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Novikov homology
of HNN-extensions and right-angled Artin groups

DIRK SCHUTZ

We calculate the Novikov homology of right-angled Artin groups and certain HNN—
extensions of these groups. This is used to obtain information on the homological
Sigma invariants of Bieri-Neumann-Strebel-Renz for these groups. These invariants
are subsets of all homomorphisms from a group to the reals containing information
on the finiteness properties of kernels of such homomorphisms. We also derive
information on the homotopical Sigma invariants and show that one cannot expect
any symmetry relations between a homomorphism and its negative regarding these
invariants. While it was previously known that these invariants are not symmetric in
general, we give the first examples of homomorphisms which are symmetric with
respect to the homological invariant, but not with respect to the homotopical invariant.

20J05; 20F65, 57R19

1 Introduction

The Sigma invariants of Bieri-Neumann—Strebel-Renz [4; 5] have proven to be an
important tool in studying finiteness properties of groups. While they are in general very
difficult to compute, there are interesting groups for which they have been completely
determined and which give rise to very intriguing examples. These groups include right-
angled Artin groups (see Meier, Meinert and VanWyk [19]), and Thompson’s group F
(see Bieri, Geoghegan and Kochloukova [3]). As an application, Bieri, Geoghegan
and Kochloukova [3] use the Sigma invariants of Thompson’s group F to show that
F contains subgroups of type F,;—; which are not of type Fj, for all m > 1; see
Section 2 below for the definition of type Fyy,.

There are two different versions of finiteness properties, one based on homotopical and
one based on homological techniques, and it was shown by Bestvina and Brady [1] that
they are indeed different. One also has homotopical and homological Sigma invariants
which are also different in general [19].

We will give a precise definition in Section 2, but for the moment we can think of
the Sigma invariants as certain subsets X% (G) and ¥ (G;Z) of Hom(G, R) for any
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k >0 and G a finitely generated group!. Here SK(G) refers to the homotopical
version and X%(G; Z) to the homological version.

Given a nonzero homomorphism y: G — R, one can always consider the negative
homomorphism —y: G — R. There are very simple examples of groups and homo-
morphisms x: G — R which show that the Sigma invariants are not invariant under
this antipodal action, possibly the easiest example being the Baumslag—Solitar group
G = (a,b |a~'ba = b?) with the homomorphism sending @ to 1 and b to 0. On the
other hand, for right-angled Artin groups the Sigma invariants are invariant under the
antipodal action.

Groups for which a computation of the Sigma invariants are quite accessible include
HNN-extensions, provided one has information on the Sigma invariants of the groups
being extended. Also, for these groups it is easy to break the symmetry of Tk (G)
under the antipodal action. Here one should note that right-angled Artin groups can
also be build via HNN—extensions, a fact used by Meier, Meinert and VanWyk in [19]
to determine their Sigma invariants, but as the extension is always along only one
inclusion one gets the described symmetry in the Sigma invariants.

By forming nonsymmetric HNN-extensions of right-angled Artin groups we show that
practically any behaviour under the antipodal action is possible.

Theorem 1.1 Let p,q be positive integers. Then there exists a group G of type F
and a homomorphism y: G — Z with

x € TP (G)—TPTI(G)
—x € 29(G)—=IT(G).

Recall that a group is of type F if there exists a finite K(G, 1). For certain metabelian
groups G Kochloukova [15] has given a calculation of ¥(G) in terms of £1(G).
Using this result one can obtain other examples satisfying the statement of Theorem
1.1. In these examples we always have £X(G) = =k (G; 7).

There is also a version of Theorem 1.1 where £X(G) is replaced by =X (G;Z) and we
demand that x, —x € 2(G). Recall that we always have $¥(G) ¢ =X(G; Z), and for
k > 2 we have x € £¥(G) if and only if x € £¥(G;Z) N £2(G). Finally, we obtain
examples where we only get one of x and —y in X%(G).

n fact G should satisfy certain finiteness conditions depending on k.
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Theorem 1.2 There exists a group G of type F and a homomorphism x: G — Z
such that for all p > 2 we have

x € 2P(G)
—x € 2P (G;2) - =%(G).

Theorem 1.2 has interesting consequences for a Theorem of Latour [17] regarding
conditions for the existence of a nonsingular closed 1—form within a cohomology
class x € H'(M;R), where M is a high-dimensional closed manifold. One condition
demands the contractibility of certain path spaces M, and M_,; see Section 8 for
details. In all previously known examples with M a closed manifold, contractibility of
M, was equivalent to contractibility of M_,, but using Theorem 1.2 we construct an
example where only one of these path spaces is contractible.

We determine the homological Sigma invariants using Novikov homology. It is known
that x € >k(G;z) is equivalent to the vanishing of certain Novikov homology groups;
see Lemma 2.4 for details. Knowing the exact value of a nonvanishing Novikov
homology group gives extra information which is useful for looking at HNN—extensions,
as we can use methods from group homology.

It turns out that the Novikov homology of a right-angled Artin group is easily accessible.
To make this more precise, recall that for a finite flag complex L the right-angled
Artin group G is generated by the vertices of L, and two generators commute exactly
when the corresponding vertices span a 1-simplex. If x: G — R is nonzero on all
generators, then

H(GL;ZGLy) = LGy ®z Haoy (L),

where the isomorphism is induced by an isomorphism of chain complexes. Here Z/(EX
denotes the Novikov ring; compare Section 2. If x vanishes on some generators, we get
a spectral sequence which carries enough information to determine >k(Gp:Z). This
gives a purely algebraic and simple calculation of these Sigma invariants. The original
calculation of Meier, Meinert and VanWyk [19], which also included the homotopical
invariants, used both geometric and algebraic arguments, and a simplification using
geometric arguments was done by Bux and Gonzalez [7].

Arguments using Novikov homology will only give information about the homological
invariants; in order to understand the homotopical invariants it is necessary to get
information about the homotopy type of certain halfspaces. Such a halfspace is defined
as Np = h~1([0, 00)) with h: X7 — R a map with i(gx) = x(g) + h(x), where X7
is the universal cover of a finite K(Gp,1). While in Bux and Gonzalez [7] the first
nonvanishing homotopy group of N is determined, Bestvina and Brady showed [1,
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Theorem 8.6] that N has the homotopy type of a wedge of copies of L, provided
all generators of Gy, are send to 1. This gives a bit of extra information which is not
needed for the Sigma invariants of a right-angled Artin group, but it is useful when
considering nonsymmetric HNN—extensions of right-angled Artin groups.

Namely, it turns out that considering subcomplexes K of L leads to naturality in
groups Gg — G, which is also reflected in the halfspaces, that is, up to homotopy
the natural map Nx — Ny corresponds to inclusion of the wedge of copies of K into
the wedge of copies of L. This naturality allows us to understand the halfspaces for
nonsymmetric HNN-extensions of right-angled Artin groups, leading to the examples
described in Theorems 1.1 and 1.2. Since we need this more refined version of [1,
Theorem 8.6], we give a proof in Section 5. Our proof uses in fact different techniques
than [1], we exploit the fact that G, can be build using HNN-extensions of a smaller
right-angled Artin group. However, the techniques of [1] can also be used to obtain
this result.

2 Sigma invariants and Novikov rings

A group G is said to be of type FP,, if there is a resolution
) o F—F— - — Fy—7Z—0

of free Z G —modules such that F; is finitely generated for i <n. Here Z is considered
as a trivial ZG-module.

We define
S(G) = (Hom(G,R) —{0})/R,

that is, we identify nonzero homomorphisms, if one is a positive multiple of the
other. This is a sphere of dimension rank(G/[G,G]) — 1. If x: G — R is a nonzero
homomorphism, we still write y € S(G).

Given such x, welet Gy, ={g € G | x(g) = 0}. If there is a resolution (1) of free ZG
modules with F; finitely generated for i < k, we say Gy is of type FPj.. We now set

S¥(G:Z) = {x € S(G) | Gy is of type FP;}.

If G is of type F,, that is, there exists a K(G, 1) with finite n—skeleton, there is a
more geometric criterion to check for y € >5(G; Z). Let X be the universal cover
of the K(G, 1) with finite n—skeleton and x: G — R a nonzero homomorphism. Let
h: X — R be a height function with respect to x, that is, we have h(gx) = x(g)+/h(x)
for all x € X and g € G. To see that such / exist, note that it can easily be defined on
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the 0—skeleton X (| and since R is contractible, the map can always be extended to
the higher skeleta.

Now for r € R, let
N ' ={xeX|h(x)>r}.
We call N a halfspace with respect to .
Proposition 2.1 (Bieri-Renz [5]) Let G be a group of type Fy. For k < n we have
x € IX(G: Z) if and only if there is a real number r > 0 with the property that the

homomorphism H;(N°®) — H;(N~"), induced by inclusion, is the zero map for all
i <m, where H denotes reduced homology.

This Proposition suggests the definition of another invariant by replacing reduced
homology by homotopy. This leads to the homotopical Sigma invariants.

Definition 2.2 Let G be a group of type F, and x: G — R anonzero homomorphism.
We say x € ZK(G) if there is a real number r > 0 with the property that the map
7i(N®) — 7;(N~"), induced by inclusion, is the zero map for all i < m.

This definition does not depend on the choices involved. Furthermore, using Proposition
2.1 it is easy to see that ©1(G;Z) = 1(G) and =K(G) c =X(G;Z). However, it
follows from the work of Bestvina and Brady [1] that in general £%(G) # %2(G;Z)
[7; 19]. Nevertheless, % (G) = £2(G) N X¥(G; Z) for k > 2 [5, Chapter 6].

We now want to describe yet another criterion for the homological Sigma invariant
involving Novikov homology. For this we need a completion of the group ring.

Let G be a group and x: G — R a homomorphism. We denote by Z the abelian
group of all functions A: G — Z. For A € Z9 denote suppA = {g € G | A(g) # O}.
Definition 2.3 The Novikov—-Sikorav completion Z@X is defined as
Zéx ={\e z° |VreR suppin x~!((—oo,r]) is finite}.
The multiplication is given by the extension of the multiplication of the group ring.
The resulting Novikov homology is given by
Hy(G:ZGy) = Hy(ZGy ®76 Px)

where Py is a free Z G —resolution of the trivial ZG module Z, that is, ordinary group
homology with coefficients in Z G, ,viewed as a right ZG —module.
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Definition 2.3 is in fact due to Sikorav [24], Novikov’s original definition [21] required
X to be injective. We denote this case by

The ring N. x has the nice property that it is a Euclidean ring; see Farber [9]. In particular,
the homology groups H;(G; N ¥) = Hi(]\7 x ®zG Px) have a well defined rank, called
the Novikov—Betti number b;(G'; x), and torsion coefficients for i < n, where n is
such that G is of type FPy.

The relation to the Sigma invariants is given by the following lemma, a proof of which

can be found in Bieri [2, Theorem A.1].

Lemma 2.4 Let G be a group of type FP, and k < n. Then the following are
equivalent.

(1) xe=z=kG: 7).
) Hi(G:ZGy) =0 fori <k. O

From the Universal Coefficient Spectral Sequence we therefore get:

Corollary 2.5 Let G be a group of type FP, and k < n. If x € =K(G;Z), then
H;i(G; M) =0 fori <k and all right ZGy—modules M . O

Let G be a group, H a subgroup and ¢: H — G an injective homomorphism. The
HNN-extension of G with respect to ¢ is defined as
Gxy = (G, t|t7 ht = ¢(h) for all h € H),

that is, the group generated by G and a disjoint element ¢ subject to conjugation
relations for elements of H. If ¢ is inclusion, we simply write G* .

Now if x: G — R is a homomorphism with yx|H = x o ¢, we can extend y to
Xx: G*xg — R for every x € R via

xx(8) = x(g) and xx (1) = x.
If x € R is not of crucial importance, we will simply write x = yx: G*4 — R.
The inclusion i: G — G*4 induces an inclusion of completions i: ZEX — mx
and we obtain a long exact sequence (see Brown [6, Chapter VIIL.9])
@) o> Hy(H: LGrg,) <> Hy(Gi LGy ) >
Hy(Gx*g; ZG*¢X) — H,_(H; ZG*¢X) —
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where B is induced by inclusion i: G — G*g, and a = (¢, 1)x — ix, Where iy is
induced by the inclusion i: H — G and
(¢,1): (H, ZG*¢X) — (G, ZG*¢X)

is the pair ¢: H — G and ¢: mx — mx’ which is right multiplication by ¢.
Note that Brown [6] uses a different convention in the definition of group homology
leading to sign changes compared to [6, Chapter VII.9].

We note the following immediate corollary which is well known; see Meier, Meinert
and VanWyk [19] and Meinert [20].

Corollary 2.6 Let x: Gx4 — R as above, and G, H of type FPy, form > 1.
(1) If x|g € ¥"™(G;Z) and x|g € X" (H;Z), then x € XM (Gxgi ).
(2) If x € Z™(G*4:Z) and x|g € " (G Z), then x|y € "' (H: Z).
(3) If x € ¥"(G*¢;Z) and x|g € Z™(H;Z), then x|g € Z"(G:Z).
(4) If x|z =0 and x|g #0, then x € =1 (Gx4:Z). i

3 Right-angled Artin groups

A simplicial complex L is called a flag complex, if every finite collection of pairwise
adjacent vertices of L spans a simplex in L. We denote the set of vertices by L(® . By
a full subcomplex of L we mean a subcomplex L of L suchthat L(® ¢ L and a
finite collection of vertices of L spans a simplex in L if and only if it spans a simplex
in L. Clearly L is also a flag complex.

Definition 3.1 Let L be a finite flag complex. The right-angled Artin group G asso-
ciated to L is the group with generating set {f{,...,#,} in one-to-one correspondence
with the vertex set L0 = {vi,...,vn}, and relations [#;, 7;] = 1 precisely if v;, v;
span a 1-simplex.

If the vertices vj,, ..., vj, € L(®) form a k—simplex in L, we denote this simplex by
[vig - -+ 1 v, ]. We also consider the empty simplex which we denote by [ ] or &.

If L is a finite flag complex, and L* a full subcomplex, let L' be the full subcomplex
of L spanned by the vertices in L — L*. Given a simplex o in L, we write

L*(0) =1lk(o)NL*

where 1k(o) is the link of ¢ in L, that is, the union of all simplices t in L disjoint from
o, such that T U o is also a simplex in L. We also allow the empty simplex & for o,
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in which case we get L*(&) = L*. Notice that L*(0) is a full subcomplex of L*
and hence of L. We thus get subgroups G «(s) of G, which are again right-angled
Artin groups.

For a simplex ¢ in L we write |o| =k, if o is spanned by k + 1 vertices. We also
set |@| = —1.

Remark 3.2 Let the vertex set of L be {vy,...,v,} and let L* be the full subcomplex
of L whose vertex setis {vy,...,v,—1}. With K = L*(v,), we get an HNN-extension

GL = GL* *Gg -

In particular, any right-angled Artin group can be build inductively from the trivial
group by HNN-extensions along right-angled Artin subgroups. We can therefore build
a K(Gr, 1) complex inductively by using the standard procedure for HNN-extensions,
that is, given a K(Gp=,1) and a K(Gg, 1), we get

3) K(Gr,1) = K(Gp*,1)U K(Gg, 1) x[0,1]/~,

where (x, j) ~i(x),for j =0,1, x € K(Gg,1) and i: K(Gg,1) > K(Gp=,1) a
map inducing the inclusion on fundamental group; compare Geoghegan [11, Chapter
7.1].

Let L be a finite flag complex, and L© the set of vertices. We write
™= [] s
UEL(O)

which we think of as a CW-complex, where each circle has the CW-structure with
one cell of dimension 0 and 1. That is, for every subset o of L there is a unique
cell T, C T" with dimension |o| determined by the property that the projection
pv: Tg — S is onto if and only if veo. Let

or=\J7, c 1"

o€l
be the union of 7, over all simplices o in L.
Lemma 3.3 With the notation above, Oy isa K(Gp,1).
Proof The proof is by induction over the number of vertices in L. The main obser-

vation is that Qy is given via (3), if we use the inclusion Qg C Q=+, so the result
follows from Remark 3.2. m|
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Remark 3.4 Lemma 3.3 can also be proven using results from nonpositively curved ge-
ometry; compare for example Bestvina and Brady [1]. These more advanced techniques
can give more useful information; compare Remark 8.5.

Let X7, be the universal cover of Q. The left ZG —chain complex Cy (X7 ) can be
described as follows. The k —th chain group is freely generated by the (k—1)—simplices
of L. Here we also consider the empty simplex, which generates Cy. Let us write
(vi, 1 -+ :v;,) for the generator corresponding to the simplex [v;, :---: v;]. The
orientation can be chosen so that

k
O({viy oo vi ) = D (=D (L=t {viy soee 2035 -2 0y
j=1

where ﬁ,-j indicates that this vertex is omitted.

Proposition 3.5 Let L be a flag complex, L* a full subcomplex, and LT the full
subcomplex spanned by the vertices in L — L*. Let M be a right Z. G, —module. Then
there exists a spectral sequence (E}, ;) with

Ey,= P  Hy(GreoyM),
oe(LT)(»—D

which converges to Hp4(Gr; M). Here (LHP=D denotes the set of (p—1)—
simplices in LY in the case p = 0 this set contains the empty simplex.

If M =r*N, where N is aright ZGp+-module and r: Gy — G« is the retraction
sending the generators corresponding to vertices of L to the trivial element, this
spectral sequence collapses at E' and we get

Hi(GL; M) = @ Hiio]-1(GLr(o): N),

oelLt

where the direct sum is over all simplices o in LT, including the empty simplex.

Proof Define a free Z Gy —double complex Cy s by

Coa= P ZGL®z6,.(, CaL*(0)).
UG(LT)(P—I)
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Let us denote the generators of Cy(L*(0)) by (vj, : -+ : qu+1>|(vil;...;vip), where
o=y :-1v,]€ (LT)P=D_ Then let 3": Cpy — Cpqy—1 be given by

8//(1 ® (Uj1 ceeed vjq+1>|(v[1 :---:v,-p)) =

q+1
(=D? Z(_l)k ® (1= 1,)(vjy 2+ 1 e 2o+ Wy >|(vi1i'"ivip)’
k=1

and 0': Cpy — Cp_14 be given by
VA @ (vj, ee-: vjq+1)|(v,-1:---:v,-p)) =

p
[ .
(_1)q+1 Z(_l) (I—1j,) ®(vj, :---: vjq+1>|(v,~l:~-:ﬁ,~l:~--:v,-p)-
I=1

The total complex (TC, d" + (—1)? ") can be identified with Cx(X7) via
1® (vj, 1+ qu+1)|(vi1:-~-:v,~,,) S (V) itV PV V).
The first part of the theorem follows directly.
If M is of the form r*N for some ZGp+-module N, we get that
1® o M ®ZGL Cpq - M ®ZGL Cp—lq

is the zero homomorphism, because #;, acts trivial on M for v;, € LT. Therefore
M ®zG, TCx is a direct sum of chain complexes

M ®z6, ZGL @26, + 4 Cx—lol-1(XL*(0)) = N ®26,+ Cx—jo|-1(XL*(0))-

The result follows. O

4 Novikov homology of right-angled Artin groups

In this section, we want to express the Novikov homology of G, in terms of the flag
complex L. Let x: G — R be a homomorphism, and let L* be the full subcomplex
of L corresponding to the vertices v; with x(z;) # 0. Similarly, let L be the full
subcomplex of L corresponding to the vertices v; with x(zj) = 0. The retraction
r: G — G+, which sends all the generators corresponding to vertices of L to 1,
induces a ring homomorphism r: ZG\LX — Z/G;<X.
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Theorem 4.1 Let L be a flag complex, x: Gr — R a homomorphism and L*, LT
be as above. If M is aright Z.G 1, —module which is torsion-free as an abelian group,
then there is a spectral sequence (E}, ;) with

Eyy= P M®zH_1(L*0))
ge(LT)(P—l)
converging to Hy4(Gr; M).

If M = r*N for aright Z/G;kx —module N , the spectral sequence collapses and

Hy(GL; M) = @ N ®z Hi_|5—2(L*(0)).
oeLt

Proof For any simplicial complex L we can look at the reduced chain complex
C* (L), w1th Ck (L) the free abelian group generated by the k—simplices. Note that
C_, (L) Z is generated by the empty simplex. Also, let C +(L) be the suspension
of Cyx(L), that i, C + = C,_ (L) together with the obvious boundary map.

Now define ¢j: ZGL*X Q7 (~?n+(L*) — Z/G;<X ®z6, + Cn(XL*) by

on(1 @i, 1+ 1v;,]) = 1_[(1 —tij)_1 ® (v, 1+ Vi)

j=1

Note that, since [v;, : -+ : v;,] is a simplex, all #;, commute. Also, as x(z;) # 0,
1 —1¢;; is invertible. The inverse is 1 +¢; + ti +--- or tl.;l + tl-]_.z + .-+, depending
on whether x(z;;) > 0 or x(#;) <0.

It follows that ¢ commutes with the boundary and therefore induces an isomorphism
between free Z G «,—chain complexes. Now if M is a right Z G+, —module, we get

Hy(Gpe: M) = Hy(M ®ZG,%, LGy ®z CF (L))
~ Hy(M @z C,F (L"),

and the right-hand side is M ®7z fln_l (L*) by the classical Universal Coefficient
Theorem, provided that M is torsion-free.

The same argument works for L* (o) for every simplex o of LT, so the result follows
from Proposition 3.5. O

Let us note two special cases.
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Corollary 4.2 Let x: G — R be a homomorphism with x(t;) # 0 for all generators
of Gy,. Then

Hy(GL;ZGr,) = LG, ®7 Hy—1 (L)

forallneZ. O

Corollary 4.3 Let L be a flag complex, x: Gr — R a homomorphism, L* the full
subcomplex generated by the vertices whose image under x is nonzero, and L' the
full subcomplex generated by the vertices whose image under x is zero. Then

Hy(GL: Ny) = P Ny ®z Hy—jg)—2(L*(0))
oeLT

forallneZ.

Proof Simply note that N x viewed as a Z/G\LX ~module is of the form r*N x With
Ny viewed as a Z G+, —module. a

Remark 4.4 Since L is a finite simplicial complex, the groups ﬁk (L*(0)) are finitely
generated abelian groups. If we write Z/n = Z/nZ., it is easy to see that

ZGy ®2.2/n = TG,

for any group G and homomorphism x: G — R. Therefore every nonzero summand
in Hy,_|5|—2(L*(0)) leads to a nonzero summand in H,(Gp: Ny). In particular, for
the Novikov-Betti numbers we obtain

bi(GLix) = Y bicjo-2(L*(0)),
oeL¥

where l;,' is the “reduced” Betti number, that is, the rank of fl, , and for the torsion
coefficients

max{g;_jg—2(L*(©)) |0 € LT} <i(GLiX) < ) Gicjo-2(L*(0)).

oeLt
We can therefore recover the homological version of the main theorems of [7; 19].

Corollary 4.5 Let L be a flag complex, x: Gp — R a homomorphism, L* the
full subcomplex generated by the vertices whose image under x is nonzero, and Lt
the full subcomplex generated by the vertices whose image under x is zero. Then
x € S"(Gr: Z) if and only if for every simplex o of LT (including the empty simplex)
L*(0) is (n—|o|—2)—acyclic.
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Proof Ifall L*(o) are (n—|o|—2)—acyclic, then by Theorem 4.1, H; (G ; Z/G\LX) =0
for all i <n which gives x € £"(Gr;Z) by Lemma 2.4.

If L*(0) is not (n—|o|—2)—acyclic for some o, we see from Corollary 4.3 together
with Corollary 2.5 that x € ¥"(Gp;Z). O

If x vanishes on certain generators, it is in general very difficult to make precise
calculations with Theorem 4.1, but simpler calculations can sometimes be made.

Example 4.6 Let L be a finite flag complex and x: G;, — R a homomorphism which
is nonzero on every generator. Extend x to x: GL x Z — R by sending the extra
generator to O The augmentation &: ZGL/X\Z —~7GL Ly induces a m —module
structure on ZG7. Ly and there is a short exact sequence

0—> ZGL X Zy ~— TGy x Ly —> LG, —> 0

where ¢ corresponds to the generator of Z. The differential d! in the spectral
sequence of Theorem 4.1 is induced by multiplication with 1 — ¢, and so Eé =
ZGry ®z Hy—1(L). As E;q =0 for p # 0, we get

Hy(GL X Z;ZGy x L) = LGy ®7 Hi—1(L).
By Corollary 4.3 we have

Ho(GL x Z; Ny) = (Ny ®2z Hy—1(L)) ® (Ny ®7 Hy—>(L)).

Remark 4.7 In [19] the invariant =X (G; Z) is also considered for arbitrary commu-
tative rings R. To define the invariant =X (G; R) one has to replace the Z in the
definition of ¥ (G:Z) systematically by R, for example, one considers resolutions
over RGy, and the relevant Novikov homology is TorRG (RGX, R). The criterion in
Corollary 4.5 is then that x € £"(Gr; R) if and only if for every s1mp1ex o of LY,

L*(0) is (n—|o|—2)— R-acyclic, with a space X being k — R—acyclic if H; (X;R)=0
fori <k.

The above proof carries over, except that one has to be slightly more careful in two steps.
Firstly, in Theorem 4.1 an R—torsion-free R/G\L y—module M need not be flat over R.
However, for Corollary 4.5 we are only interested in the first nonvanishing homology
group, and by the universal coefficient spectral sequence this is M ® g H; (L*(0): R)
for some i and o.
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Secondly, if M is an R—module, it need not be the case that R/(E y®rM = Z\TG\L X
as in Remark 4.4. But there is a commutative diagram

RGL®RMi)MGL

| |

ITG\LX®RM4>]\7G\LX

which shows that fG\L x ® R M is nontrivial if and only if M is.

5 The homotopy type of halfspaces

For the homotopical Sigma invariants we want to understand the homotopy type of the
halfspaces N” = h~1([r, o0)) with respect to some y and a height function /. Let us
begin by constructing a specific height function for X7 , the universal cover of Oy .

We choose a basepoint * € X7 which is a lift of the unique 0—cell in Q7. We then

get an embedding G <— X sending g to gx. This can be repeated for every full

subcomplex K C L, resulting in inclusions i I%: Xk — X sending * to *.

Notice that the cells in X7 are cubical in the sense that the characteristic maps for

each cell are of the form ¢: [0, 1]¥ — X .

Lemma 5.1 There exists a collection of height functions hg: Xg — R for every full
subcomplex K C L with the following properties.

(1) Forevery pair K C K, of full subcomplexes of L we have hg, o 1'11((12 = hg, .
(2) Wehave hp(x) =0.
(3) For every cell in X there is a characteristic map ¢: [0, l]k — X such that
hr o: [0,11¥ — R is linear.
Proof The proof is by induction on the number of vertices in L. For the empty

subcomplex note that X = {*}, and we let sg(*) = 0.

Let vy,..., v, be the vertices of L, and let L* be the full subcomplex containing
the vertices vy, ...,v,_1. We also write K = L*(v,). It follows from (3) (see also
Geoghegan [11, Chapter 6]) that

4) XL =G XG, .« XL UGL Xgg Xk %[0, 1]/~
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where [g, x,0] ~ [g, ill('* (x)] and [g, x, 1] ~ [gln,i};*(x)] forall g € Gp, x € Xg.
Here G x g X is the quotient space of G x X via the H-action h-(g,x) = (gh™', hx)
where H is a subgroup of G and X a space with left H —action.

Assume by induction that /iy + and hg exist with the required properties. Then define

hr([g,x]) = x(g) + hp=(x) forge Gp, x € X+
hp(g, x,t]) = x(g) + hg (x) + - x(tn) forge G, x € Xg.
It is easy to see that this is well defined and has the required properties. O

Let Nz be the maximal subcomplex of X7 contained in N = hil ([0, 00)). Then the
monoid

G/ ={geGr|x(g) =0}

acts on Ny,. We can get an inductive description for Ny as in (4). For this let
v1,..., U, be the vertices of L, and let L* be the full subcomplex containing the
vertices vy, ..., v,—1. We again write K = L*(v,). Then

NL =G} Xg+, NL» U G/ X+ N x[0.1]/~

with ~ as in (4), and where GzL XG. Np = is the quotient space of GZ X N+ via
identifying (gh, x) with (g, hx) for g € GzL, he G}f* and x € Npx.

Remark 5.2 Using the methods of [7] it is easy to see that Ny has the homotopy
type of N°, but we will not need this result. As there is an r > 0 with N” C N, we
can use N and its translates g - Ny, for g € G in the definition of Ek(G L).

In [1, Th.8.6] it is shown (in the case x(¢;) = 1 for all generators of G ) that Ny has
the homotopy type of a wedge of L’s. The statement is not completely precise in the
case when L is disconnected; compare the note below [1, Th.8.6].

We now want to give an alternative approach to determining the homotopy type of Ny,
which will also discuss the functoriality induced by subcomplexes K C L.

Let us analyze the components of Ny, . Since GZ acts on Ny, it also acts on 7o(Ng) =
mo(NL, %), where = € N is the basepoint. If we denote the component of x € Ny,
by [x], it is clear that every component is of the form g -[*] with g € GZ.

Lemma 5.3 Every component of Ny is of the form g -[*] with g € ker .
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Figure 1

Proof We can assume that x(¢;) > 0 for every generator of Gy. Let g -[*] be a
component with x(g) > 0. Clearly gx and gt;* are in the same component for every
generator (compare Figure 1), so we can assume that g[G, G] = t{cl t,]f "G, G] with
all n; > 0, where [G, G] is the commutator subgroup. Then gll_kl ---t,l_k" € ker y,

and gx is in the same component as g7, k e ly kg a

If we think of the set of components as a discrete space, we get that

T = GZP XGZ_* wo(Np*) U Gz_ XGI"{' wo(Ng) x[0,1]/~

with [g, [x], 0] ~ [g, iI%*[x]] and [g, [x], 1] ~ [g. iI%*[x]], is a graph with G{—action,
such that o () = mo(Np).

Lemma 5.4 The graph ny, is a forest, that is, a disjoint union of trees.

Proof Since all the components of 777 are homeomorphic with a homeomorphism
induced by some g € ker x, we only have to consider the component I' containing
[1.[%]] € G x g+ mo(Np+). Let

L>k

HY ={he G/, |h*] =[]}

which is a monoid. Note that [gh™!, [*]] =[gh™', h[*]] =[g. [*]] for h € H™, provided
that y(gh™1) > 0.

Two elements [g1, [*]], [g2, [*]] € 7. are connected by an edge if and only if there are
h.k € HY with g, = g1h%t5k®" and ¢, ¢, &” € {£1}. We have to show that edge-
loops in I' are contractible, that is, finite sequences of points [gg, [*]], - - - , [2k, [*]] with
[gi, [*]] and [g;+1, [*]] connected by an edge, and such that [go, [*]] =gk, [*]] =[1, [*]].
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Hence there exist h;, k; € HT with gj1 = g,-hfit,f;' kfg/. Therefore
_88/ & e 1,60 1"1.8,_1"
U= hot,0kg® -l 5 6"~ Kyt

But by the Normal Form Theorem for HNN—extensions [18, Chapter IV] we get that
there is an i and a subword t,fi—l/kfi—llﬁhfi t,f;' with kl.si—llﬁhfi € K and 8;._1 = —¢].
Therefore

&i—14€i—1"1.6i—1" 1,61 € 1.€7

git+1 = Gi—1hi ' 6 kI byt ki
. &i—17.6i—1" 1.6 1,67
= gi—1hi kit hy' kG

and [g; 1, [*]] = [gi—1h5! kfi—ll//hffkf:'/, [*]] = [gi—1,[*]]. Therefore the loop repre-
sented by [gi—1, [*]], [gi,[*]] and [g;+1,[*]] is null-homotopic, and the result follows
by induction. a

Recall that vy, ..., v, are the vertices of the flag complex L. Define an equivalence
relation on the set of vertices by v; ~ v; if they are in the same component. Denote
an equivalence class by *; and embed *; into L by choosing a representative. This
defines a basepoint in every component of L.

Lemma 5.5 Let x: G;, — R be a homomorphism with x(t;) > 0 for all generators of
Gp.andlet g € G . If t;,t; are generators of Gy, such that v; ~ vj, then gt][*] =
gt}[x] forall r,s = 0 with g1/, gt} € Gy .

Proof We have that * and f; * are connected by a 1—cell in Ny, for all generators .
Soif h e GZ, we get /ix and Aty * are connected by a 1—cell in Nr. So for k > 0
we get

gif ¥ = [g1] ] = [g1] T*+] = g1/ *¥ [

Also if #; and 7; commute, we get
gt] [x] = gt} 1}[%] = gtit] [%] = gri[+].

If v; and v; are in the same component of L, there is a finite sequence of generators

li = tiy, ..., ti, =1t with t;, and ¢, commuting, and we get
r Vj—
gif [¥] = gt; ! [¥] = -+~ = g1; " [*] = g1j[]
by the argument above. |

Proposition 5.6 Let x: G — R a homomorphism, L* the full subcomplex con-
taining the vertices with x(t;) # 0 and let LT be the full subcomplex containing the
vertices with x(¢j) = 0. Then the following are equivalent.
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(1) xe3'(Gp).
(2) Ny is connected.

(3) L* is connected, and for every vertex v; € LY we have L*(v;) is nonempty.

Proof (1) = (3) follows from Corollary 4.5, because £!(G) = £1(G;Z).
(2) = (1) follows from the Definition.

(3) = (2) is proven by induction on the number of vertices in LT. If LT =2, we
can assume that x(¢z;) > 0 for all generators, as replacing ¢#; with ti_l induces an
automorphism of Gy, .

Let g € G}, so that g[«] is a component of Ny . If g is a word which uses only positive
powers of the generators #;, it is clear that g[*] = [*]. Otherwise let g = hlj_l w, with
w a word which uses only positive powers of the generators. But by Lemma 5.5 there
isar>1 with htj_l w[x] = hlj’ ~1[x]. Therefore we can reduce the number of negative
powers in g without changing the component. By induction, we get g[x] = [*].

If x(t,) = 0, let L be the full subcomplex of L containing all vertices except vy.
Then Ny is connected by (3) and the induction assumption. Also, there is a #; in
G+ which commutes with #,. If g € Gf, we get g[*] = [*] by the connectivity of
Nz. If g = htyw with w € Gz, let r > 0 such that w_ltl-r € G{. Then g[*] =
ht,slww_lll.’[*] = ht] ty[*] = ht[[*], as t;[*] = [*]. Therefore we can reduce the
occurrences of #,, which shows by induction that g[x] = [*]. O

We will for now assume that x(¢;) > 0 for all generators ¢; of G .
Define Mp =Gp x LUmg(Np)/~

where (g, *;) ~ gt[[] for g € G and r > 0 such that x(g#/) >0, and (g, x) ~ g[*]
for g € Gzr and all x € L. In words, M7, has a copy of L for every g € Gy with
x(g) < 0, and basepoints are identified with certain components of Ny, . Clearly, My,
has a GZ —action.

Example 5.7 If L is connected, we get mo(/Nr) is a point by Proposition 5.6, and
M7 is a wedge of copies of L, one for each g € Gy with x(g) <O0.

If K C L is afull subcomplex, the inclusion need not preserve basepoints. In fact, K can
have more components than L, but we can choose basepoints for the components of K
as above for L. Then choose amap j £ &+ K— L homotopic to the 1nc1us1on which sends
basepoints to basepoints. If K; C K, C L then we get maps with j L K, °J Iﬁz ~ ;L K, -

This induces equivariant maps ¢ % Mg — My with oL K, © 9011((12 >~ @K, equivariantly.
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Proposition 5.8 For every full subcomplex K C L there is an equivariant map
Yg: Nx — Mg which is an unequivariant homotopy equivalence, and such that
for K1 C K, C L the diagram

K>
lKl
Nk, — Nk,

J/WKI Xy JWKZ

(91(1
MK] — MKZ

commutes up to equivariant homotopy.
Proof The proof is by induction on the number of vertices in L. For 0 or 1 vertex the
statement is clear.
Using induction, we get
+ +
NL =G/ XGZ_* Np~U Gy XGI-i(- Ng x[0,1]/~

>~ GZ_ XGZ_* My« UGZ_ XGI-y(- Mg x[0,1]/~

with [g, 7,0] ~ [g, of " (»)] and [g, y, 1] ~ [gtn, o ()] for g € G and y € N,
via an equivariant map with domain Ny . The right-hand-side written out is

(5) ((GL XL*UG] xgs mo(NL-))/~ )u

(((GL xKUG] xg+ nO(NK))/~) x [0, 1])/%
with identifications as before. If we do the ~—identification in two steps, we get
(6) Np ~ (G xL*Unp/~)U(GL x K x[0,1]) /~

with (g.x.0) ~ (g. jF (X)) and (g.x.1) = (gtn. j£" (x)) for x € K and g € G,
and for s € [0, 1] we also identify (g, x, s) ~ [g.[*]. 5] for g € GJ, and (g, %, 5) &
[gt] . [*]. s], provided x(gt[) > 0.

This space is the forest 7y, together with copies of L* wedged to it, one for each
g € G with x(g) <0, and such that the copies of L* corresponding to g and gt,
are connected via K x [0, 1].

Now if x(g) <0, but x(gt,) > 0, we get that L* corresponding to g is being coned
off along K. Denote this as Cg L*, which is homotopy equivalent to L. Also, if form
L*UK x[0,1]UCg L* by identifying K x {0, 1} with copies in L* and Cgx L*, it is
easy to see that the result is homotopy equivalent to the wedge of L.
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Figure 2

In the right-hand-side of (6) we have infinite sequences of such objects; compare
Figure 2. It follows that the right hand side is homotopy equivalent to M by this and
collapsing the forest 7y, to its components.

To see that the construction is natural with respect to full subcomplexes, note that we
can do the above construction for every subcomplex containing v, and so that they are
natural up to equivariant homotopy. If we consider a subcomplex not containing vy,
naturality follows by induction. a

For r €im x let N = hNp, where h € G, satisfies x(h) =r. Also let
M =G xLUmy(Nj)/~

where (g, *;) ~[gt}*] for g € G and s > 0 such that x(g#7) > r, and (g, x) ~[g*]
for x(g) = r. For r <s we have an obvious projection p*": M;j — M7 .

If g € G satisfies x(g)=r, we getahomeomorphism ug: My — M by ug([h, x])=
[gh, x] and ug([x]) =[gx] for (%, x) € G x L and [x] € mo(NL). If vg—1: Nf — N,

denotes left-multiplication by g~!

, we get that
Yy =ugoyprovg1: Ny — My
is a homotopy equivalence which is Gzr equivariant, and for » < s the diagram

@) N s N}

o w
s PV r

M; — Mp
commutes, as is easily seen from the cases with r or s equal 0.
For i1 to be a homotopy equivalence, we need y to be nonzero on all generators,
and we will not attempt to describe the homotopy type of Ny in general. But the
next Lemma contains partial information which is useful for determining %2(Gp) in
general.
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Lemma 5.9 Let x: G — R a homomorphism, L* the full subcomplex containing
the vertices with x(;) # 0 and let L' be the full subcomplex containing the vertices
with x(tj) = 0. For every s € im y there is a retraction p*: Nj — Nj . which makes
the diagram

s C r
NL 7 NL

ers lpr
NS, —S 3 NT
L* L*

commute for every s > r € im x.

Proof The proof is by induction on the number of vertices in LT with the induction
start LT empty being trivial. Assume the statement holds for L a full subcomplex L
containing L*. If v, € L, let K be the full subcomplex of L containing all vertices
adjacent to v,. Then if L’ is the full subcomplex of L containing L and v,, we get

+ +
(8) N} = Gf gt NpUGE g1 Ny x[0.1]/~

with identifications as in (4). If p: Gr» — G is the retraction obtained by sending tn
to 1, we get a retraction p*: N7, — NS deﬁned by p ([g x]) =p(g)-x for g € G

and x € NS and p%([g, x,t]) = r(g) lK for g € GL,, X € NS and 7 €[0,1]. Ttis
clear that the resulting diagram for s > r commutes. O

Theorem 5.10 Let x: G — R a homomorphism, L* the full subcomplex containing
the vertices with x(t;) # 0 and let L' be the full subcomplex containing the vertices
with x(¢j) = 0. Then the following are equivalent.

(1) xeZ*(Gr).
(2) Ny is simply connected.

(3) L* is simply connected, for every vertex v; € (LJf)(O) we have L*(v;) is
connected, and for every 1 —simplex o € (LHD we have L*(0) is nonempty.

Proof (1) = (3) holds by the following argument: Since y € £%(Gr) implies
x € 2%2(Gr:7Z), Corollary 4.5 implies that we only need to show that L* is simply
connected. If L* is not simply connected, then for all » < 0 the homomorphism
w1 (Np+) — 71 (N7 ,) induced by inclusion is nontrivial, as follows from Proposition
5.8 together with diagram (7). This implies 771(Ng) — 71 (N;) is nontrivial for all
r <0 by Lemma 5.9, which by definition implies x ¢ £%(G).

(3) = (2) is again shown by induction on the Eumber verticesin LT. If LT is empty, the
result follows from Proposition 5.8. Let L', L and K be as in the proof of Lemma 5.9,
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and assume inductively that Ny is simply connected. Note that K* = L*(vy) is
connected, and K*(v;) = L*([v; : vy]) for every vertex v; € K — L*. Therefore Ng is
connected by Proposition 5.6. It follows from (8) and a Seifert—Van Kampen argument
that Ny, is simply connected. After finitely many steps we get Ny simply connected.

(2) = (1) follows from the definition. a

Remark 5.11 Since TX(G) = Z%(G;Z) N £2(G) for k > 2, Theorem 5.10 and
Corollary 4.5 recover the main theorems of [7; 19].

6 Nontrivial HNN—extensions of right-angled Artin groups

Given a finite flag complex L and a full subcomplex K, we can form a new flag
complex L by adding a vertex and requiring that it is adjacent to every vertex of K.
The resulting right-angled Artin group Gy is a trivial HNN—extension of G, along
G ; compare Remark 3.2.

We now want to look at the situation where we have two full subcomplexes K1, K, of
L which are isomorphic as simplicial complexes. Such an isomorphism induces an
isomorphism of groups ¢: Gg, — G, , and we can form the HNN-extension

G=G L *¢,
The extra generator of G is denoted by ¢.

Any homomorphism x: G — R with yo¢ = X|GK1 extends to homomorphisms
Xx: G — R by setting x(¢) = x for any x € R. We will usually drop the subscript
x in x: G — R.

If we assume x(z;) # 0 for all generators of G, the exact sequence (2) becomes:
ZGy ®z Hyi (K1) —> ZGy ®7 Hy_1(L) —> Hy(G:ZGy) —>
ZEX KRz i:ln—Z(Kl) i) ZEX X7z j:ln_z(L) —> .

Note for example, that L connected implies x € £!(G;Z). Also, if the Betti numbers
of Ky and L are different, we get nonvanishing Hx(G;ZGy) independent of x(7).
By looking at the chain complex description in the proof of Theorem 4.1, we see that
a: .Gy ®z Hi (K1) = Z.Gy ®7 H«(L) is given by

©) a(1®z) =t Q jx(2) — 1 ®ix(z)

for z € Hy(K), with is: Hy(K;)— Hx(L) is induced by inclusion and J is induced
by the isomorphism K; — K, followed by inclusion. Now ix and j. can induce quite
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different maps on homology, and we want to construct examples where K < L is a
homotopy equivalence, while K, < L is not.

Definition 6.1 Let f: K — L be a simplicial map between finite simplicial complexes.
We call f a full simplicial embedding, if it is injective as a continuous map, and if
vertices Vg, ...,V span a k—simplex in K if and only if f(vg),..., f(vr) span a
k—simplex in L for all kK > 0.

Example 6.2 Let K = {0,1} and L = [0, 1] with two vertices O and 1. Then the
inclusion K — L is not a full embedding. But if we subdivide L by adding a vertex
%, the inclusion becomes a full embedding. Note that Gg = F», G = 72, and the
map induced by inclusion i4: F — Z? is clearly not injective. However, with L’
the barycentric subdivision of L, we get Gy, = F, X Z, and we have an injection
ix: G K — GL/ .

Lemma 6.3 Let f: K — L be an injective simplicial map between finite flag com-
plexes. Then f is a full embedding if and only if the following holds: two vertices
Vo, vy in K span a 1-simplex if and only if f(vg) and f(vq) span a 1 —simplex in L.

In this case, Gk is a retract of G, .

Proof The ““if and only if” statement is clear since flag complexes are determined
by their 1-skeleton. The retraction for the induced homomorphism ix: Gx — G,
is defined as follows: if #; is a generator corresponding to the vertex u; € LO we
set r(tj)) = tj € Gk, if there is a vertex v; € K© with S (vj) = u;, and we set
r(t;) =1 € Gk, if u; is not in the image. From the full embedding condition it follows
that r respects all relations in G, and we have riy = idg, . a

Lemma 6.4 Let K, L be finite flag complexes and f: K — L a simplicial map. Then
there exists a finite flag complex M containing L as a deformation retract, and a tull
simplicial embedding g: K — M homotopic to f.

Proof We first want to replace f by a simplicial map g’: K — M’ which is injective
on vertices. Let vg, vy be vertices with f(vg) = f(v;) =u € L. Form a new simplicial
complex L by forming the cone over the star of u, that is, we add one vertex u’, and
whenever there is a k—simplex o involving u, we add the (k+1)—simplex o U {u'} to
L. Then L is still a flag complex and it contains L as a deformation retract. If we
define f1: K — Lq by fi(v) = f(v) for v # vy, fi(v1) = u’, we get a simplicial
map homotopic to i o f: K — L, which is slightly less noninjective than f. If f is
not injective, we repeat this process finitely many times.
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So assume that g’: K — M’ is injective on vertices, M’ contains L as a deformation
retract and i o f is homotopic to g’. Let vy, v; be two vertices of K which do not form
a 1-simplex, but such that f'(vg) and f(v;) forma I-simplex in M’. Let ug = g’(vo)
and u; = g’(vy), and let M™* be the full subcomplex of M’ containing u; and all
vertices u adjacent to u 1, except ug. Now form M by coning off M *, that is, we add
a vertex u/ , and for every k—simplex o in M* we add the (k+1)—simplex o U {u}.
Again M deformation retracts to M’, and defining g;: K — M; by g1(v) = g’'(v)
for v # vy and g;(v;) = u) gives an injective simplicial map homotopic to i o g’.

Also, if v,, v3 are vertices in K not forming a 1—simplex, then g1(v;), g1(v3) form
a 1-simplex in M7 if and only if {v,, v3} # {vo,v1} and g’(v;), g’(v3) forma 1—
simplex. As there are only finitely many such pairs, we can repeat the argument finitely
many times to end up with the desired full embedding. |

Let K be a finite flag complex and f: K — K a continuous map. By the simplicial
approximation theorem, there is r > 0 and a simplicial map f’: K1 — K homotopic
to f, where K"l is the r—th barycentric subdivision of K, which is also a flag complex.
By Lemma 6.4 we can find a full embedding g: KUl M with M a flag complex
containing K as a deformation retract.

Lemma 6.5 There exists a finite flag complex L with the following properties:

(1) KUY and M are full subcomplexes of L with inclusions i: K"l - L and
jiM— L.

(2) The set of vertices is the disjoint union of the vertices of K [} and M .

(3) The full embedding i: K 'l > L isa homotopy equivalence.

(4) The full embedding j o g: KUl L is homotopictoio f: K — L.

Proof If r =0, let L = K x[0,1] Ugyxgy M with the standard subdivision of
K x[0,1].

Ifr>0,lets: Kl 5 K bea simplicial approximation of the identity, and M (s)
the simplicial analogue of a mapping cylinder as constructed in [12, page 183]. By
checking the construction there, one sees that M (s) is a flag complex, as K [r=1] and K
are. Furthermore, the set of vertices is the disjoint union of the vertices of K "] and K,
so K"l and K are fully embedded in M (s). Also, there is a deformation retraction
re: M(s) — K with r;oi =s: K"l — K. In particular, the inclusion i: K1 — M(s)
is a homotopy equivalence. Now let L = M (s) Ug M . It is clear that L has the
desired properties. O
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Definition 6.6 Let N be the set of all nonnegative integers together with an element oo .
We order this set by the usual order of integers together with p < oo for all nonnegative
integers p.

For the next theorem, we set

2°(G:Z) = () £P(G: Z)
p=1
»°tN(Gi7) =2

Theorem 6.7 Let p,q € N. Then there exists a group G of type F and a homomor-
phism x: G — R with

X €ZP(G:Z)—2PTHG: Z)
—x € 29(G;2)-21T(G; 7).

The homomorphism can be chosen to have image in Z..

Proof We can assume p # ¢ for otherwise we can find a right-angled Artin group
and y with that property. Without loss of generality let p > ¢.

If ¢ > 1, let K be a flag complex realizing S7, and f: S? — S? a map of degree 2.
Let L be the flag complex arising from Lemma 6.5 and M the one-point union of L
and a flag complex realizing S? (in case p = oo we set M = L). Then let G be the
HNN-extension of Gjps along G g1 using the two full embeddings from Lemma 6.5.
To deﬁne x: G—>R,let X(t,) =1 for every generator ¢; € Gps and let y(¢) = 1. Then
o ZGX Rz H*(Sq) — ZGX Qg Hy(S1Vv SP) is by Lemma 6.5 and (9) the map

(l®z)=tQ® fx(z) — 1 ®i(z).

In degree ¢ this is the map a(x) = x(2¢ —1) for x € Z@X, which is an isomorphism
since x(t) > 0. If we look at —x, we still get the formula for «, but this time
it is a map @_X — ZE_X and « is injective but not surjective. It follows that
—x € 29(G;Z) — 29T 1(G; Z) from Lemma 2.4 and (2), while x € Eq+1(G Z).
If p < oo, note that H,1(G; ZGX) # 0, since Hp(M) = 0 while Hp(K) = 0.
Therefore x € £7(G;Z) — 2P (G Z).

If ¢ =0 we have to use a slightly different technique. We assume p < oo, for otherwise
the Baumslag—Solitar group G = (s, |7 'st = s2) will do.

Let L be a finite flag complex subdividing S7, and M the union of L with two vertices
v, w with v being adjacent to exactly one vertex of L; see Figure 3. Furthermore, let
K be the two vertices v, w.
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Figure 3

We denote the generators of Gg = F, by r, s where » corresponds to v. Let 8: Gg —
Gy be given by O(r) = r and 6(s) = s%. Then let G = Gpr*g and x: G — R is
given by sending every generator other than s to 1, and x(s) = 0.

In Theorem 4.1 we e get E = FE! 0p+1 = Zﬁx as the only nonzero terms, therefore
H; (G ZGX) ZGX for i=1,p+1and H;(Gpy; ZGX) = 0 otherwise. Similarly
H*(GK,ZGX) ZGX Rz H,_ 2(D) as E =0 for u # 1. Note that & = K*(w)
and H_, (@) = 7. The long exact sequence (2) contains

oo —> Hy(G:ZGy) — LGy —> LGy —> H\(G:ZGy) —> 0

where o = (¢, 0)« — ix. First note that i, is an isomorphism. To see this, look at the
short exact sequence of chain complexes

0— ZEX ®z6x C«(Gg) — Zéx ®2z6y Cx(Gy) — O« —> 0

where Q. is the free Z@X—chain complex with Q; = Z@X ®z6, Ci(Gr) fori #0,2,
QOo=0and O, = ZEX & ZEX ®z6; C2(GL), where the extra summand in O,
comes from the edge between v and L. Without the extra summand in O, we would
get Hi(Qx) = ZEX and H;(Qx) = H,-(GL;ZEX) for i # 1. The boundary of the
extra sunln\land is/(?\(x) = x(1—r) and as (1 —r) is invertible, we get H.(Qx) =
Hi(GL:Z.Gy) = LGy @z Hy1(S?).

From the long exact sequence it follows that iy: Hy(Gg; ZEX) — H{(Gyy; Z@X) is
surjective. As we know that these are free ZEX —modules of rank one, it is injective
as well by [2; 16] (note that injectivity is clear for p > 1). Now (¢, 9)* increases
the value of x, so « is an 1somorphlsm in degree 1. Therefore H;(G; ZGX) =0
fori < p. Also Hy1(G; ZGX) Hy (G ZGX) # 0 as follows again from the
long exact sequence for HNN—extensions. Therefore x € 7(G;Z)— XP+1(G;Z) by
Lemma 2.4.

We need to show that —x & X1(G;Z). For this we need to analyze « closer in the
case when ¢ is send to a negative value. Define a chain map t«: C«(Gg) — Cx(Gpr)
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with 7.(gx) = 8(g)1«(x) for g € Gg. To do this, note that 6 extends naturally to
0: 7Z.G g — Z.Gpg with this property. So let 7g: Co(Gg) =ZGg — ZGpr = Co(Gpr)
be given by 79 = 6.

Also C1(Gg) = ZGg ® ZGk and C1(Gpy) = ZGpy D ZGpg & (ZGM)k and we
define

(10) T1(x,y) = (0(x).0(»)(s + 1), 0).

As 79(d(x, ¥)) =0(x)(r —1)+0(y)(s>—1), we see that this 1nduces the required chain
map 7x. We want to show that H;(G; N—x) # 0. Observe that N—x can be identified
with the Laurent series ring Z((¢~!)) whose elements are of the form Y ,__ . mnt",
and the ZG_X —module structure is given by the ring homomorphism sendmg all
generators except s to ¢, and s being send to 1. The map (¢, 0)«: H;(Gg; N—x) —
H{(Gp; Z\AI_X) is easily seen by using (10) to be

u

(z,@)*( > mnt”):2 > mat"t

n=—oo n=—0oo
Therefore «: N—x — N—x is given by «o(x) = x(2¢ — 1) which is not surjective.
Therefore H,(G; N—x) # 0 which implies —yx ¢ X!(G;Z) by Corollary 2.5. |

We can define £°°(G) and Z°F!(G) analogously. We will see in the next section
that the examples constructed above in fact satisfy xy € X?(G) — X?*t1(G;Z) and
—x € 29(G)-29T1(G; 7).

7 The homotopy type of halfspaces 11

To study the homotopical invariant ¥k(G), we consider the following situation. We
have a finite flag complex L and a finite flag complex K together with two full
simplicial embeddings ip: K — L and i;: K — L. As before this gives rise to the
HNN-extension G along the injections Gg — G, induced by iy and i;.

Note that G admits a finite K(G, 1) given by
0=0LUQk x[0,1]/~

where (x,0) ~ig(x) and (x,1) ~i;(x).

If X denotes the universal cover of O, we get

X =G xg, XL UG xg, Xg x[0,1]/~
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with the usual identifications. Furthermore, for x: G — R as in Section 6, we get
a height function #: X — R by h([g, x]) = x(g) + hp(x) for g € G, x € X1, and
h(lg, y.s])) = x(g)+hxg(»)+ x(@)-s for g€ G, y € Xg and s €0, 1]. Here Ay, and
hg are the height functions from Lemma 5.1.

Let us assume that y is nonzero on all the generators of G. Let us also assume that
x(t) = 1 for the extra generator ¢ € G. The case x(f) = —1 is then handled by
interchanging the role of iy and i;. Let N be the maximal subcomplex of X contained
in 2771([0, 00)). With G+ = {g € G | x(g) > 0}, we get

N=GT X+ NL ugt X+ Nk x[0.1]/~

with the usual identifications.

Lemma 7.1 Let K, L be finite connected flag complexes and ig,i;: K — L full sim-

plicial embeddings, and y: G — R a homomorphism with y(t;) # 0 for all generators

t; € G corresponding to vertices of L, and x(t) = 1 for the extra generator of G .
(1) Ifigs: m(K)— m1(L) is an isomorphism, then x € ¥*(G).

(2) Ifiys: m(K)— 7 (L) is injective and the normal closure of w1 (K) in 71 (L)
is not the whole group, then —x ¢ $%(G).

Proof To see (1), we want to show that N is simply connected. By Proposition 5.8
we get that N is homotopy equivalent to

(G+><Gt \/ L)u(GfoG;(r \/ Kx[O,l])/~
geGy geGy

where the identifications of [g, x, 0] and [g, x, 1] are induced by the inclusions iy: K —
L and i;: K — L respectively, and G; = {g € G| x(g) < 0}. Let m be the
subcomplex given by

r=G% X+ {(x}UGT X+ 16} x[0.1]/~.

Then 7 is a tree by an argument similar to the proof of Lemma 5.4. By collapsing this
tree, we get

N~ \/ Lu \/ KA[0.1]+/~
geG— geG—

with the following identifications. Let ¢x be an element of the copy of K corresponding
toge G ={geG|x(g)<0}. Then (gx,0) ~ gjo(x), where jo: K — L sends
the basepoint of K to the basepoint of L and is homotopic to ip: K — L, and
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¢Jo(x) means we consider jo(x) as an element of the copy of L corresponding to
g € G7. Similarly (gx,1) ~ g;j1(x), provided that x(gt) < 0. If x(gt) >0, we
identify (gx, 1) with the basepoint *. Recall that K and L are considered based
spaces as in Section 5; also [0, 1]+ is the interval with a disjoint base point, and
K A0, 1]+ = Kx[0,1]+/K V][0, 1]+.

Now let F be a finite subset of G~ with the following property: if g € F, then
x(gt) =0 or gt € F. Such sets can be ordered by inclusion, and we define
Nrp=\/ LU\ KA[0.1]/~
geF geF

as a subcomplex of N. Then m{(N) = li_n)lnl (Nr) where the direct limit is taken
over all such finite sets F.

For g € G~ — F with gt € F or x(gt) > 0, we can write
Nruggy = (NFUKA[0,1]4) U(NgV L)
with Nrv K=(NrUKA[0,1]:)N(NgV L).

Note that Nr U K A[0, 1]+ >~ Nx. By the Seifert-van Kampen theorem we have a
push-out diagram:

(11) 1 (NF) # 71 (K) — 20 s 70 (Ng) %71 (L)
71 (Nx) 71 (Nrugey)

So if ig4 is an isomorphism, we get that 71 (Nx) — 71 (Nry(g}) is an isomorphism.
Since 71 (Ng) = 1, this shows that N is simply connected, which proves (1).

Instead of studying —y, we keep the discussion above, but interchange the role of
ip and i;. So let us assume that igg: 71 (K) — (L) is injective, and if H is the
quotient of 71 (L) by the normal closure of igs(7;(K)) in 7;(L), we get that H is
nontrivial. We want to show that in this situation y € £2(G).

From (11) we get that 771 (Nr) — 71 (Nru(g}) isinjective. Also, we get that 771 (Nx) —
71(Nruig)) surjects onto H , by letting 771 (L) — H be the quotient map and sending
w1 (Ng) to 1, and using the push-out property of (11). This shows that 7 (N) is
nontrivial.

To get x ¢ X2(G), we have to show that the image of iy m1(N) — m;(gN) is
nontrivial for all g € G™, where i: N — gN is inclusion. For all s € im y we can
define Nz by using wedges for g with x(g) <s. For s <0, itis easy to see that there

Algebraic & Geometric Topology, Volume 9 (2009)



802 Dirk Schiitz

is an obvious projection Ny — N3 which induces a surjection on 7y by using (11)
and the analogous diagram for N3.. Therefore iy: 1 (N) — m1(gN) is surjective for
all g € G—, which proves (2). a

Remark 7.2 If both iy and i; induce isomorphisms on fundamental group, we get of
course +x € ¥2(G). Note that Lemma 7.1 applies to the examples used for Theorem
6.7 with ¢ > 1. Therefore the homological Sigma invariant can be replaced by the
homotopical Sigma invariant in these examples.

To get examples with
X € TP(G:Z) — (BPTHG: 2) UE*(G))
—x € T1(G:2) — (TG 2) U B*(G))
for p,q > 1, one can choose L’ = L v A with L as in the proof of Theorem 6.7 and
A a finite flag complex with vanishing reduced homology and nontrivial fundamental

group. Then condition (2) of Lemma 7.1 applies to both inclusions of K into L’,
ensuring that +x € 22(G).

Theorem 7.3 There exists a group G of type F and a homomorphism x: G — R
such that

X € Z2(G)
—x € Z%(G; Z) — £?(G).

The homomorphism can be chosen to have image in Z..

Proof The binary icosahedral group has a presentation

I=(x,y|x*=y>=(xp)°)

and is nontrivial and perfect (see Kervaire [14]), so we can find a CW—complex with
one O—cell, two 1—cells and two 2—cells. From the Euler characteristic, we see that
this CW—complex has vanishing reduced homology, so let A be a subdivision which is
a flag complex. Pick a vertex % € A as a basepoint and let K = AV A. We claim there
isamap f: K — K inducing an injection on &y and such that the normal closure
of the image is not the whole group. Note that 1 (K) = I * [, and a presentation is
given by

m(K) = (x, p,%,7|x* =y =(xp)°,.X* =7 = (x9)°).

Now define ¢: m1(K) — 71(K) by ¢(x) = x, ¢(y) = y, ¢(X) = X" 'xX and
() = X~ 1yX. Itis clear that ¢ is injective, and if p: m;(K) — I denotes the
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projection to the second factor I of [ x I, we get that the image of ¢ is contained in
the kernel of p, which is clearly not the whole group.

Since K is a 2—dimensional complex, we can realize ¢ by a continuous function
f: K — K. Now let L be the finite flag complex from Lemma 6.5, and G the HNN-
extension of G, along G g1 and the two full simplicial embeddings K "l > L. we
define x: G — R by sending every generator to 1, so x € EZ(G) and —yx ¢ 22(G)
by Lemma 7.1. Since H*(L) H*(K) =0 we get H«(G; ZGiX) = 0 from (2) and
Theorem 4.1. Therefore +y € £°°(G; Z) and the result follows from Lemma 2.4 and
the fact that % (G) = =K(G; Z) N =2(G) for k > 2. O

We can combine the examples for Theorem 6.7 and Theorem 7.3 to get

Theorem 7.4 For every pair p,q € N there exists a group of type F and a homomor-
phism x: G — R such that

x € TP(G) - 2PTH(G)
—x € 24(G: Z) — (2111(G; Z) — =*(G)).

The homomorphism can be chosen to have image in Z..

Proof We will sketch the proof as the techniques are very similar to previous argu-
ments.

We consider various cases. If p,¢g >2 let K, L and f be as in the proof of Theorem
73.If p>glet Ky = KVv S?. Also let fi: Ki — K be the wedge of f with a
map of degree 2 on S9. Let L be the result from Lemma 6.5 and let L, = L{ Vv S?,
provided p < oco. It is easy to see that the standard construction gives G and x with
the desired properties.

Ifg>p,let K=SP, g: SP — SP amap of degree 2 and L the flag complex arising
from Lemma 6.5. Note that L has the homotopy type of S?. Weset L; = LV LV S9.
Now let G be the HNN-extension of G L, along the two full embeddings of K ] in
Ly and x as usual. Then x € £2(G), —x € £2(G;Z) — X*(G) and the only nonzero
Novikov homology groups are

Hy(G;ZGyy) = ZGiy = Hy(G; ZG1y).
We still have two injections G g5 —> G arising from the full embeddings K [s]
L so we can form another HNN—extension G along these injections and the usual

x: G — R by sending the extra generator to 1. As before it follows from (2) that x €
YP(G;Z)—XPT(G;Z) and —x € 29(G; Z)— X9 (G; Z). Furthermore, it follows
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from [19, Theorem 5.2] that x € EZ(G), while it follows from [10, Proposition 10]
that —y ¢ £2(G), since the example from Theorem 7.3 is a retract of G and .

If ¢ <1, we can use the examples from Theorem 6.7, except that for ¢ =0 and p > 2
we did not actually show that ¥ € £2(G). To see this note that Ny is homotopy
equivalent to a disjoint union of wedges of S, in particular its components are simply
connected. Also N is a forest. One easily sees that the halfspace N is connected
(recall x € £1(G)), and with an argument similar to the proof of Lemma 5.4 we see
that it is simply connected. We omit the details.

If p <1, use the examples from Theorem 6.7, but take the one point union of L
with A, where A is a non—simply connected flag complex with H, (4) = 0. The
resulting x: G — R will satisfy —x ¢ £2(G) by [10, Proposition 10], since G4 with
x: G4 — R sending every generator to 1 is a retract of this. O

8 Closed 1-forms without singularities

Even though we cannot expect a lot of symmetry in the Sigma invariants with respect
to the antipodal map, we obtain the following rather peculiar symmetry condition for
>k(G: 7).

Proposition 8.1 Let G be a group of type Fy, with k > 2, and let x: G — R be a
nonzero homomorphism. Assume there exists a smooth closed connected manifold M
with G = 71 (M) whose universal cover M is (k — 1)—connected, and such that

Ce(M:ZGy) = ZGy @76 Cx(M)
is chain-contractible, where Cy (1\7 ) is the simplicial chain complex over Z.G obtained

from a smooth triangulation of M . Then +x € Ek(G; 7).

Notice that M is certainly 1—connected, so we get =y € %2(G;Z) provided that
C«(M ; ZGy) is chain-contractible.

Proof We have the universal coefficient spectral sequence with
2 ZG (7 5 Vs
E;, =Tor,” (ZGy, Hy(M))

converging to Hy4(M; ZEX). Since M is (k — 1)—connected, we have E; ¢ =0
forg=1,...,k—1,s0

ESy = Tor2%(ZGy. Hy(M)) = Hp(G:ZGy)
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for p < k. As our assumption is H*(M;ZEX) =0, we get HP(G;ZEX) = 0 for
p <k, which means x € ¥(G;Z) by Lemma 2.4.

Let C*(]\z) = Hong(C*(M), 7.G). As C*(M) is viewed as a left ZG—chain
complex, this is a right Z G —chain complex, but we can view it as a left complex by
using the orientation-involution on ZG . Then Poincaré duality gives a chain homotopy
equivalence Ci (Z\7 )~C ”_*(]\7 ) of free left Z G —chain complexes, where n denotes
the dimension of M . Therefore ZE;L@)ZG Cy (]\7) EZE/—\X RzG C”‘*(]\?), and
the latter is isomorphic to Homzg , (ZGy ®z6 Cp—x(M ), ZGy) via

®: ZG—y ®z6 C"* (M) — Homzg (ZGy ®7,G Co—s(M), ZGy)
A®¢ > PA®): 1 Qx> p(x)A.

Note that the involution on ZG extends to an anti-ring-homomorphism - 7ZG_ x =
ZEX , so that both complexes are indeed free left ZG- x—chain complexes. A chain
contraction for Z@X ®76Cx (2\7 ) therefore induces a chain contraction for 7ZG_ x®zG
Cy (1\7 ). Thus the spectral sequence argument above also applies to ZE_X and we get
—x e kG 7). O

The condition that Cy (M ; Z@X) is chain-contractible is a necessary condition for
the existence of a nonsingular closed 1-form o representing x € H!(M;R) =
Hom(m{ (M), R). Here nonsingular means that wy # 0 for all x € M .

In [17], Latour gives various conditions which are necessary and sufficient for the
existence of a nonsingular closed 1-form @ on a closed smooth manifold M within
a given cohomology class x € H!(M;R), provided that dim M > 6. Let us quickly
recall these conditions.

If w is any closed 1-form representing y, the pullback of w to M is exact and gives
a height function #: M — R with respect to x. A map y: [0,00) — M is called a
path to infinity with respect to x, if lim;_,o 1 0y () = 0o. Pick a basepoint xg € M.
We then let

My ={y:[0,00) = M | y(0) = xo, y is a path to infinity w.r.t. x}.

This set is topologized with the compact-open topology together with a “control at
infinity”, that is, a subbasis for the topology is given by the following open sets: For
a,b €[0,00) and U open in M let

W(a.b:U) ={y e My|y(la.b])) CU}
and for a, A € [0, 00) let

Wia, A) =1y € My |Vt = a h(y(®)) —h(y(0)) > 4}.

Algebraic & Geometric Topology, Volume 9 (2009)



806 Dirk Schiitz

If there exists a nonsingular closed 1-form w representing y, it is easy to see that M
is diffeomorphic to N xR with N a smooth manifold, and a height function is given
by projection to R. It is then easy to see that both M, and M_, are contractible.

On the other hand, if M, is contractible, it can be shown that
Ce(M:7Gy) = LGy @76 Cx (M)

is chain-contractible [17], where G = 1 (M). As this is a finitely generated free chain
complex over @, one can look at its Whitehead torsion (M ; x) in an appropriate
quotient of K;(ZGy). We will not define this quotient, but remark that it is a quotient
of the ordinary Whitehead group Wh(sr) and in fact vanishes if and only if Wh(x)
vanishes [22; 23].

The main result of Latour is then:

Theorem 8.2 [17] Let M be a smooth closed connected manifold of dimension at
least 6, and x € H' (M ;R). Then x can be realized by a nonsingular closed 1—form
if and only if M and M_, are contractible and t(M ; x) vanishes.

The condition that M is contractible is known to be equivalent to the following two
conditions [17; 10].

(1) xe=Z*0).
2) Ci(M; ZEX) is chain-contractible.

Since Cy(M; ZEX) is chain contractible if and only if Cyx(M; ZE_X) is chain con-
tractible one can ask whether M, is contractible if and only if M_, is contractible.
In other words, one can ask whether the analogue of Proposition 8.1 also holds for the
homotopical Sigma invariant.

Based on the work of Bestvina and Brady [1], Damian [8] has constructed an example
of a manifold where Cy (M ; ZEX) is chain-contractible, but neither M, nor M_,
are contractible. We now give an example of a manifold M where only one of M,
and M_, is contractible. The construction is in fact completely analogous to the
construction in [8], replacing [1] with Theorem 7.3. For the convenience of the reader,
we will repeat the construction.

Theorem 8.3 There exists a closed connected smooth manifold M of dimension at

least 6 and a nonzero x € H'(M ;R) such that M is contractible, but M_, is not
contractible.
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Proof Let G be the group from Theorem 7.3, which has a finite K(G, 1) denoted Q,
say of dimension 7. Embed this K(G, 1) into R?”*3 and let W be a regular neigh-
borhood of Q, which we can think of as a smooth compact manifold with boundary.
Let M = dW, which is of dimension 2n + 2 and homotopy equivalent to W — Q
by the properties of regular neighborhoods. By transversality we get that every pair
of maps (D'*!, S%) — (W, M) factors through (W — Q, M) up to homotopy for
i <n+1,since D"2 can avoid the n—dimensional Q in (2n + 3)—space. Therefore
wi(M) = m;(W) = 7;(Q) for i <n+ 1. In particular, the universal cover M is
(n+1)—connected, and 71 (M) = G. The universal coefficient spectral sequence with
Elz,q = Tor%G(ZEX, Hy (]\7)) converging to Hp 44 (MA;/ZEX) satisfies qu = ( for
p+q <n+1 by Theorem 7.3 and the fact that the space M is (n+1)—connected. There-
fore H; (M ; ZEX) =0 for i <n+4 1. The same argument gives H; (M ; Zé_l)\= 0
for i <n+1. Using Poincaré duality we get Hx(M;ZG+y) =0, and Cx(M ; ZG+y)
is chain-contractible as this is a free complex. Now M, is contractible as we have
X € 22(G), but M_, is not contractible, as —x € Z%(G). ad

Remark 8.4 The dimension of M is in fact much bigger than 6. The dimension
of K used in Lemma 6.5 is 2 and dim L = max{dim K + 1,dim M }. The simplicial
approximation g: K ["] > K used in Theorem 7.3 is far from injective which increases
dim M . In any case dim L > 3. Since n = dim L 4 2, we get that M is at least
12—dimensional.

Remark 8.5 Since Cix (M ; ZEX) is chain contractible in the previous theorem, one
can ask about the Whitehead torsion arising this way. Now G is an HNN-extension
of a right-angled Artin group via two isomorphic right-angled Artin subgroups. If we
look at the universal cover X of O, we see that X is a nonpositively curved space by
the same argument that each Xy is a nonpositively curved space; compare Bestvina
and Brady [1] (the link of each vertex is a flag complex). Therefore the Whitehead
group Wh(G) vanishes by [13] and the torsion is trivial.
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