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Foliations with few non-compact leaves
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Abstract Let F be a foliation of codimension 2 on a compact manifold
with at least one non-compact leaf. We show that then F must contain
uncountably many non-compact leaves. We prove the same statement for
oriented p-dimensional foliations of arbitrary codimension if there exists
a closed p form which evaluates positively on every compact leaf. For
foliations of codimension 1 on compact manifolds it is known that the union
of all non-compact leaves is an open set [Hae].
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0 Introduction

Consider a Cr -foliation F on a compact manifold with at least one non-compact
leaf. Is it possible that this leaf is the only non-compact leaf of F ? If not, is
it possible that there are only finitely many non-compact leaves, or count-
ably many of them? Or must there always be uncountably many non-compact
leaves? Do the answers depend on r? These questions were asked by Steve
Hurder in [L], Problem A.3.1.

At first it seems obvious that for a foliation on a compact manifold the union of
all non-compact leaves, if not empty, should have a non-empty interior. In fact,
in codimension 1, and apart from flows, these are the foliations that come first
to mind, this set is open. In [Hae], p.386, A. Haefliger proves that the union of
all closed leaves of a codimension 1 foliation of a manifold with finite first mod 2
Betti number is a closed set. Therefore, the union of all non-compact leaves of
a codimension 1 foliation of a compact manifold is open. Consequently, the set
of all non-compact leaves of a codimension 1 foliation on a compact manifold
is either empty or is uncountable.

But for foliations of codimension greater than 1 it is easy to construct examples
on closed manifolds with the closure C of the union of all non-compact leaves a
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submanifold of positive codimension. In fact, given 0 < p < n, there exist real
analytic p-dimensional foliations on closed n-manifolds where C is a (p + 1)-
dimensional submanifold. Therefore, the dimension of the closure of the union
of all non-compact leaves can be quite small when compared to the dimension of
the manifold, even for real analytic foliations (Compare this with Problem A.3.2
in [L] where a related question is asked for C1 -foliations). These examples are
fairly straight forward generalizations of a construction of G. Reeb, [R],(A,III,c),
and will be presented in Section 1 (Proposition 1.1).

The main results of this note extend the statement that for codimension 1
foliations on compact manifolds the set of non-compact leaves is either empty
or uncountable in two directions. First we show that it also holds for foliations
of codimension 2. The second result states that it is true in general if an
additional homological condition is satisfied. To be more explicit, we first recall
that a Seifert fibration is a foliation whose leaves are all compact and all have
finite holonomy groups. Then we have:

Theorem 1 Let F be a foliation of codimension 2 on a compact manifold.
Then F is either a Seifert fibration or it has uncountably many non-compact
leaves.

Theorem 2 Let F be an oriented C1 -foliation of dimension p on a compact
manifold M . Assume that there exists a closed p-form ω on M such that∫
L ω > 0 for every compact leaf L of F . Then F is either a Seifert fibration

or F has uncountably many non-compact leaves.

Note that for a foliation on a manifold with boundary we will always assume
that the boundary is a union of leaves.

The two theorems are corollaries of farther reaching but more technical results
stated further down in this introduction as theorems 1′ and 2′ .

We also include a short proof of the probably well known fact that for an
arbitrary suspension foliation (i. e. a foliated bundle) over a compact manifold
the set of non-compact leaves is empty or uncountable (Proposition 1.4).

As the statements of the two theorems indicate the techniques for their proofs
are strongly related to the methods in [EMS] (and [Vo 1] for the codimension-2
case). There it was shown that foliations with all leaves compact on compact
manifolds are Seifert fibrations if the homological condition of theorem 2 holds
or if the codimension is 2. The methods for the codimension 2 case are es-
sentially due to D.B.A. Epstein who proved the corresponding result for circle
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foliations of compact 3-manifolds in [Ep 1]. In these papers the result for foli-
ations with all leaves compact and of codimension 2 follows from the following
more technical statement. Let B1 be the union of leaves with infinite holonomy.
For a foliation with all leaves compact of codimension 2 this set is empty if it is
compact. This result in turn is obtained by constructing a compact transverse
2-manifold T intersecting each leaf of B1 but with ∂T ∩B1 = ∅. One then uses
a generalization of a theorem of Weaver [Wea] to show that there is a compact
neighborhood N of B1 and an integer n such that all but finitely many leaves
of N intersect T in exactly n points. Thus all holonomy groups of leaves in
N are finite and B1 = ∅. The construction of T is by downward induction,
constructing transverse manifolds for a whole hierarchy Bα, α an ordinal, of
so-called bad sets. Here, given Bα , the set Bα+1 is defined as the union of all
leaves of Bα with infinite holonomy group when the foliation is restricted to
Bα . (In [Ep 1], [EMS] and[Vo 1] a finer hierarchy of bad sets is used. There
a leaf L of Bα belongs to Bα+1 if the holonomy group of L of the foliation
restricted to Bα is not trivial. The hierarchy we use in the present paper is
called the coarse Epstein hierarchy in [EMS].)

For arbitrary codimension and still all leaves compact the ideas are due to
R. Edwards, K. Millett, and D. Sullivan [EMS]. They show that B1 is already
empty if it is compact and if there exists a closed form ω , defined in a neigh-
borhood of B1 , satisfying

∫
L ω > 0 for every leaf L of B1 . The key idea in

their proof is to construct a sequence of homologous leaves in the complement
of B1 converging to B1 such that the volume of the leaves grows to infinity
as the leaves approach B1 . Such a family gives rise to a non-trivial foliation
cycle which is roughly the limit of the leaves each divided by some normaliza-
tion factor which tends to infinity as the volume of the leaves goes to infinity.
Therefore this cycle evaluates on ω to 0 since integration of ω is constant on
the homologous leaves. On the other hand, if B1 is non-empty, the cycle cannot
evaluate to 0 on ω since it is non-trivial with support in B1 and ω is positive
when integrated over any leaf of B1 . (For a more detailed overview of this proof
and an exposition of its main ideas read the beautifully written introduction of
[EMS]).

In our situation we first extend the notion of the hierarchy of bad sets to incorpo-
rate the occurrence of non-compact leaves. The points where the volume-of-leaf
function with respect to some Riemannian metric is locally unbounded, used
in the papers mentioned above for the definition of the first bad set B1 , is ob-
viously inadequate. Also the union of all leaves with infinite holonomy misses
some irregularities caused for example by simply connected non-compact leaves.
Instead our criterion in the inductive definition of the hierarchy of bad sets puts
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a leaf of the bad set Bα in the next bad set Bα+1 if for any transversal through
this leaf the number of intersection points with leaves of Bα is not bounded.
We begin with the whole manifold as B0 . In the presence of non-compact leaves
the first bad set B1 is not empty if the manifold is compact.

As opposed to the case when all leaves are compact, where the hierarchy of
bad sets eventually reaches the empty set, it is now possible that the hierarchy
stabilizes at a non–empty bad set Bα , i. e. Bα = Bα+1 (and consequently
Bα = Bβ for all β > α) and Bα 6= ∅. But this will imply that Bα contains
uncountably many non–compact leaves (actually a bit more can be said, see
Proposition 3.5). Thus, we may assume that the hierarchy reaches the empty
set. Then, in the codimension-2 case, we manage to mimic all the steps in the
construction of the transverse 2–manifold T mentioned above, if the following
condition is satisfied: let Nα be the union of the non-compact leaves in Bα r
Bα+1 ; then dimNα ≤ dimF . Thus, and by some (further) generalization of
Weaver’s theorem we obtain the following theorem.

Theorem 1′ Let F be a foliation of codimension 2, let B0 ⊃ B1 ⊃ · · · be
its Epstein hierarchy of bad sets, and let Nα be the union of the non–compact
leaves of Bα rBα+1 . If B1 ∪N0 is compact, then at least one of the following
statements holds:

(i) for some ordinal α we have Bα = Bα+1 and Bα 6= ∅ – in this case no
leaf of Bα is isolated (i. e. for no transverse open 2–manifold T the set
T ∩Bα contains an isolated point) and Bα contains a dense Gδ consist-
ing of (necessarily uncountably many) non–compact leaves; furthermore,
dimBα > dimF , if all leaves of Bα are non-compact –, or

(ii) for some α dimNα > dimF , or

(iii) F is a Seifert fibration.

Theorem 1 follows from this since for any foliation the set B1 ∪N0 is closed.

That, in a way, Theorem 1 ′ is best possible is shown by the examples of Sec-
tion 1 mentioned above. They contain examples of real analytic foliations of
codimension 2 on closed manifolds of any given dimension greater than 2 such
that B1 consists of finitely many compact leaves, and the dimension of the
union of the non-compact leaves exceeds the leaf dimension by one.

The procedure for the proof of Theorem 2 is also similar to the proof in the case
where all leaves are assumed to be compact. The sequence of homologous com-
pact leaves for the definition of the foliation cycle is now assumed to converge
to B1 ∪ N0 where as above N0 is the union of all non-compact leaves in the
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complement of B1 , and the closed form ω has to be defined in a neighborhood
of the closed set B1 ∪ N0 . The construction of this sequence of leaves is to
a certain degree easier in the presence of (not too many) non-compact leaves.
Also the support of the limiting foliation cycle will essentially be disjoint from
the non-compact leaves and thus they play no role in the evaluation of this cycle
on ω . More precisely, we have the following theorem.

Theorem 2′ Let F be an oriented C1 -foliation of dimension p on a manifold
M , let M = B0 ⊃ B1 ⊃ · · · be its Epstein hierarchy of bad sets, and let N0 be
the union of the non–compact leaves in the complement of B1 . Assume that
there exists a closed p-form ω defined in a neighborhood of B1 ∪N0 such that∫
L ω > 0 for every compact leaf L of B1 , and assume that B1∪N0 is compact.

Then at least one of the following statements holds:

(i)
⋂
αBα 6= ∅ – in this case no leaf of

⋂
αBα is isolated and

⋂
αBα con-

tains a dense Gδ –set consisting of (necessarily uncountably many) non–
compact leaves –, or

(ii) N0 is a non-empty open subset of M , in fact a non-empty union of
components of the open set M \B1 , or

(iii) F is a Seifert fibration.

In all the examples that I am aware of where a p-dimensional foliation on a
compact manifold contains non-compact leaves, the union of all non-compact
leaves is at least p+ 1 dimensional. Therefore, it would be interesting to know
whether statement (i) in the two theorems above could be improved to: B1

contains a subset of dimension greater than the leaf dimension consisting of
non-compact leaves. I also do not know whether in codimension ≥ 3 there are
foliations on compact manifolds with at least 1 and at most countably many
non-compact leaves.

Theorems 1 and 1 ′ hold for topological foliations, but we give a detailed proof
only for the C1–case, indicating the necessary changes for the topological case
briefly at the end of section 4. The proof in the C0–case depends heavily on
the intricate results of D.B.A. Epstein in [Ep 3].

Section 1 contains the examples mentioned above of real analytic foliations of
codimension q , q ≥ 1, on closed manifolds such that the closure of the union
of all non–compact leaves is a submanifold of codimension q − 1.

If one is content with Cr–foliations, 0 ≤ r ≤ ∞, then one can construct such
examples on many manifolds: given p, k, n with 0 < p < k ≤ n and p ≤ n − 2
then any n-manifold which admits a p-dimensional Cr -foliation with all leaves
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compact will support also a p-dimensional Cr -foliation such that the closure of
the union of all non-compact leaves is a non-empty submanifold of dimension
k (Proposition 1.2).

In addition, we give in Section 1 a simple proof of the well-known fact that for
suspension foliations over compact manifolds, i. e. foliated bundles with com-
pact base manifolds, the existence of one non-compact leaf implies the existence
of uncountably many. This is an easy application of a generalization, due to
D.B.A. Epstein [Ep 2], of a theorem of Montgomery [M].

In Section 2 we introduce some notation and gather a few results concerning
the set of non–compact leaves of a foliation. In particular, we prove a mild
generalization of the well known fact that the closure of a non-proper leaf of a
foliation contains uncountably many non-compact leaves.

Section 3 introduces the notion of Epstein hierarchy of bad sets in the presence
of non–compact leaves and we prove some of its properties. Section 4 contains
the proof of Theorem 1 ′ along the lines indicated above. Finally, in Section 5
we construct the sequence of compact leaves approaching B1 ∪ N0 and the
associated limiting foliation cycle, and establish the properties of this cycle to
obtain the proof of Theorem 2 ′ .

I have tried to make this paper reasonably self contained. But in Section 4
referring to some passages in [Vo 2] will be necessary for understanding the
proofs in all details. The same holds for Section 5 where familiarity with [EMS]
will be very helpful. I will give precise references wherever they are needed.
Also, I will use freely some of the notions and results of the basic paper [Ep 2]
on foliations with all leaves compact.

It will also be of help to visualize some of the examples of Section 1. Although
they are simple they illustrate some of the concepts introduced later in the
paper, and they give an indication of the possibilities expressed in Theorems 1′

and 2′ above.

This paper replaces an earlier preprint of the author with the same title. There
the main result of [Vo 3] and calculations of the Alexander cohomology of the
closure of the union of all non-compact leaves was used to prove a special case
of Theorem 1 for certain 1-dimensional foliations on compact 3-manifolds.

In this paper finite numbers are also considered to be countable.
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1 Foliations having a set of non–compact leaves of
small dimension

We generalize (in a trivial way) an example given by G. Reeb in [R],(A,III,c).
Let F p and T k be closed connected real analytic manifolds. Let f : F p → R be
real analytic with 0 a regular value in the range of f , and let g : T k → R be real
analytic with a unique maximum in x0 ∈ T k . For convenience, let g(x0) = 1.

Let θ ∈ Rmod 2π be coordinates for S1 and consider for x ∈ T k the 1–form

ω(x) = ((g(x) − 1)2 + f2)dθ + g(x)df

on F p × S1 . One immediately checks that ω(x) is nowhere 0 and completely
integrable. It thus defines a real analytic foliation F(x) of codimension 1 on
{x}×F p×S1 . These foliations fit real analytically together to form a foliation
F of codimension q = k + 1 on T k × F p × S1 . It is easy to describe the leaves
of F(x). There are two cases.

Case 1 x 6= x0 . Then (g(x) − 1)2 > 0, and ω(x) = 0 if and only if

dθ = − g(x)
(g(x)− 1)2 + f2

df . Therefore the leaves of F(x) are the graphs of

the functions h(θ0) : F p → S1 , given by

h(θ0)(y) =
−g(x)
g(x)− 1

· arctan
( f(y)
g(x)− 1

)
+ θ0, 0 ≤ θ0 < 2π.

These leaves are all diffeomorphic to F p and therefore compact.

Case 2 x = x0 . Then g(x) = 1, and ω(x0) = f2dθ+df . We obtain two kinds
of leaves for F(x0). Let F0 = f−1(0). Then ω(x0) = df on {x0} × F0 × S1 .
Therefore, ω(x0) = 0 implies f = const, and the components of {x0}×F0×S1

are compact leaves of F(x0). In the complement of {x0}×F0×S1 the foliation

F(x0) is given by dθ = − 1
f2

df . Therefore, the leaves are components of the

graphs of k(θ0) : F r F0 → S1 , given by

k(θ0)(y) =
1

f(y)
+ θ0, 0 ≤ θ0 < 2π.

Since F is connected, no component of F − F0 is compact. Thus {x0} × (F r
F0)×S1 is the union of the non–compact leaves of F , and we have the following
result.

Proposition 1.1 Let F p and T k be real analytic closed manifolds of dimen-
sion p > 0 and k respectively. Then there exists a real analytic p-dimensional
foliation F on T k × F p × S1 such that the closure of the union of the non–
compact leaves of F equals {x0} × F p × S1 for some point x0 ∈ T k .

Algebraic & Geometric Topology, Volume 2 (2002)



264 Elmar Vogt

The construction above is quite flexible, especially if one allows the foliations
to be smooth. For example

Proposition 1.2 Let 0 ≤ r ≤ ∞ and let M be an n-manifold which supports
a p-dimensional Cr–foliation with all leaves compact, where 0 < p ≤ n −
2. Then for any integer k with p < k ≤ n the manifold M supports a p-
dimensional Cr–foliation with the following property: the closure of the union
of non–compact leaves is a non-empty submanifold of dimension k .

Proof The leaves with trivial holonomy form an open dense subset of any
foliation with all leaves compact. Let F be a leaf with trivial holonomy and
U a saturated neighborhood of F of the form F ×Dn−p , foliated by F × {y},
y ∈ Dn−p , where Dn−p is the unit (n − p)–ball. Let S1 × Dn−p−1 ↪→ Dn−p

be a smooth embedding into the interior of Dn−p and let K be a compact
submanifold of the interior of Dn−p−1 of dimension k − p− 1.

Let f : F → R be smooth with 0 a regular value in the range of f , and
let h : Dn−p−1 → [0, 1] be smooth with the following properties: h and
all its derivatives vanish on ∂Dn−p−1 , h(K) = 1, and h(z) < 1 for all z ∈
Dn−p−1 rK .

Replace on F × S1 ×Dn−p−1 the product foliation induced from F ×Dn−p by
the smooth foliation defined on F × S1 × {z}, z ∈ Dn−p−1 , by the 1–form

ω(z) = ((h(z) − 1)2 + f2)dθ + h(z)df .

Then, as in our first example, the foliations of codimension 1 on F × S1 × {z}
defined by ω(z) = 0 fit smoothly together to form a foliation of F×S1×Dn−p−1 .
On the boundary F ×S1×∂Dn−p−1 this foliation fits smoothly to the product
foliation on F × (Dn−pr (S1×Dn−p−1)). The leaves in F ×S1× (Dn−p−1rK)
are all diffeomorphic to F . Furthermore, (F r f−1(0)) × S1 ×K is a union of
non–compact leaves, each one of which is diffeomorphic to some component of
Frf−1(0). Therefore F×S1×K is the closure of the union of the non–compact
leaves.

Proposition 1.2 suggests the following question.

Question 1.3 Does there exist a foliation of dimension p on a compact man-
ifold M such that the closure of the union of all non–compact leaves is non–
empty and has dimension p ?
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By the result of Haefliger mentioned in the introduction [Hae], page 386, such
a foliation has codimension at least 2, and in the case of codimension 2, there
must, by Theorem 1′ , be an α such that Bα = Bα+1 6= ∅, and Bα contains
compact leaves. Furthermore, in general, it cannot be a suspension foliation. A
suspension foliation Fϕ is given by a homomorphism ϕ : π1(B)→ Homeo(T ),
where B and T are manifolds and B is connected. One foliates B̃ × T by
B̃×{t}, t ∈ T , where B̃ is the universal cover of B . This foliation is invariant
under the obvious action of π1(B) and induces the foliation Fϕ on the quotient
B̃ × T/ϕ by this action.

Proposition 1.4 Let B and T be manifolds with B closed and connected,
let ϕ : π1B → Homeo(T ) be a homomorphism and assume that the associated
suspension foliation Fϕ has non–compact leaves. Let N be the closure of the
union of the non-compact leaves, and let W be a component of (B̃ × T/ϕ) \
N . Then the closure of W consists of compact leaves. In particular, N does
not contain any isolated leaf, and (B̃ × T/ϕ) \ N consists of infinitely many
components unless N contains interior points. Furthermore, the dimension of
N is at least equal to (dimB + dimT − 1). (As definition of dimension we
may take any of the notions of covering dimension, inductive dimension, or
cohomological dimension, which are equivalent in our situation).

If dimT = 1, then the union of all non-compact leaves is open.

Proof The quotient space M = B̃ × T/ϕ is a fibre bundle with fibre T . The
fibres are transverse to the foliation Fϕ . Compact leaves of Fϕ correspond to
finite orbits of the group G = ϕ(π1(B)) ⊂ Homeo(T ). We identify T with the
fibre over the basepoint of B . Let W be a component of M \N and let x be
a point of W ∩ T . Let GOx be the normal subgroup of finite index of G whose
elements keep the orbit of x pointwise fixed. Let Wx be the component of W∩T
containing x and let GW be be the restriction of GOx to Wx considered as a
subgroup of Homeo(Wx). Every orbit of GW is finite and Wx is a connected
manifold. Then, by Theorem 7.3 in [Ep 2], an extension of the main result in
[M] to groups of homeomorphisms, GW is finite, say of order g . This implies
that the GOx -orbit of any point in the closure of Wx contains at most g points.
Thus any orbit in the closure of W ∩ T under the action of G is finite, and all
leaves in the closure of W must be compact.

Since this is true for any component W of M \N any neighborhood of a point
in N which is not a point of the closure of int(N) must intersect infinitely many
components of M \N . In particular, dimN ≥ dimM −1 = dimB+dimT −1.
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If dimT = 1, we first reduce our problem to the case where T is connected. To
do this we observe that T decomposes naturally into disjoint subspaces each
of which is a union of components of T on which G acts transitively. So we
may assume that G acts transitively on the components of T . If then the
number of components is infinite, then all leaves are non-compact. So we may
assume that the number of components of T is finite. We then replace G by
the subgroup of finite index whose elements preserve every component. This
corresponds to passing to a finite covering of M with the induced foliation.
On each component of this covering space the induced foliation is a suspension
with one component of T as fibre. So we may assume that T is connected, i.e.
T is either R or S1 . We may furthermore assume that all elements of G are
orientation preserving.

If T = R, then every finite orbit is a global fixed point. Therefore, the union
of all finite orbits is closed, and we are done. If T = S1 either all leaves are
non-compact or we may pass to the subgroup of finite index keeping a finite
orbit pointwise fixed. For this subgroup every finite orbit is again a global fixed
point, and we can argue as before.

Corollary 1.5 (Well known) Let Fϕ be the suspension foliation associated
to the homomorphism ϕ : π1(B) → Homeo(T ) and assume that B is closed.
Then Fϕ contains uncountably many non–compact leaves or none. If dimT =
1, the union of all non-compact leaves is open.

Proof Assume that Fϕ contains a non–compact leaf, and let N be the closure
of the union of the non–compact leaves of Fϕ . The set N with its induced
foliation is a foliated space in the sense of [EMT]. The main result of [EMT]
implies that the union of all leaves of N with trivial holonomy is a dense Gδ
in N . By Proposition 1.4, dimN ≥ dimFϕ + 1 and N does not contain any
isolated leaf. Therefore, the Baire category theorem implies that N contains
uncountably many leaves with trivial holonomy. Let L be a compact leaf of N .
Then every neighborhood of L intersects a non–compact leaf (of N ). Therefore,
the holonomy of L is non–trivial, i.e. the leaves of N with trivial holonomy are
all non–compact.

2 Uncountably many versus isolated non–compact
leaves

The material in this short section is standard. We include it to fix and introduce
notation.
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Let F be a foliation of a manifold M and let A ⊂M be a union of leaves. We
call a leaf L ⊂ A isolated (with respect to A) if L is an open subset of Cl(A).
Recall that a leaf of a foliation is called proper if its leaf topology coincides
with the induced topology as a subset of M . Obviously, any leaf which is
isolated with respect to some A is proper, and the proper leaves are exactly
those leaves which are isolated with respect to themselves. We will denote the
union of isolated leaves with respect to the saturated set A by I(A).

Proposition 2.1 Let A be a union of non–compact leaves of a foliation. Then
at least one of the following holds:

(i) Cl(A) contains uncountably many non–compact leaves, or

(ii) A ⊂ Cl(I(A)).

In particular, the closure of a non-proper leaf contains uncountably many non-
compact leaves.

Proof Assume that B := A r Cl(I(A)) is not empty. Any isolated leaf with
respect to B is also isolated with respect to A. Therefore I(B) = ∅. Let
U = D′×D be a foliation chart with D′ connected and tangent to the foliation
and assume that U ∩B 6= ∅. We identify D with {y} ×D for some basepoint
y ∈ D′ . Then C := Cl(B) ∩ D is a closed non–empty subset of D which
contains no isolated points. By the main theorem of [EMT] the union H of
leaves of Cl(B) with trivial holonomy is a dense Gδ . Since all leaves in B
are non-compact, the compact leaves in Cl(B) all have non-trivial holonomy.
Therefore all leaves in H are non–compact. Since H ∩ C is a dense Gδ in C ,
the set H ∩ C is uncountable by the Baire category theorem. Every leaf of
our foliation intersects D in an at most countable set. Therefore the set of
non–compact leaves of Cl(B) intersecting D is uncountable.

3 The Epstein hierarchy in the presence of non–

compact leaves

There are several possible ways to generalize the notion of Epstein hierarchy (see
[Ep 1] or [Vo 2]) to foliations admitting non–compact leaves. For our purposes
definition 3.4 below seems to be the best choice. Before we come to this we
need some notation.
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Notation 3.1 Let (M,F) be a codimension k foliated manifold. A transverse
manifold is a k -dimensional submanifold T of M which is transverse to F and
whose closure Cl(T ) is contained in the interior of a k -dimensional submanifold
transverse to F . A transverse manifold T may or may not have a boundary,
denoted by ∂T . We call intT := T r ∂T the interior of T , and call T open, if
T = intT .

Notation 3.2 Let T be a transverse manifold of a foliated manifold (M,F).
Then secT : M −→ N := N ∪ {∞} is the map which associates to x ∈ M the
cardinal of the set T ∩ Lx , where Lx is the leaf through x.

The topology on N is the one point compactification of N = {0, 1, 2, . . . }. Then
we have

Property 3.3 (a) secT is continuous in every point of sec−1
(Tr∂T )(∞).

(b) If Lx ∩ ∂T = ∅, then secT is lower semi-continuous in x.

The proofs are obvious.

Definition 3.4 Let (M,F) be a foliated manifold. The Epstein hierarchy of
bad sets of F is a familiy {Bα = Bα(F)} of subsets of M indexed by the
ordinals and is defined by transfinite induction as follows:

B0 = M ;
Bα =

⋂
β<α

Bβ , if α is a limit ordinal;

Bα+1 = {x ∈ Bα : for every transverse manifold T with x ∈ intT
sup{secT (y) : y ∈ Bα} =∞} .

Obviously each Bα is a closed invariant set.

Proposition 3.5 (1) If Bα+1 = Bα and Bα 6= ∅ then for any transverse
open manifold T with T ∩Bα 6= ∅ we have

(i) T ∩Bα contains no isolated point and

(ii) T∩Bα contains a dense (necessarily uncountable) Gδ -set R of points
lying in non-compact leaves.

(2) If Bα+1 contains at most countably many non-compact leaves, then Bα+1

is nowhere dense in Bα .
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Proof By the Baire category theorem a locally compact space without isolated
points does not contain a countable dense Gδ -set. For any transverse open
manifold T the set T ∩Bα is locally compact, and its isolated points belong to
Bα \Bα+1 . Any leaf intersects any transverse manifold in an at most countable
set. Therefore it suffices to show the following. For every open transverse
manifold T with T ∩ Bα 6= ∅ and T ∩ Bα ⊂ Bα+1 the set T ∩ Bα satisfies
properties (i) and (ii).

Let secα be the restriction of secT to the locally compact space T ∩ Bα . By
(3.3) and again the Baire category theorem T ∩ Bα contains a dense Gδ -set
R of points where secα is continuous. Assume that there exists a point y ∈
R∩sec−1

α (N). Then secα is constant in a neighborhood of y . This means that y
is a point in BαrBα+1 , which is not possible. Therefore, R ⊂ sec−1

α {∞}. This
implies that every point of R is contained in a non-compact leaf of Bα+1 .

The first claim of the next proposition is due to the convention that manifolds
are second countable.

Proposition 3.6 If B1 6= B0 , let γ := min{β | Bβ+1 = Bβ+2}. Otherwise,
let γ be 0. Then the following holds:

(i) γ is a countable ordinal;

(ii) if M 6= ∅ and Bα is compact for some α < γ then Bγ 6= ∅;

(iii) if Bγ is compact then all leaves in Bγ are compact.

The last statement is due to the fact that Bβ+1 6= ∅ if Bβ is compact and
contains a non-compact leaf.

For further reference we note the following proposition.

Proposition 3.7 Each point of the interior of B1 is contained in
⋂
α

Bα .

Proof Let x be an interior point of B1 , and let T be an open transverse
manifold with x ∈ T ⊂ B1 . Then secT = secT∩B1 . Thus T ⊂ B2 , and, by
transfinite induction, T ⊂ Bα for all α.
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4 Codimension 2 foliations

For simplicity we assume that all foliations are C1 , but the main result (The-
orem 1 ′ ) is also true for C0 -foliations. We will indicate the necessary changes
in an appendix at the end of this section.

As in the case of the study of foliations with all leaves compact there are two
ingredients which make the codimension 2 case special. The first one is the
fact that for α ≥ 1 the bad set Bα is transversally of dimension at most 1 if
dim

⋂
αBα < dimB0 (Proposition 3.7). The second one is a generalization of

Weaver’s Lemma [Wea] which takes in our setting the following form.

Proposition 4.1 Let F be a foliation of codimension 2 and T a transverse
2-manifold. Let C ⊂ T be compact connected and W be the union of all
leaves through points of C . Let E ⊂ C be the set of points of C lying in a
non-compact leaf. We assume that

(i) no compact leaf of W intersects ∂T ,

(ii) every non-compact leaf of W intersects T in infinitely many points,

(iii) for any loop ω of a compact leaf through a point x ∈ C a representative
of the associated holonomy map defined in a neighborhood of x in T
preserves the local orientation, and

(iv) E is a countable union of disjoint closed sets Ej .

Then either all leaves of W are non-compact, or there exists an integer ρ such
that all but finitely many leaves of W intersect T in exactly ρ points. In the
latter case the finitely many other leaves of W intersect T in fewer than ρ
points.

Proof For each positive integer m let

Cm = {x ∈ C : secT (x) ≤ m},

and let Dm ⊂ Cm be the set of non-isolated points of Cm . Clearly each Cm and
Dm is closed, each CmrDm is at most countable, and we have a decomposition

C =
⋃
m≥1

(Dm rDm−1) ∪ {countable set} ∪
⋃
j

Ej

into a countable union of disjoint sets. We claim that each Dm r Dm−1 is
closed. For if not, then there exists x ∈ Dm−1 with x ∈ Cl(Dm r Dm−1).
By hypothesis (ii) the leaf Lx through x is compact. Now we can argue as in
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the proof of Lemma 3.4 in [Vo 2] to obtain a representative h of an element of
the holonomy group of Lx such that dh(x) has a non-zero fixed vector v and
a periodic vector w with least period ν > 1. But this contradicts hypothesis
(iii). (Hypothesis (i) is needed for imitating the proof of 3.4 in [Vo 2].)

Since by hypothesis (iv) also the Ej are closed, the compact connected set C
is a countable disjoint union of closed sets. Then a theorem of Sierpinski [Ku],
§47 III Theorem 6, states that C must be equal to one of the sets of which
it is the disjoint union. So either C is one of the Ej and all leaves of W are
non-compact, or C is a single point in a compact leaf, or there exists ρ with
C = DρrDρ−1 . The set of points of DρrDρ−1 which lie in leaves intersecting
T in less than ρ points is (Dρ r Dρ−1) ∩ Cρ−1 . But this set is compact and
discrete and therefore finite.

An easy consequence of 4.1 is the following result.

Proposition 4.2 Let F be a codimension 2 foliation, B0 ⊃ B1 ⊃ · · · the
Epstein hierarchy of F , and Nα the union of all non-compact leaves of F in
Bα \ Bα+1 . Assume that the closure of every leaf of F is compact, that B1

is a non-empty set, and that dimNα ≤ dimF for every α ≥ 0. Further-
more assume that

⋂
αBα is empty or contains only non-compact leaves and

that dim
⋂
αBα < dimB0 . Then there does not exist a compact transverse

2-manifold T intersecting each leaf of B1 and with ∂T ∩B1 = ∅.

Proof The proof is by contradiction. It is clear that we may assume that
F is transversely orientable. We will show below (Lemma 4.3) that with our
hypotheses we can always arrange T so that ∂T does not intersect any non-
compact leaf. The union of non-compact leaves in B0rB1 is closed in B0rB1 .
Therefore we find a compact neighborhood K of ∂T in T such that K∩B1 = ∅
and every leaf through a point of K is compact. This implies that the union
SK of leaves through K is compact and F restricted to SK is a Seifert fibration
(Here we extend the notion of Seifert fibration to foliated sets. Such a set will be
called a Seifert fibration if all leaves are compact with finite holonomy groups).

Now consider a component D of TrSK such that D∩B1 6= ∅ (such a component
exists) and apply Proposition 4.1 to C = D ⊂ T \ Int(K). Hypotheses (i), (ii)
and (iii) of 4.1 are clearly satisfied, the last one because we have assumed
F to be transversely orientable. The union Nα of all non-compact leaves in
Bα \ Bα+1 is a closed subset of B0 \ Bα+1 which intersects T in a set of
dimension 0. Therefore, for each α, the set T ∩ Nα is a countable disjoint
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union of compact sets. By Proposition 3.6 there are only countably many non-
empty Nα ’s. Furthermore, if

⋂
Bα contains non-compact leaves, all leaves of⋂

Bα are non-compact. Since
⋂
Bα is closed, also Condition (iv) is satisfied,

and we are entitled to apply 4.1. Since D is a non-empty open subset of T and,
by hypothesis, the union of all non-compact leaves has dimension less than the
dimension of B0 , not all points of D lie in non-compact leaves. Consequently
all leaves intersecting D are compact and the function secT is bounded on D .
This implies B1 ∩D = ∅, which is a contradiction.

The next (easy) lemma is true in by far more generality. We only state it for
the case of interest to us.

Lemma 4.3 Let T be a 2-manifold with compact boundary ∂T and let N ⊂ T
be a 0-dimensional subset which is closed in a neighborhood of ∂T . Then for
any neighborhood U of ∂T there exists a submanifold T ′ ⊂ T with compact
boundary ∂T ′ such that T \ U ⊂ T ′ and ∂T ′ ∩N = ∅.

Proof By looking at each component of ∂T separately the lemma reduces to
the statement that for any closed 0-dimensional subset N of S1× [0, 1] we find
a neighborhood K of S1 × {0} which is a compact 2-manifold with boundary
∂K such that S1 × {0} ⊂ ∂K and ∂K ∩N = (S1 × {0}) ∩N .

Since N is 0-dimensional and closed, N is for any ε > 0 a finite disjoint
union of closed sets of diameter less than ε, where we metrize S1 × [0, 1] by
considering it as a smooth submanifold of R2 . In particular, N is the union of
closed sets N0 and N1 with (S1 × {0} ∪N0) ∩ (S1 × {1} ∪N1) = ∅. Let d be
the distance between (S1 × {0}) ∪ N0 and (S1 × {1}) ∪ N1. Then there exist
finitely many closed disks D1,D2, . . . ,Ds of radius r < d such that {IntDi}
covers (S1 × {0} ∪ N0)}, their boundaries {∂Di} are in general position, and
Di ∩ N1 = ∅ for all i. Then K :=

⋃
iDi ∩ (S1 × [0, 1]) is a 2-manifold with

piecewise smooth boundary having the desired properties. We may, if we want
to, smooth ∂K . Taking the component containing S1×{0} and filling in some
components of ∂K bounding 2-cells in S1 × [0, 1] we may also assume that K
is an annulus.

The final step in the proof of Theorem 1 ′ is the next proposition.

Proposition 4.4 Let F be an orientable and transversely orientable foliation
of codimension 2, B0 ⊃ B1 ⊃ · · · its Epstein hierarchy, and Nα the union of
all non-compact leaves of F in Bα \ Bα+1 . Assume that B1 is compact, that
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⋂
αBα is empty or consists of non-compact leaves only, and that

⋂
αBα and

all Nα have dimension at most equal to dimF . Then there exists a compact
transverse 2-manifold T intersecting every leaf of B1 such that ∂T ∩B1 = ∅.

Proof In the absence of non-compact leaves (when
⋂
αBα and all Nα are

empty) the proposition was proved in [EMS] and [Vo 1] by extending the key
ideas of Epstein in [Ep 1]. Our proof here is basically the same by noticing at
each step that the non-compact leaves cause no additional difficulties.

Assume first that
⋂
αBα = ∅. Then by Proposition 3.6 there exists an ordinal

γ such that Bγ 6= ∅ and Bγ+1 = ∅. We may assume that γ ≥ 1, for otherwise
there is nothing to prove. Then Bγ is compact and again by 3.6 contains
only compact leaves. Therefore Bγ is a Seifert fibration with an at most 1-
dimensional leaf space. The techniques of [EMS] and [Vo 1] then show that
there exists a compact transverse manifold Tγ intersecting each leaf of Bγ such
that ∂Tγ ∩Bγ = ∅. For a detailed proof see [Vo 2], Proposition 4.7.

If
⋂
αBα 6= ∅ there exists an ordinal γ such that Bγ =

⋂
αBα . By hypothe-

sis Bγ is transversely 0–dimensional and thus we can again find a compact
transverse Tγ with the properties above.

The idea is now to use downward induction, i. e., if α > 1, and if Tα is a
compact transverse 2-manifold which intersects every leaf of Bα and whose
boundary ∂Tα is disjoint from Bα , we have to construct for some β < α a
transverse 2-manifold Tβ having the same properties with respect to Bβ . If α
is a limit ordinal then for some β < α the 2-manifold Tα intersects every leaf
of Bβ and ∂Tα ∩Bβ = ∅. This can be seen as follows.

The union A of leaves of F not intersecting intTα is closed. Therefore, for
any β ≥ 1 the set (A ∪ ∂Tα) ∩ Bβ is compact and

⋂
δ<α

((A ∪ ∂Tα) ∩ Bδ) =

(A∪∂Tα)∩Bα = ∅. It follows that for some β < α we have (A∪∂Tα)∩Bβ = ∅
which implies that Tα intersects every leaf of Bβ and Bβ ∩ ∂Tα = ∅.

So we may assume that α is not a limit ordinal. By Lemma 4.3 we may also
assume that for the union Nα−1 of all non-compact leaves of Bα−1 \ Bα we
have Nα−1 ∩ ∂Tα = ∅.

Now, Bα−1r (Nα−1∪Bα) is a Seifert fibration. Since ∂Tα is compact we find a
closed invariant neighborhood K0 of Bα∪Nα−1 in Bα−1 such that Tα intersects
every leaf of K0 and K0 ∩ ∂Tα = ∅. Since exceptional leaves of foliated Seifert
fibred subsets of a C1 -foliation are isolated ([Vo 2], Lemma 4.4) we may also
assume that the set theoretic boundary FrBα−1(K0) of K0 in Bα−1 does not
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contain any exceptional leaf of the Seifert fibration F |
(
Bα−1r (Nα−1 ∪Bα)

)
.

(As a reminder: a leaf of a Seifert fibration is called exceptional, if its holonomy
group is non-trivial.)

Below we will establish the following claim.

Claim 4.5 Let E be the union of the exceptional leaves of the Seifert fibration
F | (Bα−1rK0). Then there exists a compact invariant neighborhood N of E
in Bα−1rK0 and a compact transverse manifold S with the following properties

(i) S intersects every leaf of K1 = K0 ∪N ;

(ii) ∂S ∩K1 = ∅ ;

(iii) there exists a ρ > 0 and an invariant neighborhood U1 in Bα−1 of the
point set theoretic boundary FrBα−1K1 of K1 in Bα−1 such that every
leaf of U1 intersects S in exactly ρ points.

Assuming that 4.5 is true we then proceed as in [Ep 1], [EMS], [Vo 1], [Vo 2] to
extend S to a transverse manifold having properties (i) and (ii) above with K1

replaced by Bα−1 . The idea is to cover the locally trivial bundle Cl(Bα−1rK1)
by finitely many bundle charts C2, . . . , Cn and then to construct inductively
transverse compact manifolds S1 = S, S2, . . . , Sn such that Si has properties
(i), (ii), and (iii) above with K1 replaced by Ki = K1∪C2∪· · ·∪Ci . This is done
by choosing for each Ci a compact transverse manifold Di with ∂Di ∩ Ci = ∅
and intersecting each leaf of Ci in exactly ρ points. Then we shrink at each
step Si and Di+1 somewhat and adjust Di+1 so that Si+1 = Si ∪ Di+1 is a
transverse 2-manifold having properties (i), (ii), and (iii) with regard to Ki+1 .
For a detailed description of this see [Vo 2], proof of 4.7 (Note that in figure 2
of [Vo 2] each Γ should be interpreted as the intersection symbol ∩).

Proof of 4.5 (An adaptation of the proof in [Ep 1], Section 10, to our situa-
tion.) Since K0∩∂Tα = ∅, since K0 is a neighborhood of Nα−1∪Bα in Bα−1 and
since FrBα−1(K0) does not contain an exceptional leaf of Bα−1r (Nα−1 ∪Bα),
we find an invariant compact neighborhood V = V1 ∪ · · · ∪ Vk of FrBα−1(K0)
in Bα−1 such that V ∩ E = ∅, the Vi are disjoint compact invariant sets and
secTα restricted to each Vi is constant with value, say ni . We will assume that
the ni are pairwise distinct. Let U = U1 ∪ · · · ∪Uk be another compact invari-
ant neighborhood of FrBα−1(K0) such that for all i we have Ui ⊂ intBα−1(Vi).
Then every component C of K0 which is not entirely contained in Vi and meets
Ui has infinitely many leaves in Vi . Our hypotheses let us apply Proposition 4.1
to components of K0 ∩ Tα . From this we conclude that no component of K0
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will intersect two of the sets Ui . It is now a routine matter (see [Ku], §47 II
Theorem 3) to decompose K0 into disjoint closed subsets K0,1∪ · · ·∪K0,k such
that K0,i ∩ Uj is empty for i 6= j . The closure of Bα−1 rK0 is compact, and
F restricted to this set is a Seifert fibration. Therefore, E is a finite union
of leaves L1, . . . , Lm . Let Uk+i be a compact invariant neighborhood of Li in
Bα−1 . If the Uk+i are small enough we may assume that all leaves of Uk+i

intersect a transverse disk Di in exactly nk+i points except Li which inter-
sects Di once. We may further assume that Di ∩ K0 = ∅, Uk+i ∩ ∂Di = ∅
and that for i 6= j Uk+i ∩ Dj = ∅. Now let Ti, i = 1, . . . , k , be a compact
2-manifold-neighborhood of K0,i ∩ Tα having the following properties

(i) K0,i ∩ Tj = ∅ , i 6= j;

(ii) K0,i ∩ ∂Ti = ∅ , i = 1, . . . , k;

(iii) Ti ∩ Uk+j = ∅ , i = 1, . . . , k; j = 1, . . . ,m.

It is clear that we can find the Ti with the desired properties. Since F is
orientable and since we may assume that every component of every Ti is a
compact 2-manifold with non-empty boundary, tubular neighborhoods of the Ti
and Di are trivial. We also may assume that all fibres of these neighborhoods
are open disks in leaves of F . We find the desired transverse manifold S
by replacing each Ti by mi = (n1 · · · · · nk+m)/ni disjoint copies of Ti
each being a section of the tubular neighborhood of Ti and similarly Di by
(n1 · · · · · nk+m)/nk+i copies, making sure that all these copies are disjoint.
Then S is the union of all these copies and N = Uk+1 ∪ · · · ∪ Uk+m .

Appendix: the topological case

The hypothesis that F is C1 was used in the preceding section in two instances.
First in the proof of 4.1 and second in the statement that exceptional leaves of
a Seifert fibration are isolated. The first instance can be dealt with as in the
proof of Theorem 3.3 in [Vo 2]. Instead of showing that each Dm r Dm−1 is
closed one shows that any component R of Dm which meets Dm−1 is entirely
contained in Dm−1 . This is Lemma 3.5 in [Vo 2] and its proof can be used in
our situation since non-compact leaves do not figure in Dm .

Exceptional leaves need not be isolated in topological Seifert fibrations. See
Remark 4.5 in [Vo 2]. There are two ways to get around this problem. One
is to show that nevertheless we can argue as before in the proof of Claim 4.5
by showing the existence of compact invariant neighborhoods U of these leaves
with the following property: there is an invariant neighborhood F of FrBα−1U
in Bα−1 such that all leaves in F will intersect a transverse 2-manifold D
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in the same number of points. Here D is supposed to meet every leaf of U
and U ∩ ∂D = ∅. The proof of the existence of such a U follows from the
arguments at the beginning of the proof of 4.5 where we decomposed K0 into
K0,1 ∪ · · · ∪K0,k . Decompose U by the same process into U1 ∪ · · ·Ur and then
replace U by the Ui containing the exceptional leaf. This will have the required
properties.

Another way to proceed is the use of the so called fine Epstein hierarchy instead
of our version. Here Bα+1 is defined to be the union of leaves L in Bα such
that for any open transverse manifold T intersecting L there are leaves of Bα
intersecting T in more than one point. Then F restricted to Bαr (Nα∪Bα+1)
will be a locally trivial bundle and the problem of exceptional leaves disappears
altogether.

5 The foliation cycle and the proof of Theorem 2′

We begin with a proof of the analogue of what is called the “Moving Leaf
Proposition” in [EMS].

Proposition 5.1 Let F be a foliation of codimension k on a manifold M ,
let B1 be the first bad set of F and let N0 be the union of all non–compact
leaves of F in the complement of B1 . Assume that N0 ∪B1 is not empty, that
the closure of every leaf of F is compact and that one of the following two
conditions holds

(i) N0 is not open, or

(ii) N0 = ∅, intB1 = ∅, and B1 \B2 6= ∅.

Then for any transverse k–manifold T whose interior intersects every leaf of
B1 there exists a component U of M r (N0 ∪B1) such that secT is unbounded
on U (for notations see 3.1 and 3.2).

Proof Assume that (i) holds. Since B1 is closed we find x0 ∈ N0 ∩ FrN0 ,
where FrN0 is the set theoretic boundary of N0 , and a neighborhood V of
x0 with V ∩ B1 = ∅. Let y0 be a point of V r N0 and U be the component
of M r (N0 ∪ B1) containing y0 . Then secT will be unbounded on U for any
transverse k–manifold T such that intT intersects every leaf of B1 . To see this
let x1 be a point in (FrU) ∩ V . Since N0 ∪ B1 is closed x1 lies in N0 . Since
the closure of the leaf Lx1 through x1 is compact (by hypothesis) there exists a
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leaf L ⊂ B1 in the limit set of Lx1 . Therefore Lx1 will intersect any transverse
manifold T in infinitely many points if Int T ∩ L 6= ∅. Since Lx1 ⊂ FrU the
function secT will be unbounded on U by Property 3.3(a) of secT .

If (ii) holds we distinguish two cases.

Case 1 All leaves of B1 r B2 are non–compact. Since intB1 = ∅, the union
N1 = B1 rB2 of all non–compact leaves in the complement of B2 is not open
unless it is empty. By hypothesis, B1 = B1 ∪ N0 and N1 = B1 r B2 are not
empty. Now, we can argue as before, replacing N0 by N1 , and B1 by B2 . In
this way we find a component U of M r (N1 ∪B2) = M r (N0 ∪B1) which has
the following property: secT is unbounded on U for any transverse k–manifold
T whose interior intersects every leaf of B2 .

Case 2 B1 r B2 contains compact leaves. Since the union N1 of all non–
compact leaves of B1rB2 is a closed subset of MrB2 the space Mr(N1∪B2)
is a manifold and the restriction F1 of F to M r (N1 ∪B2) is a foliation with
all leaves compact. Furthermore, the first bad set of F1 is B1 r (B2 ∪N1) and
therefore not empty.

The Moving Leaf Proposition in [EMS] requires the bad set to be compact and
B1 r (B2 ∪N1) need not be compact. Now there are two parts in the proof of
the Moving Leaf Proposition in [EMS]. The first (and most difficult) part states
that there is a component of the complement of the first bad set on which the
volume of leaf function is not bounded. The proof does not make any use of the
compactness of B1(F1). It is purely local. In fact what is proved in [EMS] in
the two paragraphs starting with the last paragraph on page 23 can be stated
as follows: Let G be a foliation of codimension k with all leaves compact and L
any leaf in B1(G) such that L has trivial holonomy in the foliated set B1(G).

Let D be any transverse k–disk intersecting L in its interior
◦
D . Then there

exists a component V of
◦
D rB1(G) such that secD is unbounded on V .

Since the union of leaves of B1(G) with trivial holonomy in B1(G) is open and
dense, our claim is an immediate consequence of the above statement when
applied to G = F1 .

Next we will construct a particular foliation cycle. This is the point where
compactness of N0 ∪ B1 is essential. Compactness of N0 ∪ B1 guarantees the
existence of arbitrarily small saturated compact neighborhoods X of N0 ∪B1 .
This is due to the fact that the frontier Fr(W ) of a relatively compact neighbor-
hood W of N0∪B1 is a compact subset of Mr(N0∪B1), and on Mr(N0∪B1)
the foliation F is a Seifert fibration. Therefore, the saturation S of Fr(W ) is
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also compact and thus closed. Then Y = W r S is a saturated neighborhood
of N0 ∪B1 with Cl(Y ) ⊂ Cl(W ).

From now on we will assume that N0 ∪B1 is compact and non-empty, that N0

is either empty or not open und that
⋂
αBα = ∅. Furthermore, we assume that

F is C1 and oriented. The last condition allows us to consider the compact
leaves of F as (n− k)–dimensional cycles.

Let X be a compact saturated neighborhood of N0 ∪ B1 . Then we can find
finitely many foliation charts Wi = Ei × Ti, i = 1, . . . , s, whose interiors cover
X . Here we assume that each Ti is a compact transverse k–manifold and each
Ei × {t} is an open relatively compact subset of a leaf. As usual, we assume
that each Ei × Ti is part of a larger foliation chart Ẽi × T̃i with Ti ⊂ int T̃i
and Cl(Ei) ⊂ int Ẽi . We may and will assume that the Ti are disjoint. Then
T =

⋃
Ti is a compact transverse k–manifold whose interior int T =

⋃
int Ti

intersects every leaf of B1 .

Let U be a component of X r (B1 ∪ N0) such that secT is unbounded on
U . By Propositions 5.1 and 3.7 such a component exists. Let L1, L2, . . . be a
sequence of leaves in U such that secT (Li) is a strictly increasing unbounded
sequence. Since secT is bounded on any compact subset of U the sequence of
leaves L1, L2, . . . converges to B1 ∪N0 . Since the union of all leaves of U with
trivial holonomy is open and dense we may and will assume that the leaves Li
have trivial holonomy. Then all leaves Li are homologous in U .

In §§ 2 and 3 of [EMS] is explained how this set–up leads after passing to a
suitable subsequence and the appropriate choice of integers ni to a limiting

foliation cycle lim
i

1
ni
Li. This foliation cycle will be essential in the proof of

Theorem 2′ . We repeat its construction. For each i let ni = max{secTj (Li) :
j = 1, . . . , s}. By passing to a subsequence of the Li and reordering the Tj
we may assume that ni = secT1(Li). We define a non–negative measure µj,i
on the Borel sets of Tj by assigning each point of Tj ∩ Li the mass 1

ni
. Then

µj,i(Tj) ≤ 1 for all i, j and µ1,i(T1) = 1 for all i. Consequently, after passing to
a further subsequence of the Li , we may assume that for all j the measures µj,i
converge to a non–negative measure µj on Tj with µj(Tj) ≤ 1 and µ1(T1) = 1.

By Lemma A of § 3 of [EMS] the measures {µj} are holonomy invariant and
therefore define a geometric current C{µj}. The associated closed de Rham

current is equal to lim
i

1
ni
Li , i. e. for any (n − k)–form ω defined in a neigh-

borhood of X we have 〈C{µj}, ω〉 = lim
i

1
ni

∫
Li

ω . This is Lemma B of [EMS].

From this we obtain the first important property of our foliation cycle C{µj}.

Algebraic & Geometric Topology, Volume 2 (2002)



Foliations with few non-compact leaves 279

5.2 (Property 1 of the foliation cycle C{µj}) Let ω be any closed (n − k)–
form defined in intX then 〈C{µj}, ω〉 = 0.

Proof This is due to the simple fact that the leaves L1, L2, . . . are all homo-
loguous in intU ⊂ intX so that the sequence

∫
Li
ω is constant if ω is closed.

Since 1/ni converges to 0 we are done.

The proof of Theorem 2′ is now an immediate consequence of the second prop-
erty of C{µj}.

5.3 (Property 2 of the foliation cycle C{µj}) Let ω be any closed (n − k)–
form defined in a neighborhood of X such that for any compact leaf L of B1

the inequality
∫
L ω > 0 holds. Then

〈C{µj}, ω〉 > 0 .

Proof Recall the definition of the de Rham current

〈C{µj},−〉 : Ωn−k(M0) −→ R,

where M0 is any neighborhood of X . One chooses a partition of unity p1, . . . , ps
subordinate to the covering of X by the interiors of Wj = Ej × Tj and defines
for any η ∈ Ωn−k(M0)

〈C{µj}, η〉 =
∑
j

∫
Tj

 ∫
Ej×{t}

(pj · η)

 dµj(t) .

The definition is easily seen to be independent of the choice of partition of unity.
[EMS], § 2.

We need to change the “local” recipe for calculating 〈C{µj}, η〉 to a more
global one where we integrate (n−k)–forms over total leaves instead of plaques
Ej × {t}.
First we notice that for every j the measure µj is supported on Tj∩B1 . Clearly,
µj is supported on (N0∪B1)∩Tj since the sequence Li converges to the closed
set N0 ∪B1 . Let x be a point of N0 ∩Tj and T̃j a transverse k–manifold such
that Tj ⊂ Int T̃j . Then we find a transverse k–manifold D ⊂ intT̃j such that
x ∈ intD and secD is bounded. In particular, the number of intersection points
of Li with D is bounded, and this implies that µj(D) = 0.

By hypothesis
⋂
αBα = ∅. Then Proposition 3.6 tells us that B1 is a countable

disjoint union of Borel sets:
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B1 =
⋃
α≥1

(Bα rBα+1) .

As before, denote the union of all non–compact leaves of Bα r Bα+1 by Nα .
Then we make the following claim.

Claim 5.4 For all α and j the equation µj(Nα ∩ Tj) = 0 holds.

Proof of Claim We have already proved this statement for α = 0 using an
easy argument. In outline, the statement is true in general because leaves of Nα

have their limit points in Bα+1 , and, if Bα+1∪Nα is compact, their limit sets are
non–empty. If µj(Nα ∩ Tj) > 0 for some j , we find a compact set E ⊂ Nα ∩Tj
in the complement of Bα+1 with µj(E) > 0. Using holonomy translations
repeatedly we can push E into a countable disjoint family of subsets in

⋃
i Ti .

The holonomy invariance of the measures then implies that each of these sets
has measure not less than µj(E). This will contradict the fact that for all i we
have µi(Ti) ≤ 1.

In more detail, assume that µj(Nα ∩ Tj) > 0. Then by passing, if necessary, to
a different Tj we may also assume that µj(Nα ∩ intTj) > 0. The set Nα∩ intTj
is covered by (countably many) sets of the form Nα ∩ S such that S is open
in intTj and secS is bounded on Nα . So we may assume that µj(S ∩K0) > 0
for some such S and some compact subset K0 of the closed subset S ∩ Nα

of S . By (3.3) secS is lower semicontinuous and thus by the Baire category
theorem there exists an open dense subset of K0 where secS is continuous.
Let K1 be its complement in K0 . Then clearly max{secS(x) | x ∈ K1} <
max{secS(x) | x ∈ K0}. Continuing inductively we find a finite sequence
K0 ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kr = ∅ such that secS is locally constant on KirKi+1

for all i ≥ 0. Using this, we find an open subset U of Tj and a compact subset
N of U ∩Nα with µj(N) > 0 such that secU (x) = 1 for all x ∈ N .

Now, each leaf through a point of N accumulates against Bα+1 . Using holon-
omy translations along the leaf through x ∈ N we find a curve ω through this
leaf and a neighborhood V (x) of x in N such that ω holonomy–translates
V (x) into a set, V ′(x), contained in some Ti such that N ∩ V ′(x) = ∅. By
compactness of N finitely many of such V (x) suffice to cover N . Assuming
that each V (x) is compact the union of these V ′(x) constitute a compact set
N ′ disjoint from N such that

∑
i
µi(N ′ ∩ Ti) ≥ µj(N ∩ Tj). The inequality

is due to the fact that
∑
µi is holonomy invariant and that each leaf of Nα

intersects N in at most one point. Therefore, if V ′(x1) and V ′(x2) intersect,
then V (x1) and V (x2) intersect in a set of at least the same measure. The
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inequality then follows by induction on the number of V (xi) used to cover N .
Since N ′ is compact, we can do the process over again, moving open sets W (x)
of N to sets V ′′(x) in some Ti such that V ′′(x)∩ (N ∪N ′) = ∅, obtaining a set
N ′′ such that

∑
i
µi(N ′′ ∩ Ti) ≥ µj(N). Continuing, we find compact subsets of⋃

i
(Nα ∩ Ti) of arbitrary large measures contradicting µi(Ti) ≤ 1 for all i.

Therefore, for any j

µj(Tj) =
∑
α≥1

µj[
(
Bα r (Bα+1 ∪Nα)

)
∩ Tj ] .

If µα,j denotes the restriction of µj to
(
Bαr(Bα+1∪Nα)

)
∩Tj , then {µα,j}, j =

1, . . . , s, defines for any α ≥ 1 a holonomy invariant transverse measure on
T =

⋃
j
Tj . We denote by C{µα,j} the associated foliation cycle. Then

C{µj} =
∑
α≥1

C{µα,j} .

The proof of (5.3) is thus a consequence of the next lemma.

Lemma 5.5 Let ω be any (n − k)–form defined in a neighborhood of B1

such that
∫
L ω > 0 for any compact leaf of B1 . Then for any α ≥ 1 we have

〈C{µα,j}, ω〉 ≥ 0 and there exists at least one α ≥ 1 such that 〈C{µα,j}, ω〉 > 0.

Proof A proof of this lemma can easily be extracted from §§ 6 and 7 in [EMS].
Our set–up is slightly different. In particular, we use what in [EMS] is called
the coarse Epstein filtration. For the convenience of the reader we give a direct
proof of 5.5 adjusted to our situation. Fix α ≥ 1. The foliation F restricted
to Sα = Bαr (Bα+1 ∪Nα) is a foliation with all leaves compact. By definition
of the Epstein hierarchy (see 3.4) there exists for any leaf L of Sα a transverse
disk D such that L intersects intD and secD is bounded on Sα . This implies
that F restricted to Sα is a Seifert fibration which translates into a very explicit
description of a foliated neighborhood UL of L in Sα as follows (for details see
[Ep 2]). Let D be a transverse manifold whose interior intersects L. Let x
be a point in intD ∩ L. Then we find a neighborhood Ux of x in Sα ∩ D , a
finite group H of homeomorphisms of Ux fixing x, and a finite regular covering
L̃ −→ L with deck transformation group isomorphic to H such that as a foliated
set UL is isomorphic to (L̃ × Ux)/H . Here H operates diagonally on L̃ × Ux
and (L̃× Ux)/H is foliated by the images of L̃× {t}, t ∈ Ux . By choosing Ux
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sufficiently small we may assume that for any h ∈ H the germ of h at x is not
trivial, so that H realizes the holonomy group of L in the foliated set Sα .

Fixing again a leaf L of Sα we find an index j0 such that L∩ intTj0 6= ∅. Then
we may choose x ∈ L∩ intTj0 and Ux ⊂ intTj0 in the above discussion to have
the following additional properties:

Property 5.6 For any j ∈ {1, . . . , s} and y ∈ L ∩ intTj there exists a holon-
omy translation

hyx : Ux −→ intTj

along a path in L from x to y such that

(i) hyx(Ux) ∩ hy′x(Ux) = ∅, if y 6= y′ ;

(ii) Let {pj} be the partition of unity subordinate to {intWj = Ej × intTj}
used in our formula for evaluating our foliation cycle on forms. Then for
every j the projection to intTj of the intersection of the neighborhood
UL = (L̃× Ux)/H of L with supp(pj) ⊂ Ej × intTj is contained in⋃
y∈intTj

hyx(Ux) .

Using these properties we can rewrite the contribution of UL to C{µα,j}:∑
j

∫
Tj∩UL

( ∫
Ej×{t}

pj · ω
)
dµα,j(t) =

=
∑
j

∑
y∈L∩intTj

∫
Ux

( ∫
Ej×{hyx(t)}

pj · ω
)
dµα,j0(t) =

=
∫
Ux

(∑
j

∑
y∈L∩intTj

∫
Ej×{hyx(t)}

pj · ω
)
dµα,j0(t).

The first equation is a consequence of the holonomy invariance of {µα,j} and
property 5.6. The second equation is obvious.

Also by holonomy invariance the last expression does not change if t ∈ Ux is
replaced by h(t) with h ∈ H . Therefore, it is equal to

1
|H|

∫
Ux

(∑
j

∑
y∈L∩intTj

∑
h∈H

∫
Ej×{hyx◦h(t)}

pj · ω
)
dµα,j0(t) .

Using once more (5.6) we see that for any t ∈ Ux
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∑
y∈L∩intTj

∑
h∈H

∫
Ej×{hyx◦h(t)}

pj · ω =| Ht | ·
∫
Lt

pj · ω

where Lt denotes the leaf through t, and Ht is the stabilizer of t in H . Alto-
gether we see that the contribution of UL ⊂ Sα to C{µα,j} when evaluated on
the form ω equals

5.7
1
| H |

∫
Ux

| Ht |
∫
Lt

ω

 dµα,j0(t).

Exactly the same formula holds when Ux is replaced by an H –invariant mea-
surable subset Ũ of Ux and UL by the union ŨL of leaves through Ũ . Now,
Sα is a countable disjoint union of sets of the form ŨL . To see this cover Sα
by a locally finite (and therefore countable) family of open Seifert fibred neigh-
borhoods ULk of leaves Lk having all the properties needed for the discussion
above and having compact closure in Sα . Then Sα is the disjoint union of
ULk r

⋃
i<k

ULi , k = 1, 2, . . . .

The proof of Lemma 5.5 is now immediate from (5.7). The hypothesis that
for any compact leaf L ⊂ B1 the integral

∫
L

ω is positive guarantees that the

expression in (5.7) is never negative. On the other hand, for some α ≥ 1 and
some j0 the measure µα,j0 (intTj0) = µj0 (intTj0 ∩ Sα) is positive since {µj}
is holonomy invariant, µ1 (T1) = 1 and {intTj × Ej} covers all of B1 ∪ N0 .
Finally t 7−→| Ht |

∫
Lt

ω is continuous on Ux and everywhere positive.
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