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Knots in lens spaces with the 3–sphere surgery

TOSHIO SAITO

In this paper, we improve a necessary condition which we gave in [17], for 1–bridge
braids in lens spaces to admit an integral surgery yielding the 3–sphere. As an
application, we prove that if the lens space of type .p; q/ is obtained by Berge’s
surgery on a nontrivial nontorus doubly primitive knot in the 3–sphere, then jqj � 5 .
To this end, we completely list up all such lens spaces with jqj < 5 and prove that
they are obtained only by torus knots.

57M27; 57M25

1 Introduction

Let N be a compact 3–manifold and K a knot in N . Let m be a meridian of K in
@�.KIN /, where �.BIA/ is a regular neighborhood of B in A. We fix a longitude
` in @�.KIN / such that m intersects ` transversely in a single point. When N

is homeomorphic to the 3–sphere S3 , ` should be the preferred longitude of K

in @�.KIN /. In the following, we fix an orientation of m and ` as illustrated in
Figure 1. A Dehn surgery on K is an operation where we attach a solid torus xV
to E.KIN / by a boundary-homeomorphism 'W @ xV ! @E.KIN /, where E.BIA/

means the exterior of B in A, ie, E.BIA/D cl.An�.BIA//. If '. xm/ is isotopic to
a simple loop represented by pŒm�C qŒ`� for a meridian xm of xV , then the surgery
is called p=q–surgery. By an integral surgery, we mean a Dehn surgery such that
p=q is an integer. The 3–manifold obtained by p=q–surgery on a trivial knot in
S3 is called the lens space of type .p; q/ and is denoted by L.p; q/. Note that
L.�p;�q/ŠL.p; q/ŠL.p; qC np/ for any integer n. Hence we may assume that
p > 0 and 0� q <p except for L.0; 1/DS2�S1 . In this paper, a lens space surgery
means a Dehn surgery yielding a lens space, and the 3–sphere surgery, S3 –surgery
briefly, means a Dehn surgery yielding S3 .

It is an interesting problem on Dehn surgeries to decide the types of lens spaces which
are obtained by a Dehn surgery on a nontrivial knot in S3 . We remark that the problem
was completely solved for torus knots by Moser [14] and satellite knots by Bleiler and
Litherland [2], Wang [18] and Wu [19]. Also, there are hyperbolic knots with lens space
surgeries. Such examples were first found by Fintushel and Stern [6]. They proved that
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18– and 19–surgery on the .�2; 3; 7/–pretzel knot yield the lens spaces L.18; 5/ and
L.19; 7/ respectively. By the Cyclic Surgery Theorem of Culler, Gordon, Luecke and
Shalen [5], a lens space surgery on a nontrivial nontorus knot must be integral. Gordon
and Luecke showed that nontrivial surgery on a nontrivial knot cannot yield S3 [8],
and Gabai proved that S2 �S1 never comes from Dehn surgeries on a nontrivial knot
[7]. In [1], Berge introduced the concept of doubly primitive knots and showed that
there is an integral surgery on a doubly primitive knot yielding a lens space. In this
paper, we call such a surgery Berge’s surgery (for details, see the appendix of [17]).

Definition 1.1 (Berge) Let .V1;V2IS/ be a genus two Heegaard splitting of S3 and
K a simple loop on S . Then K is called a doubly primitive knot if K represents a
free generator both of �1.V1/ and of �1.V2/.

Precisely, Berge’s surgery is a Dehn surgery along a surface slope when a knot is put in
a doubly primitive position. Hence Berge’s surgery is always integral. We remark that
it remains possible that a doubly primitive knot admits a lens space surgery other than
Berge’s surgery. However, it is conjectured by Gordon [12, Problem 1.78] that if a lens
space is obtained by a Dehn surgery on a nontrivial nontorus knot, then it would be
obtained only by Berge’s surgery on a doubly primitive knot. The following conjecture
is given by Bleiler and Litherland [2].

Conjecture 1.2 It would be impossible to obtain a lens space L.p; q/ with jpj< 18

by a Dehn surgery on a nontrivial nontorus knot.

In [17], we showed that the conjecture is true for nontrivial nontorus doubly primitive
knots in S3 if L.p; q/ is obtained by Berge’s surgery.

Based on this background, we consider the following question given by Ichihara in
private communication.

Question 1.3 Is it impossible to obtain a lens space L.p; q/ with jqj< 5 by a Dehn
surgery on a nontrivial nontorus knot?

Note that L.1; 0/DS3 and hence the question is true for qD 0 by Gordon and Luecke
[8]. Hirasawa and Shimokawa [9] showed that a Dehn surgery on strongly invertible
knots cannot give L.2p; 1/ for any integer p . In [13], Kronheimer, Mrowka, Ozsváth
and Szabó proved that L.p; 1/ cannot be obtained by p–surgery on a nontrivial knot.
In [15], Rasmussen showed that L.p; 2/ can be obtained by p–surgery on a knot only
if pD 7 and that L.p; 3/ can be obtained by p–surgery on a knot only if pD 11 and
13. In each case, moreover, it is realized only by a torus knot. On the other hand, as
previously mentioned, L.18; 5/ is obtained by 18–surgery on the .�2; 3; 7/–pretzel
knot. In this paper, we prove the following which is a partial answer to Question 1.3.
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Theorem 1.4 Let K be a nontrivial nontorus doubly primitive knot in S3 and L.p; q/

a lens space obtained by Berge’s surgery on K . Then jqj � 5.

In fact, we completely list up all such lens spaces with jqj< 5 and prove that they are
obtained only by torus knots. See Section 2 for the precise statement.

2 Statement of results

Let K be a knot in a 3–manifold N and N 0 a 3–manifold obtained by a Dehn surgery
on K . Then N 0 DE.KIN /[ xV , where xV is an attaching solid torus. Let K� �N 0

be a core loop of xV . We call K� the dual knot of K in N 0 . We remark that E.KIN /

is homeomorphic to E.K�IN 0/ and that if integral surgery on K in N yields a 3–
manifold N 0 , then K� � N 0 admits integral surgery yielding N . We remark that a
core knot in a lens space is the dual knot of a trivial knot in S3 , where a core knot is a
knot whose exterior is homeomorphic to a solid torus.

` (`� )

m (m� )

Figure 1: Once a knot is oriented, a longitude ` (resp. `� ) is oriented in the
same direction as the knot. Then a meridian m (resp. m� ) is oriented as in
this figure.

Definition 2.1 Let V1 be a regular neighborhood of a trivial knot in S3 , m a meridian
of V1 and ` a longitude of V1 such that ` bounds a disk in cl.S3 n V1/. We fix an
orientation of m and ` as illustrated in Figure 1. By attaching a solid torus V2 to V1

so that xm is isotopic to a representative of pŒ`�CqŒm�, we obtain a lens space L.p; q/,
where p and q are coprime integers and xm is a meridian of V2 . The intersection points
of m and xm are labelled P0; : : : ;Pp�1 successively along the positive direction of m.
Let tu

i .i D 1; 2/ be simple arcs in Di joining P0 to Pu .uD 1; 2; : : : ;p� 1/. Then
the notation K.L.p; q/Iu/ denotes the knot tu

1
[ tu

2
in L.p; q/ (see Figure 2).
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It is proved in [1] that when Berge’s surgery on a doubly primitive knot yields a lens
space, its dual knot is isotopic to a knot defined as K� D K.L.p; q/Iu/ (see also
Section 6 of [17]).

@D2

P0
P1 Pu Pp�1

tu
1

@D1

t 0
u
2

Figure 2: Here, t 0
u
2 is a projection of tu

2
on @V1 .

Remark 2.2 We note that two lens spaces L.p; q/ and L.p0; q0/ are (possibly orienta-
tion reversing) homeomorphic if and only if jpjDjp0j, and q�˙q0 . mod p/ or qq0�

˙1 .mod p/. Also, we easily see that K.L.p; q/Iu/ is isotopic to K.L.p; q/Ip�u/.
Hence for K.L.p; q/Iu/, we often assume that 0 < q < p=2 and 1 � u � p=2 in
the remainder of the paper. We further remark that it is not always true that a knot
represented by K.L.p; q/Iu/ admits integral S3 –surgery.

Throughout this section, we use the notation in Definition 2.1. Recall that we assume
p > 1 and 0 < q < p . Let D1 (D2 resp.) be a meridian disk in V1 (V2 resp.)
with @D1 D m and j@D1 \ @D2j D p . Let t 0

u
1 (t 0u2 resp.) be the arc in @D1 (@D2

resp.) whose initial point is P0 and whose endpoint is Pu passing in the positive
direction of m (` resp.). Then t 0

u
1 (t 0u2 resp.) is a projection of tu

1
(tu

2
resp.). Set

V 0
1
D V1 [ �.t

u
2
IV2/, V 0

2
D cl.V2 n �.t

u
2
IV2// and S 0 D @V 0

1
D @V 0

2
. Then V 0

1
and

V 0
2

are genus two handlebodies. Let D0
2
� .D2\V 0

2
/ be a meridian disk of V 0

2
with

@D0
2
� .t 0

u
2 \ S 0/. Let m0 be a core loop of the annulus @�.tu

2
IV2/. Let `0 be an

essential loop in S 0 which is a union of t 0
u
1 \S 0 and an essential arc in the annulus

S 0\ @�.tu
2
IV2/ disjoint from @D0

2
(see Figure 3).

Let m� be a meridian of K D tu
1
[ tu

2
in @�.KIV 0

1
/ and `� a longitude of @�.KIV 0

1
/

such that `0[ `� bounds a spanning annulus in cl.V 0
1
n �.KIV 0

1
//. Note that m� and
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m0

`0 D0
2

@D0
2

V 01 V 02

Figure 3

`� are oriented as illustrated in Figure 1. Let r and s be coprime integers, and let V 00
1

be a genus two handlebody obtained from cl.V 0
1
n �.KIV 0

1
// by attaching a solid torus

xV so that a meridian of xV is identified with a loop represented by r Œm��C sŒ`��. Set
M 0 D V 00

1
[S 0 V

0
2

. Then we say that M 0 is obtained by .r=s/�–surgery on K . If r=s

is an integer, .r=s/�–surgery is called an integral surgery.

Definition 2.3 Let p and q be a coprime pair of positive integers. Let fsj g1�j�p

be the finite sequence such that 0 � sj < p and sj � q � j ( mod p ). We call such a
sequence the basic sequence for .p; q/. For an integer k with 0 < k < p , ‰p;q.k/

denotes the integer j with sj D k , and p̂;q.k/ denotes the number of elements of
the following set (possibly empty set):

fsj j 1� j <‰p;q.k/; sj < kg:

Example 2.4 Set p D 22 and q D 3. Then we have the basic sequence

fsj g1�j�22 W 3; 6; 9; 12; 15; 18; 21; 2; 5; 8; 11; 14; 17; 20; 1; 4; 7; 10; 13; 16; 19; 0:

Hence we see that ‰22;3.5/D 9 and ˆ22;3.5/D 2.

Remark 2.5 When one follows @D2 from P0 in the positive direction of ` in Figure 2,
@D2 intersects @D1 in the following order:

P0! Ps1
! Ps2

! : : :! Psp�1
! P0:

Then ‰p;q.u/ represents the number of intersection points between t 0
u
2 and a parallel

copy of @D1 in @V1 , and p̂;q.u/ represents the number of intersection points between
t 0

u
1 and the interior of t 0

u
2 .
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By Remark 2.5, we have the following.

Observation 2.6 (cf [16, Theorem 1.3]) For K D K.L.p; q/Iu/, if p̂;q.u/ D

0;u� 1 or ‰p;q.u/� 1, then K is isotopic onto @V1.D @V2/.

In [17], we gave a necessary condition for K.L.p; q/Iu/ to admit an integral S3 –
surgery.

Theorem 2.7 [17, Theorem 2.5] Let p and q be coprime integers with 0< q < p

and u be an integer with 1�u�p�1. If K.L.p; q/Iu/ admits an integral S3 –surgery,
then the surgery is either 0� or 1�–surgery. Moreover, one of the following holds.

(1) p � p̂;q.u/�u �‰p;q.u/D˙1. In this case, the surgery is 0�–surgery.

(2) p � p̂;q.u/�u �‰p;q.u/D˙1�p . In this case, the surgery is 1�–surgery.

The converse of Theorem 2.7 does not hold. For example, though K.L.22; 3/I 5/

satisfies the conclusion .1/ of Theorem 2.7, its 0�–surgery yields a homology sphere
other than S3 . This is confirmed by calculating its fundamental group (cf Section 5).
In this paper, we first give an improved necessary condition for K.L.p; q/Iu/ to admit
an integral S3 –surgery.

Definition 2.8 Let p and q be coprime integers with 0< q < p and fuj g1�j�p the
basic sequence for .p; q/. Let u be an integer with 1� u� p�1. The basic sequence
for .p; q/ admits w-property for u if there does not exist a quadruplet of integers
fi; j ; k; lg which satisfy the following:

(1) 1� i; j ; k; l < p ,

(2) ‰p;q.i/; ‰p;q.i C 1/ < ‰p;q.u/,

(3) ‰p;q.j /; ‰p;q.j C 1/ > ‰p;q.u/,

(4) ‰p;q.k/ < ‰p;q.u/ < ‰p;q.kC 1/,

(5) ‰p;q.l/ > ‰p;q.u/ > ‰p;q.l C 1/.

Theorem 2.9 Let p and q be coprime integers with 0< q < p=2 and fuj g1�j�p the
basic sequence for .p; q/. Let u be an integer with 1 � u � p=2. If K.L.p; q/Iu/

admits an integral S3 –surgery, then the following holds.

(1) p � p̂;q.u/�u �‰p;q.u/D˙1 or ˙1�p .

(2) The basic sequence admits w-property for u.
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A proof of Theorem 2.9 is given in Section 4. By using Theorem 2.9, we easily check
that any integral surgery on K.L.22; 3/I 5/ cannot give S3 as follows. In Definition
2.8, set i D 2, j D 7, k D 3 and l D 1. Then its basic sequence does not admit
w-property for u D 5 (cf Example 2.4). This together with the conclusion .2/ of
Theorem 2.9 implies that any integral surgery on K.L.22; 3/I 5/ cannot give S3 .

Theorem 1.4 follows from Theorems 2.10–2.13.

Theorem 2.10 Suppose that K.L.p; 1/Iu/ is not a core knot. K.L.p; 1/Iu/ with
p > 1 and 1� u� p=2 admits an integral S3 –surgery if and only if .p;u/D .5; 2/.

Moreover, K.L.5; 1/I 2/ is a torus knot.

Theorem 2.11 Suppose that K.L.p; 2/Iu/ is not a core knot. K.L.p; 2/Iu/ with
p > 2 and 1 � u � p=2 admits an integral S3 –surgery if and only if .p;u/ D
.7; 3/; .9; 4/ or .11; 3/.

Moreover, K.L.p; 2/Iu/ is a torus knot for each .p;u/ above.

Theorem 2.12 Suppose that K.L.p; 3/Iu/ is not a core knot. K.L.p; 3/Iu/ with
p > 3 and 1 � u � p=2 admits an integral S3 –surgery if and only if .p;u/ D
.7; 2/; .11; 5/; .13; 4/; .13; 6/; .14; 5/ or .19; 4/.

Moreover, K.L.p; 3/Iu/ is a torus knot for each .p;u/ above.

Theorem 2.13 Suppose that K.L.p; 4/Iu/ is not a core knot. K.L.p; 4/Iu/ with
p > 4 and 1 � u � p=2 admits an integral S3 –surgery if and only if .p;u/ D
.13; 3/; .15; 7/; .17; 8/; .21; 5/; .29; 5/ or .4p0C 6˙ 1; 2/ .p0 D 0; 1; : : :/.

Moreover, K.L.p; 4/Iu/ is a torus knot for each .p;u/ above.

Proofs of Theorems 2.10–2.13 are given in Section 6.

3 The wave theorem on Heegaard splittings

A triplet .V1;V2IS/ is a genus g Heegaard splitting of a closed orientable 3–manifold
N if Vi (i D 1 and 2) is a genus g handlebody with N D V1 [V2 and V1 \V2 D

@V1\@V2DS . The surface S is called a Heegaard surface. A properly embedded disk
D in a genus g handlebody V is called a meridian disk of V if a 3–manifold obtained
by cutting V along D is a genus g � 1 handlebody. The boundary of a meridian
disk of V is called a meridian of V . A collection of mutually disjoint g meridians

Algebraic & Geometric Topology, Volume 8 (2008)



60 Toshio Saito

fx1; : : : ;xgg of V is called a complete meridian system of V if fx1; : : : ;xgg bounds
mutually disjoint meridian disks of V which cuts V into a 3–ball.

Let .V1;V2IS/ be a genus two Heegaard splitting of S3 . Let fx1;x2g and fy1;y2g be
complete meridian systems of V1 and V2 respectively. We call .S I fx1;x2g; fy1;y2g/

a Heegaard diagram. If x1 , x2 , y1 and y2 are isotoped on S so that the number of
their intersection points are minimal, then we call .S I fx1;x2g; fy1;y2g/ a normalized
Heegaard diagram. If jx1\y1j D 1, jx2\y2j D 1, x2\y1 D∅ and x1\y2 D∅,
then the Heegaard diagram is said to be standard. Let †x (†y resp.) be the four holed
2–sphere obtained by cutting S along x1 and x2 (y1 and y2 resp.), and let xCi and
x�i (yCi and y�i resp.) .i D 1; 2/ be the copies of xi (yi resp.) in †x (†y resp.).

A wave w associated with xi .i D 1 or 2/ is a properly embedded arc in †x such
that w is disjoint from .y1[ y2/\†x , w joins xCi or x�i to itself and w does not
cut off a disk from †x . Similarly, a wave w associated with yi .i D 1 or 2/ is a
properly embedded arc in †y such that w is disjoint from .x1[x2/\†y , w joins
yCi or y�i to itself and w does not cut off a disk from †y . A Heegaard diagram
.S I fx1;x2g; fy1;y2g/ contains a wave if there is a wave associated with xi .i D 1 or
2/ or yi .i D 1 or 2/. The following, so-called wave theorem, was proved by Homma,
Ochiai and Takahashi [10].

Theorem 3.1 [10, Main Theorem] Any normalized genus two Heegaard diagram of
S3 is standard, or contains a wave.

4 Proof of Theorem 2.9

@EC1

@E�
1

@EC1

@E�
1

P0 Pu


C
0


Cu

Ru Ru

Figure 4
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In this section, we prove Theorem 2.9. In avoiding needless confusion, we shall use
the same notation as in Section 2. Recall that Vi .i D 1; 2/ give a genus one Heegaard
splitting of L.p; q/ and that Di ’s are meridian disks of Vi ’s with K.L.p; q/Iu/D

.tu
1
[ tu

2
/ � .D1 [D2/. Recall also that t 0

u
1 (t 0u2 resp.) is a projection of tu

1
(tu

2

resp.) whose initial point is P0 and whose endpoint is Pu passing in the positive
direction of m (` resp.). Let Ei .i D 1; 2/ be parallel copies of Di , and let A1 be
the annulus obtained by cutting @V1 along @E1 . Resulting boundary components are
labeled @E˙

1
so that the orientation of a longitude ` of V1 in A corresponds to the

direction toward @EC
1

and away from @E�
1

. For an integer j with 0 � j � p � 1,
let 
j be the arc-component of @D2 \A1 passing the point Pj , and let 
˙j be the
subarc of 
j joining Pj to @E˙

1
. Let Ru be the rectangle obtained by cutting A1

along 
C
0
[ t 0

u
1 [ 


C
u . A basic domain Ru means a rectangle obtained by sliding Ru

slightly in the positive direction of @D1 (cf Figure 4). Note that Ru contains 
Cj if
1� j � u, and Ru is disjoint from 
Cj otherwise.

Proof of Theorem 2.9 The conclusion .1/ of Theorem 2.9 holds by Theorem 2.7.
Hence it is enough to prove that the conclusion .2/ holds under the assumption and
the conclusion .1/ of Theorem 2.9.

Note that .V 0
1
;V 0

2
IS 0/ is a genus two Heegaard splitting of L.p; q/. Let D00

2
be the

component of D2 \ V 0
2

other than D0
2

. Then f@D0
2
; @D00

2
g is a complete meridian

system of V 0
2

. Assuming that K DK.L.p; q/Iu/ admits an integral S3 –surgery, it
follows from Theorem 2.7 that the surgery is 0� or 1�–surgery. We suppose that the
basic sequence for .p; q/ does not admit w-property for u to obtain a contradiction as
follows.

Case 1 0�–surgery on K yields S3 .

Recall that the exterior of V 0
2

in S3 is a genus two handlebody denoted by V 00
1

. Then
`0 bounds a meridian disk, say D`0 , of V 00

1
. Let E0

1
be a disk obtained by pushing

the interior of E1 [Ru [D0
`0

into the interior of V 00
1

slightly, where Ru is a basic
domain and D0

`0
is a parallel copy of D`0 in V 00

1
. Note that E0

1
is a meridian disk of

V 00
1

which is not isotopic to D`0 . Choosing D`0 appropriately, we may assume that
E0

1
is disjoint from D`0 . Set x1 D @E

0
1

, x2 D `
0 , y1 D @D

0
2

and y2 D @D
00
2

. Then
.S 0I fx1;x2g; fy1;y2g/ is a normalized Heegaard diagram of S3 (cf Figure 5). Let
†x (†y resp.) be the four-holed 2–sphere obtained by cutting S along x1 and x2

(y1 and y2 resp.), and let xCi and x�i (yCi and y�i resp.) .i D 1; 2/ be the copies of
xi (yi resp.) in †x (†y resp.).

Let xy1 be the arc-component of y1\†x which corresponds to 
C
0

(and hence 
�
p�1

).
Then xy1 joins xC

1
to x�

1
. Let xy2 ( xy3 resp.) be the arc-component of y2\†x which
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E1

x1

`0

D0
2

D00
2

x2

y2

y1

Figure 5

corresponds to 
�
0

(
C
p�1

resp.). Then xy2 either joins x�
1

to xC
2

or joins x�
1

to x�
2

,
say the latter. Since we assume that qC1< u< p=2, we see that xy3 joins xC

1
to xC

2
.

Let xy4 be the arc-component of .y1[y2/\†x which contains 
C
1

. Then xy4 joins
P1 � xC

2
to PqC1 � x�

2
because we assume that qC 1< u< p=2. Hence these four

arc-components xy1 , xy2 , xy3 and xy4 imply that there are no waves associated with xi

.i D 1; 2/ (cf Figure 6).

Since we suppose that the basic sequence for .p; q/ does not admit w-property for
u, there exists a quadruplet of integers fi; j ; k; lg which satisfy the conditions of
Definition 2.8. By the condition (2) of Definition 2.8, we see that y1 contains both Pi

and PiC1 . Note that Pi and PiC1 lies on x1 (x2 resp.) if i > u (i < u resp.). Let
xx1 be the subarc of x1 or x2 such that xx1 joins Pi to PiC1 and that the interior of
xx1 is disjoint from y1[y2 . Then xx1 joins yC

1
to y�

1
in †y . By the condition (3) of

Definition 2.8, we see that y2 contains both Pj and PjC1 . Let xx2 be the subarc of
x1 or x2 such that xx2 joins Pj to PjC1 and that the interior of xx2 is disjoint from
y1[y2 . Then xx2 joins yC

2
to y�

2
in †y . By the condition (4) of Definition 2.8, we

see that y1 contains Pk and y2 contains PkC1 . Let xx3 be the subarc of x1 or x2 such
that xx3 joins Pk to PkC1 and that the interior of xx3 is disjoint from y1[y2 . Then
xx3 either joins yC

1
to y�

2
or joins y�

1
to yC

2
, say the former, in †y . By condition (4)
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xy1
xy2

xy3

xy4

xy1

xy2

xy3

xy4

xC
1

x�
1

xC
2

x�
2

†x

Figure 6

of Definition 2.8, we see that y2 contains Pl and y1 contains PlC1 . Let xx4 be the
subarc of x1 or x2 such that xx4 joins Pl to PlC1 and that the interior of xx4 is disjoint
from y1[y2 . Then xx4 joins y�

1
to yC

2
in †y . We see that these four arc-components

xx1 , xx2 , xx3 and xx4 imply that there are no waves associated with yi .i D 1; 2/. By
Theorem 3.1, this contradicts that .S 0I fx1;x2g; fy1;y2g/ is a normalized Heegaard
diagram of S3 and therefore the conclusion .2/ of Theorem 2.9 holds.

E1

@D01

y1

y2

y1

y2

Figure 7

Case 2 1�–surgery on K yields S3 .

Recall that m0 is as in Section 2 (cf Figure 3). Let D0
1

be a meridian disk of a solid
torus obtained by cutting V 00

1
along E1 such that @D0

1
\E.m0I @V 00

1
/ is identified with

`0 \E.m0I @V 00
1
/ (cf Figure 7). Let E0

1
be a disk obtained by pushing the interior

of E1 [Ru [D00
1

into the interior of V 00
1

slightly, where Ru is a basic domain and
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D00
1

is a parallel copy of D0
1

in V 00
1

. Note that E0
1

is a meridian disk of V 00
1

which is
not isotopic to D0

1
. Choosing D00

1
appropriately, we may assume that E0

1
is disjoint

from D0
1

. Set x1 D @E
0
1

, x2 D @D
0
1

and let y1 and y2 be as in Case 1 above. Then
.S 0I fx1;x2g; fy1;y2g/ is a normalized Heegaard diagram of S3 . By an argument
similar to that in Case 1, we also see that this diagram contains no waves because we
suppose the basic sequence for .p; q/ does not admit w-property for u. Therefore the
conclusion .2/ of Theorem 2.9 holds.

5 Presentation of fundamental groups

To avoid needless confusion, we shall also use the same notation in Section 2.

Proposition 5.1 Set K D K.L.p; q/Iu/ and let fsj g1�j�p be the basic sequence
for .p; q/. Let N 0 be the 3–manifold obtained by r�–surgery on K , where r be an
integer. Then we have

�1.N
0/Š

�
a; b j

‰p;q.u/Y
jD1

W1.j /D 1;

pY
jD1

W2.j /D 1

�
;

where W1.j /D

8<:
a if sj > u

abr if sj D u

ab otherwise
and W2.j /D

�
a if sj � u

ab otherwise:

Proof Recall that .V 00
1
;V 0

2
IS 0/ be a genus two Heegaard splitting of N 0 . Since N 0

is obtained by an integral surgery on K , we see that a WD ` and b WD m0 are free
generators of �1.V

00
1
/ (cf Figure 8). Let Ei .i D 1; 2/ be parallel copies of Di in Vi .

In particular, we may assume that @E2 in @V1 is obtained by sliding @D2 slightly in
the positive direction of @D1 . Then it follows from Van Kampen’s theorem that

�1.N
0/Š ha; b j @D02 D 1; @E2 D 1i:

Let D0
1

be a meridian disk of a solid torus obtained by cutting V 00
1

along E1 such
that @D0

1
\E.m0I @V 00

1
/ is identified with `0\E.m0I @V 00

1
/. Since N 0 is obtained by

r�–surgery on K , @D0
1

rounds jr j times in the positive or negative direction of m0 in
N.m0I @V 00

1
/. We remark that its direction depends on the sign of r . By Remark 2.5,

when one follows @D0
2

from a neighborhood of P0 in the positive direction of `, @D0
2

intersects @D0
1

in the following order:

.P0!/Ps1
! Ps2

! : : :! P‰p;q.u/�1 .! P‰p;q.u//:
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b WDm0

a WD ` D0
2E2

Figure 8

We note that @D0
2

intersects @E1 just one time on the way from Psj
to PsjC1 . If

sj < u, then @D0
2

intersects @D0
1

at the point Psj
. In the annulus @�.tu

2
IV2/, @D02 is

disjoint from @E1 and intersects @D0
1

in jr j points. Considering the sign of r , we see
that @D0

2
is presented by

‰p;q.u/Y
jD1

W1.j /:

Similarly, we also see that @E2 is presented by
Qp

jD1
W2.j /.

Corollary 5.2 Set K DK.L.p; q/Iu/ and let fsj g1�j�p be the basic sequence for
.p; q/. Then we have

�1.E.KIL.p; q///Š

�
b; c j

pY
jD1

W3.j /D 1

�
;

where W3.j /D

�
cb if ‰p;q.sj / < ‰p;q.u/

c otherwise:

Proof We use the same notation as in the proof of Proposition 5.1. Particularly, we
here regard b Dm0 as a free generator of V 0

2
. Note that b intersects @D0

2
transversely

in a single point and is disjoint from @E2 Let c be a simple loop in V 0
2

which intersects
@E2 transversely in a single point and is disjoint from @D0

2
. Then c is also a free

generator of V 00
2

other than b . It follows from Van Kampen’s theorem that

�1.E.KIL.p; q///Š hb; c j @E1 D 1i:

Algebraic & Geometric Topology, Volume 8 (2008)



66 Toshio Saito

Recall that E1 is a parallel copy of D1 . Let P 0i �E1 .i D 0; 1; : : : ;p�1/ be parallel
copies of Pi � @D1 . When we follow @E1 in the positive direction of @E1 , we see that
@E1 intersects @E2 just one time on the way from P 0j to P 0

jC1
. If ‰p;q.sj /<‰p;q.u/,

then @E1 intersects @D0
1

at the point P 0sj
. Hence we see that @E1 is presented byQp

jD1
W3.j /.

Example 5.3 Set K D K.L.22; 3/I 5/ and let N 0 be the 3–manifold obtained by
0�–surgery on K . Recall that the basic sequence for .22; 3/ is written in Example 2.4.
Then Proposition 5.1 indicates that

�1.N
0/Š ha; b j a2ba7b D 1; a6baba6b D 1i:

Hence we have

�1.N
0/Š ha; xb j axba�4xb D 1; a�5xb3

D 1i .xb WD a6b/

Š ha; xb j .axb/2a�5
D 1; a�5xb3

D 1i

Š ha; xb j a5
D .axb/2 D xb3

i:

This implies that �1.N
0/ is isomorphic to the binary icosahedral group and hence

�1.N
0/ is nontrivial.

The following is easily obtained by using Corollary 5.2. Calculation is left for the
reader.

Observation 5.4 The following will be all knots represented by K.L.p; q/Iu/ with
0 < q < 5 each of which admits an integral S3 –surgery and is not a core knot. (We
assume that 0< q < p=2 and 0< u� p=2.)

(1) If K DK.L.5; 1/I 2/, then �1.E.KIL.5; 1///Š hx;y j x
3 D y2i.

(2) If K DK.L.7; 2/I 3/, then �1.E.KIL.7; 2///Š hx;y j x
3 D y2i.

(3) If K DK.L.9; 2/I 4/, then �1.E.KIL.9; 2///Š hx;y j x
5 D y2i.

(4) If K DK.L.11; 2/I 3/, then �1.E.KIL.11; 2///Š hx;y j x4 D y3i.

(5) If K DK.L.7; 3/I 2/, then �1.E.KIL.7; 3///Š hx;y j x
3 D y2i.

(6) If K DK.L.11; 3/I 5/, then �1.E.KIL.11; 3///Š hx;y j x5 D y2i.

(7) If K DK.L.13; 3/I 4/, then �1.E.KIL.13; 3///Š hx;y j x4 D y3i.

(8) If K DK.L.13; 3/I 6/, then �1.E.KIL.13; 3///Š hx;y j x7 D y2i.

(9) If K DK.L.14; 3/I 5/, then �1.E.KIL.14; 3///Š hx;y j x5 D y3i.

(10) If K DK.L.19; 3/I 4/, then �1.E.KIL.19; 3///Š hx;y j x5 D y4i.
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(11) If K DK.L.13; 4/I 3/, then �1.E.KIL.13; 4///Š hx;y j x4 D y3i.

(12) If K DK.L.15; 4/I 7/, then �1.E.KIL.15; 4///Š hx;y j x7 D y2i.

(13) If K DK.L.17; 4/I 8/, then �1.E.KIL.17; 4///Š hx;y j x9 D y2i.

(14) If K DK.L.21; 4/I 5/, then �1.E.KIL.21; 4///Š hx;y j x5 D y4i.

(15) If K DK.L.29; 4/I 5/, then �1.E.KIL.29; 4///Š hx;y j x6 D y5i.

(16) If K DK.L.4p0C 5; 4/I 2/ for a nonnegative integer p0 , then
�1.E.KIL.4p0C 5; 4///Š hx;y j x2p0C3 D y2i.

(17) If K DK.L.4p0C 7; 4/I 2/ for a nonnegative integer p0 , then
�1.E.KIL.4p0C 7; 4///Š hx;y j x2p0C3 D y2i.

6 Proofs of Theorems 2.10–2.13

6.1 Proof of Theorem 2.10

Lemma 6.1 Suppose that K.L.p; 1/Iu/ is not a core knot. If K.L.p; 1/Iu/ with
p > 1 and 1� u� p=2 admits an integral S3 –surgery, then .p;u/D .5; 2/.

Moreover, K.L.5; 1/I 2/ is a torus knot.

Proof Set K DK.L.p; 1/Iu/ with p > 1. Then the basic sequence for .p; 1/ is the
following:

fsj g1�j�p W 1; 2; 3; : : : ;p� 1; 0:

Hence we see that p̂;1.u/ D u� 1 and ‰p;1.u/ D u. Suppose that K admits an
integral S3 –surgery. Then K satisfies the conclusion .1/ of Theorem 2.9. We divide
the proof into the following cases.

Case 1 p � p̂;1.u/�u �‰p;1.u/D˙1.

If uD 1, then ‰p;1.u/D 1. This implies that K is a core knot, a contradiction. Hence
u¤ 1. Since p̂;1.u/D u� 1 and ‰p;1.u/D u, we see that p D .u2˙ 1/=.u� 1/.
If p D .u2 � 1/=.u� 1/, then p D uC 1. This also implies that K is a core knot, a
contradiction. Hence we see that pD .u2C1/=.u�1/ and hence pDuC1C2=.u�1/.
Since u and p are positive integers, we see that uD 2; 3 and hence pD 5. However, if
.p;u/D .5; 3/, then this contradicts that 1�u�p=2. Hence we see that .p;u/D .5; 2/.
Since ˆ5;1.2/D1Du�1, Since ˆ9;2.4/D1D‰9;2.4/�1, it follows from Observation
2.6 that K is isotopic to a Heegaard torus. Moreover, it follows from Observation 5.4
that K.L.5; 1/I 2/ is not a core knot. Hence K.L.5; 1/I 2/ is a torus knot.

Case 2 p � p̂;1.u/�u �‰p;1.u/D˙1�p .
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Since p̂;1.u/D u� 1 and ‰p;1.u/D u, we see that p D u˙ 1=u. Since u and p

are positive integers, we see that uD 1 and hence K is a core knot, a contradiction.

Lemma 6.2 For .p;u/ D .5; 2/, 0�–surgery on K D K.L.p; q/Iu/ is an integral
S3 –surgery.

Proof Let N 0 be the 3–manifold obtained by 0�–surgery on K . Then Proposition
5.1 indicates that

�1.N
0/Š ha; b j abaD 1; aba4b D 1i:

Hence we see that �1.N
0/ is trivial by using word reduction (cf [11]). Since Poincaré

conjecture is true for the genus two 3–manifolds (cf [3; 4]), we see that N 0 is homeo-
morphic to S3 .

6.2 Proof of Theorem 2.11

Lemma 6.3 Suppose that K.L.p; 2/Iu/ is not a core knot. If K.L.p; 2/Iu/ with
p > 2 and 1� u� p=2 admits an integral S3 –surgery, then .p;u/D .7; 3/; .9; 4/ or
.11; 3/.

Moreover, K.L.p; 2/Iu/ is a torus knot for each .p;u/ above.

Proof Set KDK.L.p; 2/Iu/ with p> 2. Note that p 6� 0 .mod 2/. Then the basic
sequence for .p; 2/ is the following:

fsj g1�j�p W 2; 4; : : : ;p� 1; 1; 3; : : : ;p� 2; 0:

In other words,

sj D

8<:
2j if 1� j � .p� 1/=2

2j �p if .pC 1/=2� j � p� 1

0 if j D p:

We divide the proof into the following cases.

Case 1 u� 0 .mod 2/.

Set uD 2t for a positive integer t . Then we see that p̂;2.u/D t �1 and ‰p;2.u/D t .
Suppose that K admits an integral S3 –surgery.

Case 1.1 p � p̂;2.u/�u �‰p;2.u/D˙1.

If t D 1, then ‰p;2.u/ D 1. This implies that K is a core knot, a contradiction.
Hence t ¤ 1. Since u D 2t , p̂;2.u/ D t � 1 and ‰p;2.u/ D t , we see that p D

2t C 2C .2˙ 1/=.t � 1/. Since t and p are positive integers, we see that t D 2; 4. If
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t D 2, then .p;u/D .7; 4/ or .9; 4/. Since we assume that 1� u� p=2, we see that
.p;u/¤ .7; 4/ and hence .p;u/D .9; 4/. Since ˆ9;2.4/D 1D‰9;2.4/�1, it follows
from Observation 2.6 that K is isotopic to a Heegaard torus. Moreover, it follows from
Observation 5.4 that K.L.7; 2/I 4/ is not a core knot. Hence K.L.7; 2/I 4/ is a torus
knot. If t D 4, then .p;u/D .11; 8/. This contradicts that 1� u� p=2.

Case 1.2 p � p̂;1.u/�u �‰p;1.u/D˙1�p .

Then we see that p D 2t ˙ 1=t . Since p is an integer with p > 2, we see that t D 1

and hence K is a core knot, a contradiction.

Case 2 u� 1 .mod 2/.

Set u D 2t � 1 for a positive integer t . Then we see that p̂;2.u/ D 2t � 2 and
‰p;1.u/D .p� 1/=2C t . Suppose that K admits an integral S3 –surgery.

Case 2.1 p � p̂;2.u/�u �‰p;2.u/D˙1.

Then we see that p D 2t C 1C .4˙ 2/.2t � 3/. Since t and p are positive integers
with p > 2, we see that t D 2; 3. If t D 2, then .p;u/ D .7; 3/ or .11; 3/. In each
case, it follows from Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus
and is not a core knot. Hence K is a torus knot. If t D 3, then this contradicts that
1� u� p=2.

Case 2.2 p � p̂;1.u/�u �‰p;1.u/D˙1�p .

Then we see that pD 2t �1˙2=.2t �1/. Since t and p are positive integers, we see
that .p;u/D .3; 1/ and hence K is a core knot, a contradiction.

Lemma 6.4 For each .p;u/ D .7; 3/; .9; 4/ and .11; 3/, 0�–surgery on the knot
K DK.L.p; 2/Iu/ is an integral S3 –surgery.

Proof Let N 0 be the 3–manifold obtained by 0�–surgery on K . Then Proposition
5.1 indicates the following.

(1) If .p;u/D .7; 3/, then

�1.N
0/Š ha; b j aba3baD 1; aba3ba3b D 1i:

(2) If .p;u/D .9; 4/, then

�1.N
0/Š ha; b j abaD 1; aba4baba3b D 1i:

(3) If .p;u/D .11; 3/, then

�1.N
0/Š ha; b j aba5baD 1; aba5ba5b D 1i:
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In each case, we see that �1.N
0/ is trivial by using word reduction and hence N 0 is

homeomorphic to S3 .

6.3 Proof of Theorem 2.12

Lemma 6.5 Suppose that K.L.p; 3/Iu/ is not a core knot. If K.L.p; 3/Iu/ with
p > 3 and 1� u� p=2 admits an integral S3 –surgery, then .p;u/D .7; 2/, .11; 5/,
.13; 4/, .13; 6/, .14; 5/ or .19; 4/.

Moreover, K.L.p; 3/Iu/ is a torus knot for each .p;u/ above.

Proof Set K DK.L.p; 3/Iu/ with p > 3. Note that p 6� 0 .mod 3/.

Case A p � 1 .mod 3/.

Then the basic sequence for .p; 3/ is the following:

fsj g1�j�p W 3; 6; : : : ;p� 1; 2; 5; : : : ;p� 2; 1; 4; : : : ;p� 3; 0:

In other words,

sj D

8̂̂<̂
:̂

3j if 1� j � .p� 1/=3

3j �p if .pC 2/=3� j � .2p� 2/=3

3j � 2p if .2pC 1/=3� j � p� 1

0 if j D p:

We divide the proof into the following cases.

Case A.1 u� 0 .mod 3/.

Set uD 3t for a positive integer t . Then we see that p̂;3.u/D t �1 and ‰p;3.u/D t .
Suppose that K admits an integral S3 –surgery.

Case A.1.1 p � p̂;3.u/�u �‰p;3.u/D˙1.

If t D 1, then ‰p;3.u/D 1. This implies that K is a core knot, a contradiction. Hence
t ¤ 1. Hence we see that p D 3t C 3C .3˙ 1/=.t � 1/. Since t and p are positive
integers, we see that tD2; 3; 5. If tD2, then .p;u/D .13; 6/ because p�1 . mod 3/.
Hence it follows from Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus
and is not a core knot. Hence K is a torus knot. If t D 4 or 5, then this contradicts
that p � 1 .mod 3/ or 1� u� p=2.

Case A.1.2 p � p̂;3.u/�u �‰p;3.u/D˙1�p .

Then we see that p D 3t ˙ 1=t . Since t and p are positive integers with p > 3, we
see that t D 1 and hence K is a core knot, a contradiction.
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Case A.2 u� 1 .mod 3/.

Set u D 3t � 2 for a positive integer t . Then we see that p̂;3.u/ D 3t � 3 and
‰p;3.u/D .2p� 2/=3C t . Suppose that K admits an integral S3 –surgery.

Case A.2.1 p � p̂;3.u/�u �‰p;3.u/D˙1.

Then we see that p D 3t C 1C .9˙ 3/=.3t � 5/. Since t and p are positive integers
with p > 3, we see that t D 2; 3. If t D 2, then .p;u/D .13; 4/ or .19; 4/. In each
case, it follows from Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus
and is not a core knot. Hence K is a torus knot. If t D 3, then this contradicts that
1� u� p=2.

Case A.2.2 p � p̂;3.u/�u �‰p;3.u/D˙1�p .

Then we see that p D 3t � 2˙ 3=.3t � 2/. Since t and p are positive integers, we see
that t D 1 and hence K is a core knot, a contradiction.

Case A.3 u� 2 .mod 3/.

Set u D 3t � 1 for a positive integer t . Then we see that p̂;3.u/ D 2t � 2 and
‰p;3.u/D .p� 1/=3C t . Suppose that K admits an integral S3 –surgery.

Case A.3.1 p � p̂;3.u/�u �‰p;3.u/D˙1.

Then we see that p D 3t C 3C .16˙ 3/=.3t � 5/. Since t and p are positive integers,
we see that t D 2; 6; 8. If t D 2, then .p;u/D .22; 5/ or .28; 5/. In each case, however,
the basic sequence for .p; 3/ does not admit w-property for uD 5. This contradicts
the conclusion .2/ of Theorem 2.9. If t D 6; 8, then this contradicts that 1� u� p=2.

Case A.3.2 p � p̂;3.u/�u �‰p;3.u/D˙1�p .

Then we see that p D 3t C .1˙ 3/=.3t � 2/. Since t and p are positive integers with
p > 3, we see that t D 1; 2. If t D 1, then .p;u/ D .7; 2/. Hence it follows from
Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus and is not a core knot.
Hence K is a torus knot. If t D 2, then this contradicts that 1� u� p=2.

Case B p � 2 .mod 3/.

Then the basic sequence for .p; 3/ is the following:

fsj g1�j�p W 3; 6; : : : ;p� 2; 1; 4; : : : ;p� 1; 2; 5; : : : ;p� 3; 0:

In other words,

sj D

8̂̂<̂
:̂

3j if 1� j � .p� 2/=3

3j �p if .pC 1/=3� j � .2p� 1/=3

3j � 2p if .2pC 2/=3� j � p� 1

0 if j D p:
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We divide the proof into the following cases.

Case B.1 u� 0 .mod 3/.

Set uD 3t for a positive integer t . Then we see that p̂;3.u/D t �1 and ‰p;3.u/D t .
By the same argument as in Case A.1, we have .p;u/D .11; 6/ because p�2 . mod 3/

and 1� u� p=2. Hence it follows from Observations 2.6 and 5.4 that K is isotopic
to a Heegaard torus and is not a core knot. Hence K is a torus knot.

Case B.2 u� 1 .mod 3/.

Set u D 3t � 2 for a positive integer t . Then we see that p̂;3.u/ D 2t � 2 and
‰p;3.u/D .p� 2/=3C t . Suppose that K admits an integral S3 –surgery.

Case B.2.1 p � p̂;3.u/�u �‰p;3.u/D˙1.

Then we see that p D 3t C .4˙ 3/=.3t � 4/. Since t and p are positive integers with
p > 3, we see that this case is impossible.

Case B.2.2 p � p̂;3.u/�u �‰p;3.u/D˙1�p .

Then we see that p D 3t � 3C .1˙ 3/=.3t � 1/. Since t and p are positive integers
with p > 3, we see that this case is also impossible.

Case B.3 u� 2 .mod 3/.

Set u D 3t � 1 for a positive integer t . Then we see that p̂;3.u/ D 3t � 2 and
‰p;3.u/D .2p� 1/=3C t . Suppose that K admits an integral S3 –surgery.

Case B.3.1 p � p̂;3.u/�u �‰p;3.u/D˙1.

Then we see that p D 3t C 2C .9˙ 3/=.3t � 4/. Since t and p are positive integers,
we see that t D 2 and hence .p;u/D .11; 5/ or .14; 5/. In each case, it follows from
Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus and is not a core knot.
Hence K is a torus knot.

Case B.3.2 p � p̂;3.u/�u �‰p;3.u/D˙1�p .

Then we see that p D 3t � 1˙ 3=.3t � 1/. This implies that p is not an integer for
any positive integer t .

Lemma 6.6 For each .p;u/ D .11; 5/; .13; 4/; .13; 6/; .14; 5/ and .19; 4/, 0�–
surgery on K.L.p; 3/Iu/ is an integral S3 –surgery. For .p;u/D .7; 2/, 1�–surgery
on K.L.p; 3/Iu/ is an integral S3 –surgery.

Proof Let N 0r be the 3–manifold obtained by r�–surgery on K.L.p; 3/Iu/. Then
Proposition 5.1 indicates the following.
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(1) If .p;u/D .7; 2/, then

�1.N
0
1/Š ha; b j a

3b D 1; a5ba2b D 1i:

(2) If .p;u/D .11; 5/, then

�1.N
0
0/Š ha; b j aba3baba3baD 1; aba3baba3ba3b D 1i:

(3) If .p;u/D .13; 4/, then

�1.N
0
0/Š ha; b j aba4ba4baD 1; aba4ba4ba4b D 1i:

(4) If .p;u/D .13; 6/, then

�1.N
0
0/Š ha; b j abaD 1; aba4baba3baba3b D 1i:

(5) If .p;u/D .14; 5/, then

�1.N
0
0/Š ha; b j aba4baba4baD 1; aba4baba4ba4b D 1i:

(6) If .p;u/D .19; 4/, then

�1.N
0
0/Š ha; b j aba6ba6baD 1; aba6ba6ba6b D 1i:

In each case, we see that �1.N
0
0
/ or �1.N

0
1
/ is trivial by using word reduction and

hence N 0
0

is homeomorphic to S3 .

6.4 Proof of Theorem 2.13

Lemma 6.7 Suppose that K.L.p; 4/Iu/ is not a core knot. If K.L.p; 4/Iu/ with
p > 4 and 1� u� p=2 admits an integral S3 –surgery, then .p;u/D .13; 3/, .15; 7/,
.17; 8/, .21; 5/, .29; 5/ or .4p0C 6˙ 1; 2/ .p0 D 0; 1; : : :/.

Moreover, K.L.p; 4/Iu/ is a torus knot for each .p;u/ above.

Proof Set K DK.L.p; 4/Iu/ with p > 4. Note that p 6� 0; 2 .mod 4/.

Case A p � 1 .mod 4/.

Then the basic sequence for .p; 4/ is the following:

fsj g1�j�p W 4; 8; : : : ;p� 1; 3; 7; : : : ;p� 2; 2; 6; : : : ;p� 3; 1; 5; : : : ;p� 4; 0:
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In other words,

sj D

8̂̂̂̂
<̂
ˆ̂̂:

4j if 1� j � .p� 1/=4

4j �p if .pC 3/=4� j � .2p� 2/=4

4j � 2p if .2pC 2/=4� j � .3p� 3/=4

4j � 3p if .3pC 1/=4� j � p� 1

0 if j D p:

We divide the proof into the following cases.

Case A.1 u� 0 .mod 4/.

Set uD 4t for a positive integer t . Then we see that p̂;4.u/D t �1 and ‰p;4.u/D t .
Suppose that K admits an integral S3 –surgery.

Case A.1.1 p � p̂;4.u/�u �‰p;4.u/D˙1.

If t D 1, then this implies that K is a core knot, a contradiction. Hence t ¤ 1. Hence
we see that p D 4t C 4C .4˙ 1/=.t � 1/. Since t and p are positive integers, we
see that t D 2; 4; 6. If t D 2, then .p;u/D .17; 8/ because p � 1 .mod 4/. Hence
it follows from Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus and
is not a core knot. Hence K is a torus knot. If t D 4; 5, then this contradicts that
1� u� p=2.

Case A.1.2 p � p̂;4.u/�u �‰p;4.u/D˙1�p .

Then we see that p D 4t ˙ 1=t . Since t and p are positive integers with p > 4, we
see that t D 1 and hence K is a core knot, a contradiction.

Case A.2 u� 1 .mod 4/.

Set u D 4t � 3 for a positive integer t . Then we see that p̂;4.u/ D 4t � 4 and
‰p;4.u/D .3p� 3/=4C t . Suppose that K admits an integral S3 –surgery.

Case A.2.1 p � p̂;4.u/�u �‰p;4.u/D˙1.

Then we see that p D 4t C 1C .16˙ 4/=.4t � 7/. Since t and p are positive integers
with p > 4, we see that t D 2; 3. If t D 2, then .p;u/D .21; 5/ or .29; 5/. In each
case, Hence it follows from Observations 2.6 and 5.4 that K is isotopic to a Heegaard
torus and is not a core knot. Hence K is a torus knot. If t D 3, then this contradicts
that 1� u� p=2.

Case A.2.2 p � p̂;4.u/�u �‰p;4.u/D˙1�p .

Then we see that p D 4t � 3˙ 4=.t � 3/. Since t and p are positive integers, we see
that t D 1 and hence K DK.L.5; 4/I 1/ is a core knot, a contradiction.
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Case A.3 u� 2 .mod 4/.

Set u D 4t � 2 for a positive integer t . Then we see that p̂;4.u/ D 3t � 3 and
‰p;4.u/D .p� 1/=2C t . Suppose that K admits an integral S3 –surgery.

Case A.3.1 p � p̂;4.u/�u �‰p;4.u/D˙1.

Suppose that t D 2. Then we have u D 6, p̂;4.u/ D p̂;4.6/ D 3 and ‰p;4.u/ D

‰p;4.6/D .pC 3/=2. Hence we have a contradiction by the following:

p � p̂;4.u/�u �‰p;4.u/D�9¤˙1:

Therefore we see that t¤2 and pD4tC4C.9˙1/=.t�2/. Since t and p are positive
integers and p� 1 .mod 4/, we see that t D 4; 10; 12. This, however, contradicts that
1� u� p=2.

Case A.3.2 p � p̂;4.u/�u �‰p;4.u/D˙1�p .

Suppose first that t D 1. Then we have u D 2. Since p > 4 and p � 1 .mod 4/,
.p;u/ D .4p0C 5; 2/ for any nonnegative integer p0 . In each case, it follows from
Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus and is not a core
knot. Hence K is a torus knot. Suppose next that t ¤ 1. Then we see that p D

4tC .1˙1/=.t �1/. Since t and p are positive integers and p� 1 .mod 4/, we have
t D 3. This, however, contradicts that 1� u� p=2.

Case A.4 u� 3 .mod 4/.

Set u D 4t � 1 for a positive integer t . Then we see that p̂;3.u/ D 2t � 2 and
‰p;3.u/D .p� 1/=4C t . Suppose that K admits an integral S3 –surgery.

Case A.4.1 p � p̂;4.u/�u �‰p;4.u/D˙1.

Then we see that pD4tC5C.36˙4/=.4t�7/. Since t and p are positive integers, we
see that t D 2; 3. and hence .p;u/D .45; 7/; .53; 7/; .25; 11/. In each case, however,
the basic sequence for .p; 4/ does not admit w-property for u. This contradicts the
conclusion .2/ of Theorem 2.9.

Case A.4.2 p � p̂;4.u/�u �‰p;4.u/D˙1�p .

Then we see that pD4tC1C.4˙4/=.4t�3/. Suppose that pD4tC1. Then uD4t�1

and this contradicts that 1 � u � p=2. Hence we see that p D 4t C 1C 8=.4t � 3/.
Since p is an integer with p > 4, we see that t D 1 and hence .p;u/D .13; 3/. Hence
it follows from Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus and is
not a core knot. Hence K is a torus knot.

Case B p � 3 .mod 4/.
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Then the basic sequence for .p; 4/ is the following:

fsj g1�j�p W 4; 8; : : : ;p� 3; 1; 5; : : : ;p� 2; 2; 6; : : : ;p� 1; 3; 7; : : : ;p� 4; 0:

In other words,

sj D

8̂̂̂̂
<̂
ˆ̂̂:

4j if 1� j � .p� 3/=4

4j �p if .pC 1/=4� j � .2p� 2/=4

4j � 2p if .2pC 2/=4� j � .3p� 3/=4

4j � 3p if .3pC 1/=4� j � p� 1

0 if j D p:

We divide the proof into the following cases.

Case B.1 u� 0 .mod 4/.

Set uD 4t for a positive integer t . Then we see that p̂;4.u/D t �1 and ‰p;4.u/D t .
By the same argument as in Case A.1, we have a contradiction because p� 3 .mod 4/

and 1� u� p=2.

Case B.2 u� 1 .mod 4/.

Set u D 4t � 3 for a positive integer t . Then we see that p̂;4.u/ D 2t � 2 and
‰p;4.u/D .p� 3/=4C t . Suppose that K admits an integral S3 –surgery.

Case B.2.1 p � p̂;4.u/�u �‰p;4.u/D˙1.

Then we see that p D 4t � 1C .4˙ 4/=.4t � 5/. If p D 4t � 1, then this contradicts
that 1 � u � p=2. Hence we see that p D 4t � 1C 8=.4t � 5/. Since t and p are
positive integers, we see that this case is impossible.

Case B.2.2 p � p̂;4.u/�u �‰p;4.u/D˙1�p .

Then we see that p D 4t � 5C .4˙ 4/=.4t � 1/. If p D 4t � 5, then this contradicts
that 1 � u � p=2. Hence we see that p D 4t � 5C 8=.4t � 1/. Since t and p are
positive integers, we see that this case is also impossible.

Case B.3 u� 2 .mod 4/.

Set u D 4t � 2 for a positive integer t . Then we see that p̂;4.u/ D 3t � 2 and
‰p;4.u/D .p� 1/=2C t . Suppose that K admits an integral S3 –surgery.

Case B.3.1 p � p̂;4.u/�u �‰p;4.u/D˙1.

Suppose first that t D 1. Then we have u D 2. Since p > 4 and p � 3 .mod 4/,
.p;u/ D .4p0C 7; 2/ for any nonnegative integer p0 . In each case, it follows from
Observations 2.6 and 5.4 that K is isotopic to a Heegaard torus and is not a core
knot. Hence K is a torus knot. Suppose next that t ¤ 1. Then we see that p D
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4t C .1˙ 1/=.t � 1/. Since t and p are positive integers and p � 3 .mod 4/, we see
that this case is impossible.

Case B.3.2 p � p̂;4.u/�u �‰p;4.u/D˙1�p .

Then we see that p D 4t � 4C .1˙ 1/=t . Since t and p are positive integers and
p � 3 .mod 4/, we see that this case is also impossible.

Case B.4 u� 3 .mod 4/.

Set u D 4t � 1 for a positive integer t . Then we see that p̂;4.u/ D 4t � 2 and
‰p;4.u/D .3p� 1/=4C t . Suppose that K admits an integral S3 –surgery.

Case B.4.1 p � p̂;4.u/�u �‰p;4.u/D˙1.

Then we see that pD 4tC3C .16˙4/=.4t �5/. Since t and p are positive integers,
we see that t D 2 and hence .p;u/D .15; 7/. Hence it follows from Observations 2.6
and 5.4 that K is isotopic to a Heegaard torus and is not a core knot. Hence K is a
torus knot.

Case B.4.2 p � p̂;4.u/�u �‰p;4.u/D˙1�p .

Then we see that pD 4t �1˙4=.4t �1/. Since t and p are positive integers, we see
that this case is also impossible.

Lemma 6.8 For each .p;u/ D .15; 7/; .17; 8/; .21; 5/; .29; 5/ and .4p0 C 7; 2/

.p0 D 0; 1; : : :/, 0�–surgery on K.L.p; 4/Iu/ is an integral S3 –surgery. For each

.p;u/D .13; 3/ and .4p0C 5; 2/ .p0 D 0; 1; : : :/, 1�–surgery on K.L.p; 4/Iu/ is an
integral S3 –surgery.

Proof Let N 0r be the 3–manifold obtained by r�–surgery on K.L.p; 4/Iu/. Then
Proposition 5.1 indicates the following.

(1) If .p;u/D .13; 3/, then

�1.N
0
1/Š ha; b j a

4b D 1; a7ba3ba3b D 1i:

(2) If .p;u/D .15; 7/, then

�1.N
0
0/Š ha; b j aba3baba3baba3baD 1; aba3baba3baba3ba3b D 1i:

(3) If .p;u/D .17; 8/, then

�1.N
0
0/Š ha; b j abaD 1; aba4baba3baba3baba3b D 1i:

(4) If .p;u/D .21; 5/, then

�1.N
0
0/Š ha; b j aba5ba5ba5baD 1; aba5ba5ba5ba5b D 1i:
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(5) If .p;u/D .29; 5/, then

�1.N
0
0/Š ha; b j aba7ba7ba7baD 1; aba7ba7ba7ba7b D 1i:

(6) If .p;u/D .4p0C 5; 2/, then

�1.N
0
1/Š ha; b j a

2p0C3b D 1; a3p0C4bap0C1b D 1i:

(7) If .p;u/D .4p0C 7; 2/, then

�1.N
0
0/Š ha; b j a

p0C2bap0C2
D 1; ap0C2ba3p0C5b D 1i:

In each case, we see that �1.N
0
0
/ or �1.N

0
1
/ is trivial by using word reduction and

hence N 0
0

is homeomorphic to S3 .
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208 MR1844891Appendix A by Michael Heusener and Porti

[4] D Cooper, C D Hodgson, S P Kerckhoff, Three-dimensional orbifolds and
cone-manifolds, MSJ Memoirs 5, Mathematical Society of Japan, Tokyo (2000)
MR1778789With a postface by Sadayoshi Kojima

[5] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math.
.2/ 125 (1987) 237–300 MR881270

[6] R Fintushel, R J Stern, Constructing lens spaces by surgery on knots, Math. Z. 175
(1980) 33–51 MR595630

[7] D Gabai, Foliations and the topology of 3-manifolds. III, J. Differential Geom. 26
(1987) 479–536 MR910018

[8] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math.
Soc. 2 (1989) 371–415 MR965210

[9] M Hirasawa, K Shimokawa, Dehn surgeries on strongly invertible knots which yield
lens spaces, Proc. Amer. Math. Soc. 128 (2000) 3445–3451 MR1676336

[10] T Homma, M Ochiai, M-o Takahashi, An algorithm for recognizing S3 in 3-
manifolds with Heegaard splittings of genus two, Osaka J. Math. 17 (1980) 625–648
MR591141

Algebraic & Geometric Topology, Volume 8 (2008)

http://dx.doi.org/10.2307/2047677
http://www.ams.org/mathscinet-getitem?mr=984783
http://www.ams.org/mathscinet-getitem?mr=1844891
http://www.ams.org/mathscinet-getitem?mr=1778789
http://dx.doi.org/10.2307/1971311
http://www.ams.org/mathscinet-getitem?mr=881270
http://dx.doi.org/10.1007/BF01161380
http://www.ams.org/mathscinet-getitem?mr=595630
http://www.ams.org/mathscinet-getitem?mr=910018
http://dx.doi.org/10.2307/1990979
http://www.ams.org/mathscinet-getitem?mr=965210
http://dx.doi.org/10.1090/S0002-9939-00-05417-4
http://dx.doi.org/10.1090/S0002-9939-00-05417-4
http://www.ams.org/mathscinet-getitem?mr=1676336
http://www.ams.org/mathscinet-getitem?mr=591141


Knots in lens spaces with the 3–sphere surgery 79

[11] T Kaneto, On genus 2 Heegaard diagrams for the 3-sphere, Trans. Amer. Math. Soc.
276 (1983) 583–597 MR688963

[12] R Kirby, editor, Problems in low-dimensional topology, from: “Geometric topology
(Athens, GA, 1993)”, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI
(1997) 35–473 MR1470751
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