˝

Z
=
3

L
5 s
.A
/

˝
Z
=
2

5
0

0
L

2
Y

3
.A
/

To
r.

R
2
.A
/;

Z
=
2
/

˚
L

1
L

4 s
.A
/

L
5 s
.A
/

�
2
.A
/
˝

Z
=
3

˚
�

1

� L
Y

3
.A
/

L ˝

Z
=
2
�

0

�
1

� L
�

2
.A
/

L ˝
Z
=
2

L ˝
Z
=
2
�

˚
L

4 s
.A
/
˝

Z
=
2

0
0

4
0

0
L

1
Y

3
.A
/

�
1

� L
�

2
.A
/

L ˝
Z
=
2
�

˚
L

4 s
.A
/

0
Y

3
.A
/
˝

Z
=
2

0
�

2
.A
/
˝

Z
=
2

0
0

3
0

R
2
.A
/

Y
3
.A
/

�
2
.A
/
˝

Z
=
2

0
0

0
0

0
0

2
0
�

2
.A
/

0
0

0
0

0
0

0
0

1
A

0
0

0
0

0
0

0
0

0

Table 9: The E1
r;q terms of the spectral sequence (11-18)
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It is immediate from the line qD2 of Table 9 that

(11-21) �3.M.A; 2//'�2.A/ ;

a result which essentially goes back to J H C Whitehead’s “certain exact sequence” [48],
and that in particular a generator of �2.Z/ corresponds to the class of the Hopf map
�W S3�!S2 . By comparing the spectral sequence (11-18) with the corresponding
spectral sequence (11-12) for nD3, one verifies that the differential d1

3;4
W E1

3;4
�!

E1
4;3

in (11-18) is trivial. The line qD3 of Table 9 then implies that there is a short
exact sequence

(11-22) 0!L3
s .A/˚.�2.A/˝Z=2/!�4M.A; 2/!R2.A/!0 ;

a result already proved in Baues [2] and Baues and Buth [3], where the expression
L3

s .A/˚.�2.A/˝Z=2/ is denoted �2
2
.A/.

Similarly, the last two terms in the line qD4 of our table, together with the factor
L4

s .A/ from E1
4;4

, regroup to the expression denoted �3
2
.A/ in [3], while the direct

sum of the two remaining terms on the line qD4 correspond to the derived functor
L1�

2
2
.A/ of the functor �2

2
.A/ mentioned above. By considering the restriction of

the differential d4
4;5
W E4

4;5
!E4

8;4
in our table to the factor Tor.R2.A/;Z=2/ of E4

4;5

we therefore recover the description of �5M.A; 2/ in [3] as a middle term in an exact
sequence:

(11-23) L2�
2
2 .A/

d2
!�3

2 .A/!�5M.A; 2/!L1�
2
2 .A/!0

where d2 is a differential in the spectral sequence from Dreckmann [21] (for a gen-
eralized version of this sequence, see Baues and Goerss [4, Theorem 5.1]). We will
verify later on in this section (see diagram (11-32)) that this restriction of d4

4;5
is not

zero. This implies that the corresponding differential d2 in (11-23) is also nontrivial.
This discussion is consistent with the low-dimensional homotopy groups of the Moore
space M.Z=2; 2/D†RP2 as known from Wu [50] and displayed in Table 10:

i 2 3 4 5 6 7

�iM.Z=2; 2/ Z=2 Z=4 Z=4 .Z=2/˚3 .Z=2/˚5 .Z=2/˚2˚.Z=4/˚2

˚Z=8

Table 10

Finally, returning to the case ADZ, we also observe in Table 9, in positions E1
2p;2p�1

with p prime, the early occurrences in p�2p.S
2/ of Serre’s first nontrivial p–torsion

in the homotopy of S2 (see also for this [40, Corollary 5.40 and pages 280–281]).
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Remark 11.4 In the spectral sequence from [21] there are terms E2
p;qDLp�

q
2
.A/,

where �q
2
.A/ is the q–th term arising from the homotopy operation algebra. In

particular, there is a natural homomorphism L
qC1
s .A/!�

q
2
.A/, where the occurrence

of the super-Lie functor L
qC1
s is due to Whitehead products, viewed as homotopy

operations. It is natural to conjecture that the semi-décalage described in Theorem 10.1
connects the homotopy operation spectral sequence from [21] with the Curtis spectral
sequence, with for example the existence of a commutative diagram

LiL
q
s .A/

yd2

��

��
1 // LiCqLq.A; 1/

d1

��

Li�2L
qC1
s .A/

��
1 // LiCq�1LqC1.A; 1/

where yd2 is a natural map induced by the second differential in the homotopy oper-
ation spectral sequence. The low-dimensional computation given above support this
conjectural connection between the two spectral sequences.

11.4 Some homotopy groups of M.Z=p; 2/, p¤2

The next proposition provides us with some information regarding the derived functors
of L4

s .A/. We begin with the following lemma:

Lemma 11.5 Let ADZ=p for some prime p¤2. The natural map Tor.�3.A/;A/!

�4.A/ is an isomorphism.

Proof By [10, (5.14)], there exists, for any abelian group A and integer h, a commu-
tative diagram of abelian groups

(11-24)

�3. hA/˝ hA //

�3
h
˝1

��

�4. hA/

�h
4

��

Tor.�3.A/;A/ // �4.A/

where the upper horizontal arrow is induced by the multiplication in the divided power
algebra. The arrows �i

h
provide, where h varies, and the slide relations are taken into

account, presentations for the groups Tor.�3.A/;A/ and �4.A/ respectively. Let us
now suppose that A is cyclic of order p , with a chosen generator a2A. In that case
the only relevant integer is hDp . We know that �3.Z=p/D�4.Z=p/DZ=p so that
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the lower horizontal map in (11-24) is a homomorphism Z=p!Z=p . Let us show
that this morphism is nontrivial. The image of 
3.a/˝a in �4.Z=p/ is


3.a/˝a 7!4
4.a/ 7!4!
p
4
.a/

and 4!
p
4
.a/¤0 since p¤2.

Proposition 11.6 For any integer i�0 and any odd prime p , one then has

LiL
4
s .Z=p/D

(
Z=p iD1; 2;

0 i¤1; 2:

Proof It follows from definition that L4
s .A/D0 for every cyclic group A. By (7-30),

the sequence

(11-25) 0!L3ƒ
2�2.A/!L3L4

s .A/!L3Y 4.A/!L2ƒ
2�2.A/

!L2L4
s .A/!L2Y 4.A/

@
!L1ƒ

2�2.A/!L1L4
s .A/!L1Y 4.A/

is exact. By (4-4), L�2.Z=p/DK.Z=p; 0/ for p odd, so that

(11-26) Liƒ
2�2.Z=p/D

(
Z=p iD1;

0 i¤1 :

In particular, the right-hand arrow in (11-25) is surjective. The definition of Y 4 implies
that there is a long exact sequence

L2Y 4.A/!�2

�
Lƒ3.A/

L
˝A

�
!L2ƒ

4.A/

!L1Y 4.A/!�1

�
Lƒ3.A/

L
˝A

�
!L1ƒ

4.A/

and an isomorphism

L3Y 4.A/'kerfTor.�3.A/;A/!�4.A/g:

Lemma 11.5 asserts that the group L3Y 4.Z=p/ is trivial, and we know by (2-21) and
(2-25) that

Liƒ
4.Z=p/D

(
Z=p iD3;

0 i¤3:

The exactness of the sequence (11-25) then implies that

(11-27) LiY
4.Z=p/D

(
Z=p iD2;

0 i¤2:
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We will now show that the boundary map (11-25)

(11-28)
L2Y 4.Z=p/

@ // L1ƒ
2�2.Z=p/

Z=p // Z=p

is trivial. Consider first the case p¤2; 3. One then has the following values for the
homology groups H�K.Z=p; 2/ W

n 2 3 4 5 6 7 8 9

HnK.Z=p; 2/ Z=p 0 Z=p 0 Z=p 0 Z=p 0

The analogue of the spectral sequence (11-13) for KDK.Z=p; 2/ is

(11-29) E1
r;qDLqC1Lr .zZK.Z=p; 2/;�1/H)�q.K.Z=p; 1//

Reasoning as in the proof of Proposition 11.1, we find that the initial terms in this
spectral sequence are as in Table 11.

q E1
1;q

E1
2;q

E1
3;q

E1
4;q

E1
5;q

E1
6;q

E1
7;q

E1
8;q

E1
9;q

E1
10;q

8 0 � � � � � � � � �

7 Z=p Z=p � � � � � � � �

6 0 Z=p2 Z=p2 � � � � � � �

5 Z=p Z=p Z=p L1L4
s .Z=p/ 0 0 0 0 0 0

4 0 Z=p Z=p 0 0 0 0 0 0 0

3 Z=p 0 0 0 0 0 0 0 0 0

2 0 Z=p 0 0 0 0 0 0 0 0

1 Z=p 0 0 0 0 0 0 0 0 0

Table 11: Some E1 terms in the spectral sequence (11-29) for p¤2; 3

This spectral sequence converges to the graded group Z=pŒ1�. Let us suppose that
L1L4

s .Z=p/D0. In that case E1
2;6
˚E1

3;6
¤0 and this contradicts the fact that homo-

topy groups �iK.Z=p; 1/ are trivial for i�2. It follows by (11-26) and (11-27) that
L1L4

s .Z=p/DZ=p and the map (11-28) is the zero map. The description of all the
derived functors of L4

s .Z=p/ for p¤2; 3 now follows from the exact sequence (11-25).
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We now consider the pD3 case. We have the following description of the low degree
homology of K.Z=3; 2/:

n 2 3 4 5 6 7 8 9

HnK.Z=3; 2/ Z=3 0 Z=3 0 Z=9 Z=3 Z=3 Z=3

The initial terms in the spectral sequence (11-29) for pD3 are given in Table 12.

q E1
1;q

E1
2;q

E1
3;q

E1
4;q

E1
5;q

E1
6;q

E1
7;q

E1
8;q

E1
9;q

E1
10;q

8 Z=3 � � � � � � � � �

7 Z=3 Z=32 � � � � � � � �

6 Z=3 Z=32 Z=33 � � � � � � �

5 Z=9 Z=3 Z=32 L1L4
s .Z=3/ 0 Z=3 0 0 0 0

4 0 Z=3 Z=9 0 0 0 0 0 0 0
3 Z=3 0 0 0 0 0 0 0 0 0
2 0 Z=3 0 0 0 0 0 0 0 0
1 Z=3 0 0 0 0 0 0 0 0 0

Table 12: Some E1
r;q terms in the spectral sequence (11-29) for pD3

We will now prove that the expression L1L4
s .Z=3/ is equal to Z=3. For any abelian

group A, the differentials d1
1;7

and d1
1;8

in the corresponding spectral sequence (11-12)
for nD2 have the property that the following natural diagrams are commutative

�4.A/
�4

//
� _

��

�3.A/˝A� _

��
E1

1;7

d1
1;7 // E1

2;6

L1�4.A/
�4

1 //
�1

�
L�3.A/

L
˝A

�
� _

��
E1

1;8

d1
1;8 // E1

2;7

where �4 is the homomorphism in the Koszul complex Kos4.A
1A
!A/ (2-30) and �4

1

its first derived analog. This implies, in the case ADZ=3, that the differentials d1
1;7

and d1
1;8

are monomorphisms. The assumption L1L4
s .Z=3/D0, implies that E1

3;6
¤0

and this contradicts the triviality of the sixth homotopy group of K.Z=3; 1/.

Remark 11.7 For pD2 the description of LiL
4
s .Z=p/ is also more complicated.

For example, the group L2L4
s .Z=2/ contains nontrivial 4–torsion elements. In the

simplicial language, a generator of the 4–torsion subgroup is provided by the following
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element:

fs0a1; s1a1; s0a1; s1a1g�fs1a1; s1s0a0; s0a1; s0a1g

Cfs0a1; s1s0a0; s1a0; s1a0gCffs1a1; s1s0a0g; fs0a1; s1s0a0gg

This 4–torsion element corresponds to twice the 8–torsion element of Cohen and
Wu [13] and Wu [50, Appendix A], which lives in the last summand of �7†RP2D

�7M.Z=2; 2/ (see Table 10). We will not discuss this computation, since it involves
more elaborate techniques than those described here.

After these preliminaries regarding the derived functors of L4
s , let us begin our compu-

tations of the homotopy of the spaces M.Z=p; 2/ with the case pD3. By Remark
8.1, we know that

LiL
3.Z=3; 1/D

8̂<̂
:

Z=9 iD4;

Z=3 iD5;

0 i¤4; 5 :

The computation of the derived functors LqLr .Z=3; 1/ for q<7 follows easily from
the Curtis decomposition of Lr and the known values of the derived functors of
L3.Z=3; 1/. We display the result in Table 13.

q E1
1;q

E1
2;q

E1
3;q

E1
4;q

E1
5;q

E1
6;q

E1
7;q

E1
8;q

E1
9;q

E1
10;q

6 0 0 0 Z=3 Z=3 Z=3 0 0 0 0
5 0 0 Z=3 Z=3 0 Z=3 0 0 0 0
4 0 0 Z=9 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
2 0 Z=3 0 0 0 0 0 0 0 0
1 Z=3 0 0 0 0 0 0 0 0 0

Table 13: The E1 –term of the spectral sequence (11-5) for ADZ=3 and nD2

The differentials d1
5;6
W Z=3!Z=3 and d2

4;6
W Z=3!Z=3 in this table are trivial, as

follows from the comparison between the Curtis spectral sequences for KDM.Z=3; 2/
and KDK.Z=3; 2/ and from the structure of Table 13. The assumption that either
d1

5;6
or d2

4;6
is an isomorphism would produce a nontrivial term E1

3;6
in the spectral

sequence whose initial terms were given in Table 12. Looking at the horizontal lines in
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Table 13, we now see that

�2M.Z=3; 2/DZ=3

�3M.Z=3; 2/DZ=3

�4M.Z=3; 2/D0

�5M.Z=3; 2/DZ=9

j�6M.Z=3; 2/jD27:

Observe that we have in particular exhibited here the cyclic group of order 9 of
Neisendorfer [42] and Leibowitz [33] mentioned in the introduction.

The homotopy groups of the spaces M.Z=p; 2/ for a prime p¤2; 3, are simpler to
describe. In that case, the initial terms of the spectral sequence (11-5) are displayed in
Table 14.

q E1
1;q

E1
2;q

E1
3;q

E1
4;q

E1
5;q

E1
6;q

E1
7;q

E1
8;q

E1
9;q

E1
10;q

6 0 0 0 Z=p Z=p 0 0 0 0 0
5 0 0 0 Z=p 0 0 0 0 0 0
4 0 0 Z=p 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
2 0 Z=p 0 0 0 0 0 0 0 0
1 Z=p 0 0 0 0 0 0 0 0 0

Table 14: The E1 –term of the spectral sequence (11-5) for ADZ=p when
p¤2; 3 and nD2

In particular, the derived functors LiL
3.Z=p; 1/ are simpler for these values of p ,

which explains the difference between the third columns in Table 13 and Table 14. Note
also that the p–torsion in L4L3.Z=p; 1/ comes from the term kerf�2.Z=p/˝Z=p!
L1ƒ

3.Z=p/g in (8-8). We obtain in particular

�6M.Z=p; 2/DZ=p

j�7M.Z=p; 2/jDp2:

11.5 Some homotopy groups of M.A; 3/

Consider the spectral sequence (11-5) for nD3:

(11-30) E1
r;qDLqLr .A; 2/)�qC1M.A; 3/:
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The initial terms of this spectral sequence are obtained as in the spectral sequence
(11-18) from the Curtis decomposition of Lie functors and the computation of the
derived functors of its graded components. In addition, the occurrence of a summand
L3.A/ in E1

3;6
follows from the composition of the maps (10-2). These initial terms

are given in Table 15 (the functor �2 was defined by (4-1)).

As a result we have a natural isomorphism

�4M.A; 3/'A˝Z=2;

which is simply the suspended version of the isomorphism (11-21), as well as the
following natural short exact sequence:

(11-31) 0!A˝Z=2!�5M.A; 3/!�2.A/!0:

However, the latter is not split, since it is known for example that �5M.Z=2; 3/DZ=4.

The differential d1
3;6
W E1

3;6
!E1

4;5
in Table 15 is trivial, as can be seen by reduction

to the case of A free abelian of finite rank, and a comparison of the rank of E1
3;6

with
that of the homotopy group of the corresponding wedge of spheres S3 , as computed
by the Hilton–Milnor theorem (see Curtis [16, Theorem 4.21]). On the other hand, the
differential d4

4;6
W E4

4;6
!E4

8;5
can be nontrivial. It is an isomorphism for ADZ=2,

as follows from the known description of the groups �i.M.Z=2; 3//D�i.†
2RP2/

for small values of i :

i 3 4 5 6 7 8

�iM.Z=2; 3/ Z=2 Z=2 Z=4 Z=4˚Z=2 Z=2˚Z=2 Z=2˚Z=2

In addition, one can express the differential d4
4;6

in (11-30) as a suspension by com-
paring the spectral sequences (11-18) and (11-30). For this, consider the following
commutative diagram, in which the vertical arrows are suspension morphisms:

(11-32)

Tor.R2.A/;Z=2/
d4

4;5
.A;2/

//

��

�2.A/˝Z=2

��
Tor.�2.A/;Z=2/

d4
4;6
.A;3/

// A˝Z=2

The upper arrow in this diagram is the restriction to the first summand of the differential
d4

4;5
from (11-18), whereas the lower one is the differential d4

4;6
from (11-30). The

suspension maps are isomorphisms for ADZ=2. Since we know that d4
4;6

is an
isomorphism in that case, so is the differential d4

4;5
in (11-18).
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1
2

3
4

5
6

7
8

9

8
0

0
L

2
L

3
.A
/

L
4
.A
/

˚
To

r.
A
;Z
=
2
/

˚
�

1
.L
ƒ

2
.A
/

L ˝
Z
=
2
/

0
�

1
.L
ƒ

2
.A
/

L ˝
Z
=
3
/

˚
�

1
.L

L
3
.A
/

L ˝
Z
=
2
/

0

�
2
.L
ƒ

2
.A
/

L ˝
Z
=
2

L ˝
Z
=
2
/

˚
ƒ

2
.A
/
˝

Z
=
2

˚
.A
˝

Z
=
2
/
˚

2

˚
To

r.
A
;
Z
=
2
/

A
˝

Z
=
3

7
0

0
L

1
L

3
.A
/

To
r.
�

2
.A
/;

Z
=
2
/

˚
A
˝

Z
=
2

˚
ƒ

2
.A
/
˝

Z
=
2

0
ƒ

2
.A
/
˝

Z
=
3

˚
L

3
.A
/
˝

Z
=
2

0
�

1
.L
ƒ

2
.A
/

L ˝
Z
=
2

L ˝
Z
=
2
/

˚
To

r 2
.A
;
Z
=
2
;
Z
=
2
;
Z
=
2
/

0

6
0

0
L

3
.A
/

˚
To

r.
A
;
Z
=
3
/

To
r.

A
;Z
=
2
/

˚
�

1
.L
ƒ

2
.A
/

L ˝
Z
=
2
/

0
0

0
ƒ

2
.A
/
˝

Z
=
2

˚
To

r 1
.A
;
Z
=
2
;
Z
=
2
;
Z
=
2
/

0

5
0

�
2
.A
/

A
˝

Z
=
3

To
r 1
.A
;
Z
=
2
;
Z
=
2
/

˚
ƒ

2
.A
/
˝

Z
=
2

0
0

0
A
˝

Z
=
2

0

4
0

�
2
.A
/

0
A
˝

Z
=
2

0
0

0
0

0

3
0

A
˝

Z
=
2

0
0

0
0

0
0

0

2
A

0
0

0
0

0
0

0
0

Table 15: The initial terms E1
p;q of the spectral sequence (11-30) for 2�q�8
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The spectral sequence (11-30) determines in particular a filtration on �6M.A; 3/, with
the following nontrivial associated graded components:

gr2 �6M.A; 3/D�2.A/

gr3 �6M.A; 3/DA˝Z=3

gr4 �6M.A; 3/D.ƒ2.A/˝Z=2/˚Tor1.A;Z=2;Z=2/

gr8 �6M.A; 3/DA˝Z=2=im.d4
4;6/

For ADZ, this determines precisely 12 elements in �6.S
3/, which are the nontrivial

elements in the associated graded components gr2; gr3; gr8 listed above. Table 15 also
implies that there is an epimorphism

�7M.A; 3/!L3.A/˚Tor.A;Z3/:

As an example of this computation, consider the case ADZ=3. A simple analysis,
with the help of (8-14), gives the description of the initial terms of the corresponding
spectral sequence (11-30) in Table 16.

q E1
1;q

E1
2;q

E1
3;q

E1
4;q

E1
5;q

E1
6;q

E1
7;q

E1
8;q

E1
9;q

E1
10;q

8 0 0 0 0 0 Z=3 0 0 Z=3 0
7 0 0 Z=3 0 0 0 0 0 0 0
6 0 0 Z=3 0 0 0 0 0 0 0
5 0 Z=3 Z=3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
2 Z=3 0 0 0 0 0 0 0 0 0

Table 16: The initial terms of the spectral sequence (11-30) for ADZ=3

We conclude that �7M.Z=3; 3/D�8M.Z=3; 3/DZ=3.

11.6 Some homotopy groups of M.A; 4/

The spectral sequence (11-5) for nD4

(11-33) E1
r;qDLqLr .A; 3/)�qC1M.A; 4/

has initial terms in low dimensions given by Table 17. Observe in particular that the
torsion-free expression �2.Z/ which appears in column 2 of Table 17 for ADZ sur-
vives to E1

2;6
since a nontrivial morphism d2

2;6
W �2.Z/�!Z˝Z=2 would contradict
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1
2

3
4

5
6

7
8

9

9
0

0
Y

3
.A
/

To
r.

A
;
Z
=
2
/

˚
�

2
.A
/
˝

Z
=
2

˚
To

r.
R

2
.A
/;

Z
=
2
/

0
�

2
.A
/
˝

Z
=
3

0

To
r.

A
;
Z
=
2
/

˚
�

2
.L
�

2
.A
/

L ˝
Z
=
2

L ˝
Z
=
2
/

˚
.A
˝

Z
=
2
/
˚

2

˚
�

2
.A
/
˝

Z
=
2

A
˝

Z
=
3

8
0

0
0

�
1
.L
�

2
.A
/

L ˝
Z
=
2
/

˚
A
˝

Z
=
2

0
0

0
To

r 2
.A
;
Z
=
2
;
Z
=
2
;
Z
=
2
/

˚
�

1
.L
�

2
.A
/

L ˝
Z
=
2

L ˝
Z
=
2
/

0

7
0

R
2
.A
/

To
r.

A
;
Z
=
3
/

To
r.

A
;
Z
=
2
/

˚
�

2
.A
/
˝

Z
=
2

0
0

0
To

r 1
.A
;
Z
=
2
;
Z
=
2
;
Z
=
2
/

˚
�

2
.A
/
˝

Z
=
2

0

6
0

�
2
.A
/

A
˝

Z
=
3

To
r 1
.A
;
Z
=
2
;
Z
=
2
/

0
0

0
A
˝

Z
=
2

0

5
0

To
r.

A
;
Z
=
2
/

0
A
˝

Z
=
2

0
0

0
0

0

4
0

A
˝

Z
=
2

0
0

0
0

0
0

0

3
A

0
0

0
0

0
0

0
0

Table 17: The initial terms for q�9 in the spectral sequence (11-5) with nD4
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the known nontrivial value of �6.S
4/. We can therefore recognize in a generator of

this group �2.Z/ the class of the generalized Hopf fibration �W S7!S4 .

The suspension homomorphisms �4M.A; 2/!�5M.A; 3/!�6M.A; 4/ can be de-
scribed in terms of the suspension homomorphisms between the corresponding derived
functors of Lie functors. The result, which can be read off from (11-22), (11-31) and
Table 17, is expressed by the following commutative diagram (see also Baues [2, VIII
Section 3, IX Section 2, XI Section 1]):

L3
s .A/˚�2.A/˝Z=2

� � //

��

�4M.A; 2/ // //

��

R2.A/

��
A˝Z=2 � � //

o

��

�5M.A; 3/

��

// // �2.A/

����
A˝Z=2 � � // �6M.A; 4/ // Tor.A;Z=2/ :

Note that these horizontal short exact sequences are in general not split, since

�4.M.Z=2; 2//D�5.M.Z=2; 3//DZ=4 :

11.7 Solving the extension problem

In simple cases one can solve the extension problems with the help of functoriality. For
example we have just seen that there is a natural exact sequence

0!A˝Z=2!�6M.A; 4/!Tor.A;Z=2/!0:

For ADZ=4, this reduces to the sequence

0!Z=2!�6M.Z=4; 4/!Z=2!0:

In order to compute the group �6M.Z=4; 4/, we must still determine whether this
sequence is split. The following simple argument will show that this indeed is the case.

Let F be an endofunctor on the category of abelian groups which can be expressed as
a natural extension of functors

(11-34) 0!A˝Z=2!F.A/!Tor.A;Z=2/!0:

We will now prove that for any such functor F this extension is split. Suppose on
the contrary that F.Z=4/DZ=4. In that case the group F.Z=2/ is isomorphic either
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to Z=4 or to Z=2˚Z=2. Let us first suppose that F.Z=2/DZ=4 and consider the
following diagram, induced by the injection of Z=2 into Z=4:

Z=2 � � //

0��

Z=4

��

// // Z=2

Z=2 � � // Z=4 // // Z=2

Such a commutative diagram cannot exist since the pushout of any extension by the
trivial homomorphism is a trivial extension. If on the other hand we suppose that
F.Z=2/DZ=2˚Z=2, then the natural projection Z=4!Z=2 induces a commutative
diagram

Z=2 � � // Z=4

��

// // Z=2

0
��

Z=2 � � // Z=2˚Z=2 // // Z=2

which also cannot exist, since the pullback of any extension by the trivial homomorphism
is a trivial extension. This proves that the extension (11-34) is split, and in particular
that �6M.Z=4; 4/DZ=2˚Z=2.

11.8 Some homotopy groups of M.Z=3; 5/

In this simple example, we will illustrate some lines of reasoning by which we computed
certain differentials in Curtis spectral sequences. Consider such a spectral sequence
(11-3) for nD5, with abutment M.Z=3; 5/ and initial terms E1

r;qDLqLr .Z=3; 4/.
One finds in low degree the values given in Table 18.

q E1
1;q

E1
2;q

E1
3;q

E1
4;q

E1
5;q

E1
6;q

E1
7;q

E1
8;q

E1
9;q

10 0 0 0 0 0 0 0 0 Z=3

9 0 Z=3 0 0 0 0 0 0 0
8 0 0 Z=3 0 0 0 0 0 0
7 0 0 Z=3 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
4 Z=3 0 0 0 0 0 0 0 0

Table 18: The initial terms in the spectral sequence (11-5) for nD5 and ADZ=3

We will now provide two separate justifications for the triviality of the differential
d1

2;9
W Z=3!Z=3, both of which were used in more complex situations in the previous
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paragraphs. The first argument goes as follows. The differential d1
2;9

for nD5 and
ADZ=3 lives in the following commutative diagram, in which the notation is the same
as in diagram (11-32) (and the vertical arrows are suspension maps):

L9L2.Z=3; 4/
d1

2;9
.Z=3;5/

//

†

��

L8L3.Z=3; 4/

†

��
L10L2.Z=3; 5/

d1
2;10

.Z=3;6/

// L9L3.Z=3; 5/

This commutative square is actually of the form

Z=3
d1

2;9
.Z=3;5/

//

��

Z=3

o
��

0
d1

2;10
.Z=3;6/

// Z=3

so that the map d1
2;9
.Z=3; 5/ is trivial. As a consequence

�9M.Z=3; 5/D�10M.Z=3; 5/DZ=3 :

Here is the second proof of this assertion. Consider the natural map M.Z=3; 5/!
K.Z=3; 5/ (11-1), and the corresponding map between the spectral sequences (11-5)
and (11-14) for nD5 and ADZ=3. We now display the low-dimensional homology
groups of K.Z=3; 5/:

n 5 6 7 8 9 10 11

HnK.Z=3; 5/ Z=3 0 0 0 Z=3 Z=3 Z=3

The initial terms of the spectral sequence (11-14) for nD5 and ADZ=3 are given
in Table 19. In this Table 19, we display within brackets those terms which are in
the image of elements from the corresponding spectral sequence (11-5), as given in
Table 18. Since the spectral sequence (11-12) converges here to the graded group Z=3
concentrated in degree 4, it follows that the map d1

2;9
is necessarily zero: otherwise,

the element E1
1;10
DZ=3 would contribute nontrivially to �10.K.Z=3; 4//. It now

follows that the corresponding map d1
2;9

in the spectral sequence whose initial terms
are displayed in Table 18 is also trivial. We deduce from this that �9M.Z=3; 5/D
�10M.Z=3; 5/DZ=3.
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q E1
1;q

E1
2;q

E1
3;q

E1
4;q

E1
5;q

E1
6;q

E1
7;q

E1
8;q

E1
9;q

10 Z=3 0 0 0 0 0 0 0 .Z=3/

9 Z=3 .Z=3/ 0 0 0 0 0 0 0
8 Z=3 0 .Z=3/ 0 0 0 0 0 0
7 0 0 .Z=3/ 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
4 .Z=3/ 0 0 0 0 0 0 0 0

Table 19: The initial terms in the spectral sequence (11-12) for nD5 and ADZ=3

Appendix A The derived Koszul complex

In this appendix, we illustrate our derived functor methods, by giving an explicit descrip-
tion of certain objects and morphisms obtained by deriving the Koszul sequence (2-30).

Let 0!L
ı
!M!A!0

be a flat resolution of the abelian group A. A convenient model for the derived category
object Lƒn.A/ is provided by the dual Koszul complex of the morphism ıW L!M .
Recall that for nD2 this is the complex

(A-1) �2.L/
ı2
!L˝M

ı1
!ƒ2.M /

with the differentials

ı2.
2.l//D l˝ı.l/

ı1.l˝m/Dı.l/^m

and for nD3 the complex

�3.L/
ı3
!�2.L/˝M

ı2
!L˝ƒ2.M /

ı1
!ƒ3.M /

with the differentials

ı3.
3.l//D
2.l/˝ı.l/

ı3.
2.l/ l 0/D l l 0˝ı.l/C
2.l/˝ı.l
0/

ı2.
2.l/˝m/D l˝m^ı.l/

ı1.l˝m^m0/Dı.l/^m^m0:
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The derived category object

Lƒ2.A/
L
˝A

may be represented by the tensor product of the complex (A-1) with the complex
ıW L!M , in other words by the total complex associated to the bicomplex

�2.L/˝L //

��

L˝M˝L //

��

ƒ2.M /˝L

��

�2.L/˝M // L˝M˝M // ƒ2.M /˝M

in other words the complex

(A-2) �2.L/˝L
ı0

3
!�2.L/˝M˚.L˝M˝L/

ı0
2
!.L˝M˝M /˚ƒ2.M /˝L

ı0
1
!ƒ2.M /˝M

with differentials

ı03.
2.l/˝l 0/D.
2.l/˝ı.l
0/;�l˝ı.l/˝l 0/

ı02.
2.l/˝m/D.l˝ı.l/˝m; 0/

ı02.l˝m˝l 0/D.l˝m˝ı.l 0/;m^ı.l/˝l 0/

ı01.l˝m˝m0/Dı.l/^m˝m0

ı01.m^m0˝l/Dm^m0˝ı.l/:

Recall that

L1ƒ
2.A/D�2.A/(A-3)

�2

�
Lƒ2.A/

L
˝A

�
DTor.�2.A/;A/:(A-4)

Given elements a; a02 nA, let us choose its representatives m;m02M and so-called
cross-cap elements l; l 02L, for which ı.l/Dnm and ı.l 0/Dnm0 . The maps

�2.A/!.L˝M /=im.ı2/

Tor.�2.A/;A/!.�2.L/˝M˚.L˝M˝L//=im.ı03/

which define the isomorphisms (A-3) and (A-4) are given by

!n
2.a/ 7! l˝mCim.ı2/

�n.!
n
2 .a/; b/ 7!.�
2.l/˝m0; l˝m˝l 0/Cim.ı3/ :
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Next we consider the diagram with exact rows and columns

(A-5)

L3.L/
� �

ı00
3 //

� _

��

L˝M˝L
ı00

2 //
� _

��

L˝M˝M
ı00

1 //
� _

��

Y 3.M /� _

��
�2.L/˝L

�3

��

� �
ı0

3 // �2.L/˝M

˚.L˝M˝L/

�2
����

ı0
2 // .L˝M˝M /

˚ƒ2.M /˝L

�1
����

ı0
1 // ƒ2.M /˝M

�0
����

�3.L/
� � ı3 //

����

�2.L/˝M
ı2 // L˝ƒ2.M /

ı1 // ƒ3.M /

L˝Z=3

�0.m^m0˝m00/Dm^m0^m00with

�1.l˝m˝m0/D l˝m^m0

�1.m^m0˝l/D l˝m^m0

�2.
2.l/˝m/D�
2.l/˝m

�2.l˝m˝l 0/D l l 0˝m

�3.
2.l/˝l 0/D�
2.l/l
0

ı003.l˝l 0^l 00/D l˝ı.l 00/˝l 0Cl 00˝ı.l/˝l 0�l˝ı.l 0/˝l 00�l 0˝ı.l/˝l 00and

ı002.l˝m˝l 0/D l˝ı.l 0/˝mCl 0˝ı.l/˝mCl˝m˝ı.l 0/

ı001.l˝m˝m0/Dfı.l/;m0;mg:

Here l˝l 0^l 00 denotes the image of the element l˝l 0^l 00 under the natural epimor-
phism L˝ƒ2.L/!L3.L/. We will now make use of the fact that the dual de Rham
complex

0!ƒ3.L/!L˝ƒ2.L/!�2.L/˝L!�3.L/

has trivial homology in positive dimensions and hence

L3.L/Dkerf�2.L/˝L!�3.L/gDcokerfƒ3.L/!L˝ƒ2.L/g:

Consider the functor xE3.A/ WD imf�2.A/˝A!�3.A/g. We have a natural short
exact sequence

0! xE3.A/!�3.A/!A˝Z=3!0
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which induces the following commutative diagram:

(A-6)

xE3.L/� _

��

xı3 // �2.L/˝M
ı2 // L˝ƒ2.M /

ı1 // ƒ3.M /

�3.L/

����

ı3 // �2.L/˝M
ı2 // L˝ƒ2.M /

ı1 // ƒ3.M /

L˝Z=3

From diagrams (A-5) and (A-6) we deduce the following diagram with exact arrows
and columns

(A-7)

H2W
� � //

� _

��

L2Y 3.A/� _

��
�2

�
Lƒ2.A/

L
˝A

�
��

�2

�
Lƒ2.A/

L
˝A

�
��

L˝Z=3 // H2Q // //

��

L2ƒ
3.A/

��
H1W //

��

L1Y 3.A/

��
�1

�
Lƒ2.A/

L
˝A

�
����

�1

�
Lƒ2.A/

L
˝A

�
����

L1ƒ
3.A/ L1ƒ

3.A/

where W and Q are the upper rows in diagrams (A-5) and (A-6) respectively. We give
the following simple example, which illustrates the inner life of the previous diagrams.

Proposition A.1

LiY
3.Z=3/D

8̂<̂
:

Z=3 iD2;

Z=9 iD1;

0 i¤1; 2:

Proof It follows from the description Y 3.A/Dkerfƒ2.A/˝A!ƒ3.A/g that

L2Y 3.A/DkerfTor.�2.A/;A/!L2ƒ
3.A/g:

Let ADZ=3 and

L
@
!M is Z

3
!Z:

Let l;m be generators of L and M resp. with ı.l/D3m. The group Tor.�2.A/;A/

is generated by the homology class of the element .
2.l/˝m; l˝m˝l/ in the com-
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plex (A-2). We have

�2.
2.l/˝m; l˝m˝l/D
2.l/˝mCl l˝mD3
2.l/˝mD
2.l/˝ı.l/Dı3.
3.l//:

Tor.�2.A/;A/!L2ƒ
3.A/Hence

induced by the map �2 is the zero map. This proves that

L2Y 3.Z=3/DZ=3:

It is easy to see that for our choice of L and M , the complex W has the form

Z
9
!Z!0

so that H1W DZ=9; H2W D0. In this case, the diagram (A-7) has the form

0 //

��

Z=3
'��

Z=3

��

Z=3

0��
Z=3 � � // H2Q // //

��

Z=3

��
Z=9 //

��

L1Y 3.A/

��
Z=3

��

Z=3

��
0 0

and we see that the map H1W !L1Y 3.A/ is an isomorphism and hence

L1Y 3.Z=3/DZ=9:

The object L�2.A/ of the derived category may be represented as the following
complex:

L˝L!�2.L/˝.M˝L/!�2.M /

Consider the following diagram:

(A-8)

ƒ2.L/� _

��

// M˝L //
� _

.0;id/��

�2.M /

L˝L //

����

�2.L/˚.M˝L/

����

// �2.M /

SP2.L/ // �2.L/
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Denote by
C DC.L

ı
!M /

the upper complex in (A-8). Diagram (A-8) implies the following exact sequence of
homology groups:

0!H1C!R2.A/!L˝Z=2!H0C!�2.A/!0

In particular, the p–torsion components of HiC and Li�2 are naturally isomorphic
for p¤2.

The objects
L�3.A/ and A

L
˝L�2.A/

of the derived category may be represented by the following complexes:

L˝L˝L!.�2.L/˝L/˚.L˝�2.L//˚.L˝L˝M /(A-9)

!�3.L/˚.�2.L/˝M /˚.L˚�2.M //!�3.M /

L˝L˝L!.M˝L˝L/˚.L˝�2.L//˚.L˝L˝M /(A-10)

!.L˝�2.M //˚.M˝�2.L//˚.M˝L˝M /!M˝�2.M /

Consider the following diagram:

(A-11)

ƒ3.L/ // M˝ƒ2.L/ // SP2.M /˝L //
� _

��

SP3.M /� _

��
ƒ3.L/ // M˝ƒ2.L/ // �2.M /˝L //

����

�3.M /

����

M˝L˝Z=2 // M˝Z=3
˚.M˝M˝Z=2/

The upper complex in (A-11) is a model for the element L SP3.A/ in the derived
category. Denote the middle horizontal complex by

DDD.L
ı
!M /:

We have the natural isomorphism

H2D'L2 SP3.A/

and the following exact sequence:

(A-12) 0!L1 SP3.A/!H1D!Tor.M˝A;Z=2/

!SP3.A/!H0D!M˝Z=3˚.M˝A˝Z=2/!0
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Now consider the following diagram which extends the diagram (A-5):

(A-13)

ƒ3.L/
� � //

� _

��

M˝ƒ2.L/ //
� _

��

�2.M /˝L //
� _

��

�3.M /� _

��
L˝ƒ2.L/

� �
xı3 //

�0
3

��

M˝ƒ2.L/

˚.L˝M˝L/

xı2 //

�0
2

��

.M˝M˝L/

˚L˝�2.M /

xı1 //

�0
1

��

M˝�2.M /

�0
0

��
�2.L/˝L

�3

��

� �
ı0

3 // �2.L/˝M

˚.L˝M˝L/

�2
����

ı0
2 // .L˝M˝M /

˚ƒ2.M /˝L

�1����

ı0
1 // ƒ2.M /˝M

�0

����
�3.L/

� � ı3 //

����

�2.L/˝M
ı2 // L˝ƒ2.M /

ı1 // ƒ3.M /

L˝Z=3

xı1.m˝m0˝l/Dm˝m0ı.l/Here

xı1.l˝
2.m//Dı.l/˝
2.m/

xı2.m˝l^l 0/D.m˝ı.l/˝l 0�m˝ı.l 0/˝l; 0/

xı2.l˝m˝l 0/D.ı.l/˝m˝l 0;�l˝mı.l//

xı3.l˝l 0^l 00/D.ı.l/˝l 0^l 00;�l˝ı.l 0/˝l 00Cl˝ı.l 00/˝l 0/

�00.m˝
2.m
0//Dm^m0˝m0and

�01.m˝m0˝l/D.�l˝m˝m0;m^m0˝l/

�01.l˝
2.m//D.l˝m˝m; 0/

�02.l˝m˝l 0/D.�l l 0˝m;�l˝m˝l 0/

�02.m˝l^l 0/D.0; l˝m˝l 0�l 0˝m˝l/

�03.l˝l 0^l 00/D�l l 0˝l 00Cl l 00˝l 0:

We obtain the natural isomorphism of complexes:

H2D // H2

�
A

L
˝C

�
// Tor.�2.A/;A/ // �3.A/

L2 SP3.A/ // Tor.A;L1 SP2.A// // Tor.�2.A/;A/
// �3.A/
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The map

Tor.A;L1 SP2.A//!.M˝ƒ2.L/˚.L˝M˝L//=im.xı3/

is given as follows: let a; a0; a002A with naDna0Dna00D0 are represented by ele-
ments m;m0;m00 is M and ı.l/Dnm; ı.l 0/Dnm0; ı.l 00/Dnm00 , then

�n.a; ˇn.a
0; a00// 7!.�m˝l 0^l 00; l˝m0˝l 00�l˝m00˝l 0/Cim.xı3/:

The map �0
2

induces the Koszul-type map

Tor.A;L1 SP2.A//!Tor.�2.A/;A/

defined by

�n.a; ˇn.a
0; a00//

7!.�n.!
n
2.aCa00/�!n

2 .a/�!
n
2 .a
00/; a0/�.�n.!

n
2 .aCa0/�!n

2 .a/�!
n
2 .a
0/; a00/:

Example In the case

.L
ı
!M /D.Z

n
!Z/;

the diagram (A-13) has the following form:

Z
3n //

.1;1/

��

Z

1

��
Z

.�2;�1/

��

.n;�2n/ // Z˚Z
.2n;n/

//

.�1;1/

��

Z

Z

�3

��

.n;�n/ // Z˚Z

.�1;2/

��

.n;n/ // Z

Z
n // Z

This diagram implies that the map

H1

�
Z=n

L
˝C.Z

n
!Z/

�
!�1

�
Lƒ2.Z=n/

L
˝Z=n

�
is multiplication by 3 in the group Z=n.

When ADZ=2 and

C DC.Z
2
!Z/;
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we have the following commutative diagram:

A˝H1C //
� _

��

A˝R2.A/� _

��
H1

�
A

L
˝C

�
//

����

�1

�
A

L
˝L�2.A/

�
����

//
t�1

�
Lƒ2.A/

L
˝A

�
Tor.A;H0C /

'

<<

' // Tor.A; �2.A//

As a corollary, we find that:

Proposition A.2 The derived Koszul map

�1

�
A

L
˝L�2.A/

�
!�1

�
Lƒ2.A/

L
˝A

�
is the zero map for ADZ=3 and an epimorphism for ADZ=p whenever p is a
prime ¤3.
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