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RING OF THE WEIGHT ENUMERATORS OF d'

By

Makoto Fuin and Manabu OURA

Abstract. We show that the ring of the weight enumerators of a
self-dual doubly even code d, in arbitrary genus is finitely generated.
Indeed enough elements to generate it are given. The latter result is
applied to obtain a minimal set of generators of the ring in genus
two.

1 Introduction

The weight enumerator plays an important role in coding theory and has
connections with other branches in mathematics. We recall some of them to see
the background of this paper.

Let C be a self-dual doubly even (Type II, for short) code of length n. The
weight enumerator

We(x, y) = x" iy
veC

has invariant properties. The so-called MacWilliams identity is described as

Welx, ») = We ("g,"g)

and the doubly evenness gives
We(x, y) = Welx, v=1y).

These being said, the weight enumerator of a Type II code is an element of the
invariant ring

Clx, 3] = {f(x,y) eClx,y] s af = f Vo e G}
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of the finite group G where G is of order 192 generated by
1 /1 1 1 0
V2\1 -1)’ 0 v-1

af (x,y) = f(ax+ by, cx + dy), az(j Z)

and

Gleason [5] showed that the invariant ring C|x, y]G is generated by the weight
enumerators of Type II codes. Indeed we have

C[X, y]G = C[I/Vdg(xv y)v Vdef‘(xv y)}

We shall mention two consequences of this equality. Since the degrees of the
generators are 8§ and 24, the length of a Type II code is a multiple of 8. Non-
existence of an extremal Type II code for sufficiently large n also follows from the
above equality.

We observe that W, (x,y) and Was (x, y) are algebraically independent over
C. A finite group having such a property (i.e., whose invariant ring is generated
by the algebraically independent elements over C) is called a finite unitary re-
flection group. See [20].

The generalization of the above correspondence is initiated in [1, 10] and
inherited in [4, 18]. ¢f [12].

The invariance property of the weight enumerator gives rise to the relation
with the modular forms, (c¢f. [3, 4, 18]). In fact, the weight enumerator of a Type
IT code of length n is mapped under the theta map to the Siegel modular form
of weight n/2 in genus g. The modular form of weight 8 which is obtained from
the difference ¥ of the weight enumerators of dy @ dg” and dj is of great
importance. We just mention two points in genus three. Witt [21] asked if the
modular form obtained from w“) vanishes, and it was affirmatively answered in
[8, 9]. Runge [16, 17] showed that the ring of Siegel modular forms for I'; is
isomorphic to the quotient ring of the invariant ring of some finite group divided
by an ideal (y©).

Let D be the ring of the weight enumerator of df in genus g. This is a
subring of the ring of the weight enumerators of Type II codes. As indicated
above, DV coincides with the ring of the weight enumerators. In this paper, we
show that DY s generated by the elements of

8§ <n <23
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Using this result, we show that D@ s minimally generated by nine weight
enumerators of lengths

8,24,32,40,48, 56, 64,72, 80.

The computations were done with Magma [2] and SageMath [19].
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2 Preliminaries

We recall coding theory (cf. [6, 11, 15]). Let F, = {0, 1} be the field of two
elements. Two vector spaces F} and F§ appear in the following. For technical
reason, an element of Fj is regarded as a row vector, while that of Fj as a
column vector. The space Fj is equipped with the inner product

u-v=uv; + - Fupvy, u=(U,...,uy), v=(1,...,0)

and so is Fj
o B
-f=ufit-togh, a=| |, =] :
%y B,
Since we deal with only binary linear codes in this paper, we call a subspace
of FJ a code of length n. The weight wt(u) of an element u € F} is the number of

non-zero coordinates of u. A code C is said to be self-dual if it coincides with its
dual

Ct={veF):u-v=0, VYueC},
doubly even if
wt(u) =0 (mod4), VYueC.

Codes with those two properties (self-duality and doubly evenness) are par-
ticularly interesting. We use the term Type II instead of self-dual and doubly
even. It is known that a Type II code of length n exists if and only if
n=0 (mod8).
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We proceed to generalize the weight enumerator that appeared in Intro-
duction. In order to do so, we refresh the weight enumerator. We introduce new
variables x, (« € F,) and the number w,(u) of occurrences of o in a row vector u.
Then the weight enumerator is defined as

We(xo,x1) = Z H X&),

ueCoek,

We also interpret this as

Wc(X(), xl) = g Xy Xuy =+ Xy,

l¢:(U1~,M2~,-»~,Mn)5 C

This weight enumerator is essentially the same as that in Introduction. We shall
define the weight enumerator in genus g. For any binary linear code C of length
n, the weight enumerator of C in genus ¢ is, by definition,

WC(‘LD(Xa - ng) _ Z H X;Uat(ul ,,,,, uy) (1)

where wq(uy,...,u,) is the number of occurrences of o as a column in the matrix
U
of row vectors - |. As before, we rewrite this as
Uy
@)y . 9y —
W (xy e Fy) = E X0\ X/ s X0 -
wuy=(uiy,...,u1,) €C . . .
: Uyl Ug Ugn
ug=(ttg1,...,Ugn) € C

Though this formulation might not be well known, it works well in the proof
of the formula for d; in this section. Since there does not occur any confusion,
we shall use an abridged notation W'Y It is clear that W
polynomial of total degree n in C[x, : € FJ]. Let MW@ be the ring over C
generated by the weight enumerators of all Type II codes in genus g. It is known
that WY is the invariant ring of the specified finite group (cf [5, 18, 12]). In
particular W s finitely generated. In Introduction we discussed this topic for
g=1.

Next we recall a Type II code d,f of length n for n =0 (mod 8) and its

is a homogeneous

weight enumerator. It is nice to start with a repetition code R, of length n. The
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dual code of R, can be described as
RnJ' :{(ul,...,un)eFé’ T Uy +"'+un:0}

which has a generator matrix

1 10 0
1 0 1 0
1 00 --- 1

The following n/2 x n matrix is a generator matrix of d,, that is, the n/2 row
vectors form a basis of d:

11 11 00 00 --- 00 00
11 00 11 00 --- 00 00
11 00 00 11 --- 00 00
11 00 00 00 --- 00 11
10 10 10 10 --- 10 10

The code d, is then characterized as
d}j :{(OC] "‘%“haz+V7“2a---70‘n/2+%an/2)50‘17~--7“n/2aV€F27
OC1+"'+OCn/2=0}.

It is known to be Type II. The weight enumerator of d,F in genus g is expressed
as

n/2
1 o
w =5 3 (Z<—1> “) -

p,yeF] \aecF]

We can find this formula of genus two in [4]. For the completeness of this paper,
we add a proof. We have

i n/2 .
RHS :%Z > H( > (1)“(')'”x1<,»>+yxa<f>) ]

yeF] | peF] ( i=1 \a0eF]

1 (1) (/2)
_ 2 : 2 : ot et B
= — (—1)( ) x“(])_ﬂ,xa(l) . 'x“(n/2)+7x“(rz/2)

yeF] | o, a2 eFy
g
peF;
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For a fixed y, we divide the summation as

> = >+ ~
B L 8 1 O I B0 S s S L
peF] ) B B

From the > -part, we get
o) g2 =

B
g
29 E xwﬂxa(]) o 'x“(n/z)ﬂxa(n/z)

aV . o2 eF]

oD g g (12—

because of (—1)(“(l)+”‘+“(n/2>>"8 =1 for any feFy. Next fix all) ... a2 such
that oV 4 +a(2) 0. Then the number of e F{ which is orthogonal to
o) - a/2)(£0) is 2971, This could be easily understood if you consider
the dual code of a code generated by a!) 4 ... 4«2 At any rate, from the

> -part, we get 0. Finally we have that
o) g (1/2) £
B

X)X (1)« 7 Xy (1/2) 49y Xy (/) -
yeF] oV o2 eF]
a4 /2 =0

In view of the characterization of d this is nothing else but the definition of the
weight enumerator of 4 in genus g. This proves the formula.

We denote by DY the ring generated over C by the weight enumerators of
df (n=28,16,24,...) in genus g. The ring D is a subring of W . These rings
are graded as

m@ — QB("),
n=0 (mod 8)

DY — @ D@
n=0 (mod 8)

In [4], W is determined. Let g4 be the Golay code of length 24. It is then

w® = cw?, w? w %%)}@C[Wm w2 we Ay

+ + I + + I + +
dg dy), 924 dg dy, 924 dy s,

and the dimension formula is given as follows:

S dim w2 = Lt > .
; T (=81 =221 - )




Ring of the weight enumerators of df 59

n 8116 | 24 | 32|40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128

dim WP | 1 1 3 4 5 8 |10 [ 12 | 17 | 21 | 24 | 31 | 37 42 52 60

n

dim ® | 1 1 2 3 4 6 8 | Il | 1520 | 24| 30 | 36 42 51 59

n

Table: Dimensions of ? and D

The dimensions of small n in genus 2 are given in Table.
Finally we recall the following ®-operator

®(xs) = x, and ®(x;) =0, xeF{ ", <°‘)ng.
%

It is known that the ®-operator maps the weight enumerator of a code in genus g
to that in genus g — 1.
3 Results
Our first objective is to prove
TueoreM 1. (1) DY is finitely generated over C.
(2) A set of generators of DY can be obtained from Wd@ Sfor n < 2%+3,
Proor. Since (1) follows from (2), we shall show (2). If we ignore the

. 1 .
coefficient T the weight enumerator of 4, has the form

X" x4 X

for fixed X; € C[x,: o € F§]. For a better understanding, we put Z; = Xi4. Here
we remind that n =0 (mod 8). Then we can say that DY s generated by the
forms

Zl+Zz+"'+ZQZy,

ZIZ+ZZZ++Z2221/7

If we apply the fundamental theorem of symmetric polynomials, we can conclude
that D can be generated by

Zli-i-Zzi-i-"'-i-Zézy, 1<i<?2%,
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Translating this into the condition of the length n, we have

1< <2%.

NS
Bl

Hence, in order to generate D@ it is enough for n to range from 8 through
2%9+3 mod 8. This completes the proof. N

We shall examine the case g = 1. From (2) of Theorem 1, we possess four
elements of lengths 8, 16, 24, 32 to generated D). Because of

(D2 _ (D) M _ S 8 ) )
Wy "= Wy, and W= =3 (W) 3 W Wy

we get
oI = C[W<l) W(l)].
24
Notice that our argument in this section does not give guarantee as to the fact
) — O

We proceed to the higher genus. Table shows that D@ s strictly smaller than
WP In fact, we shall show

ProPOSITION 2. We have that

WY =29 if and only if g=1.

Proor. We have only to prove D C WY for all g > 2. We know that
Wg(i) ¢ D2, Now suppose that

Wy = aw, ) +ow, W ew?.
8 16 24

924 df

for some g > 3. If we successively apply the ®-operator to both sides, we get

2) _ (2)y3 2 (@) )
Wy = a(W,2)" + bW W+ e WL

We have thus a contradiction to the fact Wg(i) ¢ D@, This completes the proof.
]

We turn our attention to the case g = 2.

THEOREM 3. The ring D@ s minimally generated by nine elements W;l(f) of
lengths

8,24,32,40,48, 56, 64,72, 80.
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ProOF. By (2) of Theorem 1, D@ s generated by the weight enumerators
I/Kﬁ) (x) of df of lengths 8,16, ...,2%23 = 128. By calculating the dimension of
the homogeneous part for each n, we get the result. This completes the proof.

O

THEOREM 4. The ring WP s the normalization of D2 n s field of
fractions.

Proor. The ring w; s generated by the Wd(f)’s and W,}?. Because of

dim ﬁBé? = dim Dé?(: 24), (Wd(f))gWg(i) should be written as a linear combi-
8

nation of the de) ’s. We can say more. The product (Wdif)fWg(i) is indeed in

Déé) by calculation. At any rate, we see that 2® and D have the same field

of fractions. Since it can be shown that W2

4 1S @ root of a monic quadratic

equation over ol by explicit calculation, W@ s integral over 2@, We give the
mentioned forms above explicitly in Appendix. Since the invariant ring of a finite
group is normal, so is W@ This completes the proof. O

We conclude this paper with some comments.

As a finite analogue of Eisenstein series, we studied E-polynomials (cf-
[13, 14]). Since dg is a unique Type II code of length 8, we obtain the identity
between an E-polynomial of weight 8 and V%f). The resulting identity seems to
be non-trivial.

Let 7 be an element of the Siegel upper-half space of genus g. For o, € F3,
we define a Thetanullwert

0[;}(7) = Z exp 271\/—_1{%’(1)4—%0()7(174—%0{) + ’(p—&-%oc) %[)’}

peZ?

o

We put f,(7) = 0{0}(21). It is known (cf. [7]) that

(em <r)>2 = > D) o0 £

[
veF)

Under the theta map x, — f,(7), we derive the theta series 95;’3(1) of an even
unimodular lattice D, from the weight enumerator of d," in genus g. Therefore
we have that
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3(9)

D;f

(1) = W) (fu(z) s € FY)

n/2
:% 3 (Z(—l)“‘ﬁmgf(r)ﬁc(fo

B,yeFy \ueF]

-5 % (7))

which was given in [8] without coding theory.

Appendix: Expressions of W(,<224>

We shall denote by d, instead of d, and by C instead of WC(Z). For example,

dj means (W\?)". In the first formula, if we divide both sides by df, we get a
8

rational expression of g4 by the d,’s. In the second formula, we can see that go4
is a root of a monic quadratic equation over @),

d{g24 = 60068993523 /2765440 - dgy — 180183157847/10370400 - dj,
— 20022997841/553088 - dsydss — 2860428263 /69136 - daadsg
+20022997841 /414816 - d3,ds> — 20022997841/207408 - dsdy»
+ 240240240009 /1382720 - dsdydag + 20022997841 /103704 - dydradag
—20022997841/233334 - dyds, + 361030987317/2212352 - dg ds
— 721615331745/4424704 - d3d3, — 180492013471/518520 - dZ drydao
— 11605081037/138272 - d3dss + 162089538457 /829632 - d3 drad,
— 6162271423 /51852 - dy dys + 98965418167/622224 - dy d;,
+ 1437603895651/6913600 - dds — 1819759052111/33185280 - dids,
— 1943814249461/12444480 - dJ d>s + 119236217012539,/2986675200 - dg°.

g3, = —53361/9728 - dyg + 41699 /4864 - d3, + 2863707 /124640 - dsday
— 55228635/1595392 - dids + 200123 /199424 - d3ds

+ 61863307/7976960 - d + (161/152 - dng — 3289/12464 - dJ)gs.
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