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A note on cabling and L -space surgeries

JENNIFER HOM

We prove that the (p, g)—cable of a knot K C S3 admits a positive L—space surgery
if and only if K admits a positive L—space surgery and ¢/ p > 2g(K) — 1, where
g(K) is the Seifert genus of K. The “if” direction is due to Hedden [1].

57TM27, 57R58

1 Introduction

In [7], Ozsvéth and Szabé introduced a powerful tool for studying closed 3—manifolds,
Heegaard Floer homology, and later equipped this invariant with a filtration [6] (in-
dependently developed by Rasmussen in [10]) that defined an invariant for a knot
in the 3—manifold. The relationship between the knot invariant and the Heegaard
Floer homology of the 3—manifold obtained by Dehn surgery on that knot has been
well studied (see Ozsvath and Szabd [8; 9; 3]), and can also be considered from
the perspective of bordered Heegaard Floer homology as by Lipshitz, Ozsvath and
Thurston [2].

In this note, we restrict our consideration to the simplest “hat” version of the theory,
assuming that the reader is familiar with the finitely generated abelian groups

HF(Y) and HFK(Y, K)

associated with a 3—manifold Y and a null-homologous knot K C Y (see [6]). We
will work over the coefficient field ' = Z /27 throughout, and we will write simply
HFK (K) when it is clear that the ambient 3—manifold is S3. For the present purposes,
we do not need to concern ourselves with the gradings on these groups. We focus our
attention on a class of 3—manifolds with particularly simple Heegaard Floer homology.
For a rational homology sphere Y, Proposition 5.1 of [7] tells us that

tk HF (Y) > |H,(Y, Z))|.

An L—space is a rational homology sphere Y for which the above bound is sharp.
The name comes from the fact that lens spaces are L —spaces, which can be seen by
examining the Heegaard Floer complex associated to a standard genus one Heegaard
decomposition of a lens space.
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We call a knot K C S3 an L—space knot if there exists n € Z, n > 0, such that n
surgery on K yields an L—space. We will denote the resulting 3—manifold by S,f (K).
Torus knots are a convenient source of L —space knots, since pg &= 1 surgery on the
(p, g)—torus knot yields a lens space. It was proved in [8, Theorem 1.2] that if a knot K
is an L—space knot, then the knot Floer complex associated to K has a particularly
simple form that can be deduced from the Alexander polynomial of K, Ag (). Thus,
knowing that a knot K admits a lens space (or L—space) surgery yields a remarkable
amount of information about the Heegaard Floer invariants associated to both the
knot K, and manifolds obtained by Dehn surgery on K. In particular, [8, Theorem 1.2]
combined with [3, Theorem 1.1] allows one to compute the Heegaard Floer invariants
of any Dehn surgery on an L—space knot K from the Alexander polynomial of K.

Recall that the (p, g)—cable of a knot K, denoted K, 4, is the satellite knot with
pattern the (p, g)—torus knot. More precisely, we can construct K, ; by equipping
the boundary of a tubular neighborhood of K with the (p, g)—torus knot, where the
knot traverses the longitudinal direction p times and the meridional direction ¢ times.
We will assume throughout that p > 1. (This assumption does not cause any loss of
generality, since K_, 4, = —K, 4, where —K, ;, denotes K, , with the opposite
orientation, and since Ky 4, = K.)

It is natural to ask how satellite operations affect various properties of a knot. We will
focus on the operation of cabling. In [4], Ozsvath and Szabé define an integer-valued
concordance invariant 7(K). Hedden [1] and Van Cott [11] have studied the behavior
of 7 under cabling, giving bounds and, in special cases, formulas for 7(Kp 4). These
results will play a key role later in this note. In a forthcoming paper, we will use
bordered Heegaard Floer homology to completely describe the behavior of t under
cabling, in terms of the cabling parameters, 7(K), and a second knot Floer concordance
invariant, &(K).

Let g(K) denote the Seifert genus of K. In Theorem 1.10 of [1], Hedden proves that
if K isan L-space knot and ¢/p >2g(K)—1, then K, 4 is an L—space knot. The
goal of this note is to prove the converse:

Theorem The (p, q)—cable of a knot K C S* is an L—space knot if and only if K is
an L—space knotand ¢/p > 2g(K)—1.

It was already known that if K, 4 is an L—space knot, then ¢ > 0 and 7(K) = g(K)
[11, Corollary 6]. We prove our theorem by methods similar to those used in [1,
Theorem 1.10]. An interesting question to consider is whether there are other satellite
constructions that also yield L—space knots.
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2 Proof of Theorem

An L—space Y can be thought of as rational homology sphere with the “smallest”
possible Heegaard Floer invariants, ie tk HF(Y) = |H1(Y,Z)|. In a similar spirit, an
L—space knot K can be thought of as a knot with the “smallest” possible knot Floer
invariants. For example, since

Ag(t) = (=1)"tk HFK yy (K, 5) t*,

m,s

so we see immediately that the total rank of HFK (K) is bounded below by the sum of
the absolute value of the coefficients of the Alexander polynomial of K, Ag(¢). A
necessary, but not sufficient, condition for a knot K to be an L—space knot is for this
bound to be sharp; see [8, Theorem 1.2] for the complete statement. The spirit of our
proof is that when either K is not an L—space knot, or ¢/ p < 2g(K) — 1, the knot
Floer invariants of K, 4 are not “small” enough for K, ; to be an L—space knot. We
will determine this by looking at the rank of ITII?(S 3q(K .q))-

Recall that 7(K) is the integer-valued concordance invariant defined by Ozsvath and
Szabd in [4]. Let P denote the set of all knots K for which g(K) = t(K). We begin
by assembling the following collection of facts.

(1) If K is an L-space knot, then K € P. This follows from [8, Theorem 1.2]
combined with the fact that knot Floer homology detects genus [5, Theorem 1.2]

(2) Let
sk = Y _(k He(Ag(K)) — 1),
SEZ
where /’I\S(K) is the subquotient complex of CFK*°(K) defined in [9, Section 4.3].
We may think of CFK*°(K) as generated over F[U, U] by C/F\K(K), in which case
rk /TS(K) =rk C/F\K(K) for all s. Recall that rk C/F\K(K) is always odd, since the
graded Euler characteristic of CFK (K) is the Alexander polynomial of K. Therefore,
rk Hy (/f s(K)) is odd, hence greater than or equal to 1, and so sk is always nonnegative.
Let
142 = 2 max(0, (2¢(K) — 1)b —a),

for a pair of relatively prime integers a and b, b > 0. Notice that

1/ =0 ifandonly if a/b=>2g(K)—1.
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For K € P and a, b as above,

tk HF (S, (K)) = a+bsg + 13"

This is a special case of Proposition 9.5 of [3]. In particular, the term v(K) appearing
in Proposition 9.5 is bounded below by t(K) [4, Proposition 3.1] and above by g(K)
[6, Theorem 5.1], so K € P implies v(K) = g(K). We notice that

K admits a positive L—space surgery if and only if sx = 0.

Indeed, if sy = 0, then p surgery on K yields an L—space, for any integer p >
2g(K) — 1. Conversely, if K is an L—space knot, then there exists some integer
p > 0 such that p surgery on K is an L—space, in which case sg , which is always
nonnegative, must be 0.

(3) Recall our convention that p, ¢ are relatively prime integers, with p > 1. If
Kpgq € P, then K € P, and if K € P, then t(Kp4) = pt(K) + 3(p—1)(g—1).
These facts are Corollaries 4 and 3, respectively, in [11]. Therefore, if K, , € P, we
have

(28(K)—1)p—q=Q2t(K)-1)p—q
=2(p(K)+(p—1)(g—1/2) = 1-pq
=21(Kpq)—1—pgq
=2g(Kp,q)—1-pg.

or equivalently,

a/p _ ,rq

if Kp g € P, then 1 Ko

(4) It is well-known that pg surgery on K, , is the manifold L(p,q) # S; Ip (K)
(see [1, Proof of Theorem 1.10] for a nice proof of this fact). We also have from [7,
Proposition 6.1] that

tk HE (Y1 #Y,) =tk HF (Y}) -tk HF ().
Then

tk HF(Spq(Kp.q)) =k HF (L(p.q)) -tk HF (S}, , (K))
= p-kHF(S], (K)).

With these facts in place, we are ready to prove the theorem. Assume K, is an
L—space knot. Then by (1) and (3), Kpq € P and 157 = 147 and by (2),

tk HF (S} (Kp.q)) = pq + 5k, + tg!  and Tk HE(S], (K)) =q + psk + 147,
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Then by (4), rk fIF(SI*:’q (Kpg)) =p-1k IfIF(S;/p (K)), and sk, , =0, since Kp 4 is
an L —space knot. So we find that

pisg +(p— l)th(/"J =0.

Therefore, since p > 1, we have that sg and th(/ ? must both be zero, or equivalently,
K is an L—-space knot and ¢/ p > 2g(K)— 1. This completes the proof of the theorem.
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