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Topology of random linkages

MICHAEL FARBER

Betti numbers of configuration spaces of mechanical linkages (known also as polygon
spaces) depend on a large number of parameters – the lengths of the bars of the
linkage. Motivated by applications in topological robotics, statistical shape theory and
molecular biology, we view these lengths as random variables and study asymptotic
values of the average Betti numbers as the number of links n tends to infinity. We
establish a surprising fact that for a reasonably ample class of sequences of probability
measures the asymptotic values of the average Betti numbers are independent of the
choice of the measure. The main results of the paper apply to planar linkages as well
as for linkages in R3 . We also prove results about higher moments of Betti numbers.

55R80, 55N99; 55M99

1 Introduction

Configuration spaces of mechanical systems which appear in topological robotics
depend typically on many parameters which are only partially known and can be viewed
as random variables. The configuration space, which depends essentially on the values
of the parameters, can be viewed in such a situation as a random topological space.
Betti numbers of the configuration space are then random functions and information
about their mathematical expectations and other statistical characteristics may have
practical importance in various applications.

Interesting examples of such random topological spaces are provided by configuration
spaces of mechanical linkages, the main object of study in this paper. A linkage is a
simple mechanism consisting of n bars in R3 having fixed lengths l1; : : : ; ln which
are cyclically connected by revolving joints forming a closed polygonal chain. Angles
between bars of the linkage may vary, the only condition is that the links do not become
disconnected from each other. We consider a pair of configurations of the linkage as
being identical if one can be obtained from the other by a rigid motion of the space
R3 . The configuration space of the linkage, denoted in this paper by

N` D

n
.u1; : : : ;un/ 2 S2

� � � � �S2
I

nX
iD1

liui D 0 2R3
o
=SO.3/;(1)
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Figure 1: Linkage

parameterizes all possible configurations. Here ` D .l1; l2; : : : ; ln/ 2 Rn
C is the n–

tuple of the bar lengths, called the length vector1. Spaces N` are also known as
polygon spaces as they parameterize shapes of all n–gons in R3 having sides of length
l1; : : : ; ln .

The spaces N` appear in molecular biology where they represent shapes of long
molecules. Clearly, information about topological properties of these spaces may lead
to interesting new effects in molecular and chemical design. Statistical shape theory
(see eg Kendall et al [10]) is another area where the spaces N` play an interesting role:
they describe the space of shapes having certain geometric properties with respect to
the central point. Having in mind these applications it is quite natural to assume that
the number of links n is large, n!1, and that the numbers li > 0 are not entirely
known or are known with some random error.

Let us now give some basic facts concerning the topology of N` and its dependence
on the length vector ` 2 R3

C . For a generic ` (this term is explained below), N` is
a compact smooth manifold of dimension 2.n� 3/. If ` is not generic then N` is a
compact manifold with singularities. Clearly, N` DNt` for any t > 0: Hence we may
consider ` as lying in the quotient space �n�1 of Rn

C modulo the action of RC by
scalar multiplication. Clearly, �n�1 can be identified with the interior of the standard
simplex, ie the set given by the inequalities l1 > 0; : : : ; ln > 0 and

P
li D 1.

It is easy to see that N` is diffeomorphic to N`0 if `0 is obtained from ` by permuting
coordinates. Let †n denote the permutation group of n symbols. Clearly †n acts on

1In this paper Rn
C
� Rn denotes the set of all points .l1; : : : ; ln/ having positive coordinates l1 >

0; : : : ; ln > 0 .
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Rn and on �n�1 permuting coordinates and the manifold N` depends only on the
†n –orbit of the vector `.

To explain further the character of dependence of N` on ` we need to introduce the
concept of a chamber. For any subset J � f1; : : : ; ng we denote by HJ � Rn the
hyperplane defined by the equationX

i2J

li D
X
i…J

li :(2)

The connected components of the complements

Rn
C�

[
J

HJ

are called chambers. Generic length vectors are defined as those lying in chambers,
not on hyperplanes HJ . It is an interesting combinatorial problem to find or estimate
the number cn of different †n –orbits of chambers for large n. The numbers cn are
known for n� 9 (see Hausmann and Rodriguez [8]):

n 3 4 5 6 7 8 9

cn 2 3 7 21 135 2470 175428

We see that the number cn grows very fast. The diffeomorphism type of N` is constant
when ` varies inside a chamber. One of the main results of Farber, Hausmann and
Schütz [4] states that for a given n the map ` 7!N` gives a one-to-one correspondence
between the †n –orbits of chambers and the diffeomorphism types of manifolds N`

where ` 2Rn
C is generic.

The following picture summarizes our description of the field of topological spaces
` 7! N` viewed as a single object. The open simplex �n�1 is divided into a huge
number of tiny chambers, each representing a diffeomorphism type of manifolds N` .
The symmetric group †n acts on the simplex �n�1 mapping chambers to chambers
and for n 6D 4 manifolds N` and N`0 are diffeomorphic if and only if the vectors `; `0

lie in chambers belonging the same †n –orbit.

The main idea of this work is to use methods of probability theory and statistics
in dealing with the variety of diffeomorphism types of configuration spaces N` for
n large. In applications, different manifolds N` appear with different probabilities
and our intention is to study the most “frequently emerging” manifolds N` and the
mathematical expectations of their topological invariants. Formally, we view the length
vector ` 2�n�1 as a random variable whose statistical behavior is characterized by a
probability measure �n . Topological invariants of N` become random functions and
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their mathematical expectations might be very useful for applications. Thus, one is led
to study the average or expected Betti numbers2

E.b2p.N`//D

Z
�n�1

b2p.N`/d�n(3)

where the integration is understood with respect to `. One of the main results of this
paper states that for p fixed and n large this average 2p–dimensional Betti number
can be calculated explicitly up to an exponentially small error. More precisely, we
prove that

E.b2p.N`//D

Z
�n�1

b2p.N`/d�n �

pX
iD0

�
n� 1

i

�
:

It might appear surprising that the asymptotic value of the average Betti number
b2p.N`/ does not depend of the sequence of probability measures �n which are
allowed to vary in an ample class of admissible probability measures described in
Section 2 below.

We also find the asymptotics of the average Betti numbers bp.M`/ of configuration
spaces of planar polygon spaces

M` D

n
.u1; : : : ;un/ 2 S1

� � � � �S1
I

nX
iD1

liui D 0 2R2
o.

SO.2/:(4)

In the paper [5] we calculated the asymptotic values of the average Betti numbers

E.bp.M`//D

Z
�n�1

bp.M`/d�n(5)

for two sequences of probability measures �n on Rn
C . It was discovered in [5] that

for large n the answers for these two distinct measures were equal. The present paper
explains this universality phenomenon. We also compute asymptotics of the momentsZ

�n�1

b2p.N`/
kd�n;

Z
�n�1

bp.M`/
kd�n;(6)

where k D 1; 2; 3; : : : assuming that n tends to infinity.

In this paper we employ a method different from the one used in [5]: instead of dealing
with explicit expressions for Betti numbers we specify a domain in the simplex of
parameters where the behavior of Betti numbers can easily be described and, moreover,
the volume of the complement of the domain is exponentially small. The proofs
presented below are shorter than in [5] although theorems of the present paper are more
general in several respects: (a) they allow more general class of measures, (b) in this

2It is well known that all odd-dimensional Betti numbers of N` vanish; see Klyachko [11].
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paper we treat both cases of planar and spatial linkages and (c) the present approach is
applicable to higher moments as well.

Here are a few comments on the history of the problem. Polygon spaces were studied
by K Walker [13], M Kapovich and J Millson [9] and others. Betti numbers of the
spaces N` were first described by A A Klyachko [11] who used methods of algebraic
geometry. J -Cl Hausmann and A Knutson [7] applied methods of symplectic topology
(toric varieties) to study the cohomology algebras H�.N`/. Betti numbers of planar
polygon spaces M` as functions of the length vector ` were found in Farber and Schütz
[6]; this result uses techniques of Morse theory of manifolds with involution. The
recent preprint of the author, Hausmann and Schütz [4] gives a general classification
of diffeomorphism types of polygon spaces M` and N` in terms of combinatorics of
chambers and the action of the symmetric group †n .

2 Statements of the main results

To state the main results of this paper we need to define what is meant by an admissible
sequence of measures.

For a vector `D .l1; : : : ; ln/ we denote by j`j Dmaxfjl1j; : : : ; jlnjg the maximum of
absolute values of coordinates. The symbol �n�1 denotes the open unit simplex, ie
the set of all vectors `D .l1; l2; : : : ; ln/ 2 Rn such that li > 0 and l1C � � � C ln D 1.
Let �n denote the Lebesgue measure on �n�1 normalized so that �n.�

n�1/D 1: In
other words, for a Lebesgue measurable subset A��n�1 one has

�n.A/D
vol.A/

vol.�n�1/

where the symbol vol denotes the .n� 1/–dimensional volume.

For an integer p � 1 we denote by ƒp the set

ƒp D f` 2�
n�1
I j`j � .2p/�1

g:(7)

Clearly, ƒp �ƒq for p � q and ƒp D�
n�1 for 2p � n.

It will be helpful to think of p being fixed and of n being large, say, tending to 1.
The set ƒp is shown on the left in Figure 2. It is the union of n domains ƒi

p defined as
ƒi

p D f`D .l1; : : : ; ln/ 2�
n�1I li �

1
2p
g, where i D 1; : : : ; n. Each ƒi

p is homothetic
to �n�1 with coefficient .1� 1

2p
/ and hence �n.ƒ

i
p/D .1�

1
2p
/n�1 . It follows that

�n.ƒp/� n �
�
1�

1

2p

�n�1
;(8)

ie the normalized Lebesgue measure of ƒp is exponentially small for large n.
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ƒp

ƒi
p

Figure 2

Definition 2.1 Consider a sequence of probability measures �n on �n�1 where
nD 1; 2; : : : . It is called admissible if �nDfn ��n where fn W�

n�1!R is a sequence
of Lebesgue measurable functions satisfying: (i) fn � 0, (ii)

R
�n�1 fnd�n D 1, and

(iii) for any p � 1 there exist constants A> 0 and 0< b < 2 such that

fn.`/�A � bn(9)

for any n and any ` 2ƒp ��
n�1 .

Note that property (iii) imposes restrictions on the behavior of the sequence �n only in
domains ƒn�1

p .

Example Consider the unit cube �n � Rn
C given by the inequalities 0 � li � 1

for i D 1; : : : ; n. Let �n be the probability measure on Rn
C supported on �n �Rn

C

such that the restriction �nj�n is the Lebesgue measure, �n.�n/D 1. Consider the
sequence of induced measures

�n D q�.�n/(10)

on simplices �n�1 where qW Rn
C!�n�1 is the normalization map q.`/D t` where

t D .l1C � � �C ln/
�1: The measures �n have a very clear geometric meaning: it is the

probability distribution in the case when the bar lengths li are independent and are
uniformly distributed in the unit interval Œ0; 1� [5]. The goal of the following arguments
is to show that the sequence (10) is admissible.
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It is easy to see that
�n D fn�n

where fnW �
n�1!R is given by

fn.`/D kn � j`j
�n; ` 2�n�1; kn 2R:(11)

Indeed, consider coordinates 0� y1; : : : ;yn � 1 in �n and another coordinate system
in �n is given by variables z1; : : : ; zn�1; t satisfying zi � 0, z1 C � � � C zn�1 � 1

and 0 � t � jzj�1 , where z D .z1; : : : ; zn/ and zn is an auxiliary variable given by
zn D 1� z1�� � �� zn�1 . These two coordinate systems are related by yi D tzi , where
i D 1; : : : ; n. A simple calculation shows that

dy1 ^ dy2 ^ : : : dyn D tn�1dz1 ^ : : : dzn�1 ^ dt

leading to formula (11). The constant kn which appears in (11) can be found (using
(ii) of Definition 2.1) from the equation

k�1
n D

Z
�n�1

j`j�nd�n:(12)

If ` 2ƒn�1
p then fn.`/� kn � .2p/n . Using (8) and (12) we find that

k�1
n � .2p/n �

�
1� n

�2p� 1

2p

�n�1
�
:

This shows that the sequence .2p/nkn remains bounded as n!1 implying (iii) of
Definition 2.1. Hence, the sequence of measures f�ng is admissible.

Next we state main theorems of this paper.

Theorem 2.2 Fix an admissible sequence of probability measures �n and an integer
p � 0, and consider the 2p–dimensional Betti number (3) of polygon spaces N` in
R3 as a random variable on �n�1 , for large n!1. Then there exist constants C > 0

and 0< a< 1 (depending on the sequence of measures �n and on the number p but
independent of n) such that the average Betti numbers (3) satisfyˇ̌̌̌

ˇ
Z

�n�1

b2p.N`/d�n�

pX
iD0

�
n� 1

i

�ˇ̌̌̌
ˇ< C � an(13)

for all n.

Theorem 2.3 Fix an admissible sequence of probability measures �n and an integer
p � 0, and consider the average p–dimensional Betti number (5) of planar polygon
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spaces for large n!1. Then there exist constants C > 0 and 0< a< 1 (depending
on the sequence of measures �n and on the number p but independent of n) such thatˇ̌̌̌

ˇ
Z

�n�1

bp.M`/d�n�

�
n� 1

p

�ˇ̌̌̌
ˇ< C � an(14)

for all n.

3 Volume of the frustum of a simplex

In this section we obtain a formula for the volume of the intersection of a simplex with
a half-space. General formulae of this kind are well known; see Curry and Schoenberg
[2], Ali [1], Varsi [12] and Farber and Kappeler [5]. However in this paper we have to
consider a highly degenerate situation when the functional determining the half-space
takes only two distinct values of the set of vertices. We give an explicit formula and its
proof in this special case.

Lemma 3.1 Let b0; : : : ; bn 2Rn be vertices of a simplex �n �Rn . Let �W Rn!R
be an affine functional such that �.bi/D�1 for i D 0; : : : ;p� 1 and �.bi/D 1 for
i Dp;pC1; : : : ; n. For x 2R denote by Hx the half-space HxDfv 2RnI�.v/�xg.
Then the ratio

r.x/D
vol.Hx \�/

vol.�/
for x 2 Œ�1; 1� is given by

r.x/D

�
xC 1

2

�q

�

p�1X
kD0

�
q� 1C k

q� 1

�
�

�
1�x

2

�k

:(15)

Here q D n�pC 1 denotes the multiplicity of value 1D �.bi/.

Proof The function r.x/ is closely related to spline functions which were introduced
in Section 3 of Curry and Schoenberg [2]. Clearly r.x/ vanishes for x ��1 and r.x/

is identically 1 for x � 1. Moreover, from geometrical considerations [2, Section 3]
one knows that:

(a) r.x/ is a polynomial of degree n for x 2 Œ�1; 1�,

(b) r.x/ is of class C n�p near �1,

(c) r.x/ is of class C n�q near 1.
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Hence we obtain that

r .j/.�1/D 0 for j D 0; 1; : : : ; n�p

.r.x/� 1/.j/.1/D 0 for j D 0; 1; : : : ; n� q:and

The first equation implies that r.x/D .xC1/n�pC1g.x/ where g.x/ is polynomial of
degree p� 1. To satisfy the second equation, we must take for g.x/ the sum of terms
of degree � p�1 of Taylor expansion at xD 1 of the rational function .xC1/p�n�1 .
Computing this Taylor expansion we obtain (15).

Corollary 3.2 Under conditions of Lemma 3.1 the number rp;q D r.0/ is given by

rp;q D 2�q
�

p�1X
kD0

�
q� 1C k

k

�
� 2�k(16)

The number rp;q has a clear geometric meaning. Divide the set of vertices of �n

into two subsets, one containing p elements and another containing q elements, here
pC q D nC 1. Let F and F 0 denote simplices generated by each of these subsets.
Any point of �n lies on a unique segment connecting a point of F with a point of F 0 .
Then rp;q is the relative volume of the set of points x 2�n such that xD .1� t/aC ta0

where a 2 F , a0 2 F 0 and t 2 Œ0; 1=2�.

4 Proof of Theorem 2.2

We start by recalling the description of Betti numbers of polygon spaces N` given by
A A Klyachko [11] and by J -Cl Hausmann and A Knutson [7]. A subset J � f1; : : : ; ng

is called short if X
i2J

li <
X
i…J

li :

A subset is called long if its complement is short. Given a generic length vector we
denote by j̨ .`/ the number of subsets J � f1; : : : ; n� 1g such that jJ j D j and the
set J [fng is short. The result of Corollary 4.3 from [7] can be equivalently stated as

b2p.N`/D

pX
jD0

�
j̨ .`/�˛n�j�2.`/

�
:(17)

We will need the following upper bound.
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Proposition 4.1 For a generic length vector `D .l1; : : : ; ln/ 2�n�1 with n� 3 one
has

b2p.N`/� 2 � .n� 1/p:(18)

Proof From (17) one obtains

b2p.N`/�

pX
jD0

j̨ .`/�

pX
jD0

�
n� 1

j

�

�

pX
jD0

.n� 1/j D
.n� 1/pC1� 1

n� 2
�
.n� 1/pC1

n� 2
� 2 � .n� 1/p:

On the last step we used the assumption n� 3.

Given an integer p we denote by

�p D �
n�1
p ��n�1(19)

the set of all length vectors `D .l1; : : : ; ln/2�n�1 such that any subset J �f1; : : : ; ng

of cardinality jJ j D p is short with respect to `. Clearly �p � �q if p � q and,
moreover, �p D∅ for p � n=2.

Proposition 4.2 If ` 2 �p ��
n�1 is generic then for all q � p� 2 one has

b2q.N`/D

qX
jD0

�
n� 1

j

�
:(20)

Proof If ` 2 �p and j � p � 1 then j̨ .`/D
�
n�1

j

�
since any subset of cardinality

j C 1� p is short with respect to `. Similarly, for j � p� 2 one has ˛n�2�j .`/D 0.
Indeed, ˛n�2�j .`/ coincides with the number of long subsets J � f1; : : : ; n� 1g of
cardinality j C 2 and (as follows from our assumption j C 2� p ) all such subsets are
short. Formula (20) now follows from (17).

Our next goal is to show that for a fixed p the Lebesgue measure of the set �p is
exponentially close to the measure of the whole simplex �n�1 as n!1. More
precisely, we will prove the following statement:

Proposition 4.3 For n> 4 one has

1� n2p
� 2�n

�
vol.�p/

vol.�n�1/
� 1:(21)
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Proof Let J � f1; : : : ; ng be a subset with jJ j D p . Let L � Rn be the affine
subspace given by the equation l1C � � � C ln D 1. Denote by �J W L! R the affine
functional

�J .l1; : : : ; ln/D
X
i2J

li �
X
i…J

li :(22)

Denote by VJ ��
n�1 the set of vectors `2�n�1 satisfying the inequality �J .`/� 0.

It is clear that

�n�1
��p D

[
jJ jDp

VJ

and therefore

vol.�n�1��p/

vol.�n�1/
�

X
jJ jDp

vol.VJ /

vol.�n�1/
:(23)

Inequality (21) now follows by combining (23) with the inequality of Proposition 4.4
(see below) which allows estimating each term of (23). The number of terms in the
sum (23) equals

�
n
p

�
which is less or equal than np .

Proposition 4.4 Assume that n> 4. Then for any subset J �f1; : : : ; ng with jJ jDp

one has

vol.VJ /

vol.�n�1/
< np

� 2�n:(24)

Proof Consider the complement xJ of J and the functional � xJ D��J W L!R (22).
Clearly VJ can be represented as the intersection H\�n�1 where H is the half-space
H D f` 2LI� xJ .`/� 0g. Comparing with notation of Lemma 3.1 and Corollary 3.2
we may write

vol.VJ /

vol.�n�1/
D rp;n�p D 2�n

�

p�1X
kD0

�
n�p� 1C k

k

�
� 2p�k :(25)

The binomial coefficients can be estimated by
�n�p�1Ck

k

�
� nk and therefore

vol.VJ /

vol.�n�1/
� 2p�n

�

p�1X
kD0

�n

2

�k

� 2p�n
�

�
n
2

�p
n
2
� 1

< np
� 2�n:

On the last step we used the assumption n> 4.
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Proof of Theorem 2.2 Let �n be an admissible sequence of measures on �n�1 ,
where nD 1; 2; : : : ; see Definition 2.1. Using Proposition 4.2 we obtainˇ̌̌̌
ˇ
Z

�n�1

b2p.N`/d�n�

pX
iD0

�
n� 1

i

�ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ

Z
�n�1��pC2

b2p.N`/d�n�

pX
iD0

�
n� 1

i

�
� �n.�

n�1
��pC2/

ˇ̌̌̌
ˇ

�

"
npC1

C

pX
iD0

�
n� 1

i

�#
� �n.�

n�1
��pC2/:

The last inequality uses Proposition 4.1. If `D .l1; : : : ; ln/ 2�n�1��pC2 then there
exists a subset J � f1; : : : ; ng with jJ j D pC 2 such that

P
i2J li � 1=2 and hence

li � 1=.2pC 4/ for some i 2 J . This shows that �n�1��pC2 �ƒpC2 (which was
defined before Definition 2.1 in Section 2. Therefore we may use property (iii) from
Definition 2.1 to continue the previous string of inequalities"

npC1
C

pX
iD0

�
n� 1

i

�#
� �n.�

n�1
��pC2/� 2npC1

��n.�
n�1
��pC2/ �Mn

where Mn D max
`2ƒpC2

fn.`/�Abn:

The constants A> 0 and 0< b < 2 appearing here are given by Definition 2.1; see (iii).
Using Proposition 4.3 we have �n.�

n�1 ��pC2/ � n2pC4 � 2�n . Hence we finally
obtain ˇ̌̌̌

ˇ
Z

�n�1

b2p.N`/d�n�

pX
iD0

�
n� 1

i

�ˇ̌̌̌
ˇ� 2npC1

�Abn
� n2.pC2/

� 2�n

� 2A � n3pC5
�

�
b

2

�n

� Can:

Here a is any number satisfying b=2< a< 1 and C > 0 is chosen accordingly.

5 Proof of Theorem 2.3

First we recall the result of [6] describing Betti numbers bp.M`/ of planar polygon
spaces as functions of the length vector `. Fix an index 1� i �n such that li is maximal
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among l1; : : : ; ln . Denote by ap.`/ the number of short subsets J � f1; : : : ; ng of
cardinality jJ j D 1Cp containing i . A subset J � f1; : : : ; ng is called median ifX

i2J

li D
X
i…J

li :

Denote by zap.`/ the number of median subsets J � f1; : : : ; ng containing i and such
that jJ j D 1Cp . Then one has

bp.M`/D ap.`/Czap.`/C an�3�p.`/:(26)

for p D 0; 1; : : : ; n� 3 [6].

Proposition 5.1 For a generic length vector `D .l1; : : : ; ln/ 2�n�1 one has

bp.M`/� npC2:(27)

Proof From the description of bp.M`/ given above one deduces that for a generic
` the number zap.`/ vanishes and ap.`/ (see (26)) is less or equal than the binomial
coefficient

�
n�1

p

�
. Hence using (26) we obtain

bp.M`/�

�
n� 1

p

�
C

�
n� 1

n� 3�p

�
� .n� 1/pC .n� 1/pC2

� npC2:

Proposition 5.2 If ` 2 �p ��
n�1 is generic then

bj .M`/D

�
n� 1

j

�
for all j � p� 2:(28)

Proof As follows from (26), if ` is generic and lies in �p then zaj .`/ D 0 and for
j � p the number aj .`/ equals the number of all subsets of f1; : : : ; ng which do
not contain the element with the maximal length li , ie aj .`/D

�
n�1

j

�
. The number

an�3�j .`/ is the number of all short subsets of cardinality n� 2� j containing the
maximal element; the complements of these sets are short and their cardinality is
j C 2. However if j C 2 � p all such subsets must be short, ie an�3�j .`/ D 0 for
j � p� 2.

Proof of Theorem 2.3 The proof essentially repeats the arguments of the proof of
Theorem 2.2 with Proposition 5.1 replacing Proposition 4.1 and with Proposition 5.2
replacing Proposition 4.2.
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6 Normal length vectors

In the paper [4] we introduced the notion of a normal length vector. A vector ` D
.l1; : : : ; ln/ 2Rn

C is called normal if the intersection of all subsets J � f1; : : : ; ng of
cardinality 3 which are long with respect to ` is not empty. A length vector ` with the
property that all subsets of cardinality 3 are short with respect to ` is normal since then
the intersection of all long subsets of cardinality 3 equals f1; : : : ; ng as the intersection
of the empty family.

The importance of normal length vectors stems from the following result proven in [4]:

Theorem 6.1 [4] Suppose that `; `0 2�n�1 are two ordered length vectors such that
there exists a graded algebra isomorphism between the integral cohomology algebras
H�.M`/!H�.M`0/. Assume that one of the vectors `; `0 is normal. Then the other
vector is normal as well and ` and `0 lie in the same stratum of the simplex �n�1 ; in
particular, the polygon spaces M` and M`0 are diffeomorphic.

We apply the technique developed in this paper to show that the Lebesgue measure of
the set of length vectors which are not normal is exponentially small for large n!1.

Proposition 6.2 Let Nn � �
n�1 denote the set of all normal length vectors. The

relative volume of Nn satisfies the inequality

vol.�n�1�Nn/

vol.�n�1/
<

n6

2n
:(29)

Proof We observe that �3 �Nn and applying (21) we find

vol.�n�1�Nn/

vol.�n�1/
<

vol.�n�1��3/

vol.�n�1/
<

n6

2n
:

7 Mathematical expectations of higher moments

Theorem 7.1 Given an admissible sequence of probability measures �n and integers
p� 0, and k , then there exist constants C > 0 and 0< a< 1 such that the k –th powers
of the average Betti numbers (6) satisfy the following equations for all nD 3; 4; : : : :ˇ̌̌̌

ˇ̌Z
�n�1

b2p.N`/
kd�n�

 
pX

iD0

�
n� 1

i

�!k
ˇ̌̌̌
ˇ̌< C � an(30)

ˇ̌̌̌
ˇ
Z

�n�1

bp.M`/
kd�n�

�
n� 1

i

�k
ˇ̌̌̌
ˇ< C � an(31)
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Proof One simply repeats the arguments used in proofs of Theorem 2.2 and Theorem
2.3 with minor modifications. The scheme remains the same: on the central domain
�pC2 � �

n�1 the functions appearing in (30) and (31) coincide. The volume of
the remaining part �n�1��pC2 is exponentially small (by Proposition 4.3) and the
functions involved have polynomial upper bounds in n.

8 Some open questions

In this section I would like to mention a few interesting open questions. The tools of
the present paper seem to be inadequate to give their solutions.

It would be interesting to find the average total Betti number

B.n; �/D

Z
Rn
C

B.M`/d�; where B.M`/D

n�3X
pD0

bp.M`/

for various natural probability measures � on the spaces of parameters Rn
C (or on

�n�1 ) and to examine the behavior of B.n; �/ for n!1. Although we know the
behavior of the individual average Betti numbers

R
Rn
C

bp.M`/d� for large n and for
fixed p one cannot simply add the terms up.

By Theorem 2 from [6] one has an upper bound

B.n; �/ � 2n�1
�

�
n� 1

r

�
� 2n�1

�

 
1�

r
2

n�

!
;(32)

where r D Œ.n� 1/=2� denotes the integer part of .n� 1/=2. It is plausible that the
RHS of (32) gives the right asymptotic for B.n; �/.

One can raise a similar question concerning the average total Betti numbers of spatial
polygon spaces N` .

A homotopy invariant TC.X /, introduced in [3], measures the complexity of the
problem of navigation in a topological space X , viewed as the configuration space of
a mechanical system. It is a challenging problem to compute TC.M`/ as a function of
the length vector ` 2Rn

C and then study its average

TC.n; �/D
Z

Rn
C

TC.M`/d�(33)

and behavior as n!1 under different assumptions on the measure �. Formally the
invariant TC.X / is defined only when X is path-connected. This assumption may be
violated in the case of spaces M` . If X is not path-connected it is natural to define
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TC.X / as max TC.Xi/ where Xi are path-connected components of X . If M` is
disconnected then it is disjoint union of two tori T n�3 (see Kapovich and Millson [9])
and hence in this case TC.M`/D TC.T n�3/D n� 2 [3].

The similar question concerning spatial polygon spaces N` is much easier. One can
show that TC.N`/D 2n� 5 assuming that N` 6D∅ and henceZ

Rn
C

TC.N`/d�n � 2n� 5(34)

for any admissible sequence of probability measures �n . The error in (34) is exponen-
tially small for large n.

The results (33) and (34)concerning average topological complexity of polygon spaces
M` and N` may have important applications in molecular biology, statistical shape
theory and robotics.
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