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ADDITIVE REPRESENTATION IN THIN SEQUENCES,

VII: RESTRICTED MOMENTS OF THE NUMBER

OF REPRESENTATIONS

By

Jörg Brüdern, Koichi Kawada and Trevor D. Wooley

Abstract. Let Rs;kðnÞ denote the number of representations of n as

the sum of s positive integral kth powers. We develop methods to

establish asymptotic formulae for moments of Rs;kðnÞ in which n is

restricted to a thin sequence consisting of values of a given poly-

nomial. As a first example, we discuss the case of cubes, and present

conclusions for sums of 6 and 7 cubes in which the polynomial is

quadratic, and for sums of 7 cubes in which the polynomial is cubic.

We also consider the case wherein the exponent k is large, and briefly

describe corresponding results for the binary Goldbach problem.

1. Introduction

Amongst our opera devoted to additive problems restricted to thin poly-

nomial sequences (see in particular [3], [4], [5]), the tertiary part is devoted to

estimates for exceptional sets associated with the expected asymptotic formula for

the number of representations of prescribed type. While such estimates lead

directly to lower bounds of the anticipated size for likewise restricted moments of

the number of representations, uncertainties concerning integers associated with

the exceptional set prohibit any immediate inference of asymptotic formulae for

such moments. The purpose of this paper is to develop methods that establish

such asymptotic formulae, thereby avoiding the aforementioned uncertainties.

Continuing the tradition of our previous excursions in this series, we illustrate

our ideas with a discussion of Waring’s problem for cubes. Denote by RsðnÞ the
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number of representations of n as the sum of s cubes of positive integers. A

heuristic application of the circle method suggests that for sb 4, one should have

the asymptotic formula

RsðnÞ ¼ Gð4=3ÞsGðs=3Þ�1
SsðnÞns=3�1 þ oðns=3�1Þ;ð1:1Þ

as n ! y, where

SsðnÞ ¼
Xy
q¼1

Xq
a¼1

ða;qÞ¼1

ðq�1S3ðq; aÞÞseð�na=qÞ;

in which we write

S3ðq; aÞ ¼
Xq
r¼1

eðar3=qÞ;

and eðzÞ ¼ expð2pizÞ. It is useful to recall that when sb 4, the singular series

SsðnÞ is known to satisfy the lower bound SsðnÞX 1 (see Theorem 4.5 of

Vaughan [13]), whence the relation (1.1) constitutes an honest asymptotic for-

mula.

The validity of the expected asymptotic formula (1.1) would imply corre-

sponding formulae for the moments of RsðnÞ. In particular, one expects that for

sb 4 and for all positive values of h, one should have the asymptotic formulae

X
nax

RsðnÞh ¼ C1ðs; hÞxhðs=3�1Þþ1 þ oðxhðs=3�1Þþ1Þ;ð1:2Þ

as x ! y, where the quantity C1ðs; hÞ is defined by the relation

C1ðs; hÞ ¼
1

hðs=3� 1Þ þ 1

Gð4=3Þs

Gðs=3Þ

� �h
C1ðs; hÞ;

in which

C1ðs; hÞ ¼ lim
y!y

y�1
X
nay

SsðnÞh:

We note that the latter limit does indeed exist, as we establish in Lemma 1 below

for sb 5, the corresponding result for s ¼ 4 following with a little additional

e¤ort. When h ¼ 2, this desired conclusion is known to hold in all cases, the most

di‰cult situation with s ¼ 4 following from the celebrated work of Vaughan [11]

(see Theorem 3 of the latter paper). For larger values of h, such asymptotic
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formulae have entered the literature only very recently with work of Brüdern and

Wooley [6]. Here the range of s for which the formula (1.2) holds becomes more

restricted as h increases. Thus, for example, when h ¼ 3 the formula (1.2) is

known to hold only for sb 5 (see Theorems 1.1 and 1.2 of [6]).

We now turn to analogues of the formula (1.2) in which the summation on

the left hand side of the relation is restricted to values of a thin polynomial

sequence. It is convenient henceforth to describe a polynomial f A Q½t� as being

an integral polynomial if, whenever the parameter t is an integer, then fðtÞ is also

an integer. In such circumstances, we write af for the leading coe‰cient of fðtÞ,
and we write df for the degree of f. When af > 0, the conjectured analogue of

the asymptotic formula (1.2) now becomes

X
nax

RsðfðnÞÞh ¼ Cfðs; hÞxdfhðs=3�1Þþ1 þ oðxdfhðs=3�1Þþ1Þ;ð1:3Þ

where the quantity Cfðs; hÞ is defined by the relation

Cfðs; hÞ ¼
a
hðs=3�1Þ
f

dfhðs=3� 1Þ þ 1

Gð4=3Þs

Gðs=3Þ

� �h
Cfðs; hÞ;

in which

Cfðs; hÞ ¼ lim
y!y

y�1
X
nay

SsðfðnÞÞh:ð1:4Þ

Again, the existence of this limit is assured by Lemma 1 below for sb 5, and

may be established for s ¼ 4 with greater e¤ort. We remark also that the formula

(1.4) may be replaced for integral h by one more reminiscent of the definition of a

conventional singular series. Thus, for example, one may show that

Cfðs; 2Þ ¼
Xy
q¼1

Xq
a¼1

Xq
b¼1

ða;b;qÞ¼1

q�2s�1S3ðq; aÞsS3ðq;�bÞsSfðq; b� aÞ;

where

Sfðq; tÞ ¼ ðdf!Þ�1
Xdf!q
r¼1

eðtfðrÞ=qÞ:

Our first conclusion provides asymptotic formulae of the type (1.3) when fðtÞ
is a quadratic polynomial. We refer the reader to the proof of this result in § 3 for

more precise but technical estimates corresponding to minor arc behaviour alone.
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Theorem 1. Suppose that fðnÞ is an integral quadratic polynomial with

positive leading coe‰cient. Then the anticipated asymptotic formula (1.3) holds (i)

when s ¼ 6 and 0 < ha 2, and (ii) when s ¼ 7 and 0 < ha 4.

In view of Vaughan’s work [11] concerning the asymptotic formula for sums

of eight cubes, of course, the formula (1.3) holds for all positive numbers h when

sb 8.

In § 3 we also establish a corresponding conclusion for cubic polynomials.

Theorem 2. Suppose that fðnÞ is an integral cubic polynomial with positive

leading coe‰cient. Then the anticipated asymptotic formula (1.3) holds when s ¼ 7

and 0 < ha 2.

Even in this brief excursion on the topic of asymptotic formulae for restricted

moments, two further examples deserve our attention. We note first that an

analogue of the asymptotic formula (1.3) holds also in the binary Goldbach

problem. Let rðnÞ denote the number of representations of the integer n as the

sum of two prime numbers, and let fðtÞ be an integral polynomial with positive

leading coe‰cient. Then it is a simple matter to establish that for each positive

number h, one has

X
nax

rð2fðnÞÞh ¼ BfðhÞ
xdfhþ1

ðlog xÞ2h
þ oðxdfhþ1ðlog xÞ�2hÞ;ð1:5Þ

where the quantity BfðhÞ is defined by the relation

BfðhÞ ¼
BfðhÞ
dfhþ 1

4af

d 2
f

 !hY
p>2

1� 1

ðp� 1Þ2

 !h
;

in which

BfðhÞ ¼ lim
y!y

y�1
X
nay

Y
pjfðnÞ
p>2

p� 1

p� 2

� �h
:

We note that the existence of the latter limit may be readily confirmed by means

of a routine argument that need not detain us here. Meanwhile, in short, the

formula (1.5) follows on observing that the methods of [2] may be adapted to

show that there are at most Oðx=log xÞ integers n, with 1a na x, for which one

has fðnÞ > 1 and
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rð2fðnÞÞ � CðfðnÞÞ 2fðnÞ
ðlog 2fðnÞÞ2

�����
����� > fðnÞ

ðlog fðnÞÞ3
:

Here, we have written CðmÞ for the familiar Goldbach constant defined by

CðmÞ ¼ 2
Y
p>2

1� 1

ðp� 1Þ2

 !Y
pjm
p>2

p� 1

p� 2

� �
:

But sieve methods establish that whenever fðnÞ > 1, one has

rð2fðnÞÞW fðnÞ=ðlog fðnÞÞ2;

whence the latter set of exceptional integers make a negligible contribution to the

left hand side of (1.5). Also, the integers n with fðnÞa 1 are trivially negligible.

The desired conclusion is then immediate via partial summation.

Finally, we note that the methods of this paper extend routinely to arbitrary

powers. The following conclusion on sums of kth powers, with k large, su‰ces to

illustrate the associated ideas. We restrict attention at this stage to quadratic

polynomials for the sake of elegance rather than for reason of technical

obstructions. We write Rs;kðnÞ for the number of representations of n as the sum

of s positive integral kth powers.

Theorem 3. Let fðtÞ be an integral quadratic polynomial with positive leading

coe‰cient af, and let k be a positive integer with kb 3. For each positive number

h, and every integer s with sb k þ 2, define

Afðs; hÞ ¼
a
hðs=k�1Þ
f

2hðs=k � 1Þ þ 1

Gð1þ 1=kÞs

Gðs=kÞ

� �h
Afðs; hÞ;

where

Afðs; hÞ ¼ lim
y!y

y�1
X
nay

Ss;kðfðnÞÞh;

and for natural numbers m we write

Ss;kðmÞ ¼
Xy
q¼1

Xq
a¼1

ða;qÞ¼1

ðq�1Skðq; aÞÞseð�ma=qÞ;
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in which

Skðq; aÞ ¼
Xq
r¼1

eðark=qÞ:

Then whenever h is a fixed positive number with hb 2, the asymptotic formula

X
nax

Rs;kðfðnÞÞh ¼ Afðs; hÞx2hðs=k�1Þþ1 þ oðx2hðs=k�1Þþ1Þð1:6Þ

holds for

sb 1� 1

2h

� �
k2ðlog k þ log log k þOð1ÞÞ:

Once again, we note that the existence of the limit Afðs; hÞ is assured by

Lemma 1 below for sb k þ 2. Finally, we recall that whenever sb 4k, one has

Ss;kðnÞX 1 for all integers n (see Theorem 4.6 of Vaughan [13]), so that Theorem

3 provides a proper asymptotic formula (1.6).

We refer the reader to our earlier paper [3] for a lengthy discussion con-

cerning the basic plan of attack on problems associated with exceptional sets

restricted to thin polynomial sequences. As in our earlier papers, the key idea is

to introduce an exponential sum that encodes information concerning abnormal

deviations from the expected asymptotic formula (1.1) within the sequence of

integers n under investigation. Mean value estimates involving this exponential

sum may then be exploited to good e¤ect, the preservation of underlying

arithmetic information representing a critical advantage of our approach over

more traditional applications of Bessel’s inequality.

Throughout, the letter e will denote a su‰ciently small positive number. We

take P to be the basic parameter, a large real number depending at most on e,

k, s, h, and any coe‰cients and degrees of implicit polynomials if necessary. We

use W and X to denote Vinogradov’s well-known notation, implicit constants

depending at most on e, k, s, h and implicit polynomials. Summations start at 1

unless indicated otherwise. In an e¤ort to simplify our analysis, we adopt the

following convention concerning the parameter e. Whenever e appears in a

statement, we assert that for each e > 0, the statement holds for su‰ciently large

values of the main parameter. Note that the ‘‘value’’ of e may consequently

change from statement to statement, and hence also the dependence of implicit

constants on e.
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2. Main Terms

No substantial di‰culty is involved in computations associated with the main

terms of the formulae that we aim to establish, and here we dispose of this routine

work in a form commonly applicable to all of our theorems. Thus we begin by

adopting the notation employed in the statement of Theorem 3, except that now

we suppose that fðtÞ is an integral polynomial of degree df with positive leading

coe‰cient af.

For a large real number x, we define

P ¼ fðxÞ1=k and f ðaÞ ¼
X

1amaP

eðamkÞ;ð2:1Þ

so that for 1a na x, we have

Rs;kðfðnÞÞ ¼
ð 1
0

f ðaÞseð�fðnÞaÞ da:

We then dissect the unit interval ½0; 1Þ in accordance with § 4.4 of Vaughan [13].

Let M denote the union of the intervals

Mðq; aÞ ¼ fa A ½0; 1Þ : jqa� ajaP1�k=ð2kÞg;

with 0a aa qaP=ð2kÞ and ða; qÞ ¼ 1. The contribution of M to the last in-

tegral is evaluated by Theorem 4.4 of Vaughan [13]. In fact, on writing

m ¼ ½0; 1ÞnM and Rs;kðn;mÞ ¼
ð
m

f ðaÞseð�naÞ da;ð2:2Þ

it follows from the latter theorem that if sbmaxf5; k þ 1g, then there exists

a positive real number d, depending at most on s and k, such that whenever

1a fðnÞa fðxÞ, one has

Rs;kðfðnÞÞ ¼
Gð1þ 1=kÞs

Gðs=kÞ Ss;kðfðnÞÞfðnÞs=k�1ð2:3Þ

þ Rs;kðfðnÞ;mÞ þOðfðxÞs=k�1�dÞ:

Here, we have written Ss;kðmÞ for the familiar singular series defined in the

statement of Theorem 3 above.

Our theorems follow from suitable information on the minor arc contribution

Rs;kðfðnÞ;mÞ, and we make this clear in the form of Lemma 2 below. In this

context, when h is a positive number and s is an integer with sb k þ 2, we define
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Dfðs; hÞ ¼
a
hðs=k�1Þ
f

dfhðs=k � 1Þ þ 1

Gð1þ 1=kÞs

Gðs=kÞ

� �h
Dfðs; hÞ;

where

Dfðs; hÞ ¼ lim
y!y

y�1
X
nay

Ss;kðfðnÞÞh:ð2:4Þ

In order to confirm the existence of the limit occurring in the definition of the

quantity Dfðs; hÞ, we must digress from the main path leading to Lemma 2

below.

Lemma 1. With the notation introduced above, when sb k þ 2 and h is a

positive number, the limit (2.4) exists, and whenever N is a large positive number,

one has

Dfðs; hÞ �N�1
X
naN

Ss;kðfðnÞÞh
�����

�����a ðlog NÞ�minf1;hg=ð4kÞ:

Moreover, for each positive number y,

X
naN

nySs;kðfðnÞÞh ¼
N yþ1

yþ 1
Dfðs; hÞ þOðN yþ1ðlog NÞ�minf1;hg=ð4kÞÞ:

Proof. We first note that for real numbers h, X and Y satisfying h > 0,

X b 0 and X þ Y b 0, we have

ðX þ YÞh � X h ¼ h

ðXþY

X

th�1 dt

a hjY j maxfX h�1; ðX þ Y Þh�1g;

provided that the latter expression is defined. When h > 1, we have

ðX þ Y Þh�1
WX h�1 þ jY jh�1, so

ðX þ YÞh � X h
W jY jh þ jX h�1Y j:ð2:5Þ

When 0 < ha 1, we see that if X > 2jY j > 0, then X þ Y > jY j and

ðX þ YÞh � X h
W jY jh;ð2:6Þ

while in circumstances wherein X a 2jY j or Y ¼ 0, the latter inequality holds

trivially. We note in addition that when X < 0 and X þ Y b 0, one has
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X þ Y aY and jX j < Y , and thus for h > 0 the trivial estimate

ðX þ YÞh � X h W ðX þ Y Þh þ jX jh again ensures that the estimates (2.5) and

(2.6) hold.

Next we recall some basic features of the analysis of singular series in

Waring’s problem. Define the truncated singular series Ss;kðm;QÞ by

Ss;kðm;QÞ ¼
X
qaQ

Xq
a¼1

ða;qÞ¼1

ðq�1Skðq; aÞÞseð�ma=qÞ:

Also, define the multiplicative function wkðqÞ by taking

wkðpukþvÞ ¼ kp�u�1=2; when ub 0 and v ¼ 1;

p�u�1; when ub 0 and 2a va k;

�

for prime numbers p, and non-negative integers u and v. Then according to

Lemma 3 of Vaughan [12], whenever a A Z and q A N satisfy ða; qÞ ¼ 1, one has

q�1Skðq; aÞWwkðqÞ, whence

Ss;kðmÞ �Ss;kðm;QÞW
X
q>Q

qwkðqÞs W
Xy
q¼1

ðq=QÞ1=ð2kÞqwkðqÞ s:

In view of our definition of wkðqÞ, it follows that when u and v are non-negative

integers, and p is a prime number, then for each exponent s with sb k þ 2, one

has

ðpukþvÞ1þ1=ð2kÞ
wkðpukþvÞs a ksp�u�5=4; when ub 0 and v ¼ 1;

p�u�3=2; when ub 0 and 2a va k:

�

Thus we see that

Ss;kðmÞ �Ss;kðm;QÞWQ�1=ð2kÞ
Y
p

1þ
Xy
l¼1

ðplÞ1þ1=ð2kÞ
wkðplÞs

 !

WQ�1=ð2kÞ
Y
p

1þ 4ksp�5=4
� �

WQ�1=ð2kÞ:

Here the product is implicitly restricted to run over prime numbers p. In

particular, since for each integer m one has 0aSs;kðmÞW 1, it follows from the

estimate (2.5) that when h > 1, one has
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X
nay

Ss;kðfðnÞÞh �
X
nay

Ss;kðfðnÞ;QÞhð2:7Þ

W
X
nay

ðQ�1=ð2kÞjSs;kðfðnÞÞjh�1 þQ�h=ð2kÞÞ

W yQ�minf1;hg=ð2kÞ;

whilst for 0 < ha 1, the concluding estimate follows in the same manner from

(2.6).

Observe next that as a function of n, it is apparent that

ðq�1Skðq; aÞÞseð�afðnÞ=qÞ

is periodic with period dividing df!q. Consequently, when Q is a natural number,

the function

Ss;kðfðnÞ;QÞ ¼
X
qaQ

Xq
a¼1

ða;qÞ¼1

ðq�1Sðq; aÞÞseð�afðnÞ=qÞ

is a periodic function of n with period dividing df!Q!. Write

Ts;kðQÞ ¼ 1

df!Q!

Xdf!Q!

n¼1

Ss;kðfðnÞ;QÞh:

Then we see that for y > ðdf!Q!Þ2, one has

X
nay

Ss;kðfðnÞ;QÞh � y

df!Q!

Xdf!Q!

n¼1

Ss;kðfðnÞ;QÞh
�����

�����
W
Xdf!Q!

n¼1

jSs;kðfðnÞ;QÞjh WQ!;

whence

X
nay

Ss;kðfðnÞ;QÞh � yTs;kðQÞ
�����

�����W y1=2:
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On substituting the latter estimate into (2.7), we find that when Q is a su‰ciently

large natural number, and y > ðdf!Q!Þ2, then

1

y

X
nay

Ss;kðfðnÞÞh � Ts;kðQÞ
�����

�����aQ�minf1;hg=ð3kÞ:ð2:8Þ

Given a positive number e, take Q to be a natural number with Q >

ð3=eÞ3k=minf1;hg. Then whenever y1 and y2 exceed ðdf!Q!Þ2, we deduce from (2.8)

that

1

y1

X
nay1

Ss;kðfðnÞÞh �
1

y2

X
nay2

Ss;kðfðnÞÞh
�����

�����a 2Q�minf1;hg=ð3kÞð2:9Þ

< e:

It follows that the sequence

1

y

X
nay

Ss;kðfðnÞÞh
 !y

y¼1

is a Cauchy sequence, and hence has a limit Dfðs; hÞ, as claimed in the first

assertion of the lemma. Moreover, on taking the limit as y2 ! y within (2.9), we

find that

1

y

X
nay

Ss;kðfðnÞÞh �Dfðs; hÞ
�����

�����a 2Q�minf1;hg=ð3kÞ:

Since we may take Q ¼ ½ðlog yÞ5=6�, we conclude that

1

y

X
nay

Ss;kðfðnÞÞh �Dfðs; hÞ
�����

�����a ðlog yÞ�minf1;hg=ð4kÞ;

and this completes the proof of the second assertion of the lemma.

The final assertion of the lemma follows at once from the second via partial

summation.

We next incorporate the singular series average into a mean value for

Rs;kðfðnÞÞ conditional on suitable control of moments of the minor arc con-

tribution.

Lemma 2. With the notation introduced above, if sb k þ 2 and

X
nax

jRs;kðfðnÞ;mÞjH ¼ oðxdfHðs=k�1Þþ1Þ;ð2:10Þ
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for some positive real number H, then for any h with 0 < haH, one has

X
nax

Rs;kðfðnÞÞh ¼ Dfðs; hÞxdfhðs=k�1Þþ1 þ oðxdfhðs=k�1Þþ1Þ:

Proof. Let c be the least natural number such that whenever nb c, one has

fðnÞb 1. Also, for the sake of concision, write

Xh ¼
X
nax

jRs;kðfðnÞ;mÞjh:

Then, in view of (2.3), we may argue as in (2.5) that when h > 1 we have

X
canax

Rs;kðfðnÞÞh �
X

canax

Gð1þ 1=kÞs

Gðs=kÞ Ss;kðfðnÞÞfðnÞs=k�1

� �h
ð2:11Þ

WXh þ xdfðs=k�1Þðh�1ÞX1 þ xdfhðs=k�1�dÞþ1:

Now, by Hölder’s inequality, we have Xg W xð1�g=HÞX
g=H
H whenever 0 < gaH.

So, by our assumption (2.10), we see that if 1 < haH, then the right hand side

of (2.11) is oðxdfhðs=k�1Þþ1Þ.
On the other hand, recalling the final conclusion of Lemma 1, the second

sum on the left hand side of (2.11) is seen to be

Dfðs; hÞxdfhðs=k�1Þþ1 þ oðxdfhðs=k�1Þþ1Þ:

Hence, the desired conclusion follows immediately from (2.11) when 1 < haH,

as the contribution of natural numbers n < c is obviously Oð1Þ.
When 0 < ha 1, we may proceed as above, but use (2.6) in place of (2.5).

We then get a formula similar to (2.11) without the term involving X1 on the right

hand side, and we again obtain the desired formula when 0 < haminf1;Hg,
appealing to (2.10). We thus complete the proof of the lemma.

3. Waring’s Problem for Cubes

We come to the central part of the paper, and in this section prove Theorems

1 and 2. Therefore, setting k ¼ 3, we adopt the notation introduced in the

preamble to Lemma 1. Note in particular that now

f ðaÞ ¼
X

1amaP

eðam3Þ:

We first provide useful mean value estimates in certain generality.
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Lemma 3. Let ðhnÞ be a sequence of complex numbers with jhnja 1, let Z be

a set of natural numbers, and write Z for the cardinality of Z. Also let f be an

integral polynomial with degree at least 2, and define

KðaÞ ¼
X
n AZ

hneðafðnÞÞ:

Then, one has ð1
0

j f ðaÞKðaÞj2 daWPZ þ P2ðlog PÞ2;ð3:1Þ

as well as ð1
0

j f ðaÞKðaÞj2 daWPZ þ P4=3þe þ Z2:ð3:2Þ

Proof. The inequality (3.1) is quite similar to (2.15) of [4], but here we need

to handle the divisor function a bit more precisely. By orthogonality, the integral

estimated in the lemma is bounded above by the number of solutions of the

equation

m3
1 �m3

2 ¼ fðn1Þ � fðn2Þ;ð3:3Þ

with 1am1;m2 aP and n1, n2 A Z. When m1 ¼ m2, this equation implies either

that n1 ¼ n2 or that n1 and n2 are both Oð1Þ, whence the number of solutions of

this type is OðPZÞ. So, on writing U for the number of solutions in question with

m1 > m2, we find by symmetry thatð1
0

j f ðaÞKðaÞj2 daWPZ þU :ð3:4Þ

For solutions counted by U , we put z ¼ m1 þm2 and w ¼ m1 �m2. We then

have 1 < za 2P and 1awaP, and the equation turns into

wð3z2 þ w2Þ ¼ 4ðfðn1Þ � fðn2ÞÞ:

Since the polynomial on the right hand side is divisible by n1 � n2, and the degree

of our polynomial f is at least two, we see that for each given pair of integers z

and w, there are at most Oðtðwð3z2 þ w2ÞÞÞ choices for n1 and n2 satisfying the

latter equation, where tðnÞ denotes the divisor function. Hence we have

U W
X
waP

X
za2P

tðwð3z2 þ w2ÞÞa
X
waP

tðwÞ
X
za2P

tð3z2 þ w2Þ:ð3:5Þ
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In order to estimate the last double sum, we begin by evaluating the sum

U1ðw;X Þ ¼
X
zaX

ðz;wÞ¼1

tð3z2 þ w2Þ;

for a natural number waX and a parameter X b 2. Plainly we have

U1ðw;X Þa 2
X
zaX

ðz;wÞ¼1

X
djð3z2þw2Þ
da

ffiffiffiffiffiffiffiffiffiffiffiffi
3z2þw2

p

1a 2
X
da2X

X
zaX

ðz;wÞ¼1

3z2þw210 ðmod dÞ

1:

In the last innermost sum, we sort z according to its residue class modulo d,

noting that in view of the summation conditions, every z necessarily belongs to a

reduced residue class modulo d. Thus we have

U1ðw;XÞW
X
da2X

X
1aaad
ða;dÞ¼1

3a21�w2 ðmod dÞ

X
zaX

z1a ðmod dÞ

1WX
X
da2X

awðdÞ
d

;ð3:6Þ

where, as is apparent, we denote by awðdÞ the number of integers a satisfying

1a aa d, with ða; dÞ ¼ 1 and 3a2 1�w2 ðmod dÞ.
One may swiftly confirm that awðdÞ is multiplicative with respect to d. So we

naturally consider the case where d is a prime power, and hereafter reserve the

letter p to denote a prime. Then we may easily recognise that awðpnÞ ¼ 0 in the

following three cases: (i) p ¼ 2 and nb 3, (ii) p ¼ 3 and nb 2, (iii) pjw, p0 3

and nb 1. Moreover, by the standard theory of quadratic residues, when pFw,

p > 3 and nb 1, we may express awðpnÞ using the Legendre symbol as

awðpnÞ ¼ 1þ �3

p

� �
¼ 1þ p

3

� �
:

Hence, from (3.6), we derive the estimate

U1ðw;XÞWX
Y

pa2X

1þ
Xy
n¼1

awðpnÞ
pn

 !
WX

Y
pa2X

p11 ðmod 3Þ

1þ 2

p

� �
:

Since we know that

X
pa2X

p11 ðmod 3Þ

1

p
¼ 1

2
log log X þOð1Þ;
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we have

U1ðw;X ÞWX exp 2
X
pa2X

p11 ðmod 3Þ

1

p

0
BB@

1
CCAWX log X :

Having acquired the last bound for U1ðw;XÞ, we go back to (3.5), and sort

the double sum according to the value of l ¼ ðw; zÞ, putting w ¼ lw 0 and z ¼ lz 0.

Then, recalling in addition a basic estimate for the mean value of the divisor

function, we obtain

U W
X
laP

tðlÞ3
X

w 0aP=l

tðw 0ÞU1 w 0;
2P

l

� �

WPðlog PÞ
X
laP

tðlÞ3

l

X
w 0aP=l

tðw 0Þ

WP2ðlog PÞ2
X
laP

tðlÞ3

l 2
WP2ðlog PÞ2:

The estimate (3.1) now follows at once from (3.4).

To establish (3.2), we estimate U in a di¤erent way. Let BðPÞ be the set of

natural numbers b with the property that there exist at least two distinct integers

m1 and m2 satisfying b ¼ m3
1 �m3

2 , with 1am2 < m1 aP. It is a consequence of

work of Heath-Brown [9] that there are at most OðP4=3þeÞ solutions of the

diophantine equation m3
1 �m3

2 ¼ m3
3 �m3

4 , subject to 1amj aP ð1a ja 4Þ,
and for which m1 0m2 and ðm1;m2Þ0 ðm3;m4Þ. From this we deduce that the

cardinality of BðPÞ is OðP4=3þeÞ.
Now, recalling that the polynomial f has degree at least two, and that

fðn1Þ � fðn2Þ is divisible by n1 � n2, one finds via an elementary estimate for the

divisor function that for each b with 1a baP3, there are OðP eÞ integers n1 and

n2 satisfying b ¼ fðn1Þ � fðn2Þ. A similar assertion may be confirmed concerning

the equation b ¼ m3
1 �m3

2 . Consequently, the number of solutions of (3.3) with

fðn1Þ � fðn2Þ A BðPÞ is OðP4=3þeÞ. On the other hand, by the definition of BðPÞ,
for any n1; n2 A Z with 0 < fðn1Þ � fðn2Þ B BðPÞ, there is at most one pair of

integers m1 and m2 satisfying (3.3). Thus the number of solutions counted by

U with fðn1Þ � fðn2Þ B BðPÞ cannot exceed Z2. We may therefore conclude

that U WP4=3þe þ Z2, and in view of (3.4), we obtain the estimate (3.2). This

completes the proof of the lemma.
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The proof of Theorem 1. We use the notation introduced in the preamble

to Lemma 1, and set k ¼ 3 and df ¼ 2, so that (2.1) yields P3=2 W xWP3=2. We

aim to show that for any fixed small positive number d, one has

X
nax

jR6;3ðfðnÞ;mÞj2 WP15=2ðlog PÞd�3=2;ð3:7Þ

and

X
nax

jR7;3ðfðnÞ;mÞj4 WP35=2ðlog PÞd�15=2:ð3:8Þ

On making use of the conclusion of Lemma 2, parts (i) and (ii) of Theorem 1

follow from the respective bounds (3.7) and (3.8).

For s ¼ 6 or 7, and for na x, we define the complex numbers hn by means of

the equation

jRs;3ðfðnÞ;mÞj ¼
ð
m

f ðaÞseð�afðnÞÞ da
����

����
¼ hn

ð
m

f ðaÞseð�afðnÞÞ da;

unless Rs;3ðfðnÞ;mÞ ¼ 0, in which case we take hn ¼ 0. Plainly, one always has

jhnja 1. Further, for T > 0, we define

ZsðTÞ ¼ fna x : T < jRs;3ðfðnÞ;mÞja 2Tg;

write ZsðTÞ for the cardinality of ZsðTÞ, and introduce the function

KT ; sðaÞ ¼
X

n AZsðTÞ
hneðafðnÞÞ:

On recalling (2.2), we then have

ZsðTÞT W
X

n AZsðTÞ
jRs;3ðfðnÞ;mÞj ¼

ð
m

f ðaÞsKT ; sð�aÞ da;

from which, by applying Schwarz’s inequality, we infer that

ZsðTÞT W sup
a Am

j f ðaÞj
� �s�5 ð

m

j f ðaÞj8 da
� �1=2

ð3:9Þ

�
ð1
0

j f ðaÞKT ; sðaÞj2 da
� �1=2

:
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We next note that by incorporating the bounds for Hooley’s D-function

supplied by Hall and Tenenbaum [8] into the proof of Lemma 1 of Vaughan [11],

one may confirm the estimate

sup
a Am

j f ðaÞjWP3=4ðlog PÞ1=4þe:

In addition, we recall that Boklan [1] showed thatð
m

j f ðaÞj8daWP5ðlog PÞe�3:ð3:10Þ

Substituting these results into (3.9) together with the estimate (3.1) of Lemma 3,

we find that

ZsðTÞT WP3ðs�1Þ=4ZsðTÞ1=2ðlog PÞðs�11Þ=4þe þ Pð3s�1Þ=4ðlog PÞðs�7Þ=4þe;

whence

ZsðTÞWP3ðs�1Þ=2ðlog PÞðs�11Þ=2þe
T�2 þ Pð3s�1Þ=4ðlog PÞðs�7Þ=4þe

T�1:ð3:11Þ

Using the estimate (3.2) of Lemma 3 in place of (3.1) here, we also deduce from

(3.9) that

ZsðTÞT WP3ðs�1Þ=4ZsðTÞ1=2ðlog PÞðs�11Þ=4þe

þ P3s=4�7=12þe þ Pð3s�5Þ=4ðlog PÞðs�11Þ=4þe
ZsðTÞ:

Let d be any fixed positive number, and write

Ts ¼ Pð3s�5Þ=4ðlog PÞðs�11þdÞ=4:

Then the final term on the right hand side of the last inequality is irrelevant in

circumstances in which T bTs, because we may suppose that e is su‰ciently

small in comparison with d. Therefore, provided that T bTs, we have

ZsðTÞWP3ðs�1Þ=2ðlog PÞðs�11Þ=2þe
T�2 þ P3s=4�7=12þeT�1:ð3:12Þ

Now we concentrate on the proof of part (i) of Theorem 1. First we appeal

to (3.12) with s ¼ 6, and obtainX
n AZ6ðTÞ

jR6;3ðfðnÞ;mÞj2 WZ6ðTÞT 2ð3:13Þ

WP15=2ðlog PÞe�5=2 þ P47=12þeT ;

provided that T bT6 ¼ P13=4ðlog PÞðd�5Þ=4.
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Next we derive an upper bound for jR6;3ðfðnÞ;mÞj. Recalling (3.10) and the

bound ð1
0

j f ðaÞj4 daWP2ð3:14Þ

that follows from Hooley [10], an application of Schwarz’s inequality reveals that

jR6;3ðfðnÞ;mÞja
ð1
0

j f ðaÞj4 da
� �1=2 ð

m

j f ðaÞj8 da
� �1=2

WP7=2ðlog PÞe�3=2:

So Z6ðTÞ is empty for T bP7=2. Therefore, putting T ¼ 2 lT6 and summing the

inequality (3.13) over integers l for which T6 aT aP7=2, we obtain

X
nax

jR6; 3ðfðnÞ;mÞjbT6

jR6;3ðfðnÞ;mÞj2 WP15=2ðlog PÞe�3=2:ð3:15Þ

To treat the case where T aT6, we use (3.11), and find thatX
n AZ6ðTÞ

jR6;3ðfðnÞ;mÞj2 WZ6ðTÞT 2

WP15=2ðlog PÞe�5=2 þ P17=4ðlog PÞe�1=4
T :

Putting T ¼ 2 lT6 again, and summing up the latter inequality this time for all

integers l with 1aT < T6, we secure the bound

X
nax

2<jR6; 3ðfðnÞ;mÞjaT6

jR6;3ðfðnÞ;mÞj2 WP15=2ðlog PÞeþd=4�3=2:ð3:16Þ

As the terms with jR6;3ðfðnÞ;mÞja 2 are negligible, the desired bound (3.7)

is a consequence of (3.15) and (3.16), and part (i) of Theorem 1 follows from

Lemma 2.

We next turn to part (ii) of Theorem 1. Applying (3.12) with s ¼ 7, we find

that X
n AZ7ðTÞ

jR7;3ðfðnÞ;mÞj4 WZ7ðTÞT 4ð3:17Þ

WP9ðlog PÞe�2
T 2 þ P14=3þeT 3;

provided that T bT7 ¼ P4ðlog PÞd=4�1.

400 Jörg Brüdern, Koichi Kawada and Trevor D. Wooley



We can obtain an upper bound for jR7;3ðfðnÞ;mÞj from (3.10) and (3.14) as

before, but here we expend a little e¤ort to establish a slightly sharper bound.

Following Vaughan [11], we define J to be the set of ordered pairs ðm1;m2Þ such
that m1 aP, m2 aP, the greatest common divisor of m1 and m2 is at most

ðlog PÞ80, and neither m1 nor m2 has a prime divisor p with ðlog PÞ80 < paP1=7.

Then, by the methods of Vaughan [11] (see the argument on pp. 137–138 of [11]),

one obtains

ð
m

���� XX
m1;m2aP
ðm1;m2Þ BJ

eðam3
1 � am3

2Þ
����j f ðaÞj6 daWP5ðlog PÞ�18:

On combining this bound with (3.10) and (3.14) within an application of Hölder’s

inequality, one finds that

ð
m

���� XX
m1;m2aP
ðm1;m2Þ BJ

eðam3
1 � am3

2Þ
����
1=2

j f ðaÞj6 dað3:18Þ

W

ð1
0

j f ðaÞj4 da
� �1=4 ð

m

j f ðaÞj8 da
� �1=4

�
�ð

m

���� XX
m1;m2aP
ðm1;m2Þ BJ

eðam3
1 � am3

2Þ
����j f ðaÞj6 da

�1=2

WP17=4ðlog PÞ�9:

Next, by appealing to the linear sieve as in the conclusion of the proof of

Theorem B of Vaughan [11], one may see that there are at most OðPðlog PÞe�1Þ
natural numbers up to P without prime divisors in the interval ððlog PÞ80;P1=7�.
By considering the underlying diophantine equation, we deduce from Lemma 2 of

Vaughan [11] that

ð 1
0

���� XX
ðm1;m2Þ AJ

eðam3
1 � am3

2Þ
����
2

daWP2ðlog PÞe�2:

A swift application of Hölder’s inequality therefore leads from (3.10) to the

estimate
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ð
m

���� XX
ðm1;m2Þ AJ

eðam3
1 � am3

2Þ
����
1=2

j f ðaÞj6 dað3:19Þ

W

�ð1
0

���� XX
ðm1;m2Þ AJ

eðam3
1 � am3

2Þ
����
2

da

�1=4 ð
m

j f ðaÞj8 da
� �3=4

WP17=4ðlog PÞ e�11=4:

Since

j f ðaÞj2 ¼
XX
m1;m2aP
ðm1;m2Þ BJ

eðam3
1 � am3

2Þ þ
XX
ðm1;m2Þ AJ

eðam3
1 � am3

2Þ;

it follows from (3.18) and (3.19) that

jR7;3ðfðnÞ;mÞja
ð
m

j f ðaÞj7 daWP17=4ðlog PÞe�11=4;ð3:20Þ

whence Z7ðTÞ is empty for T bP17=4ðlog PÞðd�11Þ=4. Therefore, putting T ¼ 2 lT7

and summing (3.17) over integers l for which T7 aT aP17=4ðlog PÞðd�11Þ=4, we

obtain

X
nax

jR7; 3ðfðnÞ;mÞjbT7

jR7;3ðfðnÞ;mÞj4 WP35=2ðlog PÞeþðd�15Þ=2:ð3:21Þ

For T aT7, we use (3.11) with s ¼ 7, and find that

X
n AZ7ðTÞ

jR7;3ðfðnÞ;mÞj4 WZ7ðTÞT 4
WP9T 2

7 þ P5þeT 3
7 WP17þe:

It follows easily from this that the contribution of numbers n with jR7;3ðfðnÞ;mÞj
aT7 to the left hand side of (3.8) is at most OðP17þeÞ. The upper bound (3.8)

now follows from (3.21), and then part (ii) of Theorem 1 follows by applying

Lemma 2. In this way, we complete the proof of Theorem 1.

The proof of Theorem 2. We adopt the notation employed in the proof of

Theorem 1 above, fixing s ¼ 7, save that f is now supposed to be an integral

cubic polynomial. Since f is cubic in the situation at hand, it follows from (2.1)

that
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PW xWP:ð3:22Þ

This change has no e¤ect, in particular, on the argument leading to (3.12), and

we may therefore infer that for T bT7 ¼ P4ðlog PÞd=4�1, one hasX
n AZ7ðTÞ

jR7;3ðfðnÞ;mÞj2 WZ7ðTÞT 2

WP9ðlog PÞe�2 þ P14=3þeT :

On noting that (3.20) remains valid in the current situation, we may put T ¼ 2 lT7

and sum the last inequality over integers l for which T7 aT < P17=4. Thus we

deduce that X
nax

jR7; 3ðfðnÞ;mÞjbT7

jR7;3ðfðnÞ;mÞj2 WP9ðlog PÞe�1:

Moreover, in view of (3.22), it is apparent that

X
nax

jR7; 3ðfðnÞ;mÞjaT7

jR7;3ðfðnÞ;mÞj2 W xT 2
7 WP9ðlog PÞd=2�2:

Consequently, we find that

X
nax

jR7;3ðfðnÞ;mÞj2 WP9ðlog PÞe�1:

On noting that in the current situation, we have df ¼ 3, and recalling (3.22), the

conclusion of Theorem 2 follows from Lemma 2.

4. Waring’s Problem for Larger Exponents

We close this paper by proving Theorem 3 using an argument similar to that

employed in the preceding section. We again adopt the notation introduced in the

preamble to Lemma 1, but here we suppose that k is a su‰ciently large integer,

and set df ¼ 2. Thus f is an integral quadratic polynomial with positive leading

coe‰cient, so that from (2.1) one has Pk=2 W xWPk=2. By virtue of Lemma 2,

the asymptotic formula (1.6) will follow once we have established an estimate of

the shape

X
nax

jRs;kðfðnÞ;mÞjh WPhðs�kÞþk=2�x;ð4:1Þ

for some positive number x.
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As before, we define the complex numbers hn by means of the equation

jRs;kðfðnÞ;mÞj ¼
ð
m

f ðaÞseð�afðnÞÞ da
����

����
¼ hn

ð
m

f ðaÞseð�afðnÞÞ da;

unless Rs;kðfðnÞ;mÞ ¼ 0, in which case we take hn ¼ 0. Thus, for each natural

number n, we have jhnja 1. Also, for T > 0, we introduce the set

ZðTÞ ¼ fna x : T < jRs;kðfðnÞ;mÞja 2Tg;

we write ZðTÞ for the cardinality of ZðTÞ, and we define the function

KT ðaÞ ¼
X

n AZðTÞ
hneðafðnÞÞ:

With these definitions in hand, an application of Hölder’s inequality reveals that

ZðTÞT a
X

n AZðTÞ
jRs;kðfðnÞ;mÞj ¼

ð
m

f ðaÞsKT ð�aÞ dað4:2Þ

W

ð1
0

jKTðaÞj2h da
� �1=ð2hÞ ð

m

j f ðaÞj2hs=ð2h�1Þ
da

� �1�1=ð2hÞ
:

In the first part of this series of papers [3], we established an estimate

tantamount to ð1
0

jKTðaÞj4 daWZðTÞ2P e

(see (3.16) of [3]). Making use of this inequality and the trivial bound

jKT ðaÞjaZðTÞ, we derive for hb 2 the upper boundð1
0

jKTðaÞj2h daaZðTÞ2h�4

ð 1
0

jKT ðaÞj4 daWZðTÞ2h�2
P e:ð4:3Þ

Moreover, one may apply the conclusions of Ford [7] to show thatð
m

j f ðaÞju daWPu�k�x;ð4:4Þ

for some x > 0, provided that u > k2ðlog k þ log log k þOð1ÞÞ. Indeed, by the

computation leading to the estimate (4.25) of [4], we see that provided one has
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u > 2k
1

2
kðlog k þ log log k þ 1Þ

� 	
þ 6k2;

then (4.4) holds with x ¼ ð5 log kÞ�1. Here, as usual, we have written dXe for the

least integer n with nbX . In the application at hand, we take u ¼ 2hs=ð2h� 1Þ.
Then for large values of k, the last condition is satisfied if, for example, one has

sb 1� 1

2h

� �
k2ðlog k þ log log k þ 8Þ:ð4:5Þ

We insert the bounds (4.3) and (4.4) into (4.2), and with a modicum of

computation we infer that

ZðTÞ1=hT WPs�ð2h�1ÞðkþxÞ=ð2hÞþe:

From this we deduce that

X
n AZðTÞ

jRs;kðfðnÞ;mÞjh WZðTÞT h
WPsh�khþk=2�ðh�1=2Þxþe:

On noting the trivial bound jRs;kðfðnÞ;mÞjaPs, and observing that the terms

with jRs;kðfðnÞ;mÞja 1 are negligible, the desired bound (4.1) follows for each

hb 2, and exponents s satisfying (4.5), on putting T ¼ 2 l , and summing this

inequality over integers l with 0a la 2s log P. Hence, in view of Lemma 2, the

conclusion of Theorem 3 follows at once.
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