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Multiple bridge surfaces restrict knot distance

MAGGY TOMOVA

Suppose M is a closed irreducible orientable 3–manifold, K is a knot in M , P and
Q are bridge surfaces for K and K is not removable with respect to Q . We show
that either Q is equivalent to P or d.K;P /� 2��.Q�K/ . If K is not a 2–bridge
knot, then the result holds even if K is removable with respect to Q . As a corollary
we show that if a knot in S3 has high distance with respect to some bridge sphere
and low bridge number, then the knot has a unique minimal bridge position.

57M25, 57M27, 57M50

1 Introduction and preliminaries

Distance is a generalization of the concept of weak and strong compressibility for
bicompressible surfaces originally due to Hempel [5]. It has been successfully applied
to study Heegaard splittings of 3–manifolds. For example in [4] Hartshorn shows that
the Euler characteristic of an essential surface in a manifold bounds the distance of
any of its Heegaard splittings. In [12] Scharlemann and Tomova show that the Euler
characteristic of any Heegaard splitting of a 3–manifold similarly bounds the distance
of any non-isotopic splitting.

A knot K in a 3–manifold M is said to be in bridge position with respect to a surface
P if P is a Heegaard surface for M and K intersects each of the components of
M �P in arcs that are simultaneously parallel to P . If K is in bridge position with
respect to P , we say that P is a bridge surface for K . The definition of distance
has been extended to apply to bridge surfaces. In [2], Bachman and Schleimer prove
that Hartshorn’s result extends to the distance of a bridge surface, namely the Euler
characteristic of an essential properly embedded surface in the complement of a knot
bounds the distance of any bridge surface for the knot. In this paper we extend the
ideas in [12] to show that the result there also extends to the case of a knot with two
different bridge surfaces.

Corollary Suppose K is a non-trivial knot in a closed, irreducible and orientable
3–manifold M and P is a bridge surface for K that is not a 4–times punctured sphere.
If Q is also a bridge surface for K that is not equivalent to P , or if Q is a Heegaard
surface for M � �.K/ then d.K;P /� 2��.Q�K/.
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In this paper two Heegaard splittings are considered to be equivalent if one is isotopic
to a possibly stabilized copy of the other. For bridge surfaces there are three obvious
geometric operations that correspond to stabilizations and they are described in Section
10.

A knot K is said to be removable with respect to a bridge surface Q if K can be
isotoped to lie in the spine of one of the handlebodies M �Q. Thus after the isotopy,
Q is a Heegaard surface for M � �.K/. If we restrict our attention only to bridge
surfaces with respect to which the knot is not removable, we may extend the above
theorem also to 2–bridge knots.

Corollary Suppose P and Q are two bridge surfaces for a knot K and K is not
removable with respect to Q. Then either Q is equivalent to P or d.P /� 2��.QK /.

The result proves a conjecture of Bachman and Schleimer put forth in [2].

Corollary If K � S3 is in minimal bridge position with respect to a sphere P such
that d.K;P / > jP \Kj then K has a unique minimal bridge position.

The basic idea of the proof of the above theorem is to consider a 2–parameter sweep-out
of M�K by the two bridge surfaces. We keep track of information about compressions
by introducing labels for the regions of the graphic associated to the sweep-out. We
are able to conclude that if particular combinations of labels occur we can deduce the
desired result. Using a quadrilateral version of Sperner’s lemma, we conclude that one
of the label combinations we have already considered must occur.

2 Surfaces in a handlebody intersected by the knot in unknot-
ted arcs

Throughout this paper we will use the following definitions and notation.

Notation 2.1 Let M be a compact orientable irreducible 3–manifold. If K �M

is some properly embedded 1–manifold, let MK denote M with a regular (open)
neighborhood N.K/ of K removed. If X is any subset of M , let XK DMK \X .

Definition 2.2 Suppose .F; @F / � .M; @M / is a properly embedded surface in a
compact orientable irreducible manifold M containing a 1–manifold K such that F

is transverse to K .

� We will say that FK is n–times punctured if jF \Kj D n. If FK is 1–time
punctured, we will call it punctured.
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� A simple closed curve in FK is inessential if it bounds a subdisk of FK or it is
parallel to a component of @FK . Otherwise the curve is essential.

� A properly embedded arc .ˇ; @ˇ/� .FK ; @FK / is essential if no component
of FK � ˇ is a disk.

� A properly embedded disk .D; @D/� .MK ;FK / is a compressing disk for FK

in MK if @D is an essential curve in FK .

� A disk Dc in M is a cut-disk for FK if Dc \FK D @Dc , @Dc is essential
in FK and Dc intersects K in a single point. Thus Dc \MK is an annulus
with one boundary component an essential curve in FK and the other one a
meridional curve for the torus boundary component of MK .

� A c–disk D� for FK is either a cut-disk or a compressing disk.

� A surface FK is called incompressible if it has no compressing disks, cut-
incompressible if it has no cut-disks and c–incompressible if it has no c–disks.

� A surface FK is called essential if it is incompressible and at least one of its
components is not parallel to @MK .

Now we restrict our attention to the case when the 3–manifold we are considering is a
handlebody and the 1–manifold K consists of “unknotted” properly embedded arcs.
To make this more precise we use the following definition modeled after the definition
of a K–compression body introduced by Bachman in [1].

Definition 2.3 A K–handlebody, .A;K/ is a handlebody A and a 1–manifold,
.K; @K/ � .A; @A/, such that K is a disjoint union of properly embedded arcs and
for each arc � 2K there is a disk, D �A with @D D � [˛ , where D\K D � and
D\ @AD ˛ . These disks are called bridge disks and the arcs are called bridges.

A spine of a handlebody A is a properly embedded finite graph †A in A (typically
chosen to have no valence 1 vertices) so that A�†A Š @A� Œ0; 1/. Given a spine
†A and a collection K of bridges in A, K can be isotoped in A (for example by
shrinking a collection E of bridge disks very close to @A) so that the projection (called
the height) A �†A Š @A � Œ0; 1/! Œ0; 1/ has a single maximum on each bridge
˛ i . For each ˛i connect †A to that maximum by an arc in A which is monotonic
with respect to height. The union of †A with that collection of arcs is called a spine
†.A;K / of .A;K/. Note that there is a homeomorphism A�†.A;K / Š @A� Œ0; 1/

which carries K �†.A;K / to .@A \K/ � Œ0; 1/. Put another way, there is a map
.@A; @A\K/� I ! .A;K/ which is a homeomorphism except over †.A;K / , and
the map gives a neighborhood of †.A;K / a mapping cylinder structure.
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Notation 2.4 For the rest of this paper, unless otherwise specified, let .A;K/ be a
K–handlebody with P D @A and spine †.A;K / . We will always assume that if A is a
ball, then K has at least 3 components. The surface F �A will be properly embedded
and transverse to K . We continue to denote by N.K/ a regular neighborhood of K .

Definition 2.5 Two embedded meridional surfaces S and T in .M;K/ are called K–
parallel if they cobound a region homeomorphic to SK � I ie the region of parallelism
contains only unknotted segments of K each with one endpoint in S and one endpoint
in T .

Two meridional surfaces S and T are K–isotopic if there exists an isotopy from S to
T so that S remains transverse to K throughout the isotopy.

Lemma 2.6 If .E; @E/� .AK ;PK / is a possibly punctured disk such that @E is an
inessential curve in PK , then E is parallel to a possibly punctured subdisk of PK .

Proof Let E0 be the possibly punctured disk @E bounds in PK . There are three
cases to consider. If E and E0 are both disks, then they cobound a ball as AK is
irreducible, and thus E is parallel to E0 . If one of E and E0 is a once punctured
disk and the other one is a disk, then the sphere E[E0 intersects K only once. The
manifold is irreducible and E[E0 is separating so this is not possible. Finally, if both
E and E0 are once punctured disks, then by irreducibility of A and the definition of
a K–handlebody, E and E0 cobound a product region in AK . This product region
intersects some bridge disk for K in a single arc, so the arc of K between E and E0

is a product arc. It follows that E and E0 are parallel as punctured disks.

Definition 2.7 A P –compressing disk for FK �AK is a disk D�AK so that @D is
the end-point union of two arcs, ˛ DD\PK and ˇ DD\FK , and ˇ is an essential
arc in FK .

The operation of compressing, cut-compressing and P –compressing the surface FK

have natural duals that we will refer to as tubing (possibly tubing along a subset of
the knot) and tunneling along an arc dual to the c–disk or the P –compressing disk.
The precise definitions of these operations were given by Scharlemann in [8]. Suppose
F � M is a properly embedded surface in a manifold containing a knot K . Let

 � interior.M / be an embedded arc such that 
 \F D @
 . There is a relative tubular
neighborhood �.
 /Š 
 �D2 so that �.
 / intersects F precisely in the two diskfibers
at the ends of 
 . Then the surface obtained from F by removing these two disks and
attaching the cylinder 
 � @D2 is said to be obtained by tubing along 
 . We allow
for the possibility that 
 �K . Similarly if 
 � @M , there is a relative neighborhood
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�.
 /Š 
 �D2 so that �.
 / intersects F precisely in the two disk fibers at the ends
of 
 and �.
 / intersects @M in a rectangle. Then the surface obtained from F by
removing the two half disks and attaching the rectangle .
 � @D2/\M is said to be
obtained by tunnelling along 
 .

We will have many occasions to use P –compressions of surfaces so we note the
following lemma.

Lemma 2.8 Suppose FK �AK is a properly embedded surface and F 0
K

is the result
of P –compressing FK along a P –compressing disk E0 . Then

(1) if F 0
K

has a c–disk, FK also has a c–disk of the same kind (cut or compressing),

(2) if FK intersects every spine †.A;K / then so does F 0
K

and

(3) every curve of @FK can be isotoped in PK to be disjoint from any curve in
@F 0

K
.

Proof The original surface FK can be recovered from F 0
K

by tunneling along an
arc that is dual to the P –compressing disk. This operation is performed in a small
neighborhood of PK so if F 0

K
has compressing or cut-disks, they will be preserved in

FK . Also if F 0
K

is disjoint from some †.A;K / , then adding a tunnel close to PK will
not introduce any intersections with this spine. For the last item consider the frontier
of N.FK [E0/\PK where N denotes a regular neighborhood. This set of disjoint
embedded curves in PK contains both FK \PK and F 0

K
\PK .

In the case of a handlebody it is also known that any essential surface must have
boundary. The following lemma proves the corresponding result for a K–handlebody.

Lemma 2.9 If FK is an incompressible surface in AK , then one of the following
holds,

(1) FK is a sphere,

(2) FK is a twice punctured sphere, or

(3) FK \PK ¤∅.

Proof Suppose FK is an incompressible surface in AK that is not a sphere or a twice-
punctured sphere, such that PK \FK D∅. Let � be the collection of a complete set
of compressing disks for the handlebody A together with all bridge disks for K . Via
an innermost disk argument, using the fact that FK is incompressible, we may assume
that FK \� contains only arcs. Any arc of intersection between a disk D 2� and
FK must have both of its endpoints lying in N.K/ as FK \PK D∅ and thus lies in
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one of the bridge disks. Consider an outermost such arc in D cutting a subdisk E of
D . Doubling E along K produces a compressing disk for FK which was assumed to
be incompressible. Thus FK must be disjoint from � and therefore FK lies in the
ball AK �� contradicting the incompressibility of FK .

Finally it is well known that if F is a closed connected incompressible surface contained
in A�†A Š P � I , then F is isotopic to P . A similar result holds if we consider
FK � .AK �†.A;K //D PK � I .

Lemma 2.10 Suppose P is a closed connected surface, and K ¤∅ is a 1–manifold
properly embedded in P � I so that each component of K can be isotoped to be
vertical with respect to the product structure. If FK � PK � I is a properly embedded
connected incompressible surface such that FK \ .P � f0g/D FK \ .P � f1g/D∅,
then one of the following holds,

(1) FK is a sphere disjoint from the knot,

(2) FK is a twice punctured sphere, or

(3) FK is K–isotopic to PK � f0g.

Proof Suppose FK is not a sphere or a twice punctured sphere. Consider the set S

consisting of properly embedded arcs in PK so that PK �S is a disk. This collection
gives rise to a collection �D S �I of disks in PK �I so that .PK �I/�� is a ball.
As FK is not a sphere FK \�¤∅. As FK is incompressible, by an innermost disk
argument we may assume that it does not intersect � in any closed curves. If FK \�

contains an arc that has both of its endpoints in the same component of K , doubling
the subdisk of � bounded by an outermost such arc would give a compressing disk
for FK . Consider the components of FK lying in the ball .PK � I/��. As FK is
incompressible all of these components must be disks. In fact, as FK is connected,
there is a single disk component. This disk is isotopic to .PK �S/� 0 and the maps
that glue .PK � I/�� to recover PK � I do not affect the isotopy.

3 The curve complex and distance of a knot

Suppose V is a compact, orientable, properly embedded surface in a 3–manifold M .
The curve complex of V is a graph C.V /, with vertices corresponding to isotopy
classes of essential simple closed curves in V . Two vertices are adjacent if their
corresponding isotopy classes of curves have disjoint representatives. If S and T are
subsets of vertices of C.V /, then d.S;T / is the length of the shortest path in the graph
connecting a vertex in S and a vertex in T .

Algebraic & Geometric Topology, Volume 7 (2007)



Multiple bridge surfaces restrict knot distance 963

Definition 3.1 Let .P; @P / � .M; @M / be a properly embedded surface in an ori-
entable irreducible 3–manifold M . The surface P will be called a splitting surface if
M is the union of two manifolds A and B along P . We will say P splits M into A

and B . If P splits M into A and B and is compressible in both A and B , then P is
bicompressible.

If P is a closed embedded bicompressible surface with �.P / < 0 splitting M into
submanifolds A and B , let A (resp B ) be the set of all simple closed curves in P

that bound compressing disks for P in A (resp B ). Then d.P / D d.A; B/ ie, the
length of the shortest path in the graph C.P / between a curve in A and a curve in
B . If d.P /� 1, ie there are compressing disks on opposite sides of P with disjoint
boundaries, then the surface P is called strongly compressible in M . Otherwise P is
weakly incompressible.

Much like bridge number and width, the distance of a knot measures its complexity. It
was first introduced by Bachman and Schleimer in [2]. The definition we use in this
paper is slightly different and corresponds more closely to the definition of the distance
of a surface.

Definition 3.2 Suppose M is a closed, orientable irreducible 3–manifold containing
a knot K and suppose P is a bridge surface for K splitting M into handlebodies A

and B . The curve complex C.PK / is a graph with vertices corresponding to isotopy
classes of essential simple closed curves in PK . Two vertices are adjacent in C.PK / if
their corresponding classes of curves have disjoint representatives. Let A (resp B ) be
the set of all essential simple closed curves in PK that bound disks in AK (resp BK ).
Then d.P;K/D d.A; B/ measured in C.PK /.

The curve complex for a non-punctured torus and a 4 punctured sphere are not connected.
However 2 bridge knots in S3 cannot have multiple bridge surfaces, Scharlemann and
Tomova [11], so these cases don’t arise in our context.

4 Bounds on distance given by an incompressible surface

We will continue to assume that .A;K/ is a K–handlebody, P D @A and if A is a ball,
then K has at least 3 components. For clarity we will refer to a properly embedded
surface EK �AK with zero Euler characteristic as an annulus only if it has 2 boundary
components both lying in PK and distinguish it from a punctured disk, a surface with
one boundary component lying in PK that intersects cl.N.K// in a single meridional
circle. Consider the curve complex C.PK / of PK and let A be the set of all essential
curves in PK that bound disks in AK .
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Proposition 4.1 Suppose Dc is a cut-disk for PK in AK . Then there is a compressing
disk D for PK such that d.@Dc ; @D/� 1.

Proof Let � be the arc of K that punctures Dc and B be its bridge disk. After
perhaps an isotopy of B , B \Dc is a single arc ˛ that separates B into two subdisks
B1 and B2 . Consider a regular neighborhood of Dc [B1 say. Its boundary contains a
disk that intersects PK in an essential curve and does not intersect @Dc as required.

Proposition 4.2 Consider .F; @F /� .A;P /, a properly embedded surface transverse
to K .

� If the surface FK contains a disk component whose boundary is essential in PK ,
then d.A; f /� 1 for every f 2 FK \PK that is essential in PK .

� If FK has a punctured disk component Dc whose boundary is essential in PK ,
then d.@Dc ; A/� 1.

Proof If FK contains such a disk component D , then D is necessarily a compressing
disk for PK so @D 2A and @D\f D∅ for every f 2FK \PK as FK is embedded
thus d.A; f /� 1.

The second claim follows immediately from Proposition 4.1.

Proposition 4.3 Consider .F; @F /� .A;P /, a properly embedded surface transverse
to K and suppose it satisfies all of the following conditions:

(1) FK has no disk components,

(2) FK is c–incompressible,

(3) FK intersects every spine †.A;K / and

(4) all curves of FK \PK are either essential in PK or bound punctured disks on
both surfaces.

Then there is at least one curve f 2 FK \PK that is essential in PK and such that
d.A; f / � 1� �.FK /. Every f 2 FK \ PK that is essential in PK for which the
inequality does not hold lies in the boundary of a PK –parallel annulus component of
FK .

Proof If FK is a counterexample to the proposition, the surface F�
K

obtained from FK

by deleting all PK –parallel annuli and PK –parallel punctured disk components would
also be a counterexample with the same euler characteristic. Note that F�

K
is nonempty

as otherwise FK would be disjoint from a spine †.A;K / and is c–incompressible as
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any c–disk would also be a c–disk for FK . Thus we assume FK does no have any
PK –parallel annuli or punctured disk components.

Let E be a compressing disk for PK in AK (not punctured by the knot) so that
jE\FK j is minimal among all such disks. If in fact E\FK D∅, then d.@E; f /� 1

for every f 2 @FK as required so we may assume E\FK ¤∅. Circles of intersection
between FK and E and arcs that are inessential in FK can be removed by innermost
disk and outermost arc arguments. Thus we can assume FK and E only intersect in
arcs that are essential in FK .

The proof now is by induction on 1��.FK /. As FK has no disk components for the
base case of the induction assume 1��.FK /D 1, ie all components of FK are annuli
or once punctured disks and no component is PK –parallel. If E intersects a punctured
disk component of FK the arc of intersection would necessarily be inessential in FK

contradicting the minimality of jFK \Ej so we may assume that if FK \E ¤ ∅,
E only intersects annulus components of FK . An outermost arc of intersection in
E bounds a P –compressing disk E0 for FK . After the P –compression, the new
surface F 0

K
contains a compressing disk D for PK , the result of a P –compression

of an essential annulus, and @D is disjoint from all f 2 @FK by Lemma 2.8. As
@D 2A, d.f;A/� 1D 1��.FK / for every f 2 FK \PK as desired.

Now suppose 1��.FK / > 1. Again let E0 be a subdisk of E cut off by an outermost
arc of E \FK and F 0

K
be the surface obtained after the P –compression. By Lemma

2.8 F 0
K

also intersect every spine †.A;K / and is c–incompressible. By the definition of
P –compression, F 0

K
cannot have any disk components as FK did not have any. Thus

F 0
K

satisfies the first 3 conditions of the proposition. There are two cases to consider.

Case 1 Any simple closed curves in F 0
K
\ PK that are inessential in PK bound

punctured disks in both surface.

In this case F 0
K

satisfies all the hypothesis of the proposition so we can apply the
induction hypothesis. Thus there exists a curve f 0 2F 0

K
\PK that satisfies the distance

inequality. Since, by Lemma 2.8, for every component f of FK \PK , d.f; f 0/� 1,
we have the inequality d.f;A/� d.f 0;A/Cd.f; f 0/� 1��.F 0

K
/C1D 1��.FK /,

as desired.

Case 2 Some curve of F 0
K
\PK is inessential in PK but does not bound a punctured

disk in F 0
K

.

Let c be this curve and let E� be the possibly punctured disk c bounds in PK . By our
hypothesis, the tunnel dual to the P –compression must be adjacent to c as otherwise c

would persist in FK \PK . Push a copy of E� slightly into AK . After the tunneling,
E� is no longer parallel to PK . As FK was assumed to be c–incompressible, cD @E�
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must be parallel to some component of @FK . As c didn’t bound a punctured disk
in F 0

K
, @E� must be parallel to some component zc 2 FK \ PK that is essential

in PK by hypothesis. Use this parallelism to extend E� to a c–disk for PK with
boundary zc , see Figure 1. Now for every f 2 FK \PK , by Proposition 4.2 we have
that d.f; A/� d.f; @E�/C d.@E�; A/� 1C 1D 2� 1��.FK /.

zc

PK

E�

c

Figure 1

5 The genus of an essential surface bounds the distance of a
knot

Notation 5.1 For the rest of the paper we will assume that M is a closed irreducible
orientable 3–manifold containing a knot K and P is a bridge surface for K such that
M D A[P B . Furthermore we assume that if P is a sphere, then PK has at least 6
punctures.

Let Q�M be a properly embedded surface that is transverse to K . We will consider
how the surfaces PK and QK can intersect in MK to obtain bounds on d.P;K/.

We import the next lemma directly from [12].

Lemma 5.2 Let Q � M be a properly embedded surface that is transverse to K

and let QA
K
D QK \ AK ;Q

B
K
D QK \ BK . Suppose QK satisfies the following

conditions.

� All curves of PK \QK are essential in PK and don’t bound disks in QK .

� There is at least one curve a 2QA
K
\PK such that d.a;A/ � 1��.QA

K
/ and

any curve in QA
K
\PK for which the inequality does not hold is the boundary of

an annulus component of QA
K

that is parallel into PK .
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� There is at least one curve b 2QB
K
\PK such that d.b;B/ � 1��.QB

K
/ and

any curve in QB
K
\PK for which the inequality does not hold is the boundary of

an annulus component of QB
K

that is parallel into PK .

Then d.K;P /� 2��.QK /.

Proof Call a component c of PK \ QK A–conforming (resp B–conforming) if
d.c;A/ � 1 � �.QA

K
/ (resp d.c;B/ � 1 � �.QB

K
/). By hypothesis there are both

A–conforming components of QK \PK and B–conforming components. If there is a
component c that is both A–conforming and B–conforming, then

d.K;P /D d.A;B/� d.A; c/C d.c;B/� 2��.QA
K /��.Q

B
K /D 2��.QK /

as required.

If there is no such component, let 
 be a path in QK from an A–conforming component
to a B–conforming component, chosen to intersect PK as few times as possible. In
particular, any component of PK \QK incident to the interior of 
 is neither A–
conforming nor B–conforming, so each of these components of QA

K
and QB

K
is an

annulus, parallel to an annulus in PK . It follows that the components of PK \QK at
the ends of 
 are isotopic in PK . Letting c be a simple closed curve in that isotopy
class in PK we have as above

d.K;P /D d.A;B/� d.A; c/C d.c;B/� 2��.QA
K /��.Q

B
K /D 2��.QK /

as required.

Corollary 5.3 Suppose QK �MK is a properly embedded connected surface trans-
verse to PK so that all curves of PK \QK are essential in both surfaces. If QA

K
and

QB
K

are c–incompressible and intersect every spine †.A;K / and †.B;K / respectively,
then d.K;P /� 2��.QK /.

Proof Proposition 4.3 shows that QA
K

and QB
K

satisfy respectively the second and
third conditions of Lemma 5.2.

The following definition was first used by Scharlemann and Tomova in [12].

Definition 5.4 Suppose S and T are two properly embedded surfaces in a 3–manifold
M containing a knot K and assume S and T intersect the knot transversely. Let
c 2SK \TK be a simple closed curve bounding possibly punctured disks D�SK and
E � TK . If D intersects TK only in curves that are inessential in TK and E intersects
SK only in curves that are inessential in SK we say that c is removable.
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The term reflects the fact that all such curves can be removed by isotopies of SK whose
support lies away from any curves of intersection that are essential either in SK or in
TK . Indeed, if c is removable, then any component of D\E is clearly also removable.

The following definition was introduced by Bachman and Schleimer in [2].

Definition 5.5 Suppose S and T are two properly embedded surfaces in a 3–manifold
M . A simple closed curve ˛ 2 S \ T is mutually essential if it is essential in both
surfaces, it is mutually inessential if it is inessential in both surfaces and it is mutual if
it is either mutually essential or mutually inessential.

The following remark follows directly from the above two definitions.

Remark 5.6 If every curve of intersection between SK and TK is mutual, then all
inessential curves of SK \TK are removable.

Now we can recover the bound on distance obtained in [2] but using our definition of
distance. Note that we only require the surface QK to have no compressing disks but
allow it to have cut-disks.

Theorem 5.7 Let M be a closed irreducible orientable manifold containing a knot
K and let P be a bridge surface for K such that if P is a sphere, PK has at least 6
punctures. Suppose Q �M is a properly embedded essential (in MK ) meridional
surface such that QK is neither a sphere nor an annulus. Then d.K;P /� 2��.QK /.
If QK is an essential annulus, then d.K;P /� 3.

Proof If QK has any cut-disks, cut-compress along them, ie if Dc is a cut-disk
for QK , remove a neighborhood of @Dc from QK and then add two copies of Dc

along the two newly created boundary components. Repeat this process until the
resulting surface has no c–disks. Let Q0

K
be the resulting surface and notice that

�.QK /D �.Q
0
K
/. Suppose Q0

K
has a compressing disk D . The original surface QK

can be recovered from Q0
K

by tubing along a collection of subarcs of K . Note that as
D\K D∅ none of these tubes can intersect D . Thus D is also a compressing disk
for QK contrary to the hypothesis so Q0

K
is also incompressible. Finally note that in

this process no sphere, annulus or torus components are produced so at least one of the
resulting components is not a sphere, annulus or torus, in particular Q0

K
has at least

one component that is not parallel to @MK . By possibly replacing QK by Q0
K

we
may assume that QK is also cut-incompressible.

Recall that †.A;K / and †.B;K / are the spines for the K -handlebodies .A;K/ and
.B;K/. Consider H W PK � .I; @I/! .MK ; †.A;K /[†.B;K //, a sweep-out of PK
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between the two spines. For a fixed generic value of t , H.PK ; t/ will be denoted by
P t

K
. By slightly abusing notation we will continue to denote by AK and BK the two

components of MK �P t
K

and let QA
K
DQK \AK and QB

K
DQK \BK . During the

sweep-out, P t
K

and QK intersect generically except in a finite collection of values of t .
Let t1; : : : ; tn�1 be these critical values separating the unit interval into regions where
P t

K
and QK intersect transversely. For a generic value t of H , the surfaces QK and

P t
K

intersect in a collection of simple closed curves. After removing all removable
curves, label a region .ti ; tiC1/ � I with the letter A� (resp B� ) if QA

K
(resp QB

K
)

has a disk or punctured disk component in the region whose boundary is essential in
PK .

Suppose QA
K

say, can be isotoped off some spine †.A;K / . Then, using the product
structure between the spines and the fact that all boundary components of QK lying on
the knot are meridional, we can push QK to lie entirely in BK contradicting Lemma
2.9. Therefore QK must intersect both spines †.A;K / and †.B;K / in meridional
circles and so the subintervals adjacent to the two endpoints of the interval are labeled
A� and B� respectively.

Case 1 Suppose there is an unlabeled region. If some curve of QK \PK is inessential
in PK in that region, it must also be inessential in QK as otherwise it would bound a
c–disk for QK . Suppose some curve is essential in PK but inessential in QK . This
curve would give rise to one of the labels A� or B� contradicting our assumption. We
conclude that all curves of PK \QK are mutual. In fact this implies that all curves
PK \QK are essential in QK and in PK as otherwise they would be removable by
Lemma 2.6 and all removable curves have already been removed. Suppose QA

K
say

has a c–disk. The boundary of this c–disk would also be essential in QK contradicting
the hypothesis thus we conclude that in this region QA

K
and QB

K
satisfy the hypothesis

of Corollary 5.3 and thus d.K;P /� 2��.QK /.

Case 2 Suppose there are two adjacent regions labeled A� and B� . (This includes
the case when one or both of these regions actually have both labels)

The labels are coming from possibly punctured disk components of QK �PK that we
will denote by D�

A
and D�

B
respectively. Using the triangle inequality we obtain

(1) d.K;P /� d.A; @D�A/C d.@D�A; @D�B/C d.@D�B; B/:

The curves of intersection before and after going through the critical point sepa-
rating the two regions can be made disjoint so d.@D�

A
; @D�

B
/ � 1 (the proof of

this fact is similar to the proof of the last item of Lemma 2.8). By Proposition 4.2
d.A; @D�

A
/; d.B ; @D�

B
/ � 1 so the equation above gives us that d.K;P / � 3 �

2��.QK / as long as �.QK / < 0.
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If �.QK / D 0 and QK is a torus, D�
A

and D�
B

must be disks, so d.A; @D�
A
/ D

d.B ; @D�
B
/D 0. Thus (1) gives us that d.K;P /� d.@D�

A
; @D�

B
/� 1� 2��.QK /.

If QK is an essential annulus, we conclude that d.K;P /� 3

Corollary 5.8 Suppose K DK1#K2 , then any bridge surface for K has distance at
most 3.

Proof The sphere that decomposes K into its factors suggests an essential annulus in
MK .

6 Edgeslides

This section is meant to provide a brief overview of edgeslides as described by Rubin-
stein and Scharlemann in [6]. Here we only give sketches of the relevant proofs and
references for the complete proofs.

Suppose .Q; @Q/ � .M;P / is a bicompressible splitting surface in an irreducible
3–manifold with P � @M a compact sub-surface, (in our context M will be a K–
handlebody and P its punctured boundary). Let X;Y be the two components of M�Q

and let QX be the result of maximally compressing Q into X . The compressions can
be undone by tubing along the edges of a graph � dual to the compressing disks, ie Q

is contained in the boundary of a regular neighborhood of QX [� . We will denote by
X� and Y C the components of M �QX with X �X� and Y � Y C , in particular
� � Y C . Let � � Y be a set of compressing disks for Q. Using the fact that Q

retracts to QX [� we can extend these disks so that @��QX [� . Finally T will
be a disk in Y C with @T � .QX [P / that is not parallel to a subdisk of QX [P and
ƒ will be the graph in T defined by the intersection of �[� and T . In other words
� has vertices given by the points T \� and edges given by the arcs T \�.

The graph � described above is not unique; choosing a different graph is equivalent
to an isotopy of Q. All graphs that are dual to the same set of compressing disks are
related by edge slides, ie sliding the endpoint of some edge along other edges of � .
The precise definition can be found in Saito et al [7] or Scharlemann and Thompson
[10].

The following lemma is quite technical, a detailed proof of a very similar result can be
found in [7, Proposition 3.2.2] or [10, Proposition 2.2]. We will only briefly sketch the
proof here but we will provide detailed references to the corresponding results in [7]
and note that there the letter P is used for the disk we call T but all other notation is
identical.
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Lemma 6.1 Suppose T , � and � are as above. Suppose T 0 , �0 and � 0 is a second
set of choices for a disk, a set of compressing disks and a graph as described above
such that T 0 isotopic to T , rel. @T , j�0j D j�j and � 0 is obtained from � via edge
slides. Then either we can choose T 0 , �0 and � 0 so that the corresponding graph ƒ0

has an isolated vertex, or, we can choose them so that � 0[�0 is disjoint from T 0 .

Proof Suppose every choice of T 0 , �0 and � 0 results in a graph ƒ0 with no isolated
vertices. Pick an isotopy class of T rel. @T , an isotopy class of � and a representation
of � such that .jT \�j; jT \�j/ is minimal in the lexicographic order.

Claim 1 Each component of T \� is an arc [7, Lemma 3.2.3].

Suppose T \� contains a closed curve component. The innermost such in �, !
bounds a disk D0 in � disjoint from T . Via an isotopy of the interior of T , using
the fact that M is irreducible, the disk ! bounds in T can be replaced with D0 thus
eliminating at least ! from T \� contradicting minimality. As there are no simple
closed curves, in this context a loop will mean an edge with both of its endpoints on
the same vertex of ƒ.

Claim 2 ƒ has no inessential loops, that is edges with both endpoints on the same
vertex of ƒ that bound disks in T �� [7, Lemma 3.2.4].

Suppose � is a loop in ƒ and let D 2� be such that ��D . The loop � cuts off a
disk E � T . As a subset of D , � is an arc dividing D into two subdisks D1 and D2 .
(The disk E resembles a boundary compressing disk for D if we think of �.�/ as a
boundary component.) At least one of D1[E and D2[E must be a compressing
disk. Replace D with this disk reducing jT \�j.

Claim 3 ƒ has no isolated vertices [7, Lemma 3.2.5].

This is true by hypothesis.

Claim 4 Every vertex of ƒ is a base of a loop [7, Lemma 3.2.6].

Suppose w a vertex of ƒ is not a base of any loop, we will show we can reduce
.jT \�j; jT \�j/.

Let � be the edge of � such that w 2 � \ T . As w is not isolated, there is a disk
D 2� such that w 2 @D . The collection of arcs D \T is a subset of the edges of
ƒ. Let 
 be an outermost arc in D of all arcs that have w as one endpoint. Let w0

be the other end point of 
 . Then 
 cuts a subdisk D
 from D the interior of which
may intersect T but @D
 only contains one copy of w 2 @
 . Thus there cannot be an
entire copy of the edge � in @D
 and so there are three possibilities.
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Case 1 .@D
 � 
 /� � . Then we can perform an edge slide of � which removes 

from ƒ, [7, Figure 23].

Case 2 .@D
 � 
 / contains some subset of � with only one copy of one of the
endpoints of � . By sliding � along D
 we can reduce this case to the first case, [7,
Figure 24].

Case 3 .@D
 � 
 / contains some subset of � but it contains two copies of the same
endpoint of � . This is the most complicated case requiring broken edge slides and [7,
Figure 25] has an excellent discussion on the topic.

By the above four claims we can conclude that ƒD∅ as desired, for by claim 4 some
loop must be inessential contradicting claim 2.

Remark 6.2 If Q is weakly incompressible, the hypothesis of the lemma are satisfied
as a meridional circle of an isolated vertex of ƒ will be a compressing disk for Q in X

that is disjoint from the set of compressing disks � 2 Y .

Corollary 6.3 Let .Q; @Q/� .M; @M / be a bicompressible weakly incompressible
surface splitting M into component X and Y . Let QX be the result of maximally
compressing Q into X . Then QX is incompressible in M .

Proof The argument is virtually identical to the argument in Scharlemann [8]. Suppose
QX is compressible with compressing disk D that necessarily lies in Y C . Let E be a
compressing disk for Q in Y . As Q is weakly incompressible, by the above remark
we can apply Lemma 6.1, with D playing the role of T , and �DE . By Lemma 6.1
we can arrange that .E [�/\D D∅ so D is also a compressing disk for Q in Y

and is disjoint from � and thus from all compressing disks for Q in X contradicting
weak incompressibility of Q.

Corollary 6.4 Suppose .A;K/ is a K–handlebody with @AD P and F is a bicom-
pressible surface splitting A into submanifolds X and Y . Let FX

K
be the result of

maximally compressing FK into XK . Then there exists a compressing disk D for PK

that is disjoint from a complete collection of compressing disks for FK in XK and
intersects FK only in arcs that are essential in FX

K
.

Proof Select a disk D and isotope FX
K

to minimize jD \ FX
K
j and then choose

a representation of � that minimizes jD \ �j. As A�N.K/ is irreducible, by an
innermost disk and outermost arc arguments, D intersect FX

K
in essential arcs only.

Applying Lemma 6.1 with the disk T playing the role of D , we conclude that � is
disjoint from D . As the edges of � are dual to a complete collection of compressing
disks for FK in XK , it follows that D is disjoint from this collection.
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7 Bounds on distance given by a c–weakly incompressible
surface

Our ultimate goal in this paper is to extend Theorem 5.7 to allow for both P and Q

to be bridge surfaces for the same knot. To do this, we need a theorem similar to
Proposition 4.3 but allowing for FK to have certain kinds of c–disks.

Notation 7.1 In this section let .A;K/ be a K–handlebody with boundary P such
that if A is a ball, K has at least 3 components and let F �A be a properly embedded
surface transverse to K splitting A into submanifolds X and Y .

Definition 7.2 The surface FK associated to F is called bicompressible if FK has
some compressing disks in both XK and YK . The surface is called cut-bicompressible
if it has cut-disks in both XK and YK . Finally, the surface is called c–bicompressible
if it has c–disks in both XK and YK .

The next definition is an adaptation of the idea of a weakly incompressible surface but
taking into consideration not only compressing disks but also cut-disks.

Definition 7.3 The surface FK is called c–weakly incompressible if it is c–bicomp-
ressible and any pair D�

X
;D�

Y
of c–disks contained in XK and YK respectively

intersect along their boundary.

Proposition 7.4 If a splitting surface FK �AK has a pair of two compressing disks
or a compressing disk and a cut-disk that are on opposite sides of FK and intersect in
exactly one point, then FK is c–strongly compressible.

Proof Suppose F � A splits A into manifolds X and Y and let DX � X and
DY � Y be a pair of disks that intersect in exactly one point. Then a neighborhood of
DX [DY contains a pair of compressing disks on opposite sides of FK with disjoint
boundaries (in fact their boundaries are isotopic). If DX say is a compressing disk and
DY is a cut-disk, banding two copies DX together along @DY produces a compressing
disk disjoint from DY , see Figure 2.

Proposition 7.5 Let FK �AK be a c–weakly incompressible splitting surface such
that every component of FK \PK is mutual and let F 0

K
be the surface obtained from

FK via a P –compression. If F 0
K

is also c–bicompressible, then every component of
F 0

K
\PK is essential in PK or is mutually inessential.

Algebraic & Geometric Topology, Volume 7 (2007)



974 Maggy Tomova

DY

DY

DX

DX

Figure 2

Proof Let X and Y be the two components of A�F . Without loss of generality, let
E0 �XK be the P –compressing disk for FK . Suppose that there is some f 0 � @F 0

K

that bounds a possibly punctured disk Df 0 in PK but not in F 0
K

. The original surface
FK can be recovered by tunneling F 0

K
along an arc e0�PK . As all curves of FK\PK

are mutual, e0\f
0 ¤∅.

Case 1 e0 has one boundary component in f 0 and the other in some other curve
c 2 PK \FK (c may or may not be essential in PK ). If c �D0

f
, then FK \PK also

has a curve that is inessential in PK but essential in FK contrary to the hypothesis.
If c does not lie in D0

f
then by slightly pushing the disk D DD0

f
[E0 away from

PK we obtain a c–disk for FK contained in XK , see Figure 3. By hypothesis F 0
K

is
c–bicompressible, in particular there is a c–disk D0 for F 0

K
that lies on the other side

of F 0
K

than the side D0
f

lies on. The c–disk D0 is also a c–disk for FK lying in Y

that is disjoint from D �X contradicting the c–weak incompressability of FK .

Case 2 e0 has both boundary components in f 0 . If e0 �D0
f

then again FK \PK

has a curve that is inessential in PK but essential in FK contrary to the hypothesis so
assume e0\D0

f
D @e0 , see Figure 4. Consider the possibly punctured disk D obtained

by taking the union of Df 0 together with two copies of E0 . As in the previous case
this is a c–disk for FK lying in XK that is disjoint from at least one c–disk for FK

lying in YK contradicting c–weak incompressibility of FK .

Proposition 7.6 Suppose F 0
K

splitting AK into X 0
K

and Y 0
K

satisfies one of the
following two conditions:
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D0

Df 0

f 0

e0

c

D0

D

F 0
K FK

E0

Figure 3

f 0
Df 0

e0

D0 D0

f 0 D0
f

E0

F 0
K FK

Figure 4

� there is a spine †.A;K / entirely contained in X 0
K

say and F 0
K

has a c–disk in
X 0

K
disjoint from that spine or

� there is at least one curve f 0�F 0
K
\PK that is essential in PK and d.f 0; A/�

1��.F 0
K
/.

If FK is obtained from F 0
K

by tunneling or tubing (possibly along subarcs of K ) with
all tubes lying in Y 0

K
, then FK satisfies one of the following conditions:

� there is a spine †.A;K / entirely contained in XK , and FK has a c–disk in XK

disjoint from that spine or

� for every curve f in FK \PK that is essential in PK the inequality d.f; A/�
1��.FK / holds.

Proof Suppose first that FK is obtained from F 0
K

via tunneling. If F 0
K

satisfies the
first condition, then tunneling does not interfere with the c–disk and does not introduce
intersections with the spine †.A;K / . If F 0

K
satisfies the second condition, note that
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d.f; f 0/� 1 for every f 2FK \PK that is essential in PK and �.F 0
K
/� �.FK /C1.

The result follows by the triangle inequality.

If FK is obtained from F 0
K

via tubing with all tubes contained in Y 0
K

, these tubes do not
affect a c–disk for F 0

K
contained in X 0

K
and are disjoint from any spine †.A;K / . Thus

if F 0
K

satisfies the first condition, so does FK . If F 0
K

satisfies the second condition,
the curves of PK \F 0

K
are not altered by the tubing and 1��.FK /� 1��.F 0

K
/ so

for any curve essential curve f 2 FK \PK , d.f; A/ � 1��.F 0
K
/ � 1��.FK / as

desired.

The rest of this section will be dedicated to the proof of the following theorem.

Theorem 7.7 Let AK be a K–handlebody with @AD P such that if P is a sphere,
then PK has at least six punctures. Suppose FK �AK satisfies the following condi-
tions:
� FK has no closed components,
� FK is c–bicompressible and c–weakly incompressible,
� FK has no disk components and
� all curves of PK \FK are mutually essential unless they bound punctured disks

in both surfaces.

Then at least one of the following holds:
� There is a spine †.A;K / entirely contained on one side of FK and FK has a

c–disk on the same side disjoint from the spine or
� d.f; A/� 1��.FK / for every f 2 FK \PK that is essential in PK unless f

is the boundary of a PK –parallel annulus component of FK .

Proof If c–disks for FK were incident to two different components of FK , then there
would be a pair of such disks on opposite sides of FK with disjoint boundaries violating
c–weak incompressibility. So we deduce that all c–disks for FK are incident to at most
one component SK of FK . The surface SK cannot be an annulus, else the boundaries
of c–disks in XK and YK would be parallel and so could be made disjoint. In particular
SK , and thus FK , must have a strictly negative Euler characteristic. Suppose FK is
a counterexample to the theorem such that 1� �.FK / is minimal amongst all such
counterexamples. As in Proposition 4.3 we may assume that FK has no components
that are PK –parallel annuli or PK –parallel punctured disk components. In particular
this implies that all curves of FK \ PK are mutually essential. We will prove the
theorem in a sequence of lemmas. We will use the following definition modelled after
the definition of a strongly @–compressible surface first introduced by Scharlemann in
[8].
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Definition 7.8 A splitting surface FK �AK splitting A into submanifolds X and Y

is called strongly P –compressible if there exist P –compressing disks EX �XK and
EY � YK for FK such that @EX \ @EY D∅.

Lemma 7.9 Suppose FK is the surface that provides a counterexample to Theorem
7.7 with maximal Euler characteristic. In other words FK is the maximal Euler
characteristic surface satisfying all of the following conditions:

� FK has no closed components,

� FK is c–bicompressible and c–weakly incompressible,

� FK has no disk components,

� all curves of PK \FK are mutually essential unless they bound punctured disks
in both surfaces,

� if some spine †.A;K / is entirely contained in XK say, then every c–disk for FK

contained in XK intersects this spine and

� there is some curve f 2 FK \PK that is essential in PK and not the boundary
of a PK –parallel annulus component of FK such that d.f; A/ > 1��.FK /.

Then FK is not strongly P –compressible.

Proof By way of contradiction suppose EX �XK and EY � YK is a pair of disjoint
P –compressing disks for FK . Let Fx

K
;F

y
K

denote the surfaces obtained from FK by
P –compressing FK along EX and EY respectively, and let F�

K
denote the surface

obtained by P –compressing along both disks simultaneously. A standard innermost
disk, outermost arc argument between EX and a c–disk for FK in XK shows that
Fx

K
has a c–disk lying in XK . Similarly, F

y
K

has a c–disk lying in YK . If one of
Fx

K
or F

y
K

has c–disks on both sides, say Fx
K

, then all curves of PK \Fx
K

must be
mutually essential unless they bound punctured disks in both surfaces by Proposition
7.5. The surface Fx

K
cannot be the union of punctured disks as it is bicompressible so

at least one component of Fx
K
\PK is essential in PK . As 1��.Fx

K
/ < 1��.FK /

the surface Fx
K

satisfies one of the conclusions of the theorem. By Proposition 7.6
tunneling to recover FK from Fx

K
preserves either of these properties so FK is not a

counterexample as we assumed.

If F�
K

has any c–disk, then one of Fx
K

or F
y
K

has c–disks on both sides as c–disks are
preserved under tunneling and we are done as above. Suppose some curve of F�

K
\PK

is inessential in PK but essential in F�
K

. This curve must be adjacent to the dual arc to
one of the P –compressing disks, say the dual arc to EX . In this case, by an argument
similar to the proof of Proposition 7.5, F

y
K

is c–compressible in XK . As we saw that
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F
y
K

is c–compressible in YK , it follows that F
y
K

is c–bicompressible, a case we have
already considered. Thus all curves essential in F�

K
are also essential in PK , therefore

if F�
K

has a component that is not PK –parallel, the result follows from Proposition
4.3.

We have reduced the proof to the case that F�
K

is c–incompressible, each component
of F�

K
is PK –parallel and all curves of PK \F�

K
are essential in PK or mutually

inessential. It is clear that in this case we can isotope F�
K

to be disjoint from any spine
†.A;K / . The original surface FK can be recovered from F�

K
by tunneling along two

arcs on opposite sides of F�
K

. The tunnels can be made disjoint from †.A;K / and thus
FK can also be isotoped to be disjoint from †.A;K / . Without loss of generality we
will assume †.A;K / �XK , thus it suffices to show that FK has a c–disk in XK that
is disjoint from †.A;K / .

Consider how Fx
K

can be recovered from F�
K

; the P –compression into YK must be
undone via a tunnelling along an arc 
 where the interior of 
 is disjoint from F�

K
.

Let 
 connect components F0
K

and F1
K

(possibly F0
K
D F1

K
) of F�

K
where F i

K
is

parallel to a subsurface zF i
K
� PK . There are three cases to consider. First assume that

F0
K
¤F1

K
and they are nested, ie zF0

K
� zF1

K
. Consider the eyeglass curve eD �.
 [!/

where ! � F0
K

is parallel to the boundary component of F0
K

that is adjacent to 
 .
Using the product structure between F0

K
and F1

K
, a neighborhood of e� I contains

the desired compressing disk for FK that is disjoint from some spine †.A;K / .

Next suppose F0
K
¤F1

K
and they are not nested. Then each component of Fx

K
is PK –

parallel. As we have already seen, Fx
K

has a c–disk in XK . The c–disk is either disjoint
from some †.A;K / , in which case we are done, or, via the parallelism to PK , the
c–disk represents a c–disk D� for PK in AK whose boundary is disjoint from at least
one curve in @Fx

K
; the curve that is in the boundary of the c–compressible component

of Fx
K

. Call this particular curve f x . If �.FK / < �1 then d.f x; @D�/ � 1 so
d.f; A/ � 3 � 1� �.FK /. If �.FK /D �1, then Fx

K
consists only of PK –parallel

annuli and punctured disks components. Let N be the annulus component of Fx
K

with
boundary f x parallel to a subannulus zN � PK . Then f x and @D� both lie in zN
so d.f x; @D�/D 0. By Proposition 4.1 d.@D�; A/� 1. Thus for f any essential
component of @FK , d.f; A/ � d.f; f x/C d.f x; @D�/C d.@D�; A/ � 1C 1 D

1��.FK /.

The last case to consider is the case F0
K
D F1

K
. If 
 � zF0

K
then 
 � I is the desired

compressing disk. If 
 is disjoint from zF0
K

, then each component of Fx
K

is PK –
parallel. Proceed as in the previous case to show that either Fx

K
, and thus FK , has a

c–disk disjoint from †.A;K / or d.f; A/� 1��.FK /.

Algebraic & Geometric Topology, Volume 7 (2007)



Multiple bridge surfaces restrict knot distance 979

Lemma 7.10 If the surface FK that provides a counterexample to Theorem 7.7 with
maximal Euler characteristic is bicompressible, then the surfaces FX

K
and FY

K
obtained

from FK by maximally compressing FK into XK and YK respectively have cut-disks.

Remark 7.11 Note that the hypothesis of this lemma holds when FK does not have
any cut-disks.

Proof Suppose FX
K

say has no cut-disks. By Corollary 6.3 the surfaces FX
K

and FY
K

are incompressible in AK . If some component of FX
K

is not PK –parallel, then the
second conclusion of the theorem follows from Proposition 4.3. We may therefore
assume that there is some spine †.A;K / that is disjoint from FX

K
.

Let X�
K

and Y C
K

be the two sides of FX
K

and let � � Y C
K

be the graph dual to the
compressions we performed, ie FK can be recovered from FX

K
by tunneling along

the edges of � . Note that by general position we can always arrange that � is disjoint
from any spine so in particular after an isotopy, FK \ †.A;K / D∅.

Claim Recall that SK is the component of FK to which all c–disks for FK are
incident. To prove the lemma at hand it suffices to show that

� SK has a c–disk D� on the same side of SK as the spine †.A;K / and disjoint
from that spine or

� there is a compressing disk for PK whose boundary is disjoint from at least one
curve in @SK or

� SK is strongly P –compressible.

Proof By an innermost disk argument we may isotope any c–disk for SK to be disjoint
from FK .

In the first case we assume SK has c–disk D� on the same side of SK as the spine
†.A;K / and disjoint from that spine. Recall that FK \ †.A;K / D∅ so it is sufficient
to show that FK also has a c–disk on the same side as †.A;K / but disjoint from it.
Note that D� is not necessarily on the same side of FK as the spine.

If there is a component of FK that separates D� and †.A;K / than this component
also separates SK and all its c–disks from the spine. As SK is bicompressible, we can
always find a c–disk for SK on the same side as †.A;K / and all these c–disks will be
disjoint from the spine. If there is no such separating component, then D� is a c–disk
for FK on the same side as †.A;K / but disjoint from †.A;K / .

In the second case, d.s; A/� 1 where s 2 @SK so d.f; A/� 2� 1��.FK /.
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In the third case, suppose first that all components of FK �SK are annuli, necessarily
not PK –parallel. If one of these annuli is P –compressible, P –compressing it results
in a compressing disk for PK that is disjoint from FK so d.f; A/� 1. Thus we may
assume that all other components of FK are P –incompressible. By an innermost disk
and outermost arc arguments, the pair of strongly P –compressing disks for SK can
be isotoped to be disjoint from all other components of FK so FK is also strongly
P –compressible and by Lemma 7.9, FK cannot be a counterexample to the theorem.

If some component of FK other than SK has a strictly negative Euler characteristic, then
1��.SK /< 1��.FK /. This shows that SK is not a counterexample to the theorem, so
either d.s; A/� 1��.SK / in which case d.f; A/� d.f; s/Cd.s; A/� 1��.FK /

or SK has a c–disk on the same side of SK as the spine †.A;K / but is disjoint from it.
By repeating the argument from the first case, we conclude that FK must also satisfy
the second conclusion of the theorem. This concludes the proof of the claim.

Note that SK is itself a c–weakly incompressible surface as every c–disk for the surface
SK is also a c–disk for FK . We will prove the lemma by showing that SK satisfies
one of the items in the claim above. Let S split A into submanifolds U and V and
SU

K
be the surface obtained by maximally compressing SK in UK , SU

K
splits AK

into submanifolds U�
K

and V C
K

and � is the graph dual to the compressing disk. We
have already shown that for some spine †.A;K / , †.A;K /\FK D∅ so in particular
†.A;K /\SK D∅. As SU

K
is c–incompressible, we may assume each component is

PK –parallel as otherwise the result will follow by Proposition 4.3. We will show that
SK satisfies one of the conditions in the claim.

If †.A;K / � U�
K

, then †.A;K / is also disjoint from every compressing disk for SK

lying in UK as it is disjoint from the meridional circles for the edges of � and we
have the desired result. Thus we may assume †.A;K / � V C

K
. Let S0

K
be an outermost

component of SU
K

, ie a component cobounding a product region RK Š S0
K
� I with

PK such that RK \SU
K
D∅.

Case 1 Suppose for some outermost component, RK � V C
K

. As � � V C
K

and SK is
connected, S0

K
is the only component of SU

K
. This implies that †.A;K / �RK so we

can use the product structure to push †.A;K / into U�
K

and by the previous paragraph
SK satisfies the hypothesis of the claim.

Case 2 Suppose the components of SU
K

are nested and let S1
K

be a second outermost
component. The region between S1

K
and the outermost components of SU

K
is a product

region that must be contained in V C
K

or we can apply Case 1. Again as SK is connected,
V C

K
is also connected so in fact V C

K
is a product region and †.A;K / � V C

K
. Again we

can push †.A;K / into U�
K

and complete the argument as in the previous case.
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Case 3 Finally suppose that the components of SU
K

are all outermost and all outermost
regions are contained in U�

K
. By Corollary 6.4, there is a compressing disk for PK

that is disjoint from a complete collection of compressing disks for SK in UK and
intersects SK only in arcs that are essential in SU

K
. Take such a disk D that intersects

SK minimally. Consider an outermost arc of SU
K
\D cutting off a subdisk D0 from

D . If D0 � VK , P –compressing SK along D0 preserves the compressing disks of
SK lying in UK (because D is disjoint from all compressing disks for SK in UK by
hypothesis) and also preserves the c–disks lying in VK (by an innermost disk argument)
so the result follows by induction. If every outermost disks is contained in U�

K
, the

argument of [8, Theorem 5.4, Case 3] now carries over to show that either SK is
strongly P –compressible or there is a compressing disk for PK that is disjoint from
SK . We repeat the argument here for completeness.

If there is nesting among the arcs D\SK in D , consider a second outermost arc �0

in D and let D0 be the disk this arc cuts from D , see Figure 5. If every arc of SU
K
\D

is outermost of D let D DD0 . Let ƒ �D0 denote the collection of arcs D0 \SK ;
one of these arcs (namely �0 ) will be in @D0 . Consider how a c–disk E� for SK

in VK intersects D0 . All closed curves in D0 \E� can be removed by a standard
innermost disk argument redefining E� . Any arc in D0 \E� must have its ends in
ƒ ; a standard outermost arc argument can be used to remove any that have both ends
in the same component of ƒ . If any component of ƒ � �0 is disjoint from all the
arcs D0\E� , then SK could be P –compressed without affecting E� . This reduces
1� �.SK / without affecting bicompressibility, so we would be done by induction.
Hence we restrict to the case in which each arc component of ƒ ��0 is incident to
some arc components of D0\E� .

D �0

D0
��

�1ˇ

�C D0˛

Figure 5
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It follows that there is at least one component �1 ¤ �0 of ƒ with this property: any
arc of D0\E� that has one end incident to �1 has its other end incident to one of the
(at most two) neighboring components �˙ of ƒ along @D0 . (Possibly one or both
of �˙ are �0 .) Let ˇ be the outermost arc in E� among all arcs of D0 \E� that
are incidental to the special arc �1 . We then know that the other end of ˇ is incident
to (say) �C and that the disk E0 � E� cut off by ˇ from E� , although it may be
incident to D0 in its interior, at least no arc of intersection D0\ interior.E0/ is incident
to �1 . Notice that even if E� is a cut-disk, we can always choose E0 so that it does
not contain a puncture.

Let D0 be the rectangle in D0 whose sides consist of subarcs of �1 , �C , @D0 and
all of ˇ . Although E� may intersect this rectangle, our choice of ˇ as outermost
among arcs of D\E� incident to �1 guarantees that E0 is disjoint from the interior
of D0 and so is incident to it only in the arc ˇ . The union of E0 and D0 along ˇ
is a disk D1 � VK whose boundary consists of the arc ˛ D P \ @D0 and an arc
ˇ 0 � SK . The latter arc is the union of the two arcs D0\SK and the arc E0\SK . If
ˇ 0 is essential in FK , then D1 is a P –compressing disk for SK in VK that is disjoint
from the P –compressing disk in UK cut off by �1 . So if ˇ 0 is essential then SK

is strongly P –compressible. Suppose finally that ˇ 0 is inessential in SK so ˇ 0 is
parallel to an arc in @SK . Let D2 � SK be the disk of parallelism and consider the
disk D0 DD1[D2 . Note that @D0 � PK and D0 can be isotoped to be disjoint from
SK . Either D0 is PK –parallel or is itself a compressing disk for PK . In the latter case
@D0 2A, d.f;A/� 1 for every f 2 @SK and we are done. On the other hand if D0

cobounds a ball with PK , then D1 and D2 are parallel and so we can isotope SK

replacing D2 with D1 . The result of this isotopy is the curves �1 and �C are replaced
by a single curve containing ˇ as a subarc lowering jD\SK j. This contradicts our
original assumption that SK and D intersect minimally. We conclude that SK satisfies
the second or the third condition of the Claim completing the proof of Lemma 7.10.

We return now to the proof of the theorem. By the above lemmas we may assume FK

is not strongly P –compressible, and if it is bicompressibleboth of FX
K

and FY
K

have
cut-disks.

Remark 7.12 Some of the argument to follow here parallels the argument in [8,
Theorem 5.4]. In fact it seems likely that the stronger result proven there still holds.

If FK has no compressing disks on some side (and necessarily has a cut-disk), pick
that side to be XK . If both sides have compressing disks, pick XK to be the side
that has a cut-disk if there is such. Thus if FK has a cut-disk, then it has a cut-disk
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Dc �XK and if FK has a compressing disk lying in XK , it also has a compressing
disk lying in YK .

Suppose FK has a cut-disk Dc �XK . Let � be the component of K�P that pierces
through Dc and B be a bridge disk of � . We want to consider how FK intersects
B . After a standard innermost disk argument, we may assume that the cut-disk Dc

intersects B in a single arc � with one endpoint lying in � and the other endpoint
lying in a component of FK \B . Label this component b (see Figure 6). The curve
b is either a simple closed curve, has both of its endpoints in PK or has at least one
endpoint in � .

FK

Dc�

�

b

B

PK

Figure 6

Assume jB \FK j is minimal. We will first show that if there are any simple closed
curves of intersection, they cannot be nested in B . The argument is similar to the No
Nesting Lemma in Scharlemann [9].

Suppose such nesting occurs and let ı be a second innermost curve cutting off a disk Dı

from B . The innermost curve of intersection contained in Dı bound compressing disks
for FK disjoint from Dc and thus must lie in XK , call these disks D1; : : : ;Dn . By our
choice of labels this implies that FK is in fact bicompressible, let E be a compressing
disks for FK lying in Y . By c–weak incompressability of FK , E \Di ¤ ∅. By
using edgeslides guided by E as in the proof of Lemma 6.1 jB \FK j can be reduced
contradicting minimality.

We can in fact assume that there are no simple closed curves of intersection between
FK and the interior of B . Suppose � ¤ b is an innermost simple closed curve of
intersection bounding a subdisk D� � B . This disk is a compressing disk for FK
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disjoint from Dc so must lie in XK by c–weak incompressibility of FK . Thus FK

must also have a compressing disk in YK . Use this compressing disk and apply Lemma
6.1 with the subdisk of B bounded by b playing the role of T to isotope FK so as to
remove all such closed curves.

Suppose b is a simple closed curve. Let Db � B be the disk b bounds in B . Then
by the above Db \FK D b and thus Db is a compressing disk for FK lying in YK

intersecting Dc in only one point contradicting Proposition 7.4. Thus we may assume
b is an arc.

Case 1 There exists a cut-disk Dc �XK such that the arc b associated to it has both
of its endpoints in PK .

Again let Db � B be the disk b bounds in B . By the above discussion Db \FK has
no simple closed curves. Let � now be an outermost in B arc of intersection between
FK and B cutting from B a subdisk E0 that is a P –compressing disk for FK .

Subcase 1A bD� and so necessarily E0�YK . This in fact implies that FK\BDb .
For suppose there is an arc in FK \ .B �Db/. An outermost such arc 
 bounds a
P –compressing disk for FK . If this disk is in XK , then FK would be strongly P –
compressible, a possibility we have already eliminated. If the disk is in YK , note that
we can P –compress FK along this disk preserving all c–disks for FK lying in YK

and also preserving the disk Dc . The theorem then follows by Proposition 7.6.

Consider the surface F 0
K

obtained from FK via P –compression along Db and the
disk DB obtained by doubling B along � , a compressing disk for PK . In this case
F 0

K
\DB D∅ so we can obtain the inequality d.f; A/ � d.f; @DB/ � d.f; f 0/C

d.f 0; @DB/ � 2 for every curve f 2 PK \FK as long as we can find at least one
f 0 2 PK \F 0

K
that is essential in PK .

If all curves in PK \F 0
K

are inessential in PK , there are at most two of them. Suppose
F 0

K
has two boundary components f 0

1
and f 0

2
bounding possibly punctured disks

Df 0
1
;Df 0

2
�PK and FK \PK can be recovered by tunneling between these two curves.

As all curves of FK \PK are essential in PK , each of Df 0
1

and Df 0
2

must in fact be
punctured and they cannot be nested. Consider the curve f� that bounds a disk in
P and this disk contains Df 0

1
;Df 0

2
and the two points of � \P , (see Figure 7). This

curve is essential in PK as it bounds a disk with four punctures on one side the other
side either does not bound a disk in P if P is not a sphere, or contains at least two
punctures of PK if P is a sphere. As f� is disjoint from both the curve FK \PK and
from at least one curve of A , it follows that the unique curve f 2 FK \PK satisfies
the equality d.FK \PK ; A/� 2� 1��.FK /.
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Df 0
1

f�

Df 0
2

�

Figure 7

If F 0
K

has a unique boundary curve f 0 then FK is recovered by tunneling along an arc
e0 with both of its endpoints in f 0 . Therefore FK has exactly two boundary curves
f0; f1 that cobound a possibly once punctured annulus in PK (see Figure 8).

�

f1

f0

f 0�

E0

b

f�

Figure 8

Let f� and f 0� be the curves in PK that cobound once punctured annuli with f1 and f0

respectively as in Figure 8. If both f� and f 0� are inessential in PK , then PK is a sphere
with at most four punctures contrary to the hypothesis. Thus we may assume that f�
say is essential in PK . In this case d.fi ; A/� d.fi ; f�/Cd.f�; A/� 2� 1��.FK /

for i D 1; 2 as desired.

Subcase 1B b¤ � and some disk E0 �Db bound by an outermost arc of FK \Db

is contained in YK . (It can be shown that as in subcase 1A, FK \ .B �Db/D∅ but
we won’t need this observation). P –compressing via E0 results in a surface F 0

K
with
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c–disks on both sides as E0 is disjoint from Dc . By Proposition 7.5 F 0
K

satisfies the
hypothesis and thus the conclusion of the theorem at hand and by Proposition 7.6 so
does FK contradicting our assumption that FK is a counterexample.

Subcase 1C All outermost arcs of FK \Db bound P –compressing disks contained
in XK . Consider a second outermost arc �0 in B (possibly b ) and let D0 be the disk
this arc cuts from B . Let ƒ �D0 denote the collection of arcs D0\FK ; one of these
arcs (namely �0 ) will be in @D0 . The argument is now identical to Case 3 of Lemma
7.10, and shows that FK is strongly P –compressible, a possibility we have already
eliminated, or d.f; A/� 1. See Figure 9 for the pair of strongly P –compressing disks
in this case.

�0 D �C D b

�1

Dc

��

� B \E

P

E0

Figure 9

Case 2 No cut-disk for FK has the property that the arc associated to it has both of
its endpoints in PK . In other words, every arc b associated to a cut-disk Dc � XK

has at least one of its endpoints in � . This also includes the case when FK has no
cut-disks at all.

First we will show that FK actually has compressing disks on both sides. This is trivial
if FK has no cut-disks so suppose FK has a cut-disk. Consider the triangle R� B

cobounded by �; � and b (See Figure 10). If R is disjoint from FK , a neighborhood
of Dc [R contains a compressing disk D for FK , necessarily contained in XK . If
R\FK ¤∅, there are only arcs of intersection as all simple closed curves have been
removed. An outermost in R arc of intersection has both of its endpoint lying in �
and doubling the subdisk of R it cuts off results in a compressing disk D for FK that
also has to lie in XK as its boundary is disjoint from Dc . These two types of disks
will be called compressing disks associated to Dc . As FK has a compressing disk in
YK by our initial choice of labeling, FK is bicompressible.

Compress FK maximally in XK to obtain a surface FX
K

. The original surface FK

can be recovered from FX
K

by tubing along a graph � whose edges are the cocores of
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the compressing disks for FK on the XK side. By Corollary 6.3 FX
K

does not have
any compressing disks and by Lemma 7.10 it has cut-disks.

We will use X�
K

and Y C
K

to denote the two sides of FX
K

and will show that in this
case FX

K
doesn’t have any cut-disks lying in X�

K
. Suppose D0

c
� X�

K
is a cut disk

for FX
K

and B0; b0 are respectively the disk and the arc of FX
K
\B0 associated to it.

Note that b0 must have both of its endpoints in PK as otherwise we can construct a
compressing disk associated to D0

c and we have shown that FX
K

is incompressible.
The original surface FK can be recovered from FX

K
by tubing along the edges of a

graph � �Y C
K

. This operation preserves the disk D0
c and b0 so FK also has a cut-disk

whose associated arc has both of its endpoints of PK contradicting the hypothesis of
this case.

D

P
b

B

�

FK

PK

FK

D

�

B

b

PK

Dc

�

Dc

�

Figure 10

The remaining possibility is that FX
K

has a cut-disk in D0
c
� Y C

K
. Let B0 is its

associated bridge disk, b0 the arc of FK \B0 adjacent to the cut-disk, D0
b

is the disk b0

cuts from B0 and �0 the arc of the knot piercing D0
c . Assume jFX

K
\B0j is minimal.

There cannot be any circles of intersection for they would either be inessential in both
surfaces or give rise to compressing disks for the incompressible surface FX

K
. Also the

arc b0 must have both of its endpoints in P , otherwise we can construct a compressing
disk for FX

K
associated to D0

c , a similar situation is depicted in Figure 10. Consider
an outermost arc of D0

b
\FX

K
cutting from D0

b
a P –compressing disk E0 , possibly

D0
B
DE0 . We now repeat an argument similar to the argument in Case 1 but applied

to FX
K

. There are again 3 cases to consider.

Subcase 2A FX
K
\D0

b
Db0 so b0 bounds a P –compressing disk for FX

K
lying in X�

K
.

Let F 0
K

X be the surface obtained from FX
K

after this P –compression. The argument of
Subcase 1A now shows d.f; A/� 2� 2��.FK / for every f 2FX

K
\PK DFK\PK .
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Subcase 2B Some E0 lies in Y C
K

(so b0 is not an outermost arc). Pick a compressing
disk D for FK in YK as in Corollary 6.4. P –compressing FK along E0 does not
affect c–disks lying in Y C

K
. It also preserves all compressing disks for FK that lie in

XK as it is disjoint from the graph � and thus we are done by induction.

Subcase 2C All outermost arcs of FX
K
\B0 lie in X�

K
. Consider a second outermost

arc component of .FX
K
/\B0 and let E1 2D0

b
�FX

K
be the disk it bounds, necessarily

E1 � Y C . By Lemma 6.1 we may assume that � is disjoint from this disk. Let E be
a compressing disk for FK in YK . If E\E1D∅ then P –compressing FK along an
outermost disk component preserves the compressing disk lying in YK and of course
preserves all c–disks lying in XK so we can finish the argument by induction. If there
are arcs of intersection, we can repeat the argument of Subcase 1C to show that FK is
strongly boundary compressible, a case we have already eliminated.

8 Distance and intersections of Heegaard splittings

For the remainder of this paper we will be considering the case of a closed orientable
irreducible 3–manifold M containing a knot K with bridge surface P such that
M D A[P B . In this section we also assume that if P is a sphere then P has at
least six punctures. The surface Q will be either a second bridge surface for K or a
Heegaard surface for MK . Let X and Y be the two components of M �Q. Thus if
Q is a Heegaard splitting for the knot exterior, then one of XK or YK is a compression
body and the other component is a handlebody. If Q is a bridge surface, both XK and
YK are K -handlebodies.

Given a positioning of PK and QK in MK let QA
K

and QB
K

stand for QK \AK and
QK \BK respectively. After removing all removable (see Definition 5.4) curves of
intersection, proceed to associate to the configuration given by PK and QK one or
more of the following labels.

� Label A (resp B ) if some component of QK \PK is the boundary of a com-
pressing disk for PK lying in AK (resp BK ).

� Label Ac (resp Bc ) if some component of QK \ PK is the boundary of a
cut-disk for PK lying in AK (resp BK ). (Notice that this labeling is slightly
different from the labeling in Section 5 where the compressing disk was required
to be a subdisk of QK .)

� X (resp Y ) if there is a compressing disk for QK lying in XK (resp YK ) that
is disjoint from PK and the configuration does not already have labels A, Ac ,
B or Bc .
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� X c (resp Y c ) if there is a cut-disk for QK lying in XK (resp YK ) that is disjoint
from PK and the configuration does not already have labels A, Ac , B or Bc .

� x (resp y ) if some spine †.A;K / or †.B;K / lies entirely in YK (resp XK ) and
the configuration does not already have labels A, Ac , B or Bc .

We will use the superscript � to denote the possible presence of superscript c , for
example we will use A� if there is a label A;Ac or both.

Remark 8.1 If all curves of PK \QK are mutually essential, then a curve is essential
in QA

K
say, only if it is essential in QK so any c–disk for QA

K
or QB

K
that is disjoint

from QK is in fact a c–disk for QK .

Lemma 8.2 If the configuration of PK and QK has no labels, then d.K;P / �

2��.QK /.

Proof If PK \QK D ∅ then QK � AK say, so BK is entirely contained in XK

or in YK , say in YK . But BK contains all spines †.B;K / so there will be a label x

contradicting the hypothesis. Thus PK \QK ¤∅.

Consider the curves PK \QK and suppose some are essential in PK but inessential
in QK . An innermost such curve in QK will bound a c–disk in AK or BK . Since
there is no label, such curves can not exist. In particular, any intersection curve that is
inessential in QK is inessential in PK . Now suppose there is a curve of intersection
that is inessential in PK . An innermost such curve c bounds a possibly punctured disk
D� � PK that lies either in XK or in YK but, because there is no label X � or Y � ,
this curve must be inessential in QK as well. Let E be the possibly punctured disk it
bounds there. We have just seen that all intersections of E with PK must be inessential
in both surfaces, so c is removable and would have been removed at the onset. We
conclude that all remaining curves of intersection are essential in both surfaces. As
there are no labels X � or Y � , QA

K
and QB

K
are c–incompressible. We conclude that

both surfaces satisfy the hypothesis of Proposition 4.3. The bound on the distance then
follows by Corollary 5.3.

Proposition 8.3 If some configuration is labeled A� and B� then PK is c–strongly
compressible.

Proof The labels imply the presence of c–disks for PK that we will denote by D�
A

and D�
B

such that @D�
A
; @D�

B
2QK \PK . As QK is embedded, either @D�

A
D @D�

B

or @D�
A
\ @D�

B
D∅. Thus PK is c–strongly compressible.
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Lemma 8.4 If PK \QK D ∅ with say PK � XK (recall that XK may be a han-
dlebody, a compression body or a K–handlebody) and QK �AK , then either every
compressing disk D for QK lying in XK intersects PK or at least one of PK and
QK is strongly compressible.

Proof Suppose PK and QK are both weakly incompressible and that there is a
compressing disk for QK lying in XK \AK . As YK �AK this implies that QK is
bicompressible in AK . As QK is weakly incompressible in MK , it must be weakly
incompressible in AK . Compress QK maximally in AK \XK to obtain a surface QX

K

incompressible in AK by Corollary 6.3. Consider the compressing disks for PK lying
in AK . Each of them can be made disjoint from QX

K
by an innermost disk argument

so the surface PA
K

obtained by maximally compressing PK in AK is disjoint from
QX

K
and so from QK (see Figure 11). As M has no boundary, PA

K
is a collection of

spheres and of annuli parallel to N.K/. The surface PA
K

separates PK and QK thus
QK is entirely contained in a ball or in a ball punctured by the knot in one arc. This
contradicts the assumption that if M D S3 , then K is at least a three bridge knot.

P A
K

A�
K

QX
K

XK

QK

PK

AK

Figure 11

Lemma 8.5 If there is a spine †.A;K / � YK (recall that YK may be a handlebody,
a compression body or a K–handlebody) then either any c–disk for QK in YK that
is disjoint from PK intersects †.A;K / or at least one of PK and QK is c–strongly
compressible.

Proof Suppose PK and QK are both c–weakly incompressible and suppose E is a
c–disk for QK in YK that is disjoint from PK and from some spine †.A;K / . Use
the product structure between PK and †.A;K / to push all of QA

K
, as well as E , into
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BK . If E was a compressing disk, this gives a contradiction to Lemma 8.4 with the
roles of XK and YK reversed. We want to show that even if the initial disk E was a
cut-disk, after the push we can find a compressing disk for QK lying in YK that is
disjoint from PK and contradict Lemma 8.4.

Suppose E is a cut-disk, let � 2B be the arc of K�P that pierces E and let D�BK

be its bridge disk with respect to PK . Isotope QK and D so that jQK \Dj is minimal
and consider b � QK \D , the arc of intersection adjacent to E (this situation is
similar to Figure 10). If b is a closed curve, let Db be the disk it bounds in D . If
D \QK D b then Db is a compressing disk for QK that intersects E in exactly
one point, contradicting c–weak incompressibility. Let ı be an innermost curve of
intersection between D and QK bounding a subdisk Dı � D . If Dı � XK , that
would contradict c–weak incompressibility of QK so Dı � YK and is the desired
compressing disk. If b is not a closed curve, we can obtain a compressing disk for
QK much as in Figure 10. Both endpoints of b lie in � as QK \PK D ∅. If b is
outermost, let R be the disk b cuts from D . A neighborhood of R[E consists of
two compressing disks for QK in YK both disjoint from PK as desired. If b is not
outermost, let ı be an outermost arc. Doubling the disk Dı that ı cuts from D gives
a compressing disk for QK . If this compressing disk is in XK that would contradict
c–weak incompressibility of QK thus the disk must lie in YK as desired.

Of course the symmetric statements hold if †.A;K /�XK , †.B;K /�YK or †.B;K /�
XK .

Lemma 8.6 Suppose PK and QK are both c–weakly incompressible surfaces. If
there is a configuration labeled both x and Y � (or symmetrically X � and y ) then
either PK and QK are K–isotopic or d.K;P /� 2��.QK /.

Proof From the label x we may assume, with no loss of generality, that there exists a
spine †.A;K / � YK . From the label Y � we know that QK has a c–disk in YK �PK ,
call this disk E . By Lemma 8.5, E \ †.A;K / ¤∅ so in particular E � YK .

We first argue that we may as well assume that all components of PK \QK are
essential in PK . For suppose not; let c be the boundary of an innermost possibly
punctured disk D� in PK �QK . If c were essential in QK then D� cannot be in
YK (by Lemma 8.5) and so it would have to lie in XK . But then D� is disjoint from
E , contradicting the c–weak incompressibility of QK . We deduce that c is inessential
in QK bounding a possibly punctured subdisk D0 � QK . If D0 intersects PK in
any curves that are essential, that would result in a label A� or B� contradicting our
labeling scheme so c is removable and should be been removed at the onset. Suppose
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now that some curve of intersection bounds a possibly punctured disk in QK . By the
above it must be essential in PK but then an innermost such curve would give rise to a
label A� or B� contradicting the labeling scheme. Thus all curves of QK \PK are
mutually essential.

Consider first QB
K

. It is incompressible in BK because a compression into YK would
violate Lemma 8.5 and a compression into XK would provide a c–weak compression
of QK . If QB

K
is not essential in BK then every component of QB

K
is parallel into

PK so in particular QB
K

is disjoint from some spine †.B;K / and thus QK � PK � I .
If QK is incompressible in PK � I , then it is PK –parallel by Lemma 2.10 as we
know that QK is not a sphere or an annulus. A compression for QK in PK � I

would contradict Lemma 8.5 unless both †.A;K / and †.B;K / are contained in YK and
QK has a compressing disk DX contained in .PK � I/\XK . In this case, as each
component of QB

K
is PK –parallel, we can isotope QK to lie entirely in AK so that

PK �YK but then the disk E provides a contradiction to Lemma 8.4. We conclude that
QB

K
is essential in BK so by Proposition 4.3 for each component q of QK \PK that is

not the boundary of a PK –parallel annulus in BK , the inequality d.q;B/� 1��.QB
K
/

holds. Thus we can conclude that either PK and QK are K–isotopic or QB
K

satisfies
the hypotheses of Lemma 5.2.

By Lemma 8.5 QA
K

does not have c–disks in YK \ .AK �†.A;K // so it either has no
c–disks in AK � †.A;K / at all or has a c–disk lying in XK . The latter would imply
that QA

K
is actually c–bicompressible in AK . In either case we will show that QA

K

also satisfies the hypotheses in Lemma 5.2 and the conclusion of that lemma completes
the proof.

Case 1 QA
K

is incompressible in AK � †.A;K / Š PK � I . By Lemma 2.10 each
component of QA

K
must be PK –parallel. The c–disk E of QA

K
in YK � PK can

be extended via this parallelism to give a c–disk for PK that is disjoint from all
q2QK\PK . Hence d.q;A/�2�1��.QA

K
/ as long as QA

K
is not a collection of PK –

parallel annuli. If that is the case, then d.@E; q0/D 0 for at least one q0 2 .PK \QK /

so d.q0;A/� 1� 1��.QA
K
/ as desired.

Case 2 QA
K

is c–bicompressible in AK . Every c–disk for QK in YK intersects
†.A;K / , so we can deduce the desired distance bound by Theorem 7.7.

Lemma 8.7 Suppose PK and QK are both c–weakly incompressible surfaces. If there
is a configuration labeled both X � and Y � then either PK and QK are K–isotopic or
d.K;P /� 2��.QK /.

Proof Since QK is c–weakly incompressible, any pair of c–disks, one in XK and
one in YK , must intersect in their boundaries and so cannot be separated by PK . It
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follows that if both labels X � and Y � appear, the boundaries of the associated c–disks
lie in one of QA

K
or QB

K
, say, QA

K
.

Again we may as well assume that all components of PK \QK are essential in PK .
For suppose not; let c be the boundary of an innermost possibly punctured disk D� in
PK �QK . If c were essential in QK then a c–disk in BK parallel to D would be a
c–disk for QB

K
. From this contradiction we deduce that c is inessential in QK and

proceed as in the proof of Lemma 8.6. As no labels A� or B� appear, all curves are
also essential in QK .

If QA
K

or QB
K

could be made disjoint from some spine †.A;K / or †.B;K / , then the
result would follow by Lemma 8.6 so we can assume that is not the case. In particular
QB

K
is essential and so via Proposition 4.3 it satisfies the hypothesis of Lemma 5.2.

The surface QA
K

is c–bicompressible, c–weakly incompressible and there is no spine
†.A;K / disjoint from QA

K
. By Theorem 7.7, QA

K
also satisfies the hypothesis of

Lemma 5.2 so we have the desired distance bound.

Lemma 8.8 Suppose PK and QK are both c–weakly incompressible surfaces. If
there is a configuration labeled both x and y , then either PK and QK are K–isotopic
or d.K;P /� 2��.QK /.

Proof As usual, we can assume that all curves in PK \QK are essential in both
surfaces. Indeed, if there is a curve of intersection that is inessential in PK then an
innermost one either is inessential also in QK , and can be removed as described above,
or is essential in QK and so would give rise to a label X � or Y � , a case done in Lemma
8.6. In fact we may assume that QA

K
or QB

K
are incompressible and c–incompressible

as otherwise the result would follow by Lemma 8.6. As no labels A� or B� appear,
we can again assume that all curves PK \QK are also essential in QK .

Both XK and YK contain entire spines of AK or BK , though since we are not dealing
with fixed spines the labels could arise if there are two distinct spines of AK , say, one
in XK and one in YK . Indeed that is the case to focus on, since if spines †.A;K /�XK

and †.B;K / � YK then QK is an incompressible surface in PK � I so by Lemma
2.10 QK is K–isotopic to PK .

So suppose that †.A;K / � YK and there is another spine † 0.A;K / �XK . The surface
QA

K
is incompressible in AK so it is certainly incompressible in the product AK �

†.A;K / and so every component of QA
K

is parallel in AK � †.A;K / to a subsurface
of PK . Similarly every component of QA

K
is parallel in AK �†

0
.A;K / to a subsurface

of PK .
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Let Q0 be a component of QA
K

that lies between †.A;K / and † 0.A;K / . This implies
that Q0 is parallel into PK on both its sides, ie that AK ŠQ0 � I .

As K is not a 2–bridge knot, then either �.PK /<�2 (so in particular �.Q0/<�1) or
PK a twice punctured torus. We will show that in either case d.A; q/� 2� 1��.QA

K
/.

If PK is a twice punctured torus, then Q0 is a once punctured annulus so has Euler
characteristic �1 and thus �.QA

K
/ < 0. Note that d.@Q0;A/� 2 (see Figure 12) and

thus d.A; q/� 2� 1��.QA
K
/.

QA
K
\PK

Figure 12

If �.PK / < �2 let ˛ be an essential arc in Q0 with endpoints in PK \QK . Then
˛ �I �Q0�I ŠAK is a meridian disk D for AK that intersects Q0 precisely in ˛ .
P –compressing Q0 along one of the two disk components of D� ˛ produces at most
two surfaces at least one of which, Q1 say, has a strictly negative Euler characteristic.
In particular it is not a disk, punctured disk or an annulus. Every component of @Q1

is essential in PK and disjoint from both D and Q0\PK . We can conclude that for
every curve q 2 PK \QK , d.A; q/ � d.A; @Q0/C d.@Q0; q/ � 2 � 1� �.QA

K
/.

Thus QA
K

always satisfied the hypothesis of Lemma 5.2.

Now consider QB
K

. If it is essential, then by Proposition 4.3 QB
K

also satisfies the
hypothesis of Lemma 5.2 and we are done by that lemma. If QB

K
has c–disks in BK ,

we have labels X � and y (or x and Y � ) and we are done via Lemma 8.6. Finally, if
each component of QB

K
is parallel to a subsurface of PK , then QK is disjoint from a

spine †.B;K / as well, a case we have already considered.

9 How labels change under isotopy

Suppose P and Q are as defined in the previous section and continue to assume that
if P is a sphere, then PK has at least six punctures. Consider how configurations and
their labels change as PK say is isotoped while keeping QK fixed. Clearly if there are
no tangencies of PK and QK during the isotopy then the curves PK \QK change
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only by isotopies and there is no change in labels. Similarly, if there is an index 0

tangency, PK \QK changes only by the addition or deletion of a removable curve.
Since all such curves are removed before labels are defined, again there is no affect on
the labeling. There are two cases to consider; PK passing through a saddle tangency
for QK and PK passing through a puncture of QK . Consider first what can happen
to the labeling when passing through a saddle tangency of PK with QK .

B
A

X

Y

C

Q

P

Figure 13

Lemma 9.1 Suppose PK and QK are c–weakly incompressible surfaces and PK is
isotoped to pass through a single saddle tangency for QK . Suppose farther that the
bigon C defining the saddle tangency (see Figure 13) lies in XK \AK . Then

� no label x or X � is removed,

� no label y or Y � is created,

� if there is no label x or X � before the move, but one is created after and if there
is a label y or Y � before the move and none after, then either PK and QK are
isotopic or d.K;P /� 2��.QK /.

Proof Much of the argument here parallels the argument in the proof of [12, Lemma
4.1]. The main difference is in Claim 2.

We first show that no label x or X � is removed. If there is a c–disk for QK in
XK \AK , a standard innermost disk, outermost arc argument on its intersection with
C shows that there is a c–disk for QK in XK \AK that is disjoint from C . The saddle
move has no effect on such a disk. It is clear that the move doesn’t have an effect on
a c–disk for QK lying in XK \BK so a label X � will not be removed. If there is a
spine of .A;K/ or .B;K/ lying entirely in YK then that spine too is unaffected by
the saddle move.

Dually, no label y or Y � is created: the inverse saddle move, restoring the original
configuration, is via a bigon that lies in BK \YK .
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To prove the third item position QK so that it is exactly tangent to PK at the saddle.
A bicollar of QK then has ends that correspond to the position of QK just before
the move and just after. Let Qa

K
denote QK \AK after the move and Qb

K
denote

QK \BK before the move. The bicollar description shows that Qa
K

and Qb
K

have
disjoint boundaries in PK . Moreover the complement of Qa

K
[Qb

K
in QK is a regular

neighborhood of the singular component of PK \QK , with Euler characteristic �1.
It follows that �.Qa

K
/C�.Qb

K
/D �.QK /C 1.

With QK positioned as described, tangent to PK at the saddle point but otherwise in
general position, consider the closed (non-singular) curves of intersection.

Claim 1 It suffices to consider the case in which all non-singular curves of intersection
are essential in PK .

To prove the claim, suppose a non-singular curve is inessential and consider an innermost
one. Assume first that the possibly punctured disk D� that it bounds in PK does not
contain the singular curve s (ie the component of PK \QK , homeomorphic to a figure
8, that contains the saddle point). If @D� is essential in QK , then it would give rise
to a label X � or a label Y � that persists from before the move until after the move,
contradicting the hypothesis. Suppose on the other hand that @D� is inessential in QK

and so bounds a possibly punctured disk E� �QK . All curves of intersection of E�

with PK must be inessential in PK , since there is no label A� or B� . It follows that
@D� D @E� is a removable component of intersection so the disk swap that replaces
E� with a copy of D� , removing the curve of intersection (and perhaps more such
curves) has no effect on the labeling of the configuration before or after the isotopy. So
the original hypotheses are still satisfied for this new configuration of PK and QK .

Suppose, on the other hand, that an innermost non-singular inessential curve in PK

bounds a possibly punctured disk D� containing the singular component s . When
the saddle is pushed through, the number of components in s switches from one s0

to two s˙ or vice versa. All three curves are inessential in PK since they lie in the
punctured disk D� . Two of them actually bound possibly punctured subdisks of D�

whose interiors are disjoint from QK . Neither of these curves can be essential in QK

otherwise they determine a label X � or Y � that persist throughout the isotopy. At
least one of these curves must bound a nonpunctured disk in PK (as D� has at most
one puncture) and thus it also bounds a nonpunctured disk in QK . We conclude that
at least two of the curves are inessential in QK and at least one of them bounds a disk
in QK . As the three curves cobound a pair of pants of QK the third curve is also
inessential in QK . This implies that all the curves are removable so passing through
the singularity has no effect on the labeling. This proves the claim.
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Claim 2 We may assume that if any of the curves s0; s˙ are inessential in PK they
bound punctured disks in both surfaces.

The case in which all three curves are inessential in PK is covered in the proof of
Claim 1. If two are inessential in PK and at least one of them bounds a disk with
no punctures then the third curve is also inessential. Thus if exactly two curves are
inessential in PK , they both bound punctured disks in PK and as no capital labels are
preserved during the tangency move, they also bound punctured disks in QK which
are parallel into PK .

We are left to consider the case in which exactly one of s0; s˙ is inessential in PK ,
bounds a disk there and, following Claim 1, the disk it bounds in PK is disjoint from
QK . If the curve were essential in QK then there would have to be a label X or Y that
occurs both before and after the saddle move, a contradiction. If the curve is inessential
in QK then it is removable. If this removable curve is s˙ then passing through the
saddle can have no effect on the labeling. If this removable curve is s0 then the curves
s˙ are parallel in both PK and QK . In the latter case, passing through the saddle has
the same effect on the labeling as passing an annulus component of PK �QK across
a parallel annulus component Q0

K
of QA

K
. This move can have no effect on labels x

or y . A meridian, possibly punctured disk E� for YK that is disjoint from PK would
persist after this move, unless @E� is in fact the core curve of the annulus Q0

K
. But

then the union of E� and half of Q0
K

would be a possibly punctured meridian disk
of AK bounded by a component of @Q0

K
� PK . In other words, there would have to

have been a label A� before the move, a final contradiction establishing Claim 2.

Claims 1 and 2, together with the fact that neither labels A� nor B� appear, reduce
us to the case in which all curves of intersection are essential in both surfaces both
before and after the saddle move except perhaps some curves which bounds punctured
disks in QK and in PK . Let zQa

K
and z

Qb
K

be the surfaces left over after deleting
from Qa

K
and Qb

K
any PK –parallel punctured disks. As Qa

K
and Qb

K
cannot be

made disjoint from any spine †.A;K / or †.B;K / , zQa
K

and z
Qb

K
are not empty and,

as we are removing only punctured disks, �.Qa
K
/D �. zQa

K
/ and �.Qb

K
/D �.

z
Qb

K
/.

Note then that zQa
K

and z
Qb

K
are c–incompressible in AK and BK respectively. For

example, if the latter has a c–disk in BK , then so does Qa
K

. Since no label X � exists
before the move, the c–disk must be in YK and such a c–compression would persist
after the move and so then would the label Y � . Similarly neither zQa

K
nor zQb

K
can

consist only of PK parallel components. For example, if all components of zQb
K

are
parallel into PK then Qb

K
is also disjoint from some spine of BK and such a spine

will be unaffected by the move, resulting in the same label (x or y ) arising before and
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after the move. We deduce that zQa
K

and z
Qb

K
are essential surfaces in AK and BK

respectively.

Now apply Proposition 4.3 to both sides. Let qa (resp qb ) be a boundary component
of an essential component of zQa

K
(resp z

Qb
K

). Then

d.K;P /D d.A;B/� d.qa;A/C d.qa; qb/C d.qb;B/

� 3��. zQa
K
/��.

z
Qb

K
/D� 3��.Qa

K /��.Q
b
K /D 2��.QK /

as required.

It remains to consider the case when PK passes through a puncture of QK as in Figure
14. This puncture defines a bigon C very similar to the tangency bigon in the previous
lemma: let Qa

K
and Qb

K
be as before, then QK � .Q

a
K
[Qb

K
/ is a punctured annulus.

The knot strand that pierces it is parallel to this annulus, let C be the double of the
parallelism rectangle so that C �XK \AK .

C

P

Q

AB

Figure 14

Lemma 9.2 Suppose PK and QK are c–weakly incompressible bridge surfaces for a
knot K and PK is isotoped to pass through a single puncture for QK . Suppose further
that the bigon C defined by the puncture (see Figure 14) lies in XK \AK .
� No label x or X � is removed.
� No label y or Y � is created.
� Suppose that, among the labels both before and after the move, neither A� nor

B� occur. If there is no label x or X � before the move, but one is created after
and if there is a label y or Y � before the move and none after, then either PK

and QK are K–isotopic or d.P;K/� 2��.QK /.

Algebraic & Geometric Topology, Volume 7 (2007)



Multiple bridge surfaces restrict knot distance 999

Proof The proof is very similar to the proof of the previous lemma. It is clear that if
there is a c–disk for XK that lies in AK , there is a c–disk that is disjoint from C and
thus the label survives the move. If there is a spine of AK or BK lying entirely in YK

then that spine, too, is unaffected by the saddle move. The proof of the third item is
identical to the proof in the above lemma in the case when at least one of the curves
s0; s˙ bounds a punctured disk in QK .

We will use X (resp Y) to denote any subset of the labels x;X;X c (resp y;Y;Y c ).
The results of the last two sections then can be summarized as follows

Corollary 9.3 If two configurations are related by a single saddle move or going
through a puncture and the union of all labels for both configurations contains both X

and Y then either PK and QK are K–isotopic or d.K;PK /� 2��.QK /

Proof With no loss of generality, the move is as described in Lemma 9.1 or Lemma
9.2. These lemmas show that either we have the desired bound or there is a single
configuration for which both X and Y appear. The result then follows from one of
Lemma 8.7, Lemma 8.8 or Lemma 8.6.

We will also need the following easy Lemma.

Lemma 9.4 If a configuration carries a label A� before a saddle move or going
through a puncture and a label B� after then PK is c–strongly compressible.

Proof As already discussed the curves before and after the saddle move are distance
at most one in the curve complex of PK .

10 Main result

Given a bridge surface for a link K there are three ways to create new, more complex,
bridge surfaces for the link: adding dual one-handles disjoint from the knot (stabilizing),
adding dual one-handles where one of them has an arc of K as its core (meridionally
stabilizing), and introducing a pair of a canceling minimum and maximum for K

(perturbing). These are depicted in Figure 15, the precise definitions can be found in
Tomova [13] .

Definition 10.1 Let P and Q be two bridge surfaces for a knot K �M . We say
that Q is equivalent to P if Q is K–isotopic to a copy of P which may have been
stabilized, meridionally stabilized and perturbed.
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stabilized meridionally stabilized perturbed

P

K

P

Figure 15

There is a fourth way to construct a bridge surface for a knot K . Suppose Q is a
Heegaard splitting for M splitting it into handlebodies X and Y and suppose K is
isotopic to a subset of the spine for X . Then by introducing a single minimum, K can
be placed in bridge position with respect to Q. In this case K is said to be removable
as Q is also a Heegaard surface for MK after an isotopy of K . Scharlemann and
Tomova discuss all four of these operations in detail in [11].

Casson and Gordon have demonstrated that if a 3–manifold has a Heegaard splitting
which is irreducible but strongly compressible then the manifold contains an essential
surface. In [13], Tomova extended this result to prove the following Theorem.

Theorem 10.2 Suppose M is a closed orientable irreducible 3–manifold containing
a link K . If Q is a c–strongly compressible bridge surface for K then either

� Q is stabilized,

� Q is meridionally stabilized,

� Q is perturbed,

� K is removable with respect to Q or

� MK contains a meridional essential surface FK such that 2� �.FK / � 2�

�.QK /.

We can now prove the main result of this paper.

Theorem 10.3 Suppose K is a nontrivial knot in a closed, irreducible and orientable 3–
manifold M and P is a bridge surface for K . If P is a sphere assume that jP\Kj � 6.
If Q is also a bridge surface for K that is not equivalent to P , or if Q is a Heegaard
surface for M � �.K/ then d.K;P /� 2��.Q�K/.
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Proof If QK is stabilized, meridionally stabilized or perturbed we can perform the
necessary compressions to undo these operations as described by Scharlemann and
Tomova in [11]. Note that these operations increase �.QK / so we may assume that
QK is not stabilized, meridionally stabilized or perturbed. If K is removable with
respect to Q, we may assume that K has been isotoped to lie in the spine of one of the
handlebodies M �Q so Q is a Heegaard splitting for MK . This operation decreases
jQ\Kj and thus also increases �.QK / .

Suppose first that QK is c–strongly compressible. If K is not removable with respect to
Q, by Theorem 10.2, there is an essential surface FK such that 2��.FK /<2��.QK /.
If Q is a Heegaard surface for MK , the existence of such an essential surface follows
by Casson and Gordon, [3]. Then the result follows from Theorem 5.7. If PK is
c–strongly compressible, then d.P;K/� 3 by applying Proposition 4.1 twice. Thus
we may assume that both PK and QK are c–weakly incompressible.

The proof now is almost identical to the proof of the main result in [12] so we will only
give a brief summary.

Recall that if †.A;K / is a spine for the K–handlebody AK , then A�†.A;K /ŠPK�I .
Thus if P is a bridge surface for K , there is a map H W .P;P \K/�I! .M;K/ that
is a homeomorphism except over †.A;K /[†.B;K / and near P � @I the map gives a
mapping cylinder structure to †.A;K /[†.B;K / . If we restrict H to PK � .I; @I/!

.M; †.A;K /[†.B;K //, H is called a sweep-out associated to P .

If Q is a Heegaard surface for MK , splitting MK into a compression body and a
handlebody, then a similar sweep-out is associated to Q between the two spines. We
will denote these spines by †X and †Y .

Consider a square I � I that describes generic sweep-outs of PK and QK from
†.A;K / to †.B;K / and from †.X ;K / to †.Y;K / if Q is a bridge surface for K or
from †X to †Y if K is removable with respect to Q. See Figure 16. Each point in
the square represents a positioning of PK and QK . Inside the square is a graph � ,
called the graphic that represents points at which the intersection is not generic. At
each point in an edge in the graphic there is a single point of tangency between PK and
QK or one of the surfaces is passing through a puncture of the other. At each (valence
four) vertex of � there are two points of tangency or puncture crossings. By general
position of, say, the spine †.A;K / with the surface QK the graphic � is incident to
@I �I in only a finite number of points (corresponding to tangencies between †.A;K /
and QK ). Each such point in @I � I is incident to at most one edge of � .

Any point in the complement of � represents a generic intersection of PK and QK .
Each component of the graphic complement will be called a region; any two points
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in the same region represent isotopic configurations. Label each region with labels
A; B; X and Y as described previously where a region is labeled X (resp Y) if any of
the labels x;X;X c (resp y;Y;Y c ) appear and A (resp B) if the labels A or Ac (resp
B or B� ) appear. See Figure 16. If any region is unlabeled we are done by Lemma
8.2. Also if a region is labeled X and Y we are done by one of Lemma 8.7, Lemma
8.8 or Lemma 8.6. Finally by Proposition 8.3 no region is labeled both A and B so we
can assume that each region of the square has a unique label.

B

B

X

Y

X X
X

B

B

B B

X,Y

YA

A

A, B

Y

X,Y

B

Y
YY

X
X

†Y

†X

†A †B

Figure 16

Let ƒ be the dual complex of � in I � I ; ƒ has one vertex in each face of � and
one vertex in each component of @I � I � � . Each edge of ƒ not incident to @I � I

crosses exactly one interior edge of � . Each face of ƒ is a quadrilateral and each
vertex inherits the label of the corresponding region of � . Consider the labeling of
two adjacent vertices of ƒ . Corollary 9.3 says that if they are labeled X and Y we
have the desired result and Lemma 9.4 says they cannot be labeled A and B . Finally, a
discussion identical to the one in [12] about labeling along the edges of I � I shows
that no label B appears along the †.A;K / side of I � I (the left side in the figure), no
label A appears along the †.B;K / side (the right side), no label Y appears along the
†.X ;K / side (†X side if Q is a bridge surface for MK ) (the bottom) and no label X

appears along the †.Y;K / side (†Y side if Q is a bridge surface for MK ) (the top).

We now appeal to the following quadrilateral variant of Sperner’s Lemma proven in
the appendix of [12].
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Lemma 10.4 Suppose a square I �I is tiled by quadrilaterals so that any two that are
incident meet either in a corner of each or in an entire side of each. Let ƒ denote the
graph in I � I that is the union of all edges of the quadrilaterals. Suppose each vertex
of ƒ is labeled N;E;S; or W in such a way that

� no vertex on the East side of I � I is labeled W , no vertex on the West side is
labeled E , no vertex on the South side is labeled N and no vertex on the North
side is labeled S and

� no edge in ƒ has ends labeled E and W nor ends labeled N and S ,

then some quadrilateral contains all four labels.

In our context the lemma says that there are four regions in the graphic incident to the
same vertex of � labeled A; B; X and Y . Note then that only two saddle or puncture
moves are needed to move from a configuration labeled A to one labeled B . The
former configuration includes a c–disk for PK in A and the latter a c–disk for PK

in B . Note that as K is nontrivial �.QK / � �2. Using Proposition 4.1 it follows
that d.K;P /� 4� 2��.QK /, as long as at least one of the regions labeled X and Y

contains at least one essential curve.

Suppose all curves of P \Q in the regions X and Y are inessential. Consider the
region labeled X . Crossing the edge in the graphic from this region to the region
labeled A corresponds to attaching a band bA with both endpoints in an inessential
curve c 2 P \Q or with endpoint in two distinct curves c1 and c2 where c1 and c2

both bound once punctured disks in PK . Note that attaching this band must produce an
essential curve that gives rise to the label A , call this curve cA . Similarly crossing the
edge from the region X into the region B corresponds to attaching a band bB to give a
curve cB . The two bands have disjoint interiors and must have at least one endpoint in
a common curve otherwise cA and cB would be disjoint curves giving rise to labels A

and B . By our hypothesis attaching both bands simultaneously results in an inessential
curve cAB . We will show that in all cases we can construct an essential curve 
 in PK

that is disjoint from cA and cB . After possibly applying Proposition 4.1, this implies
that d.K;P /� 4.

Case 1 Both bands have both of their endpoints in the same curve c .

Attaching bA to c produces two curves that cobound a possibly once punctured annulus,
one of these curves is cA . We will say that the band is essential if cA is essential in
the closed surface P and inessential otherwise. If bA and bB are both essential but
cAB is inessential in P , then P is a torus so PK is a torus with at least two punctures.
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In this case cA [ cB doesn’t separate the torus so we can consider the curve 
 that
bounds a disk in P containing at least two punctures of PK .

If bA is essential but bB isn’t, then cAB is parallel to cA in P and thus must be
essential also so this case cannot occur.

Finally if both bA and bB are inessential in P and P is not a sphere, then let 
 be
an essential curve in P that is disjoint from cA [ cB . If P is a sphere, it must have
at least six punctures. Note that c [ bA[ bB separates P into four regions that may
contain punctures. As P has at least six punctures, one of these regions contains at
least two punctures. Take 
 to be a curve that bounds a disk containing two punctures
and that is disjoint from c [ bA[ bB .

Case 2 One band, say bA has endpoint lying in two different curves c1 and c2 and
the other band, bB has both endpoints lying in c1 .

If bB is essential in P , then adding both bands simultaneously results in a curve that
is parallel to cB in P and therefore is essential contradicting the hypothesis. If bB is
inessential in P , then c1[c2[bA[bB separates P into four regions that may contain
punctures. As in the previous case we can construct an essential curve 
 in PK that is
disjoint from cA and cB either by taking a curve essential in P or, if P is a sphere, by
taking a curve that lies in one of the four regions and bounds two punctures on one
side.

Case 3 The band bA has endpoint lying in two different curves c1 and c2 and bB

has endpoint lying in c1 and c0
2

, possibly c2 D c0
2

.

In this case cA and cB are both inessential in P so if P is not a sphere we can
again find a curve 
 disjoint from both that is essential in P . If P is a sphere, then
c1[c2[c0

2
[bA[bB separates P into four regions that may contain punctures and so

we can find a curve 
 that is essential in PK and disjoint from cA and cB as above.

The curve complex for a 4–times punctured sphere is not connected so a bound on the
distance of a minimal bridge surface for a 2–bridge knot cannot be obtained. However
Scharlemann and Tomova have proven the following uniqueness result.

Theorem 10.5 [11, Corollary 4.4] Suppose K is a knot in S3 , 2–bridge with
respect to the bridge surface P Š S2 , and K is not the unknot. Suppose Q is any
other bridge surface for K . Then either

� Q is stabilized,

� Q is meridionally stabilized,
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� Q is perturbed or

� Q is properly isotopic to P .

Corollary 10.6 Suppose P and Q are two bridge surfaces for a knot K and K is not
removable with respect to Q. Then either Q is equivalent to P or d.P /� 2��.QK /.

Proof If K is a two bridge knot with respect to a sphere P , then by Theorem 10.5,
Q is equivalent to P . If P is not a four times punctured sphere, the result follows
from Theorem 10.3.

Corollary 10.7 If K �M 3 is in bridge position with respect to a Heegaard surface
P such that d.K;P / > 2��.PK / then K has a unique minimal bridge position.

Proof Suppose K can also be placed in bridge position with respect to a second
Heegaard surface Q such that Q is not equivalent to P . By Theorem 10.3, d.K;P /�

2��.QK /D 2��.PK / contradicting the hypothesis.
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