A note on cabling and L-space surgeries

JENNIFER HOM

We prove that the (p,q)-cable of a knot $K \subset S^3$ admits a positive L-space surgery if and only if K admits a positive L-space surgery and $q/p \geq 2g(K)-1$, where g(K) is the Seifert genus of K. The "if" direction is due to Hedden [1].

57M27, 57R58

1 Introduction

In [7], Ozsváth and Szabó introduced a powerful tool for studying closed 3-manifolds, Heegaard Floer homology, and later equipped this invariant with a filtration [6] (independently developed by Rasmussen in [10]) that defined an invariant for a knot in the 3-manifold. The relationship between the knot invariant and the Heegaard Floer homology of the 3-manifold obtained by Dehn surgery on that knot has been well studied (see Ozsváth and Szabó [8; 9; 3]), and can also be considered from the perspective of bordered Heegaard Floer homology as by Lipshitz, Ozsváth and Thurston [2].

In this note, we restrict our consideration to the simplest "hat" version of the theory, assuming that the reader is familiar with the finitely generated abelian groups

$$\widehat{HF}(Y)$$
 and $\widehat{HFK}(Y, K)$

associated with a 3-manifold Y and a null-homologous knot $K \subset Y$ (see [6]). We will work over the coefficient field $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$ throughout, and we will write simply $\widehat{HFK}(K)$ when it is clear that the ambient 3-manifold is S^3 . For the present purposes, we do not need to concern ourselves with the gradings on these groups. We focus our attention on a class of 3-manifolds with particularly simple Heegaard Floer homology. For a rational homology sphere Y, Proposition 5.1 of [7] tells us that

$$\operatorname{rk} \widehat{HF}(Y) \geq |H_1(Y, \mathbb{Z})|.$$

An L-space is a rational homology sphere Y for which the above bound is sharp. The name comes from the fact that lens spaces are L-spaces, which can be seen by examining the Heegaard Floer complex associated to a standard genus one Heegaard decomposition of a lens space.

Published: 7 January 2011 DOI: 10.2140/agt.2011.11.219

220 Jennifer Hom

We call a knot $K \subset S^3$ an L-space knot if there exists $n \in \mathbb{Z}$, n > 0, such that n surgery on K yields an L-space. We will denote the resulting 3-manifold by $S_n^3(K)$. Torus knots are a convenient source of L-space knots, since $pq \pm 1$ surgery on the (p,q)-torus knot yields a lens space. It was proved in [8, Theorem 1.2] that if a knot K is an L-space knot, then the knot Floer complex associated to K has a particularly simple form that can be deduced from the Alexander polynomial of K, $\Delta_K(t)$. Thus, knowing that a knot K admits a lens space (or L-space) surgery yields a remarkable amount of information about the Heegaard Floer invariants associated to both the knot K, and manifolds obtained by Dehn surgery on K. In particular, [8, Theorem 1.2] combined with [3, Theorem 1.1] allows one to compute the Heegaard Floer invariants of any Dehn surgery on an L-space knot K from the Alexander polynomial of K.

Recall that the (p,q)-cable of a knot K, denoted $K_{p,q}$, is the satellite knot with pattern the (p,q)-torus knot. More precisely, we can construct $K_{p,q}$ by equipping the boundary of a tubular neighborhood of K with the (p,q)-torus knot, where the knot traverses the longitudinal direction p times and the meridional direction q times. We will assume throughout that p>1. (This assumption does not cause any loss of generality, since $K_{-p,-q}=-K_{p,q}$, where $-K_{p,q}$ denotes $K_{p,q}$ with the opposite orientation, and since $K_{1,q}=K$.)

It is natural to ask how satellite operations affect various properties of a knot. We will focus on the operation of cabling. In [4], Ozsváth and Szabó define an integer-valued concordance invariant $\tau(K)$. Hedden [1] and Van Cott [11] have studied the behavior of τ under cabling, giving bounds and, in special cases, formulas for $\tau(K_{p,q})$. These results will play a key role later in this note. In a forthcoming paper, we will use bordered Heegaard Floer homology to completely describe the behavior of τ under cabling, in terms of the cabling parameters, $\tau(K)$, and a second knot Floer concordance invariant, $\varepsilon(K)$.

Let g(K) denote the Seifert genus of K. In Theorem 1.10 of [1], Hedden proves that if K is an L-space knot and $q/p \ge 2g(K)-1$, then $K_{p,q}$ is an L-space knot. The goal of this note is to prove the converse:

Theorem The (p,q)-cable of a knot $K \subset S^3$ is an L-space knot if and only if K is an L-space knot and $q/p \ge 2g(K) - 1$.

It was already known that if $K_{p,q}$ is an L-space knot, then q > 0 and $\tau(K) = g(K)$ [11, Corollary 6]. We prove our theorem by methods similar to those used in [1, Theorem 1.10]. An interesting question to consider is whether there are other satellite constructions that also yield L-space knots.

Acknowledgements I would like to thank Paul Melvin for his patience and encouragement, and Matt Hedden for helpful email correspondence.

2 Proof of Theorem

An L-space Y can be thought of as rational homology sphere with the "smallest" possible Heegaard Floer invariants, ie $\operatorname{rk}\widehat{HF}(Y) = |H_1(Y,\mathbb{Z})|$. In a similar spirit, an L-space knot K can be thought of as a knot with the "smallest" possible knot Floer invariants. For example, since

$$\Delta_K(t) = \sum_{m,s} (-1)^m \operatorname{rk} \widehat{HFK}_m(K,s) t^s,$$

so we see immediately that the total rank of $\widehat{HFK}(K)$ is bounded below by the sum of the absolute value of the coefficients of the Alexander polynomial of K, $\Delta_K(t)$. A necessary, but not sufficient, condition for a knot K to be an L-space knot is for this bound to be sharp; see [8, Theorem 1.2] for the complete statement. The spirit of our proof is that when either K is not an L-space knot, or q/p < 2g(K) - 1, the knot Floer invariants of $K_{p,q}$ are not "small" enough for $K_{p,q}$ to be an L-space knot. We will determine this by looking at the rank of $\widehat{HF}(S_{pq}^3(K_{p,q}))$.

Recall that $\tau(K)$ is the integer-valued concordance invariant defined by Ozsváth and Szabó in [4]. Let \mathcal{P} denote the set of all knots K for which $g(K) = \tau(K)$. We begin by assembling the following collection of facts.

(1) If K is an L-space knot, then $K \in \mathcal{P}$. This follows from [8, Theorem 1.2] combined with the fact that knot Floer homology detects genus [5, Theorem 1.2]

(2) Let

$$s_K = \sum_{s \in \mathbb{Z}} (\operatorname{rk} H_*(\widehat{A}_s(K)) - 1),$$

where $\widehat{A}_s(K)$ is the subquotient complex of $CFK^\infty(K)$ defined in [9, Section 4.3]. We may think of $CFK^\infty(K)$ as generated over $\mathbb{F}[U,U^{-1}]$ by $\widehat{CFK}(K)$, in which case $\operatorname{rk} \widehat{A}_s(K) = \operatorname{rk} \widehat{CFK}(K)$ for all s. Recall that $\operatorname{rk} \widehat{CFK}(K)$ is always odd, since the graded Euler characteristic of $\widehat{CFK}(K)$ is the Alexander polynomial of K. Therefore, $\operatorname{rk} H_*(\widehat{A}_s(K))$ is odd, hence greater than or equal to 1, and so s_K is always nonnegative. Let

$$t_K^{a/b} = 2 \max(0, (2g(K) - 1)b - a),$$

for a pair of relatively prime integers a and b, b > 0. Notice that

$$t_K^{a/b} = 0$$
 if and only if $a/b \ge 2g(K) - 1$.

For $K \in \mathcal{P}$ and a, b as above,

$$\operatorname{rk}\widehat{HF}(S_{a/b}^{3}(K)) = a + bs_{K} + t_{K}^{a/b}.$$

This is a special case of Proposition 9.5 of [3]. In particular, the term v(K) appearing in Proposition 9.5 is bounded below by $\tau(K)$ [4, Proposition 3.1] and above by g(K) [6, Theorem 5.1], so $K \in \mathcal{P}$ implies v(K) = g(K). We notice that

K admits a positive L-space surgery if and only if $s_K = 0$.

Indeed, if $s_K = 0$, then p surgery on K yields an L-space, for any integer $p \ge 2g(K) - 1$. Conversely, if K is an L-space knot, then there exists some integer p > 0 such that p surgery on K is an L-space, in which case s_K , which is always nonnegative, must be 0.

(3) Recall our convention that p, q are relatively prime integers, with p > 1. If $K_{p,q} \in \mathcal{P}$, then $K \in \mathcal{P}$, and if $K \in \mathcal{P}$, then $\tau(K_{p,q}) = p\tau(K) + \frac{1}{2}(p-1)(q-1)$. These facts are Corollaries 4 and 3, respectively, in [11]. Therefore, if $K_{p,q} \in \mathcal{P}$, we have

$$(2g(K)-1)p-q = (2\tau(K)-1)p-q$$

$$= 2(p\tau(K)+(p-1)(q-1)/2)-1-pq$$

$$= 2\tau(K_{p,q})-1-pq$$

$$= 2g(K_{p,q})-1-pq,$$

or equivalently,

if
$$K_{p,q} \in \mathcal{P}$$
, then $t_K^{q/p} = t_{K_{p,q}}^{pq}$.

(4) It is well-known that pq surgery on $K_{p,q}$ is the manifold $L(p,q) \# S_{q/p}^3(K)$ (see [1, Proof of Theorem 1.10] for a nice proof of this fact). We also have from [7, Proposition 6.1] that

$$\operatorname{rk}\widehat{HF}(Y_1 \# Y_2) = \operatorname{rk}\widehat{HF}(Y_1) \cdot \operatorname{rk}\widehat{HF}(Y_2).$$

Then

$$\operatorname{rk} \widehat{HF}(S^3_{pq}(K_{p,q})) = \operatorname{rk} \widehat{HF}(L(p,q)) \cdot \operatorname{rk} \widehat{HF}(S^3_{q/p}(K))$$
$$= p \cdot \operatorname{rk} \widehat{HF}(S^3_{q/p}(K)).$$

With these facts in place, we are ready to prove the theorem. Assume $K_{p,q}$ is an L-space knot. Then by (1) and (3), $K_{p,q} \in \mathcal{P}$ and $t_{K_{p,q}}^{pq} = t_K^{q/p}$, and by (2),

$$\operatorname{rk} \widehat{HF}(S^3_{pq}(K_{p,q})) = pq + s_{K_{p,q}} + t^{pq}_{K_{p,q}} \quad \text{and} \quad \operatorname{rk} \widehat{HF}(S^3_{q/p}(K)) = q + ps_K + t^{q/p}_K.$$

Then by (4), $\operatorname{rk} \widehat{HF}(S^3_{pq}(K_{p,q})) = p \cdot \operatorname{rk} \widehat{HF}(S^3_{q/p}(K))$, and $s_{K_{p,q}} = 0$, since $K_{p,q}$ is an L-space knot. So we find that

$$p^2 s_K + (p-1)t_K^{q/p} = 0.$$

Therefore, since p > 1, we have that s_K and $t_K^{q/p}$ must both be zero, or equivalently, K is an L-space knot and $q/p \ge 2g(K) - 1$. This completes the proof of the theorem.

References

- [1] **M Hedden**, *On knot Floer homology and cabling. II*, Int. Math. Res. Not. 2009 (2009) 2248–2274 MR2511910
- [2] R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: Invariance and pairing arXiv:0810.0687
- [3] PS Ozsváth, Z Szabó, Knot Floer homology and rational surgeries arXiv: math/0504404v1
- [4] **P Ozsváth, Z Szabó**, *Knot Floer homology and the four-ball genus*, Geom. Topol. 7 (2003) 615–639 MR2026543
- [5] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334 MR2023281
- [6] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116 MR2065507
- [7] **P Ozsváth, Z Szabó**, *Holomorphic disks and three-manifold invariants: properties and applications*, Ann. of Math. (2) 159 (2004) 1159–1245 MR2113020
- [8] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281–1300 MR2168576
- [9] P Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101–153 MR2377279
- [10] **JA Rasmussen**, Floer homology and knot complements, PhD thesis, Harvard University (2003) arXiv:math/0306378
- [11] **C A Van Cott**, *Ozsváth–Szabó and Rasmussen invariants of cable knots*, Algebr. Geom. Topol. 10 (2010) 825–836 MR2629765

Department of Mathematics, University of Pennsylvania 209 S 33rd St, Philadelphia PA 19104, USA

 ${\tt jenhom@math.upenn.edu}$

http://www.math.upenn.edu/~jenhom

Received: 13 April 2010 Revised: 16 September 2010