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Infinite product decomposition of orbifold mapping spaces

HIROTAKA TAMANOI

Physicists showed that the generating function of orbifold elliptic genera of symmetric
orbifolds can be written as an infinite product. We show that there exists a geometric
factorization on space level behind this infinite product formula, and we do this in
the much more general framework of orbifold mapping spaces, where factors in the
infinite product correspond to finite connected coverings of domain spaces whose
fundamental groups are not necessarily abelian. From this formula, a concept of
geometric Hecke operators for functors emerges. This is a nonabelian geometric
generalization of the usual Hecke operators. We show that these generalized Hecke
operators indeed satisfy the identity of the usual Hecke operators for the case of
2–dimensional tori.

55N20, 55N91

1 Introduction and summary of results

The elliptic genus of a Spin manifold M refers to the signature of LM ; see Landwe-
ber [8] and Tamanoi [12]. The elliptic genus of a complex manifold M refers to the
S1 –equivariant �y –characteristic of its free loop space LM D Map.S1;M /; see
Hirzebruch [6]. These are some of the versions of elliptic genera of M . Since LM

is infinite dimensional, the above statements must be interpreted using a localization
formula as in Witten [17].

Let G be a finite group. For a G–manifold M , we can consider an orbifold version
of the elliptic genus. However, the free loop space L.M=G/ on the orbit space is not
well behaved. Following Hirzebruch and Höfer [7], we define the orbifold loop space
Lorb.M=G/ by

(1-1) Lorb.M=G/
def
D

�a
g2G

LgM

�
=G D

a
.g/2G�

�
LgM=CG.g/

�
;

where G� is the set of conjugacy classes in G , CG.g/ is the centralizer of g in G ,
and LgM is the space of g–twisted loops in M given by

(1-2) LgM D f
 W R!M j 
 .t C 1/D g�1
 .t/ for all t 2Rg:
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The centralizer C.g/ acts on LgM . Also note that if the order of g is finite and is
equal to s , then each twisted loop 
 in LgM is in fact a closed loop of length s . Thus,
LgM also admits an action of a circle S1 DR=sZ of length s .

One could use the more sophisticated language of orbifolds (see for example, Mo-
erdijk [11]), but for our purpose, the above definition suffices.

The orbifold elliptic genus of .M;G/, denoted by ellorb.M=G/, is defined as the
S1 –equivariant �y –characteristic of Lorb.M=G/:

(1-3) ellorb.M=G/D �S1

y

�
Lorb.M=G/

�
D

X
.g/2G�

�y.LgM /C.g/;

where �y.LgM / is thought of as R.C.g//–valued S1 –equivariant �y –characteristic
computed and made sense through a use of localization formulae. Counting the
dimension of coefficient vector spaces, we have

(1-4) ellorb.M=G/ 2 ZŒy;y�1�ŒŒq��;

where the powers of q are characters of S1 .

Dijkgraaf, Moore, Verlinde and Verlinde [2] essentially proved a remarkable formula
for the generating function of orbifold elliptic genera of symmetric products. This
was subsequently extended to symmetric orbifold case by Borisov and Libgober [1].
Here, for an integer n � 0, the n–th symmetric product of a space X is defined as
SPn.X /DX n=Sn , where the n–th symmetric group Sn acts on X n by permuting n

factors. The DMVV and BL formula for the generating function of orbifold elliptic
genera of symmetric orbifolds is given byX

n�0

pn ellorb
�
SPn.M=G/

�
D

Y
n�1
m�0
k2Z

.1�pnqmyk/�c.mn;k/;(1-5)

ellorb.M=G/D
X
m�0
k2Z

c.m; k/qmyk
2 ZŒy;y�1�ŒŒq��:where

The amazing thing about this formula is that the right hand side of (1-5) is a genus 2
Siegel modular form, up to a simple multiplicative factor. The main motivation of this
paper is to understand a geometric origin of this infinite product formula. In fact, we
will prove such an infinite product formula on a geometric level, not merely on an
algebraic level, as in (1-5).

We can describe this geometric formula in a general context. Let .M;G/ be as before,
and let † be an arbitrary connected manifold with � D �1.†/. Instead of a loop
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space, we consider a mapping space Map.†;M=G/. As before, this space is not well
behaved and the correct space to consider is the orbifold mapping space defined by

(1-6)

Maporb.†;M=G/
def
D

� a
�2Hom.�;G/

Map� .�†;M /

�.
G

D

a
.�/2Hom.�;G/=G

�
Map� .�†;M /=C.�/

�
:

Here �† is the universal cover of †, and Map� .�†;M / is the space of � –equivariant
maps ˛W �†!M such that ˛.p � 
 /D �.
 /�1 �˛.p/ for all p 2 �† and 
 2 � . Note
here that we regard the universal cover �† as a � –principal bundle over †.

For a variable t and a space X , let St .X /D
`

k�0 tk SPk.X / be the total symmetric
product of X . For convenience, we often write this using the summation symbol as
St .X /D

P
k�0 tk SPk.X /. In this paper, the summation symbol applied to topological

spaces means topological disjoint union.

Theorem A (Infinite product decomposition of orbifold mapping spaces of symmetric
products) Let M be a G –manifold and let † be a connected manifold. Then,

(1-7)
X
n�0

pn Maporb
�
†;SPn.M=G/

�
Š

Y
Œ†0!†�conn:

Spj†
0=†j

�
Maporb.†

0;M=G/=D.†0=†/
�
:

Here the infinite product is taken over all the isomorphism classes of finite sheeted con-
nected covering spaces †0 of †, and D.†0=†/ is the group of all deck transformations
of the covering space †0!† (which is not necessarily Galois). The number of sheets
of this covering is denoted by j†0=†j.

We will explain the details of the action of D.†0=†/ on Maporb.†
0;M=G/ in Section 2.

When †D S1 , the above formula reduces to

(1-8)
X
n�0

pn Lorb
�
SPn.M=G/

�
Š

Y
r�1

Spr

�
L
.r/
orb.M=G/=Zr

�
;

where L
.r/
orb.M=G/ is the space of orbifold loops of length r . This is the geometric

version of the formula (1-5). This formula itself is relatively easy to prove. See Wang
and Zhou [16].

The above formula (1-8) for orbifold loop space is an “abelian” case since �1.S
1/ŠZ.

The formula in Theorem A is, in a sense, a nonabelian generalization of this orbifold
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loop space case. The most interesting case seems to be the one in which † is a 2–
dimensional surface (regarding it as a world-sheet of a moving string). Here, the genus
of the surface can be arbitrary. In physics literature, elliptic genus itself is computed as
a path integral over mapping spaces from tori [2].

Restricting the global decomposition formula (1-7) to the subspace of constant orbifold
maps and considering their numerical invariants, we recover our previous results in
[13; 14]. See Section 3 for a description of these results. We remark that we can apply
(generalized) homology and cohomology functors to (1-7) to obtain infinite product
decomposition formulas of these homology and cohomology theories.

Another surprising formula discovered by physicists [2] is its connection to Hecke
operators. They showed that the right hand side of formula (1-5) can be written in
terms of Hecke operators in a very nice way:

(1-9)
X
n�0

pn ellorb
�
SPn.M=G/

�
D exp

�X
r�1

pr T .r/
�
ellorb.M=G/

��
;

where T .r/ is the r –th Hecke operator acting on weight 0 Jacobi forms:

(1-10) T .r/

�X
m�0
k2Z

c.m; k/qmyk

�
D

X
adDr

1

a

X
m�0
k2Z

c.md; k/qamyak :

Is there a corresponding Hecke operator in our geometric context? Such a Hecke
operator must assign a certain space to a given space. Our geometric decomposition
formula (1-7) suggests what geometric Hecke operators should be. For each positive
integer r , we expect the r –th geometric Hecke operator T .r/ would act on a space of
the form Maporb.†;M=G/ and produce a space involving all the connected r –sheeted
covering spaces of †, as follows.

(1-11) T .r/
�
Maporb.†;M=G/

� def
D

a
Œ†0!†�
j†0=†jDr

Maporb.†
0;M=G/=D.†0=†/:

The usual Hecke operators use covering spaces of the torus (see Lang [9]), and in [2],
they explain the above result (1-9) from this point of view. Our formula (1-11) uses
covering spaces of † whose fundamental group is not necessarily abelian. Thus, in
a sense, our Hecke operator can be thought of as a nonabelian generalization of the
usual Hecke operators.

A general discussion of geometric Hecke operators in the framework of functors
is more convenient and will be given in Section 4. Let F be a functor from the
category C of topological spaces and continuous maps to itself. For example, for
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a G–manifold M , let F.M;G/ be a contravariant functor from C to itself given by
F.M;G/.†/DMaporb.†;M=G/. Then, T .n/ acts on the functor F by the following
formula for a connected space †:

(1-12)
�
T .n/F

�
.†/

def
D

a
Œ†0!†�conn.
j†0=†jDn

F.†0/=D.†0=†/;

where the disjoint union runs over all isomorphism classes of connected n–sheeted
covering spaces of †. When † is not connected, we apply the above construction for
each connected component of †. In terms of geometric Hecke operators, formula (1-7)
can be simply rewritten as

(1-70)
X
n�0

pn Maporb
�
†;SPn.M=G/

�
Š

Y
r�1

Spr

h�
T .r/F.M;G/

�
.†/

i
:

It is very suggestive to compare this formula with (1-9). If we regard the n–th symmetric
product SPn.X / as X n=n!, since Sn has n! elements, then we can regard Sp.X / as
exp.pX /. From this point of view, the analogy between (1-9) and (1-7 0 ) is reasonably
precise. However, see also the remark after (4-2).

The name geometric Hecke operator seems appropriate since these operators do satisfy
the usual identity when † is a genus 1 Riemann surface.

Theorem B (Hecke identity for geometric Hecke operators) Let T be a torus of
dimension 2. Let F be a functor from the category C of topological spaces to itself.
Then the geometric Hecke operators T .n/, n� 1, satisfy

(1-13)
�
.T .m/ ıT .n//F

�
.T /D

X
d j.m;n/

d �

��
T

�
mn

d2

�
ıR.d/

�
F
�
.T /;

where the operator R.d/ on the functor F is given by

(1-14) .R.d/F/.T /D F
�
R.d/T

�ı
D
�
R.d/T=T

�
;

in which R.d/T D zT =.d �L/ if T D zT =L for some lattice L� zT ŠR2 .

Thus, R.d/T is a d2 –sheeted covering space of T . The coefficient d in the right
hand side of (1-13) means a disjoint topological union of d copies.

Note that (1-13) can be restated in a more familiar form as follows:

(1-130)
T .m/ ıT .n/D T .mn/; if .m; n/D 1;

T .pr / ıT .p/D T .prC1/Cp �T .pr�1/ ıR.p/; if p is prime:
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As is well known in the theory of modular forms, these identities are equivalent to an
Euler product decomposition of the Dirichlet series with the above Hecke operator
coefficients. See (4-14).

It would be of interest to investigate relations among the T .n/’s when † is a higher
genus Riemann surface or a higher dimensional torus whose fundamental group is free
abelian.

For a generalization of orbifold elliptic genus to the setting of generalized cohomology
theory, see the paper [4] by Ganter.

The organization of this paper is as follows. In Section 2, we prove our main geo-
metric decomposition formula in Theorem A. In Section 3, we specialize our infinite
dimensional geometric formula to the finite dimensional subspace of constant orbifold
maps, and we deduce various formulae of generating functions of orbifold invariants.
In Section 4, after discussing some general properties of geometric Hecke operators on
functors, we prove the Hecke identity (1-13).

The main result of this paper, Theorem A, was first announced at a workshop at Banff
International Research Station in June 2003.

We thank the referee for various comments leading to the improved exposition.

2 Infinite product decomposition of orbifold mapping spaces

First, we discuss some general facts of orbifold mapping spaces. For a homomorphism
� W �!G and a � –equivariant map ˛W �†!M , let x̨W †!M=G be the induced map
on quotient spaces. Thus we have a canonical map Map� .�†;M /!Map.†;M=G/.
Let CG.�/ be the centralizer of the image of � in G . Note that inverse images of this
map are CG.�/ spaces. The action of g 2G on M has the effect

g � W Map� .�†;M / �!Mapg�� �g�1.�†;M /;

and for every ˛ 2Map� .�†;M /, we have x̨ D g �˛ in Map.†;M=G/. Thus, we have
a canonical map

(2-1) Maporb.†;M=G/
def
D

a
.�/2Hom.�;G/=G

Map� .�†;M /=CG.�/ �!Map.†;M=G/:

This map is in general not surjective nor injective.

We consider a necessary condition for a map f W †!M=G to have a lift to a � –
equivariant map zf W �†!M for some � . Let � be an arbitrary contractible loop in †.
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Since �†!† is a covering, � always lifts to a contractible loop z� in �†, and hence
zf .z�/ is also contractible. Thus, for the existence of a lift zf of a given map f , it is

necessary that for every contractible loop � in †, f .�/�M=G lifts to a contractible
loop in M .

Next, we discuss a functorial property of orbifold mapping spaces.

Proposition 2.1 (i) Let M be a G–manifold. Any map f W †1 ! †2 between
connected manifolds induces a well-defined map

(2-2) f �W Maporb.†2;M=G/ �!Maporb.†1;M=G/:

(ii) For two maps f1W †1!†2 and f2W †2!†3 , we have .f2 ıf1/
� D f �

1
ıf �

2
.

Proof Let �i be the group D.�†i=†i/ of all deck transformations for the universal
cover �†i ! †i for i D 1; 2. Since an isomorphism D.�†i=†i/ Š �1.†i/ depends
on the choice of a base point in �†i , it is better to regard �i as the group of deck
transformations rather than as the fundamental group of †i . We choose a lift zf W �†1!�†2 of f . Then zf induces a homomorphism zf�W �1 ! �2 such that zf .p � 
1/ D
zf .p/ � zf�.
1/ for all p 2 �†1 and 
1 2 �1 . For a map ˛ 2 Map� .�†2;M / with
� 2 Hom.�2;G/, we have ˛ ı zf 2Map

�ı zf�
.�†1;M /. Hence the composition with zf

gives an induced map

(2-3) zf �W
a

�2Hom.�2;G/

Map� .�†2;M /!
a

�2Hom.�1;G/

Map�.�†1;M /:

Obviously, this map commutes with the G –action on M . Hence by quotienting by G ,
we have a map

(2-4) zf �W Maporb.†2;M=G/!Maporb.†1;M=G/:

We have to verify that this map is independent of the chosen lift zf . Let zf 0W �†1!
�†2

be another lift of f . By examining the image of one point and using the uniqueness of
lifts, we must have that zf 0 D zf � 
2 , globally on �†1 , for some uniquely determined

2 2�2 . Then, .˛ ı zf 0/.p1/D˛. zf .p1/ � 
2/D �.
2/

�1 � .˛ ı zf /.p1/ for all p1 2
�†1 .

Note that �.
2/ 2G . Thus for all possible choices of lifts zf , the collection f˛ ı zf g is
contained in a single G –orbit in

`
�2Hom.�1;G/

Map�.�†1;M /. Thus difference of zf �

and . zf 0/� in (2-3) disappear after dividing by G , and the map (2-4) is independent of
the choice of lifts zf . Hence we may simply call it f � as in (2-2).

The proof of the formula for the induced map of a composition is routine.
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As an immediate consequence, we have:

Corollary 2.2 Let †0!† be a connected covering space. Then the group D.†0=†/
of all deck transformations acts on Maporb.†

0;M=G/.

For later use, we give details of this action. As before, let D.�†=†/D� and †0D�†=H
for some H �� . Then D.†0=†/ŠN�.H /=H . For f 2Map�.�†0;M /, u2N�.H /,
and g 2G , the action of u, g on f is given by

(2-5) .u �f /.p/D f .pu/; .g �f /.p/D g �f .p/; p 2 �†0:
These actions commute, but they do not preserve � 2 Hom.H;G/. How � transforms
under these actions can be easily computed and we have the following commutative
diagram:

(2-6)

Map�.�†0;M /
u �
����!
Š

Map�u�1 .�†0;M /

g �

??yŠ g �

??yŠ
Mapg���g�1.�†0;M /

u �
����!
Š

Mapg��u�1
�g�1.�†0;M /;

where �u�1

.h/D �.u�1hu/ for all h 2H . Since CG.�/D CG.�
u�1

/, commutativity
of this diagram also implies that for u 2N�.H /,

(2-7) u � W Map�.�†0;M /
Š
�!Map�u�1 .�†0;M /; CG.�/–equivariant:

A global statement is the following for u 2N�.H /:

(2-8) u � W
a

�2Hom.H ;G/

Map�.�†0;M /
Š
�!

a
�2Hom.H ;G/

Map�.�†0;M /; G –equivariant:

In other words, the group N�.H /�G acts on
`
� Map�.�†0;M /. Also note that the

same group N�.H /�G acts on the set Hom.H;G/ by Œ.u;g/���.h/Dg ��u�1

.h/�g�1

for h 2H . The effect of changing u 2N�.H / by h 2H can be computed as

(2-9)
�.uh/�1

. � /D �.h/�1�u�1

. � /�.h/;

�.hu/�1

. � /D �u�1

.h/�1�u�1

. � /�u�1

.h/:

This shows that modification of u by elements in H has the same effect as the
conjugation action by elements in G . Hence the map induced from (2-8) on G –orbits
is well defined for xu 2N�.H /=H , and we have

(2-10) xu � W Maporb.†
0;M=G/

Š
�!Maporb.†

0;M=G/:
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This is the action in Corollary 2.2.

Since the action of D.†0=†/ commutes with the projection map � W †0 ! †, the
action of D.†0=†/ on Maporb.†

0;M=G/ commutes with the induced map �� . In
particular, the image of �� is in the D.†0=†/–fixed point subset:

(2-11) Maporb.†;M=G/
��

��!Maporb.†
0;M=G/D.†

0=†/:

We will need an identity on nested equivariant mapping spaces. Let P ! Z be a
left �–equivariant right G–principal bundle over a left � –space Z , where the left
� –action and the right G–action on P commute. We simply call such a bundle a
� –G bundle [10]. We studies this concept in detail in Section 3 of [14], where the
classification theorem of such bundles is discussed. Note that MapG.P;M / is a left
� –space when P is a � –G bundle.

Proposition 2.3 With notation as above, we have

(2-12) Map�
��†;MapG.P;M /

�
DMapG.

�†�
�

P;M /:

Proof Without equivariance, this identity is obvious. So all we have to check is that
the canonical correspondence preserves the correct equivariance property.

Let f W �† ! MapG.P;M /, and let u 2 �†. The � –equivariance of f and G–
equivariance of f .u/ means f .u
 / D 
�1 � f .u/ D f .u/ ı 
 and f .u/.pg/ D

g�1f .u/.p/ for all 
 2 � , g 2 G , p 2 P . Let the canonically corresponding
map yf W �† � P ! M be defined by yf .u;p/ D f .u/.p/. The � –equivariance of
f implies that yf .u
;p/ D yf .u; 
 � p/ for all u; 
;p . Hence yf factors through�†�� P whose elements we denote by Œu;p�. Using G–equivariance of f , we have
yf .Œu;p�g/D yf .Œu;pg�/D f .u/.pg/D g�1 � f .u/.p/D g�1 yf .Œu;p�/. Thus, yf is

G –equivariant.

The obvious inverse correspondence can be similarly checked to behave correctly with
respect to equivariance.

We examine the left hand side of the formula (1-7). For a positive integer n, let
nD f1; 2; : : : ; ng. Then the wreath product Gn DG oSn is defined by

(2-13) Gn DG oSn DMap.n;G/Ì Sn:

When M is a G–manifold, the wreath product Gn naturally acts on the Cartesian
product M n , and its quotient space M n=Gn D SPn.M=G/ is the n–th symmetric
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orbifold of M=G . For detailed information on wreath product, see Section 3 of [14].
To understand (1-7), first we note that

(2-14) Maporb
�
†;SPn.M=G/

�
D

a
.�/2Hom.�;Gn/=Gn

�
Map� .�†;M n/=CGn

.�/
�
:

Let n �G ! n be the trivial G–principal bundle over an n–element set n. Since
AutG.n�G/ŠGn [14, Lemma 3-3], the space MapG.n�G;M / of G–equivariant
maps has the structure of left Gn space and we have a Gn –equivariant homeomorphism

(2-15) M n
ŠMapG.n�G;M /:

For a given homomorphism � W �!Gn , both of the above spaces can be thought of
as � –spaces. Especially, the trivial G –bundle n�G! n acquires the structure of a
� –equivariant G–principal bundle, or simply a � –G bundle, via � . We denote this
by .n�G/� . Now (2-15) and Proposition 2.3 imply that

(2-16)
Map� .�†;M n/ŠMap�.�†;MapG

�
.n�G/� ;M /

�
DMapG

��†�� .n�G/� ;M
�
:

A �–G bundle P !Z is called irreducible if Z is a transitive � –set. In this case,
� �G acts transitively on P . In Section 3 of [14], we classified all the isomorphism
classes of irreducible � –G bundles. We showed that any irreducible � –G bundle
must be of the form PH ;� D � �� G ! �=H for some subgroup H � � and a
homomorphism �W H ! G . We also showed that two irreducible �–G bundles
corresponding to .H1; �1/ and .H2; �2/ are isomorphic as � –G bundles if and only
if (i) the subgroups H1 and H2 are conjugate in � , and (ii) when H1 DH2 DH , we
must have Œ�1�D Œ�2� 2 Hom.H;G/=.N�.H /�G/ [14, Theorem E], where N�.H /

and G act on Hom.H;G/ by conjugating H and G , respectively.

From now on, an element in Hom.H;G/=.N�.H / � G/ is denoted with a square
bracket as in Œ��, and an element in Hom.H;G/=G is denoted by a round bracket as
in .�/, to distinguish these two kinds of conjugacy classes.

Let r� .H; �/ be the number of irreducible � –G bundles isomorphic to PH ;�! �=H

in the irreducible decomposition of .n�G/� ! n. Thus,

(2-17) Œ.n�G/� ! n�Š
a
ŒH �

a
Œ��

r� .H ;�/a
ŒPH ;�! �=H �:

Here ŒH � runs over all the conjugacy classes of finite index subgroups of � , and
for each H , Œ�� runs over the set Hom.H;G/=.N�.H / � G/. By examining the

Algebraic & Geometric Topology, Volume 9 (2009)



Infinite product decomposition of orbifold mapping spaces 579

decomposition of the base space n into transitive � –sets, we have

(2-18)
X
ŒH �;Œ��

r� .H; �/j�=H j D n:

Let PH ;� D
�†�� PH ;� and †H D

�†�� .�=H /D �†=H . Then PH ;� is a G –bundle
over a covering space †H of †. Note that in PH ;�!†H !†, for each point in †,
fibres of these bundles give PH ;�! �=H . The above decomposition now implies

(2-19) �†�� Œ.n�G/� ! n�Š
a
ŒH �

a
Œ��

r� .H ;�/a
ŒPH ;�!†H �:

This isomorphism allows us to rewrite (2-16) as

(2-20)

Map� .�†;M n/Š
Y
ŒH �

Y
Œ��

r� .H ;�/Y
MapG.PH ;�;M /

Š

Y
ŒH �

Y
Œ��

r� .H ;�/Y
Map�.�†H ;M /:

The last isomorphism is because PH ;� D
�†H �� G . This gives multiplicative decom-

position of each disjoint summand of the right hand side of (2-14). Next, we need to
understand the centralizer CGn

.�/ of the image of the homomorphism � W � ! Gn

in Gn . One of the main results of [14] is the description of the structure of the centralizer
CGn

.�/. It says that

(2-21) CGn
.�/Š

Y
ŒH �

Y
Œ��

�
Aut� –G .PH ;�/ oSr� .H ;�/

�
;

where Aut� –G .PH ;�/ is the group of � –equivariant G–principal bundle automor-
phisms of PH ;� ! �=H . In terms of the G–bundle PH ;� ! †H over a covering
space, Aut� –G .PH ;�/ is isomorphic to the group AutG.PH ;�/†H =† of G–bundle
isomorphisms of PH ;� whose induced map on †H is a deck transformation of †H!†

[14, Proposition 7-3].

Next we describe the structure of Aut� –G .PH ;�/. We recall that the group N�.H /�G

acts on the set Hom.H;G/ by .u;g/ � �D g � �u�1

�g�1 for u 2N�.H /, g 2G and
� 2 Hom.H;G/. Let T� be the isotropy subgroup of this action at � :

(2-22) T� D f.u;g/ 2N�.H /�G j g � �u�1

.h/ �g�1
D �.h/ for all h 2H g:

This group T� contains a subgroup H� D
˚�

h; �.h/
�
2 T� j h 2 H

	
Š H . Then

Theorem 4-4 in [14] shows that H� is a normal subgroup of T� and we have the
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following exact sequence:

(2-23) 1!H�! T�! Aut� –G .PH ;�/! 1:

Now we are ready to prove Theorem A.

Proof of Theorem A Using (2-14), (2-18), (2-20), (2-21), we can rewrite the left
hand side of (1-8) asX
n�0

pn Maporb
�
†;SPn.M=G/

�
D

X
n�0

X
Œ��

Y
ŒH �

Y
Œ��

pr� .H ;�/j�=H j

��r� .H ;�/Y
Map�.�†H ;M /

�
=
�
Aut�–G.PH ;�/ oSr� .H ;�/

��

(here Aut� –G .PH ;�/ŠAutG.PH ;�/†H =† acts on Map�.�†H ;M /ŠMapG.PH ;�;M /

by the obvious action)

D

X
n�0

X
Œ��

Y
ŒH �

Y
Œ��

pr� .H ;�/j�=H j SPr� .H ;�/
�
Map�.�†H ;M /=Aut�–G.PH ;�/

�
D

Y
ŒH �

Y
Œ��

�X
r�0

pr j�=H j SPr
�
Map�.�†H ;M /=Aut�–G.PH ;�/

�
D

Y
ŒH �

Y
Œ��

Spj�=H j
�
Map�.�†H ;M /=Aut�–G.PH ;�/

�
D

Y
ŒH �

Spj�=H j

�a
Œ��

Map�.�†H ;M /=Aut�–G.PH ;�/

�
:

Here in the above formulae, Œ��2Hom.H;G/=.N�.H /�G/. On the other hand, since
D.†H =†/ŠN�.H /=H , we have

Maporb.†H ;M=G/=D.†H =†/D

�� a
�2Hom.H ;G/

Map�.�†H ;M /

�ı
G

�ı�
N�.H /=H

�
D

� a
�2Hom.H ;G/

Map�.�†H ;M /

�
=.N�.H /�G/:

Here we recall that the action of G and N�.H / commutes, and the action of H �

N�.H / can be absorbed into the action of G . See (2-5), (2-6), (2-8) and (2-9) for
details on this. In particular, the action of .u;g/ 2N�.H /�G is such that

.u;g/W Map�.�†H ;M /
Š
�!Mapg�u�1

g�1.�†H ;M /:
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Since T� in (2-22) is exactly the subgroup which preserves � 2 Hom.H;G/ under
.N�.H /�G/–action, in the above identity, we get

Maporb.†H ;M=G/=D.†H =†/D
a
Œ��

�
Map�.�†H ;M /=T�

�
;

where Œ�� runs over the orbit set Hom.H;G/=.N�.H /�G/. Next observe that the
subgroup H� of T� acts trivially on Map�.�†H ;M /. To see this, let

�
h; �.h/

�
2H�

for h 2H , and f 2Map�.�†H ;M /. Then, for any p 2 �†H , we have��
h; �.h/

�
f
�
.p/D �.h/ � .hf /.p/D �.h/f .ph/D �.h/�.h/�1f .p/D f .p/:

Thus, H� acts trivially on Map�.�†H ;M /. Hence quotienting by T� in the above
formula can be replaced by quotienting by T�=H� ŠAut� –G .PH ;�/. Thus, collecting
all the above calculations, we finally haveX

n�0

pn Maporb
�
†;SPn.M=G/

�
D

Y
ŒH �

Spj�=H j
�
Maporb.†H ;M=G/=D.†H =†/

�
:

This completes the proof.

When G D f1g, we have Maporb.†;M /DMap.†;M /, and formula (1-8) becomes

(2-24)
X
n�0

pn Maporb
�
†;SPn.M /

�
Š

Y
Œ†0!†�conn.

Spj†
0=†j

�
Map.†0;M /=D.†0=†/

�
:

3 Generating functions of finite orbifold invariants

We specialize our main decomposition formula of infinite dimensional orbifold mapping
spaces to the finite dimensional subspace of constant orbifold maps. Most of the results
in [13; 14] follow from this restricted formula, and we reproduce some of the main
results in these papers as corollaries to Theorem A.

Since Map� .�†;M /const ŠM h�i , where M h�i denotes the fixed point subset of � , we
have

(3-1) Maporb.†;M=G/const D
a

.�/2Hom.�;G/=G

�
M h�i=C.�/

� def
D C�.M=G/:

As an immediate consequence of Theorem A, we have the following decomposition
formula for constant orbifold maps.

Algebraic & Geometric Topology, Volume 9 (2009)



582 Hirotaka Tamanoi

Proposition 3.1 Let M be a G –space and let � be an arbitrary group. Then,

(3-2)

X
n�0

pnC�
�
SPn.M=G/

�
D

Y
ŒH �

Spj�=H j
�
CH .M=G/=.N�.H /=H /

�
D

Y
ŒH �

Spj�=H j

�a
Œ��

.M h�i=T�/

�
;

where ŒH � runs over all the conjugacy classes of finite index subgroups of � , and for
each ŒH �, Œ�� runs over the set Hom.H;G/=

�
N�.H /�G

�
.

Note that in Theorem A, � is the fundamental group of the manifold †. But after
eliminating † by considering constant orbifold maps, � can be an arbitrary (discrete)
group in Proposition 3.1.

Here we comment on the action of N�.H /=H on CH .M=G/ D .
`
� M h�i/=G in

(3-2), where � 2 Hom.H;G/. In view of (2-5), the action of N�.H / commutes with
the action of G , and for any u 2N�.H / and any x 2M h�i , the action of u on x is
such that u �xD x , as can be easily verified by (2-5). However, this does not mean that
the action of N�.H / on CH .M=G/ is trivial. in fact, it is not trivial in general. What
happens is that the action of u sends M h�i to M h�u�1

i , where G –conjugacy classes
.�/ and .�u�1

/ can be distinct, although these two spaces are identical subspaces of
M , since h�i D h�u�1

i as subgroups of G . For a given .�/ 2 Hom.H;G/=G , let
N
�
�
.H / be the isotropy subgroup of N�.H / at .�/. Recall that we have an exact

sequence of groups [14, Formula (4-6)]:

1! CG.�/! T�!N
�
�
.H /! 1:

Thus, M h�i=T� D
�
M h�i=C.�/

�
=N

�
�
.H /. We examine the action of u 2N

�
�
.H / on

M h�i=C.�/. By definition, for any u 2 N
�
�
.H /, � and �u�1

are G–conjugate, and
thus there exists g 2G such that �u�1

.h/D g�1�.h/g for all h 2H . This means that
.u;g/ 2 T� . We have

M h�i=C.�/
u �DId
����!M h�u�1

i=C.�u�1

/DM hg�1�gi=C.g�1�g/
g �
�!
Š

M h�i=C.�/;

by (2-6). This means that when we apply u�, � moves within the same G –conjugacy
class to �u�1

. To bring it back to � , we then apply g 2G . Thus, for u 2N
�
�
.H / and

x 2M h�i=C.�/, the action of u on x is given by u � x D g � x where g 2 G is an
arbitrary element such that .u;g/ 2 T� .

Let �.X / be the topological Euler characteristic for a topological space X . In [14], we
introduced a notion of an orbifold Euler characteristic associated to a group � defined
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for a G –manifold M :

(3-3) ��.M IG/
def
D �

�
C�.M=G/

�
D

X
.�/2Hom.�;G/=G

�
�
M h�i=C.�/

�
:

We observe that when � D Z,

(3-4) �Z.M IG/D
X
.g/2G�

�
�
M hgi=C.g/

�
D

1

jGj

X
ghDhg

�
�
M hg;hi

�
is the physicist’s orbifold Euler characteristic eorb.M=G/ [3]. Here in the last sum-
mation, the pair .g; h/ runs over the set of commuting pairs of elements. The second
identity is due to Lefschetz Fixed Point Formula. Formula (3-3) gives the correct
generalization of eorb.M=G/ since it comes from a very natural geometry of orbifold
mapping spaces (3-1).

In [14], we introduced a notion of orbifold Euler characteristic of M=G associated
to a � –set X , denoted by �ŒX �.M IG/. When X is a transitive � –set of the form
X D �=H , it is given by

�Œ�=H �.M IG/D �
�
CH .M=G/=.N�.H /=H /

�
(3-5)

CH .M=G/=.N�.H /=H /D
a

Œ��2Hom.H ;G/=.N�.H /�G/

M h�i=Aut�–G.PH ;�/where

D

a
Œ��

M h�i=T�:

The second identity above can be proved on topological space level by an argument
similar to the last part of the proof of Theorem A.

Now we compute the topological Euler characteristic of both sides of (3-2). We recall
that �.Sp.X //D .1�p/��.X / .

Corollary 3.2 [14, Theorem C] Let M be a G –set and let � be an arbitrary group.
The the generating function of orbifold Euler characteristic associated to � of symmetric
orbifolds is given by

(3-6)
X
n�0

pn��.M
n
IGn/D

Y
ŒH �

.1�pj�=H j/��Œ�=H �.M IG/;

where ŒH � runs over all conjugacy classes of finite index subgroups of � .
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We can rewrite (3-6) in terms of Hecke operators as follows. For a G–manifold, let
�.M IG/ be an integer valued function on the set of discrete groups given by

(3-7) �.M IG/.�/
def
D �

�
C�.M=G/

�
D ��.M IG/:

For an integer n� 1, let a Hecke operator T .n/ act on the function �.M IG/ by

(3-8)
�
T .n/�.M IG/

�
.�/

def
D

X
ŒH �

j�=H jDn

�
�
CH .M=G/

ı
.N�.H /=H /

�
;

so that T .n/�.M IG/ is another integral function on the set of discrete groups. Then as
functions on the set of groups, (3-6) means

(3-9)
X
n�0

pn�.M nIGn/ D

Y
n�1

.1�pn/�T.n/�.M IG/ :

Now we consider the case in which � is abelian. In this case, the action of N�.H /D�

on H � � is trivial and so dividing by N�.H /=H has no effect. Thus, we have
CH .M=G/=.N�.H /=H /D CH .M=G/ and consequently:

Corollary 3.3 Let � be an arbitrary abelian group. For any G –space M , we have

(3-10)
X
n�0

pn��.M
n
IGn/D

Y
H

.1�pj�=H j/��H .M IG/;

where the product is over all finite index subgroups H of � .

In particular, when � D Z, the formula (3-7) reduces to

(3-11)
X
n�0

pneorb
�
SPn.M=G/

�
D

Y
r�1

.1�pr /�eorb.M=G/:

This is the formula proven in [7] when G is trivial, and for general G in [15].

Instead of Euler characteristic, we can consider other numerical invariants such as
signature, spin index, �y –characteristic, etc, in suitable categories of manifolds. The
formula (3-2) will then provide us with infinite product formula of the corresponding
generating functions of orbifold invariants of symmetric orbifolds. What is more
interesting in this context is that, since we have a decomposition on the space level, we
can apply various (generalized) homology and cohomology functors to obtain infinite
product decomposition formulae. This will be discussed in future papers.
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4 Geometric Hecke operators for functors

In this section, we prove the Hecke identity (1-13) for 2–dimensional tori. Let C be
the category of topological spaces and continuous maps. Let F W C! C be a covariant
(or contravariant) functor. Then it formally follows that whenever f W X ! Y is a
homeomorphism, the corresponding map F.f /W F.X /! F.Y / (or F.Y /! F.X /
in the contravariant case) is also a homeomorphism. In particular, this implies that
when X is a G –space, it automatically follows that F.X / is also a G –space.

The geometric Hecke operator T .n/, n� 1, acts on a functor F as follows. For any
connected space X 2 C ,

(4-1)
�
T .n/F

�
.X /

def
D

a
ŒX 0!X �conn.
jX 0=X jDn

F.X 0/=D.X 0=X /;

where the disjoint union runs over the isomorphism classes of connected n–sheeted
covering spaces X 0 of X , and D.X 0=X / is the group of all deck transformations of
X 0!X . When X is not connected, we apply the above construction to each of the
connected component.

In general, we do not expect T .n/F W C! C to be a functor. However, see Proposition
4.1 where such a situation does occur.

For the purpose of this paper, the main example of the functor F is of course the
orbifold mapping space functor. Namely, for any G–space M , and any connected
space †, we let

F.M IG/.†/DMaporb.†;M=G/:

Proposition 2.1 shows that this is indeed a contravariant functor in †. In terms of this
notation, Theorem A can be restated as a formal power series of functors as

(4-2)
X
n�0

pnF.M nIGn/ D

Y
n�1

Spn

�
T .n/F.M IG/

�
:

However, in some context, for example in the Grothendieck ring of varieties, it can
make sense and can be justified to write Sp.X / D .1� p/�X using powers whose
exponents are spaces [5]. For the purpose of our present paper, we can regard Sp.X /

as the definition of .1� p/�X . This is more appropriate for our purpose since, for
example, for Euler characteristic, we have �

�
Sp.X /

�
D .1�p/��.X / for any space

X . In this point of view, Theorem A has the following form:

(4-3)
X
n�0

pnF.M nIGn/.†/D
Y
n�1

.1�pn/�.T.n/F.M IG//.†/:
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By Proposition 4.1 below, this formula can be regarded as a generating function of
functors from the category C�1

to C , where C�1
is the category of topological spaces

whose morphisms are restricted to those continuous maps inducing isomorphisms on
fundamental groups.

By considering constant orbifold maps, we have F.M IG/.†/const D C�1.†/.M=G/.
Then, by taking topological Euler characteristic of (4-3) restricted to constant orbifold
maps, we recover the formula (3-9). Notice that factors .1�pn/ in (3-9) are already
present in (4-3) on space level.

To define a composition of geometric Hecke operators, we need to have functoriality
of geometric Hecke operators in a certain special situation.

Proposition 4.1 Let F W C ! C be a covariant functor. Let X and Y be connected
spaces, and let f W X ! Y be a map such that f�W �1.X /! �1.Y / is an isomorphism.
Then for every positive integer n, f induces a map

(4-4) f�W .T .n/F/.X /! .T .n/F/.Y /;

such that for X
f
�! Y

g
�!Z , we have .g ıf /� D g� ıf� .

A similar statement holds for contravariant functors.

Proof We fix a base point x0 of X . Let pW X 0 ! X be a connected n–sheeted
covering space. For each choice of a base point x0

0
of X 0 over x0 , the subgroup

H D p�
�
�1.X

0;x0
0
/
�

has index n in �1.X;x0/. Since f�W �1.X;x0/! �1.Y;y0/,
where y0 D f .x0/, is an isomorphism by hypothesis, the subgroup f�.H / has index
n in �1.Y;y0/. Let .Y 0;y0

0
/ be a connected n–sheeted covering space with base

point corresponding to f�.H /. The choice of y0
0

is unique up to the action of the
group D.Y 0=Y / of deck transformations. Note that since f�W �1.X;x0/! �1.Y;y0/

is an isomorphism, f� induces an isomorphism between the corresponding deck
transformations

D.X 0=X /
f�
�!
Š
D.Y 0=Y /:

By the Lifting Theorem in covering space theory, there exists a unique D.X 0=X /–
equivariant map zf W X 0!Y 0 such that zf .x0

0
/D y0

0
. By the functorial property, we see

that F. zf /W F.X 0/! F.Y 0/ is D.X 0=X /ŠD.Y 0=Y /–equivariant. Hence it induces
a map on the quotient:

F. zf /W F.X 0/=D.X 0=X /! F.Y 0/=D.Y 0=Y /:

Different choices of the lift zf are related by the action of deck transformations. Hence
the map F. zf / on the orbit space depends only on f . Repeating the above constructions
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for each isomorphism class of connected n–sheeted covering spaces of X , we obtain a
map

(4-5) f�W
a

ŒX 0!X �conn.
jX 0=X jDn

F.X 0/=D.X 0=X /!
a

ŒY 0!Y �conn.
jY 0=Y jDn

F.Y 0/=D.Y 0=Y /:

This is the map (4-4). The behavior under the composition of two maps can be easily
verified. The argument for contravariant functors is similar.

As a special case, let f W X ! X be a homeomorphism. There is one point which
we have to be careful about in the above construction of f� . For a connected n–
sheeted covering space pW .X 0;x0

0
/! .X;x0/, the based covering space .X 00;y0/!

.X; f .x0// corresponding to the subgroup f�
�
p�
�
�1.X

0;x0
0
/
��
� �1

�
X; f .x0/

�
may

not be isomorphic to X 0!X as a covering space over X , although X 0 and X 00 are
homeomorphic via a lift zf WX 0 Š�!X 00 of f . Thus, in general, the induced map

(4-6) f�W
a

ŒX 0!X �conn.
jX 0=X jDn

F.X 0/=D.X 0=X / Š�!
a

ŒX 0!X �conn.
jX 0=X jDn

F.X 0/=D.X 0=X /

shuffles connected components, and it is not easy to control this shuffling. This is an
obstacle in studying compositions of Hecke operators given in (4-7) below. However,
when f W X !X is a deck transformation of some covering X !X0 , the situation
can be completely clarified. In particular, when �1.X0/ is abelian, it turns out that the
action of D.X=X0/ on .T .n/F/.X / does preserve connected components, and there
is a simple relation among various groups of deck transformations involved.

Anyway, as a formal consequence of Proposition 4.1, we have:

Corollary 4.2 Let F W C ! C be an arbitrary covariant or contravariant functor. If
X is a G–space, then for every positive integer n, the space .T .n/F/.X / is also a
G –space.

Next, we consider compositions of Hecke operators given as follows.

(4-7)

�
.T .m/ ıT .n//F

�
.X /D T .m/

�
T .n/F

�
.X /

D

a
ŒX 0�m

��
T .n/F

�
.X 0/

�ı
D.X 0=X /

D

a
ŒX 0�m

� a
ŒX 00�n

F.X 00/=D.X 00=X 0/
�.
D.X 0=X /;
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where ŒX 0�m runs over the set of isomorphism classes of connected m–sheeted covering
spaces of X , and for a given X 0 , ŒX 00�n runs over the set of isomorphism classes of
connected n–sheeted covering spaces of X 0 .

As remarked earlier concerning formula (4-6), the action of the group of deck trans-
formations D.X 0=X / on

�
T .n/F

�
.X 0/ permutes its connected components. We now

clarify what happens.

Let zX!X be the universal cover of X and let �DD. zX=X /Š�1.X / be its group of
deck transformations. We regard zX !X as the right � –principal bundle over X . Let
K�H �� be subgroups such that j�=H j Dm and jH=Kj D n. We put XK D

zX=K

and XH D
zX=H . Then XH ! X is a connected m–sheeted covering of X with

D.XH =X /ŠN�.H /=H , and XK !XH is a connected n–sheeted covering of XH

with D.XK=XH /ŠNH .K/=K . Let g 2N�.H /� � . Then the right multiplication
by g induces the following diagram of homeomorphisms and covering spaces:

(4-8)

zX ����! XK ����! XH ����! X

�g

??yŠ �g

??yŠ �g

??yŠ 



zX ����! Xg�1Kg ����! XH ����! X:

Since g 2N�.H /, the map �gW XH
Š
�!XH is a deck transformation of XH over X .

However, since g may not be in N�.K/, �gW XK
Š
�!Xg�1Kg is only an isomorphism

of covering spaces over X . If g 2N�.K/, then Xg�1KgDXK and �g induces a deck
transformation of XK over X . For the middle square, when g 2 H � N�.H /, �g
induces an isomorphism of two coverings XK and Xg�1Kg over XH . If, furthermore,
we have g 2NH .K/�H , then �g induces a deck transformation of XK over XH .
This clarifies the action of D.X 0=X / on .T .n/F/.X 0/ where X 0DXH and X 00DXK .

The above situation simplifies when the fundamental group of X is abelian. In this
case, every element g 2 � induces a deck transformation �gW XH

Š
�!XH whose

lift �gW XK
Š
�!XK preserves XK . Also we have D.XK=XH /ŠH=K for any two

subgroups K �H � � . The formula (4-7) now simplifies as follows.

Proposition 4.3 Let X be a connected space whose fundamental group is abelian.
Then, the composition of two geometric Hecke operators is given by

(4-9)
�
T .m/.T .n/F/

�
.X /D

a
H��
j�=H jDm

� a
K�H
jH=K jDn

�
F.XK /=D.XK=X /

��
:
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Proof By (4-7), we have�
T .m/.T .n/F/

�
.X /

�
D

a
H��
j�=H jDm

� a
K�H
jH=K jDn

�
F.XK /=D.XK=XH /

��.
D.XH =X /:

Since � is abelian, D.XH =X / preserves F.XK /=D.XK=XH / for each K �H , this
equals a

H��
j�=H jDm

a
K�H
jH=K jDn

��
F.XK /=D.XK=XH /

�.
D.XH =X /

�
:

Since D.XK=XH /DH=K , D.XH =X /D �=H , and D.XK=X /D �=K , we havea
H��
j�=H jDm

� a
K�H
jH=K jDn

�
F.XK /=D.XK=X /

��
:

This completes the proof.

We continue to assume that the fundamental group of X is abelian. For an integer
d � 1, let R.d/X be the covering space of X corresponding to d ��1.X /� �1.X /.
Let R.d/ act on a functor F by

(4-10) .R.d/F/.X / def
D F

�
R.d/X

�ı
D
�
.R.d/X /=X

�
:

As in Proposition 4.1, we can show that any map f W X !X inducing an isomorphism
on fundamental groups gives rise to a map

(4-11) f�W .R.d/F/.X /! .R.d/F/.X /:

In particular, if X is a G –space, then not only is F.X / a G –space, but
�
R.d/F/.X /

�
is also a G –space for all d � 1.

The main result in this section is the following Hecke identity for geometric Hecke
operators for 2–dimensional tori T .

Theorem 4.4 Let F W C ! C be an arbitrary contravariant or covariant functor. Let
T be a 2–dimensional torus. Then for every pair of positive integers m and n, the
composition of two geometric Hecke operators satisfy

(4-12)
�
T .m/.T .n/F/

�
.T /D

X
d j.m;n/

d �

�
T

�
mn

d2

�
.R.d/F/

�
.T /:

In particular, T .m/ and T .n/ commute.
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In the right hand side of (4-9), the summation symbol means disjoint topological union,
and the factor d means a disjoint union of d copies.

For the proof, we first recall the ordinary Hecke identity for lattices. For details, see
Lang [9, page 16]. Let A be the free abelian group generated by rank 2 lattices L

of C . The the Hecke operator T .n/ for n� 1 is a map T .n/W A!A defined by

T .n/.L/D
X

ŒLWL0�Dn

L0 2A:

Let R.n/W A!A be defined by R.n/LD nL consisting of elements fn � `g`2L �L.
Then Hecke identity says

(4-13) T .m/ ıT .n/.L/D
X

d j.m;n/

d �R.d/ ıT
�mn

d2

�
.L/;

for any lattice L. From this formula, it is clear that T .m/ and T .n/ commute. Also,
it is easy to check that R.d/ and T .n/ commute.

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4 Since �Š�1.T /ŠZ2 is free abelian of rank 2, any subgroup
of � of finite index is also free abelian of rank 2. Applying (4-9) in our context, we
obtain �

T .m/.T .n/F/
�
.T /D

a
H��
j�=H jDm

� a
K�H
jH=K jDn

�
F.TK /=.�=K/

��
;

where TK is a covering torus corresponding to an index mn sublattice K � � . By the
ordinary Hecke identity (4-13), any index mn sublattice K of � arising in the above
disjoint union is of the form d �L for some integer d dividing .m; n/, and for some
lattice L of index .mn/=d2 in � , and furthermore, there are exactly d such sublattices
in the above disjoint union. Hence the right hand side of the above expression can be
rewritten as

�
T .m/.T .n/F/

�
.T /D

a
d j.m;n/

da a
L��

j�=LjD.mn/=d2

F.Td �L/
ı�
�=.d �L/

�
:
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On the other hand,�
T

�
mn

d2

�
.R.d/F/

�
.T /D

� a
L��

j�=LjD.mn/=d2

.R.d/F/.TL/=.�=L/

�

D

a
L��

j�=LjD.mn/=d2

�
F.Td �L/

ı�
L=.d �L/

��ı
.�=L/

D

a
L��

j�=LjD.mn/=d2

F.Td �L/
ı�
�=.d �L/

�
:

Thus combining the above calculations, we have our formula (4-12).

Theorem B is a special case of Theorem 4.4 when F.†/DMaporb.†;M=G/.

By a general procedure, Theorem 4.4 implies the following “formal” Euler product of
operators:

(4-14)
X
n�1

T .n/

ns
D

Y
pW prime

�
1�T .p/p�s

Cp �R.p/p�2s
��1

;

on functors F . However, the implications of this Euler product formula in our present
context is not clear.
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