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A TOPOLOGICAL PROOF OF CHEN’S ALTERNATIVE
KNESER COLORING THEOREM

By

Yasuhiro HARA

Abstract. Johnson, Holroyd and Stahl [5] conjectured that the cir-
cular chromatic number of the Kneser graph is equal to the ordinary
chromatic number. Chen completely confirmed the conjecture in [4].
Chen’s alternative Kneser coloring theorem is a key lemma in his
proof of Johnson-Holroyd-Stahl conjecture. Chen [4] and Chang,
Liu and Zhu [3] proved the theorem by using Fan’s lemma. In this
paper, we prove Chen’s alternative Kneser coloring theorem by using
cohomology.

1. Introduction

Let G = (V(G),E(G)) be a graph and p, ¢ integers with 1 < ¢ < p. We
denote by [p] the set {1,2,..., p}. A (p,q)-coloring of G is a map ¢: V(G) — [p]
such that ¢ < |¢(x) — ¢(y)| = p — ¢ for every edge xy of G. The circular chromatic
number of G is

%.(G) = inf {§ ‘ there exists a (p, g)-coloring of G}.

Because the ordinary chromatic number x(G) is equal to
min{ p | there exists a (p, 1)-coloring of G},

we see yx.(G) < x(G). Tt has been known that y.(G)>y(G)—1 (see [2],
[11]).
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We denote by <[Z]) the collection of all k-subsets of [n]. The Kneser graph
KG, i for n z 2k > 0, has vertex set <[Z}> and any two vertices u,v € < [Z]) are

adjacent if and only if uNv= . Lovasz [6] proved the chromatic number of
the Kneser graph KG, ; is n — 2k + 2 by using a Borsuk-Ulam type theorem (see
also [7]).

Johnson, Holroyd and Stahl [5] conjectured that the circular chromatic
number y.(KG, ) of the Kneser graph KG, ; is equal to the ordinary chromatic
number x(KG, ). Meunier [8] and Simonyi and Tardos [10] proved independently
that if n is even, then y.(KG, ;) = x(KG, ). Chen [4] completely proved Johnson-
Holroyd-Stahl conjecture. Chang, Liu and Zhu gave a short proof of it in [3].
The following is a key lemma of the proofs of y.(KG, ) = x(KG, ) in [3] and
(4].

CHEN’S ALTERNATIVE KNESER COLORING THEOREM ([3], [4]). Let n and k
i
k
KG, i, then there exist two disjoint (k — 1)-subsets S, T of [n] and the integers of
W\(SUT) are enumerated as iy,...,Iy_2+> such that ¢(SU{i}) =c(TU{i}) =
jfor j=1,2....n—2k+2.

be integers with n =2k > 0. If ¢: < ) — [n—2k +2] is a proper coloring of

In [3] and [4], Fan’s lemma was used to prove this theorem. In this paper,
we prove Chen’s alternative Kneser coloring theorem by using cohomology
argument.

Let S” denote the unit sphere in the (7 + 1)-dimensional Euclidean space. We
denote by Z, the cyclic group of order 2 and consider the antipodal Z,-action on
S”". The following Borsuk-Ulam type theorem is the key theorem in a topological
proof of Chen’s alternative Kneser coloring theorem in this paper.

THEOREM 1.1. Let n be a positive integer and Y a connected regular cell
complex such that HP(Y;Z,) =0 for 1 < p <n. Let X be a subcomplex of Y
which admits a free cellular Z,-action such that each cell of Y\X has dimension
(n+1). Then for each Zy-map f: X — S", there exists an (n+ 1)-cell e in Y\X
such that (f|0e)* : H"(S"; Z,) — H"(0e; Z,) is an isomorphism, where de is the
boundary of e and f|de is the restriction of f to de.

In Theorem 1.1, we remark that de is homeomorphic to S” because Y is a
regular cell complex.



A topological proof of Chen’s alternative Kneser coloring theorem 253

2. Proof of Theorem 1.1 and applications

In this section we prove Theorem 1.1 and give its applications. Throughout
this section, the coefficient of cohomology is Z, = Z/2Z and is omitted in the
notation unless otherwise stated.

First we prove the following lemma.

LemMMmA 2.1. Let n be a positive integer and X a connected free Z,-
CW-complex such that p-th cohomology HP(X) is zero for 1< p<n-—1 1If
f:X — S" is a Zy-map, then the induced map f*: H"(S") — H"(X) is a non-
zero homomorphism

Proor. Let w(S™) and w(X) be the Stiefel-Whitney class of ng : S* — RP”"
and 7y : X — X/Z, respectively. We consider the Gysin-Smith exact sequence
(see [9, Corollary 12.3], [1, Chapter III]).

L PN (XZ,) M}HP(X/ZZ) H—;>H”(X) L H(X)Z,) Uv@)

Because H?(X) =0 for 1 < p <n— 1, we have w(X)" # 0 from exactness of this
sequence. Let f: X/Z, — RP" be a continuous map such that ngo f = f o my.
Because f*(w(S")") = f*(w(S")" =w(X)" #£0, f*: H'(RP") — H"(X/Z,) is
a non-zero homomorphism. Note that transfer homomorphisms 7' : H"(X) —
H"(X/Z,) and nf:H"(S") — H"(RP") satisfy =nyo f*= f*on}. Because
ng: H'(S") — H"(S"/Z,) is an isomorphism, 7y o f* = f*oni #0: H"(S")
— H"(X/Z>). Therefore f*:H"(S") — H"(X) is a non-zero homomorphism.

|

ProOOF OF THEOREM 1.1. Let Y be a connected finite regular cell complex
such that p-th cohomology H”(Y) is zero for 1 < p<n. Let X be a sub-
complex of Y such that every cell of Y\X is an (n+ 1)-cell and that there exists
a free cellular Z,-action on X. Then H?(X) =0 for 1 £ p <n — 1, because the n
skelton of X and Y are the same. If there exisits a Z,-map f : X — S”, then
f*:H"(S") — H"(X) is a non-zero homomorphism by Lemma 2.1.

We denote by ej,...,ex (n+1)-cells in Y\X. Consider the following
commutative diagram.

H"(Y) —— H"(X) H™N(Y, X)

o |
k
it H"(

de)) —— P, H"\(&,de;)

S



254 Yasuhiro HArRA

where the first row is a part of the cohomology exact sequence of the pair
(Y,X), e denotes the closure of ¢; and j; : de; — X denotes the inclusion map.
We see that 6" : H"(X) — H"*'(Y,X) is injective because H"(Y)=0. From
the above diagram, we see that P jf:H”(X)a@—)ikz1 H"(0e;) is injective.
Therefore (f|de;)" = jio f*: H"(S") — H"(d¢;) is a non-zero homomorphism
for some i. Because H"(S") ~ H"(0e;) = Z,, (f|0e;)" : H"(S") — H"(d¢;) is an
isomorphism. [

The following is an application of Theorem 1.1 to combinatorics.

PROPOSITION 2.2. Let n be a positive integer and Y a connected finite regular
cell complex such that H?(Y)=0 for 1 < p<n Let X be a subcomplex of
Y which admits a simplicial subdivision with a free simplicial Z,-action, such that
each cell of Y\X has dimension (n+1). Let V(X) be the vertex set of a sim-
plicial subdivision of X and g the generator of Z,. Let f:V(X)— {£1,£2,...,
+(n+ 1)} be a map satisfying f(g-u) = —f(u) for ue V(X) and f(u) # —f(v) for
each edge {u,v}. Then there exists a cell e in Y\X such that f|V(0e): V(de)
—{+1,£2,...,+(m+ 1)} is surjective.

PrROOF. Let ej,...,e,.1 be the vectors of the standard orthonormal basis
in R™!'. The (n+ 1)-dimensional crosspolytope is the convex hull of the
points ey, —ey,...,e,11, —e,1. We denote by I'" the boundary of the (n+ 1)-
dimensional crosspolytope. Note that I'" is homeomorphic to S”. There is a
simplicial complex structure on I'” such that vertices are ej, —ei, ..., e, 1, —€yi1
and a subset F of {e;,—ej,...,e,11,—€,11} is a face if and only if there is no
i € [n] with both ¢; € F and —e; € F. We identify the vertex set V(I'") of I'" with
{£1,£2,...,£(n+1)}.

Suppose that f: V(X)— {+1,£2,...,+(n+ 1)} satisfies f(g-u)=—f(u)
for ue V(X) and f(u) # —f(v) for each edge {u,v}. Then we have a Z, sim-
plicial map f: X — I'". By Theorem 1.1, there exists an (n+ 1)-cell e such that
(floe)" : H"(I'") — H"(de) is an isomorphism. Therefore we see that f|V(de) :
V(oe) — V(I'") is surjective. O

We give examples of Theorem 1.1 and Proposition 2.2.
Let n and k be integers with n > k. We put I =[-1,1], [n] ={1,2,...,n}
and

An:{(S,THSC[I’l],TC[I’l],SﬁTZ@}.
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For an integer k with 0 < k <n, we define a subset A, ; of A, by
An = {(S.T) & AuIS|+|T| = n— &},

where |S| and |T| denotes the number of elements of S and T respectively. For
(S,T)eA,, we define a subset eg r of I" by

es.rT :{(xl,...,xn) el”

xpi=1forieS, x;=—1 for jeT,
—l<x;<1lforl¢SUT

We have a cell decomposition of 7" such that the set of k-cells is {es 7| (S,T) €
An i }. We denote by (1 m®) the k-skelton of I". We define a Z,-action on (/")
by g - x = —x, where g is the generator of Z,. If k < n, this action on (/ ”)(k) is a
cellular free action. It is easily seen that H'((1 ”)<k+1)) =0 for 1 </ < k. There-
fore we have the following from Theorem 1.1.

PROPOSITION 2.3. Let f:(I"\*) — S* be a Z,-map. Then there exists an
(S,T) € Ay i1 such that (f|des 7)) : H*(SK) — H*(des 1) is an isomorphism.

We define a subset eg ; of es 1 by

egyT:{(xl,..qxn)eI" xi=1forieS, x;=—1for jeT, Z |x,|<1}.
Ien\(SUT)

Set J™k = (1")("“)\U(S,T)€An W €s 7. It is seen that (1™ is a strong defor-
mation retract of J™*.

0,1)

We give a triangulation of J™* as follows.

v is a vertex of J™k if and only if ve {—1,0,1}" NJ"*. For v= (vy...,v,) €
{-1,0,1}", we define subsets v, and v_ of [n] by v, = {ie[n]|v;=1} and v_ =
{i € [n]|vi = —1} respectively. In what follows, we identify the set {—1,0,1}"
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with the set A, by the bijection
¢5{*17071}nHAn7 UP—>(U+,U_)

and note that v is in ¢; , . For ve {-1,0,1}", we put [v] = |vy|+ [v_|, where
|v;| and |v_| denote the number of elements of v, and v_ respectively. For u =
(uyp,u_), v=(vy,v_), we write u <v if uy Cv; and u_ Cv_ and define uUv
and uNwv by (uy Uvy,u_Uv_) and (uy Nvy,u_ Nuv_) respectively. Under these
notations, each vertex v of J™F is identified with a pair (vy,v_) such that
[v]| = n—k.

Let vy,v...v, be mutually distinct vertices of J™* regarded as elements of
A, by the above identification. Since |vj| = n — k for each j, we may rearrange
these vertices so that |v)| =---= v =n—k and |ve | >n—Fk,...,|v| >n—k.
the set {vy,v,...,0,} is a simplex in J™¥ if and only if v, vs,. .., v, satisifies the
following conditions.

() vyUnU---Upy S £+ S oy

(2) If s=2, then |[vyNuaN---Nusl=n—k—1 and vy Nv;- = for 1 <
I,j<s.
When s =0 or s=1, {v,05,...,v,} is a simplex in J™* if and only if v; <
==

In this way, we have a triangulation of J™*. We give a cell decomposition
of (I")**V by simplexes of J™* and eg r for (S,T) € Apky1.

We define a Z,-action on J™* by ¢g-x = —x. This action is simplicial and
free. We denote by V(J™*) the vertex set of J™*. Then we have the following.

PROPOSITION 2.4, If f: V(J" ) — {£1,+2,...,+(k + 1)} satisfies f(g-u) =
—f(u) for any veretex u of J™* and f(u) # —f(v) for any edge {u,v} of J"*, then
there exists an (S,T) € Ay 1 such that f|V(des ) : V(0eg ) — {+1,£2,...,
+(k+ 1)} is bijective. '

Proor. By Proposition 2.2, there exists an (S,7T) in A, 41 such that
S|V (deg 7) is surjective. Because |V (deg 1)| = |V(TF)| =2(k + 1), SV (Oeg ) is
bijective. ]

3. Proof of Chen’s alternative Kneser coloring theorem

In this section, we prove Chen’s alternative Kneser coloring theorem. Our
proof follows the line given in [3], replacing a combinatorial argument with
Proposition 2.4 obtained by making use of topological method.
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Let c: ([Z]> — [n—2k + 2] be a proper coloring of KG, . For a subset S
of [n], we define

s [max{e(4)[AC S, A=k} (IS 2K
(8= {o (Is] < k)

Let (S,T) be an element of A, such that |S|+ |T| =2k — 1. Then |S| =k or
|T| = k. If (S, T) satisfies both |S| = k and |T| = k, then there exists a subset A4
of S and a subset B of T such that ¢/(S) = ¢(4) and ¢/(T) = ¢(B). Since AN B C
SNT =, {A,B} is an edge of KG,, and hence c¢(A) # ¢(B). Therefore if
(S,T) e A, satisfies |S|+|T| = 2k — 1, then ¢/(S) # ¢/(T).

We define a map 4 from the vertex set of J™" 2%l to {+1,42,...,
+(n—2k +2)} by

o) {C’(v+) ¢(v2) > '(v-)

—c'(v) (vy) < (v)

Because g(vy,v-) = (v_,v.), A satisfies A(gv) = —A(v).

For an edge {u,v} of J™"2+1 we easily see that u; Nv_ = @& and u_ Nov,
= (f. Therefore we see that A(u) # —A(v) from the definition of 1. By Proposition
2.4, there exists an (S,T) in Ay 242 such that A|V(deg r) : V(deg r) — {£1,
+2,...,+(n—2k +2)} is bijective. Note that |S|+ |T| = 2k —2 and that every
vertex v = (vy,v-) of Jeg 7 satisfies [v| =2k — 1, S C vy and T C v_. Therefore
we have |S| Z |ve| £ |S|+1 and |T| < |v-| £ |T| + 1. We show that |S| = |T| =
k—1. Suppose |S| > |T|. Then |v_| =< |T|+1=Zk—-1 and ¢'(v-)=0 for ve
V(0es, ). Hence the map A takes a positive value on every vertex of deg 7,
which contradicts that A|V(deg 7) is bijective. Anologously, the strict inequality
|S| < |T| is impossible. Therefore |S|=|T| =k — 1.

Since A|V(deg ) is bijective, there exist vertices vy, ...,U,-242 in V(deg 1)
such that A(v)) =1,..., A(Uy_ssn) = n — 2k +2. '

Next we observe |[(v;) | =k as follows: since A(v;)= ;>0 we have
¢'((v)) > ¢'((ty)_) 2 0 and hence |(v;),| Z k. On the other hand, v; € V' (deg 1)
and |S| =k — 1 implies |(v;),| £[S|+ 1 < k and we obtain the desired equality.

It follows from this that the elements of [n]\(SUT) are enumerated as
i1,0,...,in_ok+2 such that v, =SU {il}, cee (Un—2k+2)+ =Su {in,21(+2}. Then
c(SU {il}) =1,..., C(SU {in72k+2}) =n—2k+2. If a#b, then (S U {ia}) N
(Tu{ip}) = . Hence SU{i,} and T U {i} are adjacent in the graph KG, i,
we have c(SU{i,}) # (T U{ip}) for a # b. Therefore we have c(SU{j}) =
c(TU{i})=jfor j=12,...,n—2k+2. O
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