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Heegaard splittings and the pants complex

JESSE JOHNSON

We define integral measures of complexity for Heegaard splittings based on the graph
dual to the curve complex and on the pants complex defined by Hatcher and Thurston.
As the Heegaard splitting is stabilized, the sequence of complexities turns out to
converge to a non-trivial limit depending only on the manifold. We then use a similar
method to compare different manifolds, defining a distance which converges under
stabilization to an integer related to Dehn surgeries between the two manifolds.

57N10; 57M27, 57M99

1 Introduction

Hempel introduced the curve complex to the study of Heegaard splittings by defining
a distance which generalizes the definitions of reducible, weakly reducible and the
disjoint curve property. This has proved very useful in studying irreducible splittings of
manifolds. Hempel’s definition of distance is, in some sense, very local. If a Heegaard
splitting is stabilized only once, the distance drops to zero, regardless of the original
splitting.

This definition of distance can be directly modified to use the pants complex defined
by Hatcher and Thurston, or the closely related dual graph to the curve complex. (All
three spaces will be defined in detail in the next section.) The two types of distance
that come from these metric spaces prove to give a more global measure of complexity.
In most cases, when a splitting is stabilized, the distance will increase by one (rather
than dropping to zero.) Thus if the genus is subtracted from the distance, the resulting
integer, called the complexity, should tend to stay constant under stabilization.

We will show that for any Heegaard splitting of a given manifold, under an infinite
sequence of stabilizations the complexities of the stabilizations form a convergent
sequence whose limit is non-trivial and which depends only on the manifold.

Section 2 contains the definitions of the three spaces mentioned above. In Section 3,
we consider maximal collections of disks in compression bodies. This will allow us
to apply the later results to manifolds with boundary as well as closed manifolds. We
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define the dual distance and pants distance in Section 4 and give lower bounds for this
distance depending on the ambient 3–manifold.

In Section 5, we define the complexity of a Heegaard splitting and show that the
sequence of complexities converges. The limit is called the Heegaard complexity of the
manifold. The basic properties of the Heegaard complexity are examined in Section 6.

Finally, in Section 7, we show that a similar technique can be used to define a measure
of the distance between different manifolds. This distance turns out to be equal to the
minimal number of components needed for a link such that Dehn surgery on the link in
one manifold produces the second manifold. Section 8 is a list of questions that arise
and speculations about applications.

I would like to thank my advisor, Abby Thompson, for her guidance and support. This
research was supported by NSF VIGRE grant 0135345.

2 Definitions

Let † be a compact, connected, closed, orientable surface. Throughout the paper, we
will assume the genus of † is greater than 1. We will give the definitions of three
metric spaces based on †.

The first, the curve complex, C.†/, is the cell complex defined as follows: The vertices
of C.†/ are isotopy classes of non-trivial, simple closed curves in †. An edge will
connect two vertices if and only if there are representatives of the two isotopy classes
which are disjoint.

The graph can be filled in with cells of higher dimension. A collection of vertices
fu0; : : : ;ung bounds an n–simplex in C.†/ if and only if some collection of loops
defined by the vertices are pairwise disjoint. Let g be the genus of †. Then C.†/ has
dimension 3g� 4, a maximal simplex corresponding to a pair-of-pants decomposition
of †, with 3g� 3 loops.

The second space, the dual curve complex, C �.†/, will be defined as follows: each
vertex v 2 C �.†/ corresponds to a maximal dimensional simplex �v in C.†/, ie a
pair-of-pants decomposition of †. We will use the convention that u is a vertex of
C.†/ and v is a vertex of C �.†/.

Two vertices, v , v0 are connected by an edge if and only if the simplices �v and �v0

in C.†/ share a co-dimension one face. An edge thus corresponds to a move of the
following type: Start with a pants decomposition of †; remove one loop and replace it
with a loop which is disjoint from all the other loops and which creates a new pants
decomposition.
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The third space, the pants complex, C P .†/, was defined by Hatcher and Thurston [3]
as a discrete quotient of the space of Morse functions on †. Every Morse function on
† suggests a decomposition of † into pairs of pants, forming the vertices of C P .†/.
Near-Morse functions, in which there are two critical points at the same level, form
co-dimension one sets between the connected components of Morse functions. These
suggest edges between certain vertices.

Careful analysis shows that the edges correspond to moves of the following type: Given
a pair-of-pants decomposition of †, remove a loop from the pants decomposition and
replace it with a loop which is disjoint from the other loops and intersects the original
loop minimally. A minimal intersection between two loops is defined as follows:
Consider a pair-of-pants decomposition LD fl0; : : : ; lmg. The complement of L in

Figure 1: The two types of loops in a pair-of-pants decomposition

† is a collection of pairs of pants. The complement of fl0; : : : ; yli ; : : : ; lmg contains
a number of pairs of pants and one component, containing li , which is not a pair of
pants. Call this component C . The surface C is the result of either gluing two pairs
together along the loop li or of gluing together two cuffs of the same pair. In the first
case, C is a sphere with four punctures. In the second case, C is a torus with a single
puncture. (See Figure 1.)

A loop l 0i , disjoint from and not parallel to l0; : : : ; yli ; : : : ; lm must lie in C . If C is
a four-punctured sphere then l 0i intersects li minimally when there are two points of
intersection. (The loop is separating so there must be an even number of intersections.)
If C is a once-punctured torus, then one point of intersection is minimal.

Because the space of Morse functions on † is connected, Hatcher and Thurston were
able to show that the pants complex is connected. There is a canonical map from the
vertices of C P .†/ to the vertices of C �.†/. For each edge of C P .†/, there is a
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corresponding edge of C �.†/ (but not vice versa) so there is a canonical embedding of
C P .†/ into C �.†/ which is onto the vertices of C �.†/. Since C P .†/ is connected,
it follows that C �.†/ is connected.

Brock [1] has shown that the pants complex, C P .†/, is quasi-isometric to Teichmuller
space with the Weil–Peterson metric and that distances in the pants complex are related
to the volumes of convex cores of hyperbolic manifolds of the form †�R. We will
study the pants complex and its relative, the dual curve complex, in relation to Heegaard
splittings, in analogue with Hempel’s work with the curve complex [4].

Let H be a handlebody and let �W † ! @H be a homeomorphism. For a vertex
u 2 C.†/, write u 2 H if for some loop l in the isotopy class corresponding to u,
�.l/ bounds a disk in H . (Note: If this is true for one loop in the isotopy class, then it
is true for all the loops in the isotopy class.)

An edge path between two vertices u, u0 in the curve complex corresponds to a
sequence of loops u3 l0; : : : ; ln 2 u0 in † such that consecutive loops are disjoint. The
length of the path is n and the distance d.u;u0/ is the length of the shortest possible
path. This is often called the geodesic metric on C.†/.

Let .†;H1;H2/ be a Heegaard splitting of a manifold M . Consider the inclusion
maps †!Hi . Each map suggests a set of vertices in C.†/ which are in Hi . The
standard distance of †, as in Hempel [4], is d.†/Dminfd.u;u0/ju 2H1;u

0 2H2g.
This distance measures the irreducibility of †, in the sense that if d.†/D 0 then † is
reducible, if d.†/D 1 then † is weakly reducible and if d.†/D 2 then † has the
disjoint curve property.

There are analogous definitions for the distance of a Heegaard splitting based on the
dual curve complex and the pants complex. We will define these right after a short
aside about collections of disks in compression bodies.

3 Maximal collections of disks

A 1–handle is ball parameterized as D � Œ0; 1�, where D is a disk. Let F be a surface
(not necessarily connected) with no sphere components. A compression body is either
a handlebody or a connected manifold constructed by gluing 1–handles to the boundary
component F�f1g of F�Œ0; 1� along the disks D�f0g and D�f1g. For a compression
body H , let @�H = F � f0g and let @CH D @H n @�H . If H is a handlebody then
@CH D @H and @�H D∅.

Let H be a compression body and let DD fD0; : : : ;Dng be a collection of pairwise
disjoint, pairwise non-parallel, properly embedded disks in H .
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Definition 1 The collection D is maximal if any properly embedded disk in H that
is disjoint from D is parallel to one of the disks in D.

If H is a handlebody, a maximal collection of disks gives a pair-of-pants decomposition
for @H . Otherwise, when @�H ¤ ∅, there is no collection of disks which cuts @H
into pairs of pants, so we have to be more careful. A maximal collection of disks will
cut H into a collection of balls and pieces homeomorphic to @�H � I . However, not
every collection of disks with this property will be maximal.

Lemma 2 Let D be a collection of disjoint, properly embedded disks in H (not
necessarily maximal). The closure of the complement of D is a collection of balls and
compression bodies.

The proof of this Lemma is left to the reader. Let H 0 be a component of H nD and
let SH 0 be its closure. Then SH 0 nH 0 is a collection of disks along which H was cut.
We will call a component of SH 0 nH 0 a scar on H 0 .

Lemma 3 Let H be a compression body and not a ball, a solid torus or a .surface/�I

and let D be a maximal collection of disjoint, non-parallel essential disks. Then each
component of H nD is either a ball with three scars or a piece of the form .surface/�I

with exactly one scar.

Proof Let H 0 be a component of H nD. From Lemma 2, we know that H 0 is either
a ball or a compression body.

First assume H 0 is a ball. If there is one scar on H 0 then this scar corresponds to a
boundary parallel disk in D, but we assumed all the disks in D were essential, so this
is impossible. If there are two scars on H 0 then there are two disks in D which are
parallel in H , and again we assumed this is not the case.

If there are more than three scars on H 0 then @ SH 0\H 0 is a sphere with at least four
punctures. Let l be an essential loop in this surface which is not boundary-parallel.
Then l bounds a disk in H 0 , and therefore in H . This disk is properly embedded,
disjoint from the rest of the disks, and not parallel to any of them. Thus the maximality
assumption implies that every ball component H 0 must have exactly three scars.

Now assume SH 0 is a compression body. By definition, H 0 is the result of attaching
1–handles to components of the form .surface/ � I . A 1–handle would define an
essential disk which is not parallel to any of the disks in D, so maximality implies
there cannot be any 1–handles and SH 0 must be of the form F �I where F is a surface
and not a sphere.
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Because H is connected and H 0 is not all of H , there must be at least one scar on
H 0 . If there are two or more scars on H 0 , let l1 , l2 be the boundaries of two scars in
@ SH . Let ˛ be an arc from l1 to l2 , disjoint from the rest of the scars, and let N be a
regular neighborhood of l1[ l2[˛ in @ SH 0 . The disk @N n @ SH will be disjoint from
the scars in @ SH 0 and boundary–parallel in H 0 . Because of the scars bounded by l1
and l2 , this disk is non-trivial in H and not parallel to any of the disks in D. Thus
maximality of D implies that H 0 must have exactly one scar.

Lemma 4 Let † be a positive-genus surface and let L be a pair-of-pants decomposi-
tion for †. Then some loop l 2 L is non-separating.

Proof Cutting a positive-genus surface along a separating loop produces two surfaces
(with boundary), each with strictly positive genus. By induction, if we cut † along
all the separating loops in L, the result will be a number of positive-genus surfaces.
Since L is a pair-of-pants decomposition, cutting along all the loops should produce a
collection of pairs of pants (genus-zero surfaces) so at least one of the loops in L must
be non-separating.

Lemma 5 Let † be a closed surface of genus g . Let L be a pair-of-pants decomposi-
tion of † and let l1; : : : ; ln 2L be distinct loops such that their union does not separate
†. Then there are loops lnC1; : : : ; lg 2 L such that l1; : : : ; lg are distinct loops whose
union does not separate †.

Proof Given loops l1; : : : ; ln , we will show that if n < g then there is a distinct
loop lnC1 2 L such that the union of l1; : : : ; lnC1 does not separate †. By taking the
collection to be maximal, this implies the desired result.

Let †0 be the result of cutting † along the loops l1; : : : ; ln and gluing a disk into each
boundary component of the resulting surface. Because the union of the loops l1; : : : ; ln
does not separate †, the surface †0 is connected. We also assumed n< g , so †0 has
strictly positive genus.

The remaining loops in L contain a pair-of-pants decomposition for †0 . (Some of the
loops remaining in L will be trivial or parallel in †0 and need to be thrown out.) By
Lemma 4, there is a loop lnC1 2 L in the induced pair-of-pants decomposition which
does not separate †0 . Then l1; : : : ; lnC1 does not separate †. By induction, the proof
is complete.

Given a compression body H , let g be the genus of @CH and let b be the sum of the
genera of the components of @�H .
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Lemma 6 Let D be a maximal collection of disks for H and let L be a pair-of-pants
decomposition for @CH such that for each disk D 2 D, @D 2 L. If l1; : : : ; lg 2 L is
a collection of distinct loops whose union does not separate †, then at least g� b of
these loops bound disks in D.

Proof Cut H along the disks in D. Let H 0 be a resulting component of the form
F � I where F is a surface of genus g0 . Any collection of more than g0 loops in F

will separate F , so if more than g0 of the loops l1; : : : ; lg are in H 0 , then these loops
will separate @CH 0 . Because there is exactly one scar on H 0 , these disks would also
separate H . Since we assumed that the union of l1; : : : ; lg does not separate H , at
most g0 of these loops can be in H 0 .

The same is true for any non-ball component of H nD, so the number of loops that
are not boundaries of disks is at most b .

4 Distance and Heegaard splittings

We will now define a notion of distance for Heegaard splittings based on the dual curve
complex. Let v be a vertex of C �.†/. We will say v defines a compression body H

if there is a maximal collection of disks for H such that the boundary of each disk
defines a vertex u of �v .

Lemma 7 Assume v defines a compression body H , with �W †!@CH and a second
compression body H 0 with �0W †! @CH 0 . If the same vertices of v bound disks in
H as in H 0 then there is a homeomorphism  W H !H 0 such that  ı� D �0 .

A proof of the Lemma is left to the reader. The converse is not true. In general, given
two pants decompositions of †, there may not be an automorphism of † taking one
to the other. For example, if one of the pants decompositions consists entirely of non-
separating loops (such a decomposition exists) then there will be no homeomorphism
taking it to a pants decomposition containing separating loops.

The dual distance D.v; v0/ between two vertices in C �.†/ is the length of the shortest
path in C �.†/ between them. For a Heegaard splitting, .†;H1;H2/, the dual distance
of † is D.†/DminfD.v; v0/jv defines H1; v

0 defines H2g. Note that D.†/� d.†/.
Hempel has shown that there are genus two Heegaard splittings such that d.†/ is
arbitrarily large. Thus there are Heegaard splittings with D.†/ arbitrarily large.

Let DP .v; v0/ be the distance between vertices v and v0 in the pants complex. Because
of the one-to-one map between the vertices of C �.†/ and the vertices of C P .†/, we
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can think of v and v0 as being in either graph. An edge path in C P maps to an edge
path of the same length in C � so D.v; v0/�DP .v; v0/.

Let .†;H1;H2/ be a genus g Heegaard splitting of a 3–manifold M . From now on
we will assume that H2 is a handlebody (ie @�H2 D∅) but we will allow H1 to be a
compression body. Thus @�H1 D @M and H1 will be a handlebody if and only if M

is closed. Such a Heegaard splitting always exists.

Let b be the sum of the genera of the boundary components of M and let n be the
maximal number of disjoint, embedded 2–spheres S1; : : : ;Sn such that M n

�S
Si

�
is connected. (Equivalently, n is the number of S1 � S2 components of the prime
decomposition of M , so n is well defined and finite.)

Lemma 8 D.†/� g� b� n

Proof Let v define H1 and v0 define H2 and assume for contradiction D.v; v0/D

D.†/<g�b�n. Let L be a collection of pairwise-disjoint loops in †g corresponding
to the vertices of �v . Recall that H1 may be a compression body (if b > 0) or a
handlebody (if b D 0).

By Lemma 5, there are loops l1; : : : ; lg 2 L whose union does not separate †. Each
step in the path from v to v0 changes one vertex. Since D.v; v0/� g� .bCnC1/ and
there are g loops in the collection, at least bCnC1 of the loops l1; : : : ; lg correspond
to vertices of �v0 . Since H2 is a handlebody, these bC nC 1 loops bound disks in
H2 . By Lemma 6, at most b of the loops do not bound disks in H1 so at least nC 1

of the loops l1; : : : ; l2 bound disks in both H1 and H2 .

Let l1; : : : ; lm be the loops that bound disks in both H1 and H2 . Then each li defines
an embedded sphere Si . These spheres are disjoint and because the loops l1; : : : ; lm
do not separate †, the spheres S1; : : : ;Sm do not separate M (hence they are non-
parallel). We assumed that M contains at most n such spheres, so we must have
m� n. However, we showed that there are at least nC1 loops bounding disks on both
sides. This contradiction completes the proof.

Corollary 9 If M is closed and irreducible, then D.†/� g .

Lemma 10 DP .†/� g� b� n

The proof of Lemma 10 is identical to the proof of Lemma 8, after replacing each D

with DP .

Lemma 11 If D.†/D g�b�n then M DS3 or M is a connect sum of lens spaces,
handlebodies and copies of S1 �S2 .
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Proof Let v; v0 be vertices of C �.†/ that define H1 and H2 , respectively, so that
D.v; v0/ D D.†/ D g � b � n. As in the previous proof, let L be the collection of
loops corresponding to the vertices of �v and let l1; : : : ; lg 2L be a collection of loops
whose union is non-separating.

We saw that if more than bC n of these loops also correspond to vertices of �v0 then
we have a contradiction. Because D.v; v0/D g� b�n, and there are g loops, at least
bC n of them must be common to v and v0 so we know that exactly bC n of the
loops l1; : : : ; lg are common to both �v and �v0 and each of the remaining loops is
moved exactly once. The remaining loops of L are not moved.

Of the b C n loops that are common to �v and �v0 , at most n bound disks in H1

(because there are at most n non-separating spheres in M ) so at least b of the loops
do not bound disks in H1 . Thus each of the loops in l1; : : : ; lg that is moved must
bound a disk in H1 .

Assume l1 is the first loop that is moved, and replaced by a loop l 0
1

. Since H2 is a
handlebody and the loop l 0

1
is not moved later in the path in C �.†/, l 0

1
must bound a

disk in H2 . Recall that there are two types of loops in the pants decomposition, defined
by whether removing the loop from the collection produces a four-punctured sphere or
a once-punctured torus.

If l1 is of the first type, then the four-punctured sphere is part of the boundary of a ball
in H1 . Since l 0

1
sits in the four-punctured sphere, it bounds a disk in the ball in H1 ,

and therefore bounds a disk in H1 . Thus we could have started the path with l 0
1

in
the pants decomposition instead of l1 . Because the path in C �.†/ was assumed to be
minimal, l1 must sit in a punctured torus.

Let l 00
1

be the loop defining the boundary of the puncture. Notice that l 00
1

is separating,
so it cannot be one of the non-separating loops l1; : : : ; lg and it cannot be moved later
on. In particular, this implies that l1 cannot be adjacent to any of the loops that are
moved later in the path.

The loop l 00
1

bounds a disk in H1 and a disk in H2 , so l 00
1

defines a sphere in M which
cuts off a genus-one piece of the Heegaard splitting. Thus the sphere defines either a
stabilization or a connect sum with a lens space.

Assume l2 is the next loop which is moved. We saw that l2 cannot be adjacent to l1 ,
so l2 sits in a punctured torus, with a punctured bounded by l 00

2
. Again, l 00

2
defines

a sphere which separates a genus-one piece of the Heegaard splitting, so l 00
2

defines
a stabilization or a connect sum with a lens space. Continuing in this fashion for
each loop that is moved, we get a collection of D.†/ stabilizations and lens space
summands.
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Let M 0 be the result of cutting M along these spheres and gluing balls into the
resulting boundary components. Let .†0;H 0

1
;H 0

2
/ be the Heegaard splitting resulting

from gluing disks into the image of † in M 0 . Since we removed from M all the loops
that were not in both the pants decomposition of H1 and that of H2 , it follows that
D.†0/D 0.

Let F be a component of @�H1 . Because the pants decomposition for † was maximal,
there is a loop l 00 which bounds a disk in H1 and separates H1 into a compression
body and an F � I component. Since D.†0/D 0, the loop l 00 bounds a disk in H2

and defines a separating sphere in M 0 . The disks cut off a handlebody from H2 and a
F � I component from H1 , so the sphere cuts off a handlebody summand from M 0 .

For each boundary component of M 0 , (each corresponding to a component of @�H1 )
there is a corresponding loop defining a sphere which cuts off a handlebody summand
from M . Let M 00 be the result of cutting M 0 along these spheres and gluing balls
into the resulting spheres. Let .†00;H 00

1
;H 00

2
/ be the Heegaard splitting resulting from

repairing the image of †0 in M 00 .

If H 00
1

is a ball then M 00 is S3 and we are done. Otherwise, M 00 is closed and
D.†00/D 0, so M 00 is the result of gluing together two handlebodies by the identity
map on their boundaries. This construction always yields a connect sum of copies of
S1 �S2 . This completes the proof.

Lemma 12 If DP .†/D g� b� n then M D S3 or M is a connect sum of handle-
bodies and copies of S1 �S2 .

Again, the proof of this lemma is almost identical to the analogous proof for D.†/.
Note, however, that the set of manifolds in the second lemma is more restricted.

5 Stabilization

Let .†;H1;H2/ be a Heegaard splitting of M with b and n defined as in Section
4. For each g greater then or equal to the genus of †, let †g be a stabilization of †
such that †g has genus g . In other words, †g is the result of attaching zero or more
trivial handles to † so that the resulting surface is a Heegaard surface.

Define Ag.†/DD.†g/C b�g and AP
g .†/DDP .†g/C b�g . We will consider

the limiting behavior of these two values. From Lemmas 8 through 12, the following
two Lemmas follow immediately:

Lemma 13 Ag.†/��n and if Ag.†/D�n then M D S3 or M is a connect sum
of handlebodies, copies of S1 �S2 and lens spaces.
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Lemma 14 AP
g .†/��n and if Ag.†/D�n then M D S3 or M is a connect sum

of handlebodies and copies of S1 �S2 .

This gives us a lower bound on the sequences Ag.†/ and AP
g .†/ as g!1. We

will next show that the sequences are also bounded above. For the following lemmas,
consider a fixed g and a sequence of stabilizations †h .

Lemma 15 If h> g then Ah.†/� 2Ag.†/Cg�b and AP
h
.†/� 2AP

g .†/Cg�b .

Proof We will prove that D.†h/ � 2D.†g/ C .h � g/. By subtracting h from
both sides we get the stated result. The pants distance, DP can be substituted for D

throughout the proof. Let v1; : : : ; vn be a minimal path from H1 to H2 in C �.†/ (or
C P .†/). Let l1

1
; : : : ; l1

m (mD 3g� 3) be loops in † corresponding to the vertices of
�v1

.

For each vi , let l1
i ; : : : ; l

m
i be loops corresponding to the vertices of �vi

and assume
the loops are labeled so that if l

j
i�1

is a vertex of both �vi�1
and �vi

then l
j
i D l

j
i�1

.
In other words, if the move from vi�1 to vi replaces a loop l

j
i�1

with a new loop, this
new loop is labeled l

j
i . If a loop l

j
i�1

is not replaced, the same loop appears in vi as
l
j
i .

Figure 2: One extra move is required to get the extra loop out of the way.

We will define a stabilization of †g and a pants decomposition k1
1
; : : : ; km0

1
(m0 D

3h� 3) as follows: Let k
j
1
D l

j
1

for 1 � j �m. Let kmC1
1

be a loop parallel to k1
1

and let kmC2
1

be a trivial loop in the resulting annulus. See Figure 2.

Puncture † in the disk defined by kmC2
1

and construct a new surface †0 by attaching
a punctured genus–.h�g/ surface to † (so that the resulting surface is a stabilization).
Let kmC3

1
; : : : ; km0

1
be loops on †0 as shown in Figure 3 and let .†0;H 0

1
;H 0

2
/ be
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Figure 3: A stabilization glued into †

the resulting Heegaard splitting. Note that exactly .h�g/ of the new loops are non-
separating and the rest of the loops bound disks in both H 0

1
and H 0

2
. The vertex

v0
1
2 C �.†0/ given by the loops k1

1
; : : : ; km0

1
defines the compression body H 0

1
.

We will create a sequence of vertices v0
1
; : : : ; v0n00 in C �.†0/ such that n00�2nC.h�g/

and v0n00 defines H 0
2

. If l1
1
D l1

2
then for j �m, let k

j
2

be the loop in †0 defined by
l
j
2

in † and for j >m, let k
j
2
D k

j
1

. One can check that the vertex v0
2
2 C �.†0/ is

connected to v0
1

by an edge.

If l1
1
¤ l1

2
, then this construction does not work because l1

2
will intersect kmC1

1
. We

need to get kmC1
1

out of the way first. Let k
j
2
D k

j
1

for each j ¤mC 1. The loop
kmC1

1
sits in a four-punctured sphere. Two of the punctures come from l1

1
and kmC2

2
.

Let l
j
1

be the loop defining one of the two remaining punctures. Let kmC1
2

be a loop
parallel to l

j
1

so that kmC2
2

is in the annulus defined by kmC1
2

and l
j
1

. (See Figure 2.)
The vertex v0

2
defined by these loops is an edge away from v0

1
.

Now we can define k
j
3

almost as we defined k
j
2

in the original case. Let k
j
3
D l

j
2

for
1< j �m and k

j
3
D k

j
2

for j >m. We cannot necessarily choose k1
3

to be equal to
l1
2

because l1
2

may intersect kmC1
2

. However, the image in † of kmC1
2

is parallel to a
loop which is disjoint from l1

2
. We can let l1

3
be a loop in †0 which is disjoint from

kmC1
2

and whose image in † is isotopic to l1
2

. The vertex v0
3

defined by these loops
is an edge away from v0

2
.

The vertex v0
2

or v0
3

defined in this way has the property that if we surger †0 along
kmC2

2
, the loops in the component isotopic to † define the vertex v2 . Thus we can
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repeat the construction for v3 through vn . At each stage, if the extra loop is parallel to
a loop that needs to be moved, it takes one extra move to push it out of the way. The
resulting sequence v0

1
; : : : ; v0n0 will be at most twice as long as the original.

There are only h�g moves left before v0i defines the handlebody H 0
2

. Exactly h�g

of the loops kmC3
n0 ; : : : ; km0

n0 do not bound disks in H2 . However, each can be replaced
by a new loop, disjoint from the rest, which does bound a disk in H2 . Thus in h�g

moves, we can complete the sequence v0
1
; : : : v0n00 so that each loop kmC3

n00 ; : : : ; kmC3
n00

bounds a disk in H2 . By construction, the loop kmC2
n00 D kmC2

1
bounds a disk in H2

and the loop kmC1
n00 is parallel to some l

j
n in † so it bounds a disk in H2 . Thus v0n0

defines H 0
2

.

By carefully choosing the sequence of loops l i
j to which ki0

mC1
is parallel, one could

improve the bound, but for our purposes, the existence of a bound is all that is necessary.
The bound is true for every h, but with g fixed, so the sequence Ah.†/ is bounded
above and below as h!1. We will show that the sequence actually converges.

Lemma 16 For sufficiently large g , Ah.†/�Ag.†/ and AP
h
.†/�AP

g .†/ whenever
h� g .

Proof Let g0 be the genus of †. By Lemma 15, Ag.†/ is bounded by 2Ag0.†/C

.g0 � b/. Choose g so that 4g� 3 > 2Ag0.†/C .g
0 � b/. Then Ag.†/ < 4g� 3 so

D.†g/ < 3g� 3. This implies that for the minimal path from H1 to H2 in C �.†g/,
there is some loop that is not moved.

Consider the proof of Lemma 15. If we had chosen l1 to be a loop that is never moved in
the sequence v1; : : : ; vn , then for the path v0

1
; : : : ; v0n0 , we would have n0D nC.h�g/.

For sufficiently large g, we can find such a loop, so we have D.†h/�D.†g/C.h�g/.
This proves the lemma.

Main Theorem 17 The limits limg!1Ag.†/ and limg!1AP
g .†/ exist and de-

pend only on M , not on the choice of †.

Proof The sequence Ag.†/ is bounded below by Lemma 8 and non-increasing for
sufficiently large g by Lemma 16, so the limit exists.

Given two Heegaard surfaces † and †0 of M , there is a common stabilization. In
other words, there is a genus g and a Heegaard surface †00 such that †00 is isotopic to
†g and †0g . Then Ah.†/DAh.†

00/DAh.†
0/ for h� g and the limits are the same

for Ah.†/ and Ah.†
0/.

Algebraic & Geometric Topology, Volume 6 (2006)



866 Jesse Johnson

Definition 18 The Heegaard complexity of M is A.M / D limh!1Ah.†/ where
† is any Heegaard splitting of M . The pants complexity of M is AP .M / D

limh!1AP
h
.†/.

The sequence Ah.†/ consists entirely of integers so for any †, Ah.†/DA.M / for
some h. Thus if A.M /D�n then M D S3 or M is a connect sum of compression
bodies, lens spaces and copies of S1 �S3 .

6 Properties

Lemma 19 Let M and M 0 be compact manifolds. Then A.M #M 0/ � A.M /C

A.M 0/ and AP .M #M 0/�AP .M /CAP .M 0/

(Here, M #M 0 is the connect sum of M and M 0 .)

Proof Let † be a Heegaard splitting of M . Let †g be a stabilization such that
D.†g/Cb�gDA.M / and for a minimal path from H1 to H2 in C �.†g/, there is
a loop l1 which is a vertex of each �vi

. Let †0g0 be a similar Heegaard splitting for
M 0 and let l 0

1
be the loop that is fixed.

We will construct a Heegaard splitting for M #M 0 as follows: Let l2 be a loop in †g

parallel to l1 , let B be a ball in M such that M \†g is a disk in the annulus defined
by l1 and l2 and define l3 D @.B \†g/. Define l 0

2
, l 0

3
and B0 similarly in M 0 .

Take the connect sum of M and M 0 by removing B and B0 from M and M 0

respectively, then gluing together the resulting boundaries. Choose a gluing map that
sends l3 to l 0

3
. Let †00 be the resulting Heegaard splitting. The paths in C �.†g/ and

C �.†0g/ define a path in C �.†00/, implying that. D.†00/�D.†g/CD.†g0/ and the
genus of †00 is gCg0 .

The sequence of stabilizations †00
h

can be constructed by the above gluing operation,
by taking stabilizations of †g . Thus D.†00gCg0Ci/ �D.†gCi/CD.†g0/. Because
D.†gCi/DD.†g/ for all i , we have A.M #M 0/�A.M /CA.M 0/.

The converse statement is an open question: Is it necessarily true that A.M #M 0/�

A.M /CA.M 0/?

Lemma 20 Let M be a manifold with boundary and let M 0 be the result of filling
one or more torus boundary components with solid tori. Then A.M 0/�A.M /.
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Proof Let † be a Heegaard surface for M and let †0 be the image of † in the
induced map M ! M 0 . This †0 is a Heegaard surface for M 0 . Let v1; : : : ; vn

be a path in C �.†/ from H1 to H2 . The map †! †0 suggests an isomorphism
C �.†/! C �.†0/. Let v0

1
; : : : ; v0n be the images of v1; : : : ; vn .

The vertex vn defines H 0
2

because H2 is a handlebody so H 0
2

is the image of H2 in
the induced map. However, v1 may not define H1 because for each torus boundary
component that is filled, there is a loop in † parallel to @�H1 which may not bound a
disk in H 0

1
.

Let T be a torus boundary component which is filled so that the boundary of a meridian
disk maps to a loop ˛ � T . If we cut H1 along the maximal collection disks defined
by the pants decomposition, there will be a loop l1 on the component containing T

and a scar bound by a loop l2 . The loop ˛ (which sits in @�H1 ) can be projected into
@CH1 so that its image sits in the torus with l1 and is disjoint from l2 . Thus it takes
one move to replace l1 with the image of ˛ .

The image of ˛ bounds a disk in H 0
1

. For each torus component which is filled, it
takes at most one move to replace a loop in the pants decomposition for H1 with a
loop bounding a disk in H 0

1
. The final product is a pants decomposition containing

a maximal collection of disks for H 0
1

. The sum b0 of the genera of the boundary
components goes down by one for every Dehn filling.

Since we have Ag.†
0/DD.†0g/�gC b0 , we know that Ag.†

0/ � Ag.†/ when g

is the genus of †. The same proof works for every stabilization of † so in the limit
we have A.M 0/�A.M /.

The equivalent statement is not true for AP .M / because there is no control over the
number of times the image of the loop ˛ intersects the loop l1 .

Although the Heegaard complexity cannot increase under Dehn filling, it can drop by
an arbitrary amount. In particular, if M is the complement of a knot in S3 , then there
is a Dehn filling which produces M 0D S3 , so A.M 0/D 0, regardless of the Heegaard
complexity of M .

Lemma 21 Let .†;H1;H2/ be an irreducible Heegaard splitting of a closed manifold
M and let g be the genus of †. Then D.†/� 3g� 3.

Proof Let v0; : : : ; vn be a path in C �.†/ such that v1 defines H1 , vn defines H2

and nDD.†/. Both H1 and H2 are handlebodies so if �v1
and �vn

share a vertex
u 2 C.†/ then u corresponds to a loop in † that bounds a disk in H1 and a disk in
H2 .
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Since † is irreducible, there is no such loop in † so �v0
and �vn

cannot share a vertex.
The simplex �v0

has 3g � 3 vertices and consecutive simplices �vi
; �viC1

share all
but one vertex so there must be at least 3g� 2 in the sequence. Thus it must be that
n� 3g� 2 and D.†/� 3g� 3.

Lemma 22 Let .†;H1;H2/ be a strongly irreducible Heegaard splitting of a closed
manifold M and let g be the genus of †. Then D.†/� 6g� 7.

We will sketch the proof, since the result is not vital to the rest of the paper. Because
† is irreducible, each of the loops must be moved at least once. Let l be the last loop
that’s moved. A loop l 0 which is moved before l is replaced by a loop l 00 disjoint from
l . Since l bounds a disk in H1 , l 00 cannot bound a disk in H2 (since † is strongly
irreducible) so l 00 must be moved later on. Every loop other than l must therefore be
moved at least twice (once before l and once after) so D.†/� 6g� 7.

Unfortunately, once the Heegaard surface † is replaced with a stabilization †0 , the
distance may drop by an arbitrary amount. For example, Kobayashi [5] has constructed a
manifold, based on work by Casson and Gordon, with a sequence of strongly irreducible
Heegaard splittings of arbitrarily high genus. Sedgwick [8] later showed that the result
of stabilizing any of these once is also a stabilization of all the lower genus splittings.

By Lemma 22, the unstabilized Heegaard splittings have arbitrarily high distance, but
by Lemma 15, the distances of the stabilizations are bounded, so the distance must fall
by an arbitrarily large amount after stabilization.

There is still a relationship between the Heegaard genus of the manifold and the
Heegaard complexity, but it is not as strong.

Lemma 23 If M is irreducible and @M D∅ then the Heegaard genus of M is less
than or equal to A.M /C2

2
.

Proof Let † be a Heegaard splitting of M such that Ag.†/D A.M /, where g is
the genus of †. Let v1; : : : ; vn be a path in C �.†/ of length D.†/. Let L be the
loops in † defined by the vertices of �v1

. By choosing g large enough, we can assume
there is at least one loop li which also bounds a disk in H2 .

Let L0 be the collection of loops which are never moved. In other words if lj 2L0 then
for every vertex vi in the sequence, lj corresponds to a vertex of �vi

. In particular, lj
is a vertex of �v1

and of �vn
. Thus lj bounds a disk D1

j �H1 and a disk D2
j �H2

(since H1 and H2 are handlebodies). We can choose the disks corresponding to the
loops in L so that the collection is pairwise disjoint. Thus each lj suggests a disjoint,
embedded 2–sphere Sj .
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Because M is irreducible, each sphere Sj bounds a ball Bj �M . Let †0D†n
S

Bj .
This is a punctured surface. Disks can be glued into the punctures to make †0 a
Heegaard surface for M , so the genus of †0 is at least the Heegaard genus of M .
Let h be the genus of †0 . Some subset L00 of the loops L form a pair-of-pants
decomposition for †0 . This is a punctured surface of genus h (there may be more than
one puncture) so there are at least 3h� 2 loops in L00 and none of these loops are in
L0 .

In the surface † n †0 , there are at least g � h non-separating loops. Since M is
irreducible, none of these loops can be in L0 so there are at least g � h more loops
that are moved. There are at least 2h� 2Cg loops in L nL0 so D.†/� 2h� 2Cg

and Ag.†/� 2h� 2. This is true of every stabilization of † so h� A.M /C2
2

and the
Heegaard genus of M is at most h.

Corollary 24 For every positive integer N , there is a manifold M with A.M / >N .

7 Comparing manifolds

Let M and M 0 be compact, connected, orientable 3–manifolds such that @M D @M 0 .
(Both boundaries may be empty.) Let .†;H1;H2/ and .†0;H 0

1
;H 0

2
/ be Heegaard

splittings of M , M 0 respectively such that H2 and H 0
2

are handlebodies of the same
genus.

Let �W H1!H 0
1

be any homeomorphism. Such a map exists because @�H1D @M D

@M 0 D @�H 0
1

. This induces a homeomorphism from †D @CH1 to †0 D @CH 0
1

and
this homeomorphism suggests an isomorphism y�W C �.†/!C �.†0/ or y�W C P .†/!

C P .†0/.

Definition 25 The dual distance between the two Heegaard splittings is D.†;†0/D

fD.v; v0/ W v defines H2; y�.v
0/ defines H 0

2
g. The pants distance is DP .†;†0/ D

minfDP .v; v0/ W v defines H2; y�.v
0/ defines H 0

2
g. Both minima are taken over all

homeomorphisms �W H1!H 0
1

.

In other words, identify H1 and H 0
1

and consider two pants decompositions of @CH1

such that one is a Heegaard diagram for M and the other is a Heegaard diagram for
M 0 . The value of D.†;†0/ is the smallest possible dual distance between any two
such pants decompositions.

As in Section 5, consider a sequence †g of genus–g stabilizations of † and a sequence
†0g of stabilizations of †0 .
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Lemma 26 D.†g; †
0
g/� 2D.†;†0/.

The proof is almost identical to the proof of Lemma 15, with the exception that there
are not .h�g/ loops left at the end which need to be moved. The proof is left to the
reader, as is the proof of the following lemma.

Lemma 27 For sufficiently large g , D.†h; †
0
h
/�D.†g; †

0
g/ whenever h� g .

Theorem 28 The sequence D.†g; †
0
g/ converges and is independent of the choices

of † and †0 .

Proof The distance D.†g; †
0
g/ is non-negative and the sequence is non-increasing

for sufficiently large g , so it converges. Showing that the limit is unique is slightly
more tricky.

Let .†1;H 1
1
;H 1

2
/ and .†2;H 2

1
;H 2

2
/ be Heegaard splittings of M . We know that

there is a stabilization .†3;H 3
1
;H 3

2
/ of †1 and a stabilization .†4;H 4

1
;H 4

2
/ of †2

such that †3 is isotopic to †4 . If M has non-empty boundary then this isotopy must
send H 3

1
to H 4

1
since H 4

2
is a handlebody but H 3

1
is not.

However, if M is closed, the isotopy could send H 3
1

to H 4
2

. Since the definition of
D.†;†0/ distinguishes between H1 and H2 , the distances D.†3; †0/ and D.†4; †0/

may not be equal.

Implicit in most proofs of the stabilization theorem it is also proven that the stabilizations
can be chosen so that an isotopy sends †3 to †4 and sends H 3

1
to H 4

1
. (See, for

example, Rubinstein and Scharlemann’s proof [7].) In this case, it must be the case that
D.†3; †0/ D D.†4; †0/. So the limit of the distances is independent of the choice
of †. A similar consideration for M 0 shows that the distance is independent of the
choice of †0 , and therefore the limit depends only on M and M 0 .

Definition 29 We define the Heegaard distance D.M;M 0/ to be the limit of the
sequence D.†g; †

0
g/ for any Heegaard surfaces † and †0 of M and M 0 .

It is immediate that D.M;M 0/D 0 if and only if M DM 0 . When M ¤M 0 , there
is a very simple description of D.M;M 0/ as follows: Let K �M be a link. We will
say that M and M 0 are connected by K if M 0 is the result of some Dehn surgery on
K �M . Let c.M;M 0/ be the smallest integer c such that M and M 0 are connected
by an c–component link.

Theorem 30 D.M;M 0/D c.M;M 0/.
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Proof We will first show that D.M;M 0/�c.M;M 0/. Let K�M be a c–component
link in M such that some Dehn surgery on K yields M 0 . Let .†;H1;H2/ be a
Heegaard splitting of M such that there is a trivalent spine G of H2 in which each
component of K appears as an edge of G with both ends on the same vertex.

Let l1; : : : ; lm be loops on † defined by the meridian disks dual to the edges of G and
assume l1; : : : ; ln correspond to the edges of G defined by the components of K . Since
G is trivalent, the loops suggest a pants decomposition of † and the corresponding
vertex v0 of C �.†/ defines H2 .

The loop l1 defines a meridian curve on a component of K . Let l 0
1

be the meridian
defined by the Dehn surgery on K . This loop is disjoint from the loops l2; : : : ; lm
because of the way we chose G . Thus the vertex v1 defined by l 0

1
; l2; : : : ; lm is

connected to v0 by an edge in C �.†/.

Continuing in this way for the loops l2; : : : ; ln , we can construct a path v0; : : : ; vn

where vn is defined by the loops l 0
1
; : : : ; l 0n; lnC1; : : : ; lm . By the construction, this

vertex will define a handlebody in a Heegaard splitting .†0;H 0
1
;H 0

2
/ of M 0 . For any

stabilization of .†;H1;H2/, we can construct a graph with the same properties as G .
Thus D.†g; †

0
g/� c for every g and D.M;M 0/� c .

We now see a connection between Heegaard distance and Dehn surgery. To prove that
D.M;M 0/� c , we need the following Lemma:

Lemma 31 If D.M;M 0/ D 1 then M and M 0 are connected by a knot (a one-
component link).

Proof Let .†;H1;H2/ and .†0;H 0
1
;H 0

2
/ be Heegaard splittings for M , M 0 respec-

tively such that D.†;†0/D 1. This means there is a pants decomposition l1; l2; : : : ; lm
for @H1 giving a Heegaard diagram for M such that replacing l1 with l 0

1
creates a

pants decomposition l 0
1
; l2; : : : ; lm giving a Heegaard diagram for M 0 .

The loop l1 bounds a disk in H2 and the loop l 0
1

bounds a disk in H 0
2

. As in Section
2, l1 may sit in a four-punctured sphere or a once-punctured torus, and l 0

1
will lie in

the same type of component. If l1 sits in a four-punctured sphere, then the punctured
sphere and the disks defined by the punctures bound a ball in H2 . Since l 0

1
is on the

boundary of this ball, it bounds a disk in H2 . Thus l 0
1
; l2; : : : ; lm is a Heegaard diagram

for M as well as M 0 so the two manifolds are homeomorphic. Since D.M;M 0/¤ 0,
the manifolds are distinct, and l1 must sit in a punctured torus.

The punctured torus and the disk defined by the puncture bound a solid torus in M

and a solid torus in M 0 . The remainder of the Heegaard diagrams are identical so the
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complements of the solid tori in M and M 0 are homeomorphic. We get M and M 0

by gluing solid tori to the boundaries of the complement, so Dehn surgery on the solid
torus in M will yield M 0 .

We can now finish the proof of Theorem 30

Let v1; : : : ; vn be a path in C �.†/ from H2 to H 0
2

. Each vertex vi defines a Heegaard
splitting of a manifold Mi . Because the Heegaard distance between consecutive
manifolds is at most 1, there is a sequence of knots such that Dehn surgery on each
knot yields the next manifold. By keeping track of the images of these knots in M ,
we find a link with at most as many components as the distance of the path. Thus
c.M;M 0/�D.M;M 0/ and the proof is complete.

As one might expect, there is an analogous Theorem for DP .M;M 0/. Let c1.M;M 0/

be the minimum number of components of a link K �M such that M 0 is the result of
a surgery in which a meridian of each component is replaced by a loop which intersects
the meridian once.

Theorem 32 DP .M;M 0/D c1.M;M 0/.

The proof is almost identical to the proof of Theorem 30 and will be left to the reader.

8 Questions and speculations

Question 1 Is A.M / or AP .M / related to (quasi-equal to?) a manifold invariant
which is already known?

The most tempting possibility is that for hyperbolic manifolds, the complexity could be
related to volume. Juan Souto [9] has announced joint work with Jeff Brock showing
that in certain cases, the pants distance of a specific Heegaard splitting is quasi-isometric
to its hyperbolic volume. Brock [1] has previously proven results relating distance in
the pants complex to volumes of convex cores.

Another possibility is that the pants complexity could be related to the number of
tetrahedra needed for a triangulation of M , or to triangulate a 4–manifold bounded by
M . By Hatcher and Thurston, an edge path in the pants complex suggests a smooth
path in C1.†/. Applying these functions to the level surfaces of a sweep-out of the
Heegaard splitting suggests a stable function from the manifold to R2 . Costantino
and Thurston [2] have used 2–dimensional stable functions to relate the number of
tetrahedra in a triangulation of M to the number of tetrahedra in a 4–manifold which
it bounds. The link between the complexity of the stable function and triangulations
may be applicable to the stable function induced by a Heegaard splitting.
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Question 2 Is there any way to calculate the complexity?

This is already known to be a very difficult problem. There is currently a lot of work
being done to calculate the distance between two points in the pants complex or the
Hempel distance of a Heegaard splitting. Calculating the Heegaard complexity should
be even more difficult because it requires calculating the distance for an infinite number
of splittings.

Question 3 Is either complexity additive under connect summing?

This is a deceptively simple-sounding problem. We have seen that both complexities
are sub-additive. Unlike the Hempel distance, which is zero when M is reducible, the
dual distance or pants distance may ignore the reducing disks when finding a shortest
path.

Question 4 What conditions will guarantee that AP .M / will not increase after Dehn
filling a torus boundary component? What conditions will guarantee that A.M / will
not decrease?

It was pointed out earlier that there is no analogy to Lemma 20 for AP .M /. Given a
manifold with boundary, a Heegaard splitting and a minimal distance path in C P .†/,
the initial pants decomposition of † will define loops in @M . Dehn fillings which take
into account these loops will guarantee that DP .†/ does not increase. The question is
whether or not there is a way to predict these loops from the topology of the manifold,
ie without calculating geodesic paths for an infinite sequence of Heegaard splittings.

Question 5 How does the complexity behave under finite covers?

Lackenby [6] has shown that the asymptotic behavior of the Heegaard genus of finite
covers is related to Thurston’s virtually Haken conjecture and virtually fibered con-
jecture. Essentially, if the Heegaard genera of finite covers of a given manifold are
bounded by a nice enough function of the degree of the covers then one of the covers
must be Haken or fibered.

Given a finite cover M 0 of M and a Heegaard splitting, there is an induced Heegaard
splitting of M 0 . By Lemma 23, rather than having to find an alternative splitting of
M with lower genus, it would only be necessary to show that the pants distance is
bounded by a nice enough function of the degree of the cover.

Question 6 If M and N are irreducible 3–manifolds and there is a degree-one map
from M to N , does this imply that A.N /�A.M /?
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Waldhausen [10] showed that given a degree-one map f W M ! N and a Heegaard
splitting .†;H1;H2/ of N , one can construct a Heegaard splitting .†0;H 0

1
;H 0

2
/ of

M such that f maps H 0
1

and H 0
2

onto H1 and H2 , respectively, by a simple type
of degree-one map. Given a path in C �.†/, it may be possible to construct a path in
C �.†0/ which is, in some sense, induced by the map f .

A positive answer to this question would imply the Poincare conjecture because a
homotopy equivalence is a degree-one map. So, if M is S3 then A.M / D 0 so
A.N /D 0 and N is S3 . If we remove the assumption that M is irreducible then the
answer is no, since there is a degree-one map from S1 �S2 to S3 .

References
[1] J F Brock, The Weil–Petersson metric and volumes of 3–dimensional hyperbolic convex

cores, J. Amer. Math. Soc. 16 (2003) 495–535 MR1969203

[2] F Costantino, D Thurston, 3–manifolds efficiently bound 4–manifolds, preprint (2005)

[3] A Hatcher, W Thurston, A presentation for the mapping class group of a closed
orientable surface, Topology 19 (1980) 221–237 MR579573

[4] J Hempel, 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631–657
MR1838999

[5] T Kobayashi, A construction of 3–manifolds whose homeomorphism classes of
Heegaard splittings have polynomial growth, Osaka J. Math. 29 (1992) 653–674
MR1192734

[6] M Lackenby, The asymptotic behaviour of Heegaard genus, Math. Res. Lett. 11 (2004)
139–149 MR2067463

[7] H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non-Haken 3–
manifolds, Topology 35 (1996) 1005–1026 MR1404921

[8] E Sedgwick, An infinite collection of Heegaard splittings that are equivalent after one
stabilization, Math. Ann. 308 (1997) 65–72 MR1446199

[9] J Souto, personal correspondence (2005)

[10] F Waldhausen, On mappings of handlebodies and of Heegaard splittings, from:
“Topology of Manifolds (Georgia, 1969)”, Markham, Chicago, Ill. (1970) 205–211
MR0271941

Mathematics Department, University of California
Davis, CA 95616, USA

jjohnson@math.ucdavis.edu

Received: 5 May 2006

Algebraic & Geometric Topology, Volume 6 (2006)

http://www.ams.org/mathscinet-getitem?mr=1969203
http://www.ams.org/mathscinet-getitem?mr=579573
http://dx.doi.org/10.1016/S0040-9383(00)00033-1
http://www.ams.org/mathscinet-getitem?mr=1838999
http://www.ams.org/mathscinet-getitem?mr=1192734
http://www.ams.org/mathscinet-getitem?mr=2067463
http://dx.doi.org/10.1016/0040-9383(95)00055-0
http://dx.doi.org/10.1016/0040-9383(95)00055-0
http://www.ams.org/mathscinet-getitem?mr=1404921
http://dx.doi.org/10.1007/s002080050064
http://dx.doi.org/10.1007/s002080050064
http://www.ams.org/mathscinet-getitem?mr=1446199
http://www.ams.org/mathscinet-getitem?mr=0271941
mailto:jjohnson@math.ucdavis.edu

	1. Introduction
	2. Definitions
	3. Maximal collections of disks
	4. Distance and Heegaard splittings
	5. Stabilization
	6. Properties
	7. Comparing manifolds
	8. Questions and speculations
	References

