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Holomorphic discs and sutured manifolds

ANDRÁS JUHÁSZ

In this paper we construct a Floer-homology invariant for a natural and wide class
of sutured manifolds that we call balanced. This generalizes the Heegaard Floer hat
theory of closed three-manifolds and links. Our invariant is unchanged under product
decompositions and is zero for nontaut sutured manifolds. As an application, an
invariant of Seifert surfaces is given and is computed in a few interesting cases.

57M27, 57R58

1 Introduction

In Ozsváth and Szabó [9] a Floer homology invariant was defined for closed oriented 3–
manifolds. This theory was extended to knots by Ozsváth and Szabó [8] and Rasmussen
[12] and recently to links again by Ozsváth and Szabó [7]. Motivated by a conjecture
that knot Floer homology detects fibred knots (Conjecture 10.3, originally proposed in
[10]) and a characterization of fibred knots by Gabai [2], we extend Heegaard Floer
hat theory to a class of sutured manifolds that we call balanced (Definition 2.2). This
theory provides us with a new invariant that we call sutured Floer homology, in short,
SFH. In particular, for every closed oriented 3–manifold Y and every link L� Y we
construct balanced sutured manifolds Y .1/ and Y .L/ such that bHF.Y /D SFH.Y .1//
and bHFL.L/D SFH.Y .L//˝Z2 . Any group SFH.M; 
 / decomposes into a direct
sum along relative Spinc structures on the sutured manifold .M; 
 / and each summand
possesses a relative grading.

To construct the invariant we define the notion of a balanced Heegaard diagram (Defi-
nition 2.11), which consists of a compact surface † with no closed components and
sets of curves ˛ and ˇ of the same cardinality d that are also linearly independent in
H1.†IQ/. These data provide the input for the usual construction of Lagrangian Floer
homology applied to T˛;Tˇ � Symd .†/.

The invariant that we have constructed is unchanged under product decompositions of
sutured manifolds (Lemma 9.13) and is zero for nontaut sutured manifolds (Proposition
9.18). In the last chapter we assign to every Seifert surface R� S3 a sutured manifold
S3.R/ and we compute SFH.S3.R// in a few cases. These computations indicate a
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relationship between the top nonzero term of knot Floer homology and sutured Floer
homology of the sutured manifold obtained from a minimal genus Seifert surface. This
relationship is the subject of Conjecture 10.2.
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2 Heegaard diagrams of sutured manifolds

First we recall the notion of a sutured manifold as defined by Gabai [1].

Definition 2.1 A sutured manifold .M; 
 / is a compact oriented 3–manifold M

with boundary together with a set 
 � @M of pairwise disjoint annuli A.
 / and tori
T .
 /. Furthermore, the interior of each component of A.
 / contains a suture, ie, a
homologically nontrivial oriented simple closed curve. We denote the union of the
sutures by s.
 /.

Finally every component of R.
 / D @M n Int.
 / is oriented. Define RC.
 / (or
R�.
 /) to be those components of @M n Int.
 / whose normal vectors point out of
(into) M . The orientation on R.
 / must be coherent with respect to s.
 /, ie, if ı is a
component of @R.
 / and is given the boundary orientation, then ı must represent the
same homology class in H1.
 / as some suture.

In this paper we will restrict our attention to a special class of sutured manifolds.

Definition 2.2 A balanced sutured manifold is a sutured manifold .M; 
 / such that
M has no closed components, �.RC.
 //D �.R�.
 //, and the map from �0.A.
 //

to �0.@M / is surjective.

Note that the last condition implies that for a balanced sutured manifold T .
 /D∅.
A balanced sutured manifold is completely determined by M and s.
 /. Therefore,
one can view 
 as a set of thick oriented curves in @M where such curves induce
the orientations on @M n Int.
 /. Now we list a few important examples of balanced
sutured manifolds.
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Example 2.3 Let Y be a closed connected oriented 3–manifold and we are also given
pairwise disjoint closed 3–balls B1; : : : ;Bk � Y . For 1� i � k choose an oriented
simple closed curve si � @Bi together with a regular neighborhood 
i DN.si/. If

M D Y n
Sk

iD1 Int.Bi/ and 
 D
Sk

iD1 
i

then the pair .M; 
 / defines a balanced sutured manifold with sutures s.
 /D
Sk

iD1 si .
The sutured manifold .M; 
 / only depends on Y and k , we denote it by Y .k/. Note
that Y .k/ uniquely determines Y .

If .N; �/ is a connected balanced sutured manifold then let N.k/ denote the connected
sum .N; �/#S3.k/. This is also a balanced sutured manifold.

Example 2.4 Let L � Y be a link of k components in a closed connected ori-
ented 3–manifold Y . Choose a closed regular neighborhood N.L/ of L. For every
component Li of L (1 � i � k ) take two meridians si and s0i of Li oppositely
oriented, that is, Œsi � D �Œs

0
i � in H1.@N.Li/IZ/. Choose regular neighborhoods


i D N.si/ and 
 0i D N.s0i/ in @N.Li/ and let 
 D
Sk

iD1.
i [ 

0
i /; furthermore

let M D Y n
Sk

iD1 Int.N.Li//. This way we obtain a balanced sutured manifold
.M; 
 /. We can reconstruct L from .M; 
 / using Dehn filling as follows. For each
component T 2

i of @M glue in a solid torus S1 �D2 so that f1g � @D2 maps to one
component of s.
 /\ T 2

i , let Li be the image of S1 � f0g. Note that if we choose
the other component of s.
 /\T 2

i only the orientation of Li changes, and choosing
different images for the longitude S1�f1g corresponds to choosing different framings
of Li .

.M; 
 / is uniquely determined by the link LI let us use the notation Y .L/ for the
sutured manifold .M; 
 /. We saw above that Y .L/ uniquely determines L. If in
addition we fix an ordering of the components of s.
 /\T 2

i (ie, we distinguish between
si and s0i ) we uniquely define an orientation of L.

The following two examples can be found in [2].

Example 2.5 Let R be a compact oriented surface with no closed components. Then
there is an induced orientation on @R. Let M D R� I , define 
 D @R� I , finally
put s.
 / D @R � f1=2g. The balanced sutured manifold .M; 
 / obtained by this
construction is called a product sutured manifold.

Example 2.6 Let Y be a closed connected oriented 3–manifold and let R � Y be
a compact oriented surface with no closed components. We define Y .R/ D .M; 
 /

to be the sutured manifold where M D Y n Int.R� I/, the suture 
 D @R� I and
s.
 /D @R� f1=2g. Then Y .R/ is balanced.
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Next we introduce sutured Heegaard diagrams. They generalize Heegaard diagrams of
closed 3–manifolds so that we can also describe sutured manifolds.

Definition 2.7 A sutured Heegaard diagram is a tuple .†;˛;ˇ/, where † is a
compact oriented surface with boundary and ˛Df˛1; : : : ; ˛m g and ˇDfˇ1; : : : ; ˇn g

are two sets of pairwise disjoint simple closed curves in Int.†/.

Definition 2.8 Every sutured Heegaard diagram .†;˛;ˇ/ uniquely defines a sutured
manifold .M; 
 / using the following construction.

Let M be the 3–manifold obtained from †�I by attaching 3–dimensional 2–handles
along the curves ˛i�f0g and ǰ �f1g for i D 1; : : : ;m and j D 1; : : : ; n. The sutures
are defined by taking 
 D @M � I and s.
 /D @M � f1=2g.

Proposition 2.9 If .M; 
 / is defined by .†;˛;ˇ/ then .M; 
 / is balanced if and
only if j˛j D jˇj and the maps �0.@†/! �0.† n

S
˛/ and �0.@†/! �0.† n

S
ˇ/

are surjective. The second condition is equivalent to saying that † has no closed
components and the elements of ˛ and ˇ are both linearly independent in H1.†IQ/.

Proof Since adding a 2–handle increases the Euler characteristics of the boundary
by 2 (the boundary undergoes surgery along the attaching circle) we get the equalities
�.RC.
 //D �.†/C2m and �.R�.
 //D �.†/C2n. Thus �.RC.
 //D �.R�.
 //
if and only if j˛j D jˇj.

Note that every component of @M contains a suture exactly when R�.
 / and RC.
 /

have no closed components. Since R�.
 / is obtained from † by performing surgery
along ˛, components of †n

S
˛ naturally correspond to components of R�.
 /. Thus

a component of † n
S
˛ contains a component of @† if and only if the corresponding

component of R�.
 / has nonempty boundary. So R�.
 / has no closed components
if and only if the map �0.@†/! �0.† n

S
˛/ is surjective. A similar argument can

be used for RC.
 /.

The last statement follows from Lemma 2.10.

Lemma 2.10 Let † be a compact oriented surface with boundary and let ˛ � Int.†/
be a one-dimensional submanifold of †. Then the map �0.@†/ ! �0.† n ˛/ is
injective if and only if † has no closed components and the components of ˛ are
linearly independent in H1.†IQ/.

Proof In this proof every homology group is to be considered with coefficients in
Q. The components of ˛ are linearly independent in H1.†/ exactly when the map
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i�W H1.˛/!H1.†/ induced by the embedding i W ˛ ,! † is injective. Look at the
following portion of the long exact sequence of the pair .†; ˛/ W

0!H2.†/!H2.†; ˛/!H1.˛/
i�
�!H1.†/:

Then we see that H2.†; ˛/�H2.†/˚ker.i�/. Note that H2.†/D 0 precisely when
† has no closed components. Let N.˛/ be a closed regular neighborhood of ˛ . Then
by excision

H2.†; ˛/�H2.†;N.˛//�H2.† n Int.N.˛//; @N.˛//�
M

C

H2.C; @N.˛/\C /;

where C runs over the components of †nInt.N.˛//. Thus H2.†; ˛/D 0 if and only if
for every such component C the group H2.C; @N.˛/\C /D 0, ie, when C \@†¤∅.
Thus H2.†; ˛/D 0 exactly when the map �0.@†/! �0.† n˛/ is injective.

Proposition 2.9 justifies the following definition.

Definition 2.11 A sutured Heegaard diagram .†;˛;ˇ/ is called balanced if j˛jD jˇj
and the maps �0.@†/! �0.† n

S
˛/ and �0.@†/! �0.† n

S
ˇ/ are surjective.

Remark 2.12 We will use the abbreviation “balanced diagram” for “balanced sutured
Heegaard diagram”.

Proposition 2.13 Let .M; 
 / be a sutured manifold for which the maps

�0.RC.
 //! �0.M / and �0.R�.
 //! �0.M /

are surjective. Then there exists a sutured Heegaard diagram .†;˛;ˇ/ defining it.

Proof Fix a Riemannian metric on M . First we construct a special Morse function
f on M the following way. Choose a diffeomorphism 'W 
 ! s.
 /� Œ�1; 4� so that
'.s.
 // D s.
 /� f3=2g and let p2W s.
 /� Œ�1; 4�! Œ�1; 4� be the projection onto
the second factor. Then we define f j
 to be p2 ı' . Furthermore, let f jR�.
 /��1

and f jRC.
 /� 4. Now take a generic extension of f j@M to M . Then f W M ! R

is a Morse function.

Using [5, Theorem 4.8] we can assume that f is self-indexing. Applying the idea of
[5, Theorem 8.1] as follows we can assume that f has no index 0 and 3 critical points.
Since the map H0.R�.
 //!H0.M / is surjective H0.M;R�.
 //D 0. Thus, using
CW homology, we see that for every index 0 critical point of f we can find an index
1 critical point so that there is exactly one gradient flow line connecting them, and they
can be canceled. Indeed, since H0.M;R�.
 //D 0, for every index zero critical point
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p there is an index one critical point q such that p and q are connected by an odd
number of gradient flow lines. But there are only two flow lines coming out of q , so
there is exactly one trajectory connecting p and q . During this process we do not have
to change f j@M . Similarly, we can cancel every index 3 critical point of f .

Finally, let †Df �1.3=2/ and let ˛ and ˇ be the intersections of † with the ascending
and descending manifolds of the index one and two critical points of f respectively.
Then .†;˛;ˇ/ defines .M; 
 /.

Proposition 2.14 For every balanced sutured manifold .M; 
 / there exists a balanced
diagram defining it.

Proof This is a corollary of Proposition 2.9 and Proposition 2.13.

Next we will state and prove a generalization of [9, Proposition 2.2].

Proposition 2.15 If the balanced diagrams .†0;˛0;ˇ0/ and .†1;˛1;ˇ1/ define the
same balanced sutured manifold .M; 
 / then they are diffeomorphic after a finite
sequence of Heegaard moves.

Proof Suppose that ˛ � R�.
 / is a simple closed curve such that the 1–handle
attached to M along ˛ can be canceled by a 0–handle B3 . Then the curve ˛ bounds
the 2–disc @B3\R�.
 /.

Using the above observation we get that adding a canceling pair of index 0 and 1 critical
points corresponds to adding a curve ˛ to ˛ such that after performing surgery on †
along ˛ (so that we obtain R�.
 /) the image of ˛ bounds a disc.

Notation 2.16 If 
 is a set of pairwise disjoint simple closed curves in the interior of
a surface † then †Œ
 � denotes the surface obtained by surgery on † along 
 .

Lemma 2.17 Let ˛1; : : : ; ˛d ; 
 and ı be pairwise disjoint simple closed curves in
a compact oriented surface † such that the image of both 
 and ı bound a disc in
†Œ˛1; : : : ; ˛d �. Suppose that 
 is not null-homologous.

Then there is an i 2 f 1; : : : ; d g such that 
 is isotopic to a curve obtained by handles-
liding ˛i across some collection of the j̨ for j ¤ i . Moreover, the curves ˛i and ı
both bound discs in e† D†Œ˛1; : : : ; ˛i�1; ˛iC1; : : : ; ˛d ; 
 �.
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Proof Let D
 and Dı be discs bound by 
 and ı in †0D†Œ˛1; : : : ; ˛d � respectively.
For i D 1; : : : ; d let pi ; qi 2†

0 be the points corresponding to the zero-sphere which
replaced the circle ˛i . Since 
 is not null-homologous, there is an i 2 f 1; : : : ; d g

such that D
 separates pi and qi . We can suppose without loss of generality that
i D 1 and p1 2D
 while q1 62D
 . An isotopy in D
 of a small circle around p1 to

 corresponds to handlesliding ˛1 across some collection of the j̨ for j ¤ 1 so that
we obtain 
 .

Observe that e† is obtained from †0 by adding a tube T to †0 n fp1; q1 g and
performing surgery along 
 . We take †0 n 
 and pinch the boundary component
corresponding to @D
 to p0 and @.†0 nD
 / to q0 . Then ˛1 is the boundary of the
disc .D
 n fp1g/[fp0g �

e† .

We are now going to prove that ı bounds a disc in e† . If p1 62Dı and q1 62Dı then since
ı\
 D∅ the disc Dı “survives” in e† . If p1 2Dı and q1 62Dı then in e† the curve
ı bounds .D
 nDı/[fp0g if D
 �Dı and .Dı nD
 /[fq0g otherwise. If p1 62Dı

and q1 2 Dı then ı bounds in e† the disc .Dı n fq1g/ [ T [ .D
 n fp1g/ [ fp0g.
Finally, if p1; q1 2 Dı then of course D
 � Dı , and in e† the curve ı bounds
.Dı n .D
 [fq1g//[T [ .D
 n fp1g/[fp0; q0g.

(In fact, †0 D †Œ˛2; : : : ; ˛d �Œ˛1� and e† D †Œ˛2; : : : ; ˛d �Œ
 �, and furthermore the
curves ˛1 and 
 are isotopic in †Œ˛2; : : : ; ˛d �.)

Lemma 2.18 Let ı be a set of pairwise disjoint simple closed curves in †, and
suppose that we are given two subsets of curves ˛;
 � ı that are linearly independent
in H1.†IQ/. Suppose furthermore that the image of every ı 2 ı n ˛ bounds a disc
in †Œ˛�. Then 
 can be obtained from ˛ by a series of isotopies and handleslides.
Moreover, the image of every ı 2 ı n
 bounds a disc in †Œ
 �.

Proof Let d D j˛j D j
j. We prove the claim using induction on d . The case d D 0

is trivial. Note that it follows from the hypothesis that ˛ and 
 span the same subspace
in H1.†IQ/.

If ˛\
 ¤∅, say the curve ˛ lies in the intersection, then perform surgery on † along
˛ to obtain a new surface †0 with two marked points p; q and two .d � 1/–tuples of
curves ˛0 and 
 0 . Let ı0D ı nf˛g. Note that every ı 2 ı0 n˛0D ı n˛ bounds a disc in
†0Œ˛0�D†Œ˛�. Using the induction hypothesis ˛0 and 
 0 are related by isotopies and
handleslides. We can arrange (using isotopies) that each handleslide is disjoint from p

and q . Each isotopy of a curve in †0 that crosses p or q corresponds to a handleslide
in † across ˛ . Thus ˛ and 
 are also related by isotopies and handleslides. Also from
the induction hypothesis we get that every ı 2 ı0 n
 0 bounds a disc in †0Œ
 0�D†Œ
 �.
This implies that the image of every ı 2 ı n
 bounds a disc in †Œ
 �.
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If ˛\
 D∅ then take any 
 2 
 . Since elements of 
 are linearly independent 
 is
not null-homologous. Thus, using Lemma 2.17, 
 can be obtained by handlesliding
some ˛i across a collection of the j̨ for j ¤ i . So we have reduced to the case where
the two subsets are not disjoint.

For i 2 f 0; 1 g choose a Morse function fi inducing .†i ;˛i ;ˇi / as in the proof of
Proposition 2.13 and let fft W 0� t �1 g be a generic one-parameter family of functions
connecting them. We can suppose that ft is fixed in a neighborhood of @M . Also equip
Y with a generic Riemannian metric. Then there is a finite subset E � I such that for
t 2 I nE the function ft is Morse with gradient flow lines flowing only from larger to
strictly smaller index critical points, and thus induces a diagram .†t ;˛t;ˇt/. Here ˛t

and ˇt are the intersections of †t with the ascending and descending manifolds of the
index one and two critical points of ft respectively. As t passes through an element
e 2 E the diagram corresponding to ft experiences one of the following changes.
There is either a handleslide among the ˛ curves or the ˇ curves (corresponding to a
gradient flow line connecting two index one or two index two critical points of fe ),
or a stabilization/destabilization (corresponding to creation/cancellation of index 1
and 2 critical points), or a new ˛ or ˇ curve appears/disappears (corresponding to
canceling index 0 and 1, or index 2 and 3 critical points). The last case is called a pair
creation/cancellation.

For each t 2 I nE choose two maximal homologically linearly independent subsets
˛0t � ˛t and ˇ 0t � ˇt that change continuously in t . Then of course ˛0

i
D ˛i and

ˇ 0
i
Dˇi for i D 0; 1. So it is enough to show that for every e 2E and sufficiently small

" the diagrams .†e�";˛
0
e�";ˇ

0
e�"/ and .†eC";˛

0
eC"

;ˇ 0
eC"

/ are related by isotopies,
handleslides, stabilization and destabilization.

In order to do this we also need to prove the fact that for every t 2 I nE and every
curve ˛ 2 ˛t n˛

0
t the image of ˛ bounds a disc in the surface †t Œ˛

0
t �. We prove this

by induction on the component of I nE containing t . It is obviously true for t D 0.

First consider the case when e does not correspond to stabilization or destabilization.
Let ı D ˛e�" [ ˛eC" , this is a set of pairwise disjoint curves. Furthermore, let
˛ D ˛0e�" and 
 D ˛0

eC"
. Observe that ı n ˛e�" consists of at most one curve ı

obtained from either a handleslide within ˛e�" or a pair creation. Using the induction
hypothesis for t D e � " we see that ı also bounds a disc in †e�"Œ˛�. Thus we can
apply Lemma 2.18 to ˛;
 � ı showing that ˛ and 
 are related by isotopies and
handleslides and that the induction hypothesis also holds for t D e C ". A similar
argument applies to the ˇ curves.
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Now suppose that e corresponds to a stabilization; the new curves appearing are ˛
and ˇ . Define ˛D ˛0e�"[f˛g and ˇ D ˇ 0e�"[fˇg, considered as sets of curves in
†eC" . Then we can apply Lemma 2.18 to ˛;˛0

eC"
� ˛eC" and ˇ;ˇ 0

eC"
� ˇeC" .

The case of a destabilization is proved in a similar way, by taking ˛D ˛0
eC"
[f˛g and

ˇ D ˇ 0
eC"
[fˇg, where ˛ and ˇ are the curves that vanish.

Remark 2.19 From Proposition 2.15 we see that if we associate to every balanced
diagram a quantity that is unchanged by isotopies, handleslides and stabilization we
get a topological invariant of sutured 3–manifolds.

3 Whitney discs and their domains

For a surface † let Symd .†/ denote the d-fold symmetric product †�d=Sd . This
is always a smooth 2d –manifold. A complex structure j on † naturally endows
Symd .†/ with a complex structure, denoted Symd .j/. This structure Symd .j/ is
specified by the property that the quotient map †d ! Symd .†/ is holomorphic.

Definition 3.1 Let .†;˛;ˇ/ be a balanced diagram, where ˛D f˛1; : : : ; ˛d g and
ˇ D fˇ1; : : : ; ˇd g. Then let T˛ D .˛1� � � � �˛d /=Sd and Tˇ D .ˇ1� � � � �ˇd /=Sd .
These are d –dimensional tori in Symd .†/.

Lemma 3.2 For a balanced diagram .†;˛;ˇ/ and an arbitrary complex structure j

on †, the submanifolds T˛;Tˇ � Symd .†/ are totally real with respect to Symd .j/.

Proof The submanifold ˛1 � � � � �˛d �†
�d is totally real with respect to j�d and

misses the diagonal (consisting of those d –tuples for which at least two coordinates
coincide). The claim thus follows since the projection map � W †�d ! Symd .†/ is a
holomorphic local diffeomorphism away from the diagonal.

Note that if every ˛ 2 ˛ and ˇ 2 ˇ are transversal then the tori T˛ and Tˇ intersect
transversally.

Notation 3.3 Let D denote the unit disc in C, and let e1 D f z 2 @D W Re.z/ � 0 g

and e2 D f z 2 @D W Re.z/� 0 g.

Definition 3.4 Let x; y 2 T˛ \Tˇ be intersection points. A Whitney disc connecting
x to y is a continuous map uW D! Symd .†/ such that u.�i/ D x, u.i/ D y and
u.e1/� T˛ , u.e2/� Tˇ . Let �2.x; y/ denote the set of homotopy classes of Whitney
discs connecting x to y.
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Definition 3.5 For z 2†n.
S
˛[

S
ˇ/ and u a Whitney disc, choose a Whitney disc

u0 homotopic to u such that u0 intersects the hypersurface fzg�Symd�1.†/ transver-
sally. Define nz.u/ to be the algebraic intersection number u0\ .fzg �Symd�1.†//.

Note that nz.u/ only depends on the component of † n .
S
˛[

S
ˇ/ in which z lies

and on the homotopy class of the Whitney disc u. Moreover, if the component of
z contains a boundary component of † then nz.u/ D 0. Indeed, we can choose z

on @† and we can homotope u to be disjoint from @Symd .†/� fzg �Symd�1.†/,
showing that nz.u/D 0. This last remark implies that we can run the Floer homology
machinery without worrying about being in a manifold with boundary.

Definition 3.6 For a balanced diagram let D1; : : : ;Dm denote the closures of the
components of † n .

S
˛[

S
ˇ/ disjoint from @†. Then let D.†;˛;ˇ/ be the free

abelian group generated by fD1; : : : ;Dm g. This is of course isomorphic to Zm . We
call an element of D.†;˛;ˇ/ a domain. An element D of Zm

�0
is called a positive

domain, we write D � 0. A domain P 2D.†;˛;ˇ/ is called a periodic domain if the
boundary of the 2–chain P is a sum of ˛ - and ˇ–curves.

Definition 3.7 For every 1 � i � m choose a point zi 2 Di . Then the domain of a
Whitney disc u is defined as

D.u/D
mX

iD1

nzi
.u/Di 2D.†;˛;ˇ/:

For � 2 �2.x; y/ and u a representative of the homotopy class � , let D.�/DD.u/.

Remark 3.8 If a Whitney disc u is holomorphic then D.u/� 0.

If x 2 T˛ \Tˇ and if u is a Whitney disc connecting x to x then D.u/ is a periodic
domain.

Definition 3.9 If .†;˛;ˇ/ is a balanced diagram defining the balanced sutured
manifold .M; 
 / and if P 2D.†;˛;ˇ/ is a periodic domain then we can naturally
associate to P a homology class H.P/ 2 H2.M IZ/ as follows. The boundary of
the two-chain P is a sum

Pd
iD1 ai˛i C

Pd
iD1 biˇi . Let Ai denote the core of the

two-handle attached to ˛i and Bi the core of the two-handle attached to ˇi . Then let

H.P/D

24PC dX
iD1

aiAi C

dX
iD1

biBi

35 2H2.M IZ/:

Lemma 3.10 If H.P/D 0 then P D 0.

Algebraic & Geometric Topology, Volume 6 (2006)



Holomorphic discs and sutured manifolds 1439

Proof Since † has no closed components we have that H2.†IZ/ D 0. Thus, if
P ¤ 0 then @P D

Pd
iD1 ai˛i C

Pd
iD1 biˇi ¤ 0. Suppose for example that a1 ¤ 0.

This implies that H.P/ has nonzero algebraic intersection with the co-core A0
1

of the
two-handle attached to ˛1 (whose core is A1 ). Since ŒA0

1
�¤ 0 in H1.M; @M IZ/ we

get that H.P/¤ 0.

Definition 3.11 A balanced diagram .†;˛;ˇ/ is called admissible if every periodic
domain P ¤ 0 has both positive and negative coefficients.

Corollary 3.12 If .M; 
 / is a balanced sutured manifold such that H2.M IZ/ is 0

and if .†;˛;ˇ/ is an arbitrary balanced diagram defining .M; 
 / then there are no
nonzero periodic domains in D.†;˛; ˇ/. Thus any balanced diagram defining .M; 
 /

is automatically admissible.

Definition 3.13 Let x; y 2 T˛ \ Tˇ . A domain D 2 D.†;˛;ˇ/ is said to connect
x to y if for every 1 � i � d the equalities @.˛i \ @D/ D .x\ ˛i/� .y\ ˛i/ and
@.ˇi \ @D/D .x\ˇi/� .y\ˇi/ hold. We will denote by D.x; y/ the set of domains
connecting x to y.

Note that if � 2 �2.x; y/ then D.�/ 2D.x; y/.

Lemma 3.14 If the balanced diagram .†;˛;ˇ/ is admissible then for every pair
x; y 2 T˛ \Tˇ the set fD 2D.x; y/ W D � 0 g is finite.

Proof The argument that follows can be found in the proof of [9, Lemma 4.13]. If
D.x; y/¤∅ then fix an element D0 2D.x; y/. Then every element D 2D.x; y/ can
be written as D DD0CP , where P 2D.x; x/ is a periodic domain. Hence if D � 0

then P � �D0 .

So the lemma follows if we show that the set Q D fP 2 D.x; x/ W P � �D0 g is
finite. We can think of Q as a subset of the lattice Zm � Rm . If Q had infinitely
many elements, then we could find a sequence .pj /

1
jD1

in Q with kpjk!1. Taking
a subsequence we can suppose that .pj=kpjk/ converges to a unit vector p in the
vector space of periodic domains with real coefficients. Since the coefficients of pj

are bounded below and kpjk!1 we get that p � 0. Thus the polytope consisting
of vectors corresponding to real periodic domains with � 0 multiplicities also has
a nonzero rational vector. After clearing denominators we obtain a nonzero integer
periodic domain with nonnegative multiplicities. This contradicts the hypothesis of
admissibility.
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z0

z

C

C 0

Figure 1: The picture on the left shows curves that represent a basis
of H1.†; @†IZ/ . On the right we can see the procedure to achieve
admissibility. The dotted lines represent the ˛ curves, and the solid lines
represent the ˇ curves.

Proposition 3.15 Every balanced diagram .†;˛;ˇ/ is isotopic to an admissible one.

Proof Fix a boundary component C � @†. We can choose a set of pairwise disjoint,
oriented and properly embedded arcs 
1; : : : ; 
l �† such that for every 1� i � l the
endpoints @
i lie in @†; furthermore these arcs generate the relative homology group
H1.†; @†IZ/. This can be done as follows (see the left hand side of Figure 1). Let †0

denote the surface obtained from † by gluing a disc to every component of @† nC .
Let g denote the genus of †0 . Then we can choose a set of 2g curves in †0 as above,
that are also disjoint from @† nC . Finally, for each component C 0 of @† nC connect
C and C 0 with a 
 curve. Note that †n .@†[

Sl
iD1 
i/ is homeomorphic to an open

disc.

We perform an isotopy of the ˇ curves in a regular neighborhood of 
1[ � � � [ 
l as
described in the proof of [7, Proposition 3.6]. Specifically, for every 1� i � l choose
an oppositely oriented parallel copy 
 0i of 
i . Using a finger move isotope the ˇ curves
intersecting 
i towards the endpoint of 
i so that there is a point zi 2 
i separating
˛\ 
i from ˇ \ 
i . Perform a similar isotopy of the ˇ curves in a neighborhood of
each 
 0i . The point z0i 2 


0
i separates ˛\ 
 0i from ˇ \ 
 0i . See the right-hand side of

Figure 1.

We claim the diagram obtained this way is admissible. Let P be a periodic domain.
Then

@P D
dX

iD1

ai �˛i C

dX
iD1

bi �ˇi DACB:

Algebraic & Geometric Topology, Volume 6 (2006)



Holomorphic discs and sutured manifolds 1441

First suppose that there is an 1� i � l such that the algebraic intersection A\ 
i ¤ 0.
Since the multiplicity of P at the points of @† is 0 we get that the multiplicity of P
at zi is A\ 
i and at z0i it is A\ 
 0i D�A\ 
i (see the right-hand side of Figure 1).
Indeed, zi separates A\ 
i from B \ 
i on 
i and z0i separates A\ 
 0i from B \ 
 0i
on 
 0i . Thus P has both positive and negative multiplicities.

On the other hand, if for every 1 � i � l the intersection number A\ 
i D 0, then
since 
1; : : : ; 
l span H1.†; @†IZ/, we get that A is null-homologous in †. Indeed,
in this case A is homologous to a curve lying in † n .
1[ � � � [ 
l/�D2 . Since the
elements of ˛ are linearly independent is H1.†IZ/ we get that for every 1� j � d

the coefficient aj D 0. But @P DACB implies that B is homologous with �A in †,
thus B � 0. So we get that bj D 0 for every 1� j � d . Thus in this case P D 0.

4 Spinc structures

In this section .M; 
 / denotes a connected balanced sutured manifold.

Notation 4.1 Let v0 be the nonzero vector field along @M that points into M along
R�.
 /, points out of M along RC.
 /, and on 
 it is the gradient of the height
function s.
 /� I ! I . The space of such vector fields is contractible.

The field v?
0

is an oriented two-plane field along @M . We will use the notation

ı D c1.v
?
0 /D e.v?0 / 2H 2.@M IZ/:

Definition 4.2 Let v and w be vector fields on M that agree with v0 on @M . We say
that v and w are homologous if there is an open ball B � Int.M / such that vj.M nB/

is homotopic to wj.M nB/ rel @M . We define Spinc.M; 
 / to be the set of homology
classes of nonzero vector fields v on M such that vj@M D v0 .

Remark 4.3 Let f be a Morse function as in Proposition 2.13. Then the vector field
grad.f /j@M D v0 , the number d of index 1 and 2 critical points of f agree, and
f has no index 0 or 3 critical points. Choose d pairwise disjoint balls in M , each
containing exactly one index 1 and one index 2 critical point of f . Then we can
modify grad.f / on these balls so that we obtain a nonzero vector field on M such
that vj@M D v0 . This shows that Spinc.M; 
 /¤∅. From obstruction theory we get
that Spinc.M; 
 / is an affine space over H 2.M; @M IZ/.

Next we define the Chern class of a Spinc structure. Let i W @M ! M denote the
embedding. If v is the vector field constructed in Remark 4.3 then using the naturality
of Chern classes we see that i�.c1.v

?//D ı , thus ı 2 Im.i�/.
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Definition 4.4 For s 2 Spinc.M; 
 / defined by a vector field v on M , let the class
c1.s/D c1.v

?/ 2 .i�/�1.ı/ where v? is the oriented two-plane field on M perpen-
dicular to v . Note that a priori we only know that c1.v

?/ 2 H 2.M IZ/, but since
vj@M D v0 we get that c1.v

?/ 2 .i�/�1.ı/.

Fix a balanced diagram .†;˛;ˇ/ for .M; 
 /.

Definition 4.5 To each x 2 T˛ \Tˇ we assign a Spinc structure s.x/ 2 Spinc.M; 
 /

as follows. Choose a Morse function f on M compatible with the given balanced
diagram .†;˛;ˇ/. Then x corresponds to a multi-trajectory 
x of grad.f / connecting
the index one and two critical points of f . In a regular neighborhood N.
x/ we can
modify grad.f / to obtain a nonzero vector field v on M such that vj@M D v0 . We
define s.x/ to be the homology class of this vector field v .

Definition 4.6 Let x; y2T˛\Tˇ and let 
x , 
y be the corresponding multi-trajectories,
thought of as one-chains in M . Then define �.x;y/D 
x� 
y 2H1.M IZ/.

Alternatively, we can define �.x; y/ in the following manner. Choose paths aW I ! T˛

and bW I ! Tˇ with @aD @b D x� y. Then a� b can be viewed as a one-cycle in †
whose homology class in M is �.x; y/. This is independent of the choice of a and b .

Lemma 4.7 For x; y 2 T˛ \ Tˇ we have that s.x/ � s.y/ D PDŒ�.x; y/�, where
PDW H1.M;Z/!H 2.M; @M IZ/ is the Poincaré duality map.

Proof The vector fields s.x/ and s.y/ differ only in a neighborhood of 
x� 
y . It is
now a local calculation to see that s.x/�s.y/DPDŒ
x�
y� (see [9, Lemma 2.19]).

Corollary 4.8 If s.x/ ¤ s.y/ then D.x; y/ D ∅. In particular, there is no Whitney
disc connecting x and y. If �1.Symd .†//DH1.Symd .†/IZ/ then the converse also
holds, ie, s.x/D s.y/ implies that �2.x; y/¤∅.

Proposition 4.9 If d > 1 then �1.Symd .†//DH1.Symd .†/IZ/.

Proof The proof is analogous to [9, Lemma 2.6]. Let 
 W S1! Symd .†/ be a null-
homologous curve that misses the diagonal. Then there is a 2–manifold with boundary
F , a map i W F !† and a d –fold covering � W @F ! S1 such that .i j@F /ı��1 D 
 .
By increasing the genus of F is necessary, we can extend the d –fold covering of S1

to a branched d –fold covering � W F !D2 . Then the map i ı��1W D2! Symd .†/

shows that 
 is null-homotopic.
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5 Maslov index

Fix a balanced sutured manifold .M;
/ and a balanced diagram .†;˛;ˇ/ defining it.

Notation 5.1 For x; y 2 T˛ \Tˇ and for a homotopy class � 2 �2.x; y/ let M.�/

denote the moduli space of pseudo-holomorphic representatives of � , and let cM.�/

be the quotient of this moduli space by the action of R. Let �.�/ denote the Maslov
index of � , ie, the expected dimension of M.�/.

Theorem 5.2 For x 2 T˛ \Tˇ and  2 �2.x; x/ we have

�. /D hc1.s.x//;H.D. //i:

Proof See [9, Theorem 4.9].

Corollary 5.3 Suppose that for �1; �2 2�2.x; y/ we have that D.�1/DD.�2/. Then
�.�1/D �.�2/.

Proof The homotopy class  D�1�2 2�2.x; x/ satisfies D. /DD.�1/�D.�2/D0

and �. /D �.�1/��.�2/. The result then follows from Theorem 5.2 using the fact
that H.D. //D 0.

This justifies the following definition.

Definition 5.4 We define the Maslov index of a domain D 2D.†;˛;ˇ/ as follows.
If there exists a homotopy class � of Whitney discs such that D.�/DD then define
�.D/ WD �.�/. Otherwise we define �.D/ to be �1. Furthermore, let M.D/
denote the moduli space of holomorphic Whitney discs u such that D.u/DD and letcM.D/DM.D/=R.

Thus we can rephrase Theorem 5.2 as follows.

Theorem 5.5 For x 2 T˛ \Tˇ and P 2D.x; x/ such that �.P/¤�1 we have

�.P/D hc1.s.x//;H.P/i:
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6 Energy bounds

First we recall the definition of the energy of a map of a planar domain into a Riemannian
manifold.

Definition 6.1 Let � be a domain in C and let .X;g/ be a Riemannian manifold.
The energy of a smooth map uW �!X is given by

E.u/D
1

2

Z
�

jduj2:

Let � be a Kähler form on †.

Definition 6.2 The area of a domain DD
Pm

iD1 niDi 2D.†;˛;ˇ/ is defined as

A.D/D
mX

iD1

ni �Area�.Di/;

where Area�.Di/D
R
Di
�.

Theorem 6.3 There is a constant C which depends only on the balanced diagram
.†;˛;ˇ/ and � such that for any smooth Whitney disc

uW .D; @D/! .Symd .†/;T˛ [Tˇ/

we have the energy bound
E.u/� C �A.D.u//:

Proof The proof is analogous to the proof of [9, Lemma 3.5]. We use the fact that †
is compact. See also the paragraph below [9, Remark 3.7].

Corollary 6.4 For any D 2D.†;˛;ˇ/ such that �.D/D 1 the moduli space cM.D/
is a compact zero-dimensional manifold.

Proof This follows from Theorem 6.3 using Gromov compactness.

Lemma 6.5 Every pseudo-holomorphic map

uW .D; @D/! .Symd .†/;T˛/

is constant. The same holds for pseudo-holomorphic maps

u0W .D; @D/! .Symd .†/;Tˇ/:

Finally, every pseudo-holomorphic sphere vW S2! Symd .†/ is constant.
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Proof The boundary of the domain D.u/ is a linear combination of the ˛ curves.
Since ˛1; : : : ; ˛d are linearly independent in †, this implies that D.u/D0. Thus using
Theorem 6.3 we get that E.u/� C �A.0/D 0, so E.u/D 0. A pseudo-holomorphic
map with zero energy is constant. A similar argument applies to u0 .

The domain of v is a 2–cycle. But † has no closed components, so D.v/D 0. The
fact that v is constant now follows similarly.

7 Definition of the chain complex

Let .M; 
 / be a balanced sutured manifold and .†;˛;ˇ/ an admissible balanced
diagram defining it. Fix a coherent system of orientations as in [9, Definition 3.11].

Definition 7.1 Let CF.†;˛;ˇ/ be the free abelian group generated by the points in
T˛ \ Tˇ . We define an endomorphism @W CF.†;˛;ˇ/! CF.†;˛;ˇ/ so that for
each generator x 2 T˛ \Tˇ we have

@xD
X

y2T˛\Tˇ

X
fD2D.x;y/ W�.D/D1g

# cM.D/ � y:

Since the diagram is admissible Lemma 3.14 ensures that D.x; y/ has only finitely
many positive elements. But we know that from M.D/¤ ∅ it follows that D � 0.
Corollary 6.4 implies that if �.D/ D 1 then cM.D/ is a compact zero-dimensional
manifold, and the coherent orientation system makes it oriented. Thus # cM.D/ makes
sense, and the sum above has only finitely many nonzero terms.

Theorem 7.2 The pair .CF.†;˛;ˇ/; @/ is a chain complex, ie, @2 D 0.

Proof @2 D 0 follows as in [9, Theorem 4.1]. Boundary degenerations and spheres
bubbling off are excluded by Lemma 6.5.

Definition 7.3 For s 2 Spinc.M; 
 / let C.†;˛;ˇ; s/ be the free abelian group
generated by those intersection points x 2 T˛ \Tˇ for which s.x/D s.

It follows from Corollary 4.8 that C.†;˛;ˇ; s/ is a subcomplex of C.†;˛;ˇ/ and

.C.†;˛;ˇ/; @/D
M

s2Spinc.M;
 /

.C.†;˛;ˇ; s/; @/:
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Definition 7.4 We define SFH.†;˛;ˇ/ to be the homology of the chain complex
.CF.†;˛;ˇ/; @/. Similarly, for s2Spinc.M; 
 / let SFH.†;˛;ˇ; s/ be the homology
of .CF.†;˛;ˇ; s/; @/.

Theorem 7.5 If the admissible balanced diagrams .†;˛;ˇ/ and .†0;˛0;ˇ 0/ define
the same sutured manifold then

SFH.†;˛;ˇ/D SFH.†0;˛0;ˇ 0/

SFH.†;˛;ˇ; s/D SFH.†0;˛0;ˇ 0; s/and

holds for every s 2 Spinc.M; 
 /.

Proof This follows from Proposition 2.15 as in [9].

Thus we can make the following definition.

Definition 7.6 For .M; 
 / a balanced sutured manifold, we define the sutured Floer
homology SFH.M; 
 / as follows. Choose an admissible balanced diagram .†;˛;ˇ/

defining .M; 
 /. Then let SFH.M; 
 /D SFH.†;˛; ˇ/. For s 2 Spinc.M; 
 / define
SFH.M; 
; s/ to be SFH.†;˛;ˇ; s/.

8 Relative gradings

Suppose that d > 1 in the balanced diagram .†;˛;ˇ/. Then, using Proposition 4.9
we get that �1.Symd .†//DH1.Symd .†/IZ/. Thus, according to Corollary 4.8, for
every x; y 2 T˛ \Tˇ the equality s.x/D s.y/ implies that �2.x; y/¤ ∅. Note that
every balanced sutured manifold .M; 
 / has a diagram with d > 1, we can achieve
this by stabilizing an arbitrary balanced diagram defining .M; 
 /.

Definition 8.1 For s 2 Spinc.M; 
 / let

d.s/D gcd
�2H2.M IZ/

hc1.s/; �i:

Definition 8.2 Let s 2 Spinc.M; 
 / and let .†;˛;ˇ/ be an admissible balanced
diagram with d > 1 defining .M; 
 /. Then we define a relative Zd.s/ grading on
CF.†;˛;ˇ; s/ such that for any x; y 2 T˛ \Tˇ with s.x/D s.y/D s we have

gr.x; y/D �.�/ mod d.s/;

where � 2 �2.x; y/ is an arbitrary homotopy class.
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The number gr.x; y/ is independent of the choice of � because of Theorem 5.5. From
the definition of @ it is clear that gr descends to a relative grading on SFH.M; 
; s/.
This grading is independent of the balanced diagram defining the sutured manifold
.M; 
 /.

9 Special cases and sample computations

Proposition 9.1 Let Y be a closed connected oriented 3–manifold. Then

bHF.Y /� SFH.Y .1//:

Recall that Y .1/ was introduced in Example 2.3. For the definition of bHF.Y / see [9].

Proof Let .†;˛;ˇ; z/ be a weakly admissible Heegaard diagram defining Y . Choose
a small neighborhood U of z diffeomorphic to an open disc and let †0D†nU . Then
.†0;˛;ˇ/ is an admissible balanced sutured diagram defining Y .1/. Since each
D 2 D.†0;˛;ˇ/ has multiplicity zero at @†0 the chain complexes bCF .†;˛;ˇ; z/

and CF.†0;˛;ˇ/ are isomorphic.

In Example 2.4 for every link L in a closed connected oriented 3–manifold Y we
defined a balanced sutured manifold Y .L/. In [7] an invariant bHFL. EL/ was defined for
oriented links EL� Y . Suppose that L has l components, then bHFL. EL/ is computed
using 2l –pointed Heegaard diagrams and Floer homology is taken with coefficients in
Z2 .

Proposition 9.2 If Y is a closed connected oriented 3–manifold, L � Y is a link,
and EL is an arbitrary orientation of L then

bHFL. EL/� SFH.Y .L//˝Z2:

If L has only one component, ie, if L is a knot K , then

bHFK.Y;K/� SFH.Y .K//:

For the definition of bHFK see [8] or [12].

Proof Let l be the number of components of the link L. If .†;˛;ˇ;w; z/ is a weakly
admissible 2l –pointed balanced Heegaard diagram of EL in the sense of [7] then remove
an open regular neighborhood of w[ z to obtain a compact surface †0 . The diagram
.†0;˛;ˇ/ is a balanced diagram defining the sutured manifold Y .L/. It is now clear
that the two chain complexes are isomorphic.
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Remark 9.3 Suppose that .M; 
 / is a balanced sutured manifold such that @M is a
torus and s.
 / consists of two components that represent the same homology class in
H1.@M IZ/. Then SFH.M; 
 / can be computed as the knot Floer homology of the
knot obtained from .M; 
 / using the Dehn filling construction described in Example
2.4.

Proposition 9.4 If .M; 
 / is a product sutured manifold then

SFH.M; 
 /� Z:

Proof Since .M; 
 / is product there is a compact oriented surface R with no closed
components such that .M; 
 /D .R�I; @R�I/. Then .R;˛;ˇ/ is a balanced diagram
defining .M; 
 /, where ˛D∅ and ˇD∅. Since H2.M IZ/D0 any balanced diagram
defining .M; 
 / is admissible. Thus Sym0.†/ D fptg and T˛ D fptg D Tˇ . Hence
T˛ \Tˇ consists of a single point. Alternatively, we can stabilize the above diagram
and obtain the same result.

Remark 9.5 Let P denote the Poincaré 3–sphere. Then the balanced sutured manifold
P .1/ is not a product. On the other hand SFH.P .1//�bHF.P /� Z by Proposition
9.1.

Definition 9.6 A sutured manifold .M; 
 / is called irreducible if every 2–sphere
smoothly embedded in M bounds a 3–ball.

Question 9.7 Is the converse of Proposition 9.4 true under certain hypotheses? More
precisely, suppose that the manifold .M; 
 / is irreducible and H2.M IZ/D 0. Then
does SFH.M; 
 /D Z imply that .M; 
 / is a product sutured manifold?

Next we recall the definition of a sutured manifold decomposition; see [1, Definition
3.1].

Definition 9.8 Let .M; 
 / be a sutured manifold and S a properly embedded oriented
surface in M such that for every component � of S \ 
 , one of (1)-(3) holds:

(1) � is a properly embedded nonseparating arc in 
 .

(2) � is a simple closed curve in an annular component A of 
 in the same homology
class as A\ s.
 /.

(3) � is a homotopically nontrivial curve in a torus component T of 
 , and if ı is
another component of T \ S , then � and ı represent the same homology class in
H1.T /.
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Then S defines a sutured manifold decomposition

.M; 
 / S .M 0; 
 0/;

where M 0 DM n Int.N.S// and


 0 D .
 \M 0/[N.S 0C\R�.
 //[N.S 0�\RC.
 //:

RC.

0/D ..RC.
 /\M 0/[S 0C/ n Int.
 0/Also,

R�.

0/D ..R�.
 /\M 0/[S 0�/ n Int.
 0/;and

where S 0C (S 0� ) is the component of @N.S/\M 0 whose normal vector points out of
(into) M 0 .

Remark 9.9 In other words the sutured manifold .M 0; 
 0/ is constructed by splitting
M along S , creating RC.


0/ by adding S 0C to what is left of RC.
 / and creating
R�.


0/ by adding S 0� to what is left of R�.
 /. Finally, one creates the annuli of 
 0

by “thickening” RC.

0/\R�.


0/.

Example 9.10 If L � Y is a link and if R is a Seifert surface of L then there is a
sutured manifold decomposition Y .L/ R Y .R/. Furthermore, if L has l components
then there is a sutured manifold decomposition Y .l/ A Y .L/, where A� Y .l/ is a
union of embedded annuli “around” the link L.

The following definition can be found in [2].

Definition 9.11 A sutured manifold decomposition .M; 
 / D .M 0; 
 0/ where D is
a disc properly embedded in M and jD\ s.
 /j D 2 is called a product decomposition.

Remark 9.12 If .M; 
 / is balanced and if .M; 
 / D .M 0; 
 0/ is a product decom-
position then .M 0; 
 0/ is also balanced.

The following lemma will be very useful for computing sutured Floer homology since
we can simplify the topology of our sutured manifold before computing the invariant.

Lemma 9.13 Let .M; 
 / be a balanced sutured manifold. If .M; 
 / D .M 0; 
 0/ is
a product decomposition then

SFH.M; 
 /D SFH.M 0; 
 0/:
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Proof Let N.D/ be a regular neighborhood of D and choose a diffeomorphism
t W N.D/! Œ�1; 4�3 mapping D to f3=2g � Œ�1; 4�2 and sending s.
 / \N.D/ to
Œ�1; 4�� @Œ�1; 4�� f3=2g. Let p3W Œ�1; 4�3! Œ�1; 4� denote the projection onto the
third factor. Then we can extend the function p3 ı t from N.D/ to a Morse function
f W M ! R as described in the proof of Proposition 2.13. Note that f has no critical
points in N.D/ and that D is a union of flowlines of grad.f / connecting R�.
 / with
RC.
 /. From f we obtain a balanced diagram .†;˛;ˇ/ where †D f �1.3=2/.

The arc ıDD\† has boundary on @† and is disjoint from ˛ and ˇ . Since @ı � @†
every domain D2D.†;˛;ˇ/ has zero multiplicity in the domain containing ı . Cutting
† open along ı we obtain a surface †0 . The balanced diagram .†0;˛;ˇ/ defines the
sutured manifold .M 0; 
 0/. Using Proposition 3.15 isotope .†0;˛;ˇ/ to obtain an
admissible diagram .†0;˛;ˇ 0/ of .M 0; 
 0/. Then .†;˛;ˇ 0/ is an admissible diagram
of .M; 
 / since every periodic domain P ¤ 0 has zero multiplicity in the domain
containing ı and thus corresponds to a periodic domain in .†0;˛;ˇ 0/, so it has both
positive and negative multiplicities. Thus we can suppose that both diagrams .†;˛;ˇ/
and .†0;˛;ˇ/ are admissible.

Since every domain D 2D.†;˛;ˇ/ has zero multiplicity in the domain containing ı ,
the chain complexes CF.†;˛;ˇ/ and CF.†0;˛;ˇ/ are isomorphic.

As an application we prove a generalization of Proposition 9.1.

Proposition 9.14 If Y is a closed connected oriented 3–manifold then for all n� 1,

SFH.Y .n//�
M
2n�1

bHF.Y /�bHF.Y /˝
O
n�1

Z2:

Proof We prove the claim by induction on n. The case nD 1 is true according to
Proposition 9.1. Suppose that we know the proposition for some n� 1 � 1. Then
applying the induction hypotheses to .Y #.S1 �S2//.n� 1/ we get that

SFH
�
.Y #.S1

�S2//.n� 1/
�
�bHF

�
Y #.S1

�S2/
�
˝

O
n�2

Z2
�bHF.Y /˝

O
n�1

Z2:

Here we used the connected sum formula bHF.Y #.S1�S2//�bHF.Y /˝bHF.S1�S2/

and the fact that bHF.S1 �S2/� Z2 . On the other hand we will show that there is a
product decomposition Y .n� 1/#.S1 �S2/ D Y .n/, which shows together with
Lemma 9.13 that the induction hypothesis is also true for n.

To find the product disc D choose a ball B1 � S1 � S2 such that there is a point
p 2 S1 for which fpg � S2 intersects B1 in a disc. Then let D be the closure
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of .fpg � S2/ n B1 . We can also choose a simple closed curve s1 � @B1 so that
js1\Dj D 2. Now construct .Y #.S1 �S2//.n� 1/ as in Example 2.3 using B1 and
s1 as above . Then D is a product disc with the required properties.

Next we will generalize the above idea to obtain a connected sum formula.

Proposition 9.15 Let .M; 
 / and .N; �/ be balanced sutured manifolds and let Y be
a closed oriented 3–manifold. Then

SFH..M; 
 /#.N; �//D SFH.M; 
 /˝SFH.M; �/˝Z2:

SFH.M #Y; 
 /D SFH.M; 
 /˝cHF.Y /:Furthermore,

Proof There are product decompositions

.M; 
 /#.N; �/ D .M; 
 /
a

N.1/

.M; 
 /#Y  D .M; 
 /
a

Y .1/:and

To see this push some part of the boundary of M containing a segment of 
 into the
connected sum tube using a finger move and repeat the idea described in the proof of
Proposition 9.14 (also see Figure 2).

M s

s

D Y or N

Figure 2: Product decomposition of a connected sum

This implies that

SFH..M; 
 /#.N; �//D SFH.M; 
 /˝SFH.N.1//(9–1)

SFH.M #Y; 
 /D SFH.M; 
 /˝SFH.Y .1//:and

Proposition 9.1 says that SFH.Y .1//DbHF.Y /. Since N.1/D .N; �/#S3.1/ we can
apply (9–1) again and we get that

SFH.N.1//D SFH.N; �/˝SFH.S3.2//:
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From the existence of a product decomposition .S1�S2/.1/ S3.2/ (see Proposition
9.14) we obtain that

SFH.S3.2//�bHF.S1
�S2/� Z2:

Corollary 9.16 If .M; 
 / is a connected balanced sutured manifold and n� 1 then

SFH.M.n//� SFH.M; 
 /˝Z2n

:

Proof The claim follows by induction on n. The case nD 0 is trivial. Now let us
suppose that n> 0. Since M.n/DM.n�1/#S3.1/ we get from Proposition 9.15 that
SFH.M.n//�SFH.M.n�1//˝SFH.S3.1//˝Z2 . Here SFH.S3.1//�bHF.S3/�Z.
This concludes the proof.

Definition 9.17 A sutured manifold .M; 
 / is called taut if M is irreducible and R.
 /

is incompressible and Thurston norm-minimizing in its homology class in H2.M; 
 /.

Proposition 9.18 Suppose that .M; 
 / is an irreducible balanced sutured manifold.
If .M; 
 / is not taut then SFH.M; 
 /D 0.

The following proof is due to Yi Ni.

Proof Since .M; 
 / is not taut and M is irreducible either RC.
 / or R�.
 /, say
RC.
 /, is either compressible or it is not Thurston norm minimizing in H2.M; 
 /.
In both cases there exists a properly embedded surface .S; @S/ � .M; 
 / such that
�.S/ >�.RC.
 //, no collection of components of S is null-homologous and the class
ŒS; @S �D ŒRC.
 /; @RC.
 /� in H2.M; 
 /. Then decomposing .M; 
 / along S we get
two connected sutured manifolds .MC; 
C/ and .M�; 
�/. Here RC.
 /DRC.
C/

and R�.
 /DR�.
�/.

As in the proof of Proposition 2.13 construct Morse functions fC and f� on MC and
M� , respectively, having no index zero and three critical points. Then f D fC[f�
is a Morse function on M that has S as a level surface. Denote by Ci.h/ the set and
by ci.h/ the number of index i critical points of a Morse function h. Now rearrange
f by switching C1.fC/ and C2.f�/ to obtain a self-indexing Morse function g (see
Milnor [5]). Then g induces a Heegaard diagram .S 0;˛C[˛�;ˇC[ˇ�/, where ˛˙
and ˇ˙ are the sets of attaching circles corresponding to the critical points in C1.f˙/

and C2.f˙/, respectively, and S 0 is obtained by performing c1.fC/C c2.f�/ zero
surgeries on S whose belt circles are the elements of ˛C [ˇ� (see Figure 3). Our
main observation is that ˛ \ ˇ D ∅ if ˛ 2 ˛C and ˇ 2 ˇ� , because they are belt
circles of two disjoint handles added to S . This property of the Heegaard diagram is
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S S 0

C1.fC/

C2.f�/

Figure 3: The surface S 0 with two ˛C curves on the top, one ˇ� curve on
the bottom, and with two winding arcs, one of them intersecting ˇ� and
being disjoint from ˛C

preserved if we apply the winding argument of Proposition 3.15 using winding arcs

1; : : : ; 
l that satisfy the following property: if 
k\ˇ¤∅ for ˇ 2ˇ� and 1� k � l

then 
k \ ˛ D ∅ for every ˛ 2 ˛C . Such arcs 
1; : : : ; 
l are easy to construct (see
Figure 3). Thus we can assume our Heegaard diagram is admissible.

The only ˇ curves that can intersect ˛ 2 ˛C are the elements of ˇC . But

0> �.RC.
 //��.S/D 2.c2.fC/� c1.fC//;

thus j˛CjD c1.fC/> c2.fC/DjˇCj. This shows that T˛\TˇD∅ for this Heegaard
diagram. Indeed, if there was a permutation � 2 Sd such that ˛i \ ˇ�.i/ ¤ ∅ for
every 1� i � d , then for ˛i 2 ˛C we would have ˇ�.i/ 2 ˇC , and the injectivity of
� would imply that jˇCj � j˛Cj.

Question 9.19 Is the converse of Proposition 9.18 true, ie, if SFH.M; 
 /D 0 does it
follow that .M; 
 / is not taut?

10 Seifert surfaces

Now we turn our attention to Example 2.6. These sutured manifolds are of particular
interest to us due to the following theorem of Gabai [2, Theorem 1.9].
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Theorem 10.1 Suppose that R is an oriented surface in S3 and let L be the oriented
link @R. Then L is a fibred link with fibre R if and only if S3.R/ is a product sutured
manifold.

This becomes interesting in light of the following conjecture.

Conjecture 10.2 Let K be a knot in S3 and let R be a genus g Seifert surface of K .
Then bHFK.K;g/� SFH.S3.R//.

Note that from Alexander duality we get that

H2

�
S3.R/IZ

�
� eH 0

.R� I IZ/D 0:

Thus, together with a positive answer to Question 9.19, Conjecture 10.2 would give
a new proof of the fact that bHFK.K;g.K// ¤ 0, where g.K/ denotes the three-
genus of K . Combining Conjecture 10.2 with Proposition 9.18 we would get that
bHFK.K;g/D 0 for g > g.K/.

Finally, if we combine Theorem 10.1, Conjecture 10.2 and Question 9.7 we would
obtain a proof of the following conjecture (see [10, Theorem 1.1] and [6]). Note that a
fibred knot has a unique minimal genus Seifert surface up to isotopy.

Conjecture 10.3 Let K be a knot in S3 . Then K is fibred if and only if

bHFK.K;g.K//� Z:

In what follows we collect some evidence supporting Conjecture 10.2. First we recall
a result of Hedden [3].

Proposition 10.4 Let K be knot in S3 and let DC.K; t/ denote the positive t –twisted
Whitehead double of K . The meridian ��S3 of K can be viewed as a knot in S3

t .K/

(the parameter t Dehn surgery on K ). Then we have

bHFK.DC.K; t/; 1/� bHFK.S3
t .K/; �/:

Using this result we can prove the following.

Theorem 10.5 Let R be the Seifert surface of DC.K; t/ obtained by taking the
satellite of the surface R2t defined in Proposition 10.6 (see below). Then

bHFK.DC.K; t/; 1/� SFH.S3.R//:
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Note that the Seifert genus of DC.K; t/ is 1. The left hand side of Figure 2 shows
DC.U; 1/ together with its natural Seifert surface. The surface R is obtained by taking
a solid torus neighborhood of U containing R2t and wrapping it around K using the
Seifert framing of K .

Proof In light of Proposition 10.4 we only have to show that

SFH.S3.R//� bHFK.S3
t .K/; �/:

Let K2;2t denote the .2; 2t/–cable of K (which is a two component link) and let
R0 be the natural Seifert surface of K2;2t . Then there is a product decomposition
S3.R/ D S3.R0/ (see Figure 4). This does not change the sutured Floer homology
according to Lemma 9.13. Now we can apply Remark 9.3 to compute SFH.S3.R0//.
If we glue S1 �D2 to S3.R0/ the meridian f1g � @D2 maps to one component of
K2;2t and we can suppose that the longitude S1 � f1g maps to the meridian � of the
original knot K . After gluing in S1 �D2 we obtain S3

t .K/. Note that in S3
t .K/ the

knot S1 � f0g is isotopic to � since the longitude of S1 �D2 was identified with �.
Thus

SFH.S3.R0//� bHFK.S3
t .K/; �/;

which concludes the proof.

Tw2 Tw3

D

Figure 4: Standard diagrams of the knots Tw2 D DC.U; 1/ and Tw3 to-
gether with the Seifert surfaces R2 and R3 obtained using the Seifert
algorithm

The following similar statement can be proved without making use of Proposition 10.4.
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Proposition 10.6 Let Twn denote the standard diagram of the twist knot with n half
right-handed twists and let Rn be the genus one Seifert surface of Twn obtained from
the Seifert algorithm (see Figure 4). Then

SFH.S3.Rn//� bHFK.Twn; 1/� ZŒ.nC1/=2�:

Proof Let R0n be the unique Seifert surface of the torus link T2;2Œ.nC1/=2� . Then there
is a product decomposition S3.Rn/ D S3.R0n/. As in the proof of Theorem 10.5
we have an isomorphism

SFH.S3.R0n//�
bHFK

�
S3
Œ.nC1/=2�.U /; �

�
:

But S3
Œ.nC1/=2�

.U / is homeomorphic to the lens space L.Œ.nC1/=2�; 1/. Thus, accord-
ing to [11],

SFH.S3.Rn//� bHFK .L.Œ.nC 1/=2�/; �/� ZŒ.nC1/=2�:

Since Twn is alternating, rk
� bHFK.Twn; 1/

�
agrees with the absolute value of the

leading coefficient of the Alexander polynomial of K , which is Œ.nC 1/=2�.

Finally one more evidence supporting Conjecture 10.2.

Proposition 10.7 Suppose that the knot K has at most 7 crossings and that K ¤ 74 .
Then K has a unique minimal genus Seifert surface R and

bHFK.K;g.K//� SFH.S3.R//:

Proof The fact that K has a unique minimal genus Seifert surface was proved by
Kobayashi [4]. We already know the statement for fibred knots. The only nonfibred
at most 7 crossing knots are 52; 61; 72; 73; 74 and 75 . The knots 52; 61 and 72 are
twist knots and hence the result follows from Proposition 10.6. The case of 73 and
75 is analogous, we can reduce the computation of SFH.S3.R// using product de-
compositions to computing knot Floer homology of knots in lens spaces. Both knots
are alternating, so their knot Floer homology can be computed from the Alexander
polynomial.

Remark 10.8 By understanding how a balanced diagram changes under a disc de-
composition of the underlying sutured manifold we could prove the following formula.
If the oriented surface R� S3 is the Murasugi sum of the surfaces R1 and R2 then
over any field F

SFH.S3.R/I F/� SFH.S3.R1/I F/˝SFH.S3.R2/I F/:
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This formula is analogous to the Murasugi sum formula of [6].

The knot 74 has two distinct minimal genus Seifert surfaces, both of them Murasugi
sums of two embedded annuli. In both cases we get that the sutured Floer homology
associated to the Seifert surface is isomorphic to Z4 , supporting Conjecture 10.2. I
will deal with these results in a separate paper.
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