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REPRESENTATIONS OF NATURAL NUMBERS
AS THE SUM OF A PRIME AND A i£-TH POWER

By

Jorg BRUDERN

Abstract. Subject to the Riemann hypothesis for Dirichlet L-
functions an asymptotic formula is obtained for the number of
representations of a natural number n as the sum of a prime and a
k-th power, valid for almost n. Estimates for the error term in the
asymptotic formula as well as for the size of the exceptional set are
of a smaller order of magnitude than was known previously.

1. Introduction

We return to the questions investigated in collaboration with Perelli [2], and
reexamine sums of a prime and a k-th power where k > 2 is a fixed integer. Here
we are concerned with the number of representations in this form. When # is a
natural number, let

ri(n) = Z log p

p+xk=n

where the sum is over all primes p and all natural numbers x. Likewise, let

ri(n)= Y (log pi)(log p2)

D1 +P2k =n

where now the sum is over all primes p;, p». According to a widely accepted
philosophy, one expects asymptotic formulae for r,(n) and r{(n) that coincide
with the major arc contributions in a formal application of the circle method.
In order to describe the main terms in these asymptotics precisely, we require
some notation. Let o(n, p) denote the number of incongruent solutions of the
congruence

x* =1 mod D, (1)
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and let o*(n, p) denote the number of those solutions of (1) where p 4 x. The
numbers o(n, p) and o*(n, p) of course also depend on k, but this is suppressed
here for notational simplicity. Let .#; denote the the set of all natural numbers n
for which the polynomial x¥ — n is irredicible over the rationals. Note that when
n is a natural number, then x* —n is reducible if and only if n = m? for some
prime p|k (see, for example, Lang [7] Chapter VI, Theorem 9.1), and conse-
quently .#; contains all but O(N'/?) of the natural numbers not exceeding N.
Only when n € .4, we may expect that ri(n) is large. Indeed, when n € .4, the
singular products

1 — en:p) 1— @*(n-,fv)
ek(”)znﬁ, @Z(”)Znﬁ (2)
P p p p

converge as a consequence of the prime ideal theorem, and the expected
asymptotic formulae take the shape

rie(n) = Se(mn' (1 +0(1)),  ri(n) = S;(m)n" (1 + o(1)). 3)

However, we are far from being able to prove these formulae. All what is
currently known is that

log log N
(n) =G k(' —= e
rr(n) x(n)n ( +O( log N ))

holds for all n € .7, with at most O(N/(log N)) exceptions n < N; here 4 > 0 is
any fixed real number. This much follows from Miech [8] and Kawada [5], or
Perelli and Zaccagnini [9], and a corresponding result for r;(rn) is at least implicit
in these sources. Because of the possible existence of Siegel zeros, there is little
hope for improvements. However, if we assume that the Generalized Riemann
Hypothesis (hereafter abbreviated to GRH) is true (that is, all non-trivial zeros of
Dirichlet L-functions lie on the line Re s =1), then both the error term and the
exceptional set may be significantly reduced.

THEOREM. Suppose that GRH holds. Then, for any k =2 the asymptotic
formulae

re(n) = Sy (n)n'/k + O(n'/k=1/(6000k%))
ri(n) = S (n)n'/*  O(n'/k1/(60006%),

hold for all but O(N'=Y©00K)) o the natural numbers n € Ji not exceeding N.
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Kawada [5] observed that for n €., one has S;(n) > (log n)™*. Hence the
theorem implies that all but O(N'~1/(6000k)y of the n not exceeding N are the
sum of a prime and a k-th power. This is weaker than Theorem 1 of Briidern and
Perelli [2] that asserts that subject to GRH, no more than O(N'~1/(2%) of the
natural numbers not exceeding N are not the sum of a prime and a k-th power.
However, our result is in line with the general observation, familiar from
Waring’s problem, that the price for the step from representations to asymptotics
is a factor k.

The singular product &) (n) of course vanishes occasionally due to local

obstructions. Let we =],

Hy={neIJp:(n—1,w) =1}

1k D and let

Only when n € J#, one may expect r;(n) to be large. Of course J has positive
density, and for n e #} one again has &} (n) > (logn)™*. We now derive from
the theorem that all but O(N'~1/(600k%)) f the numbers n € # not exceeding N
have a representation n = p; + pX with primes p;, p,. This improves Theorem 2
of Briidern and Perelli [2] where an estimate O(N'~¢/(k*1°2k)) with some ¢ > 0
was obtained for the size of the exceptional set in this representation problem.

The methods that we use are not dissimilar from the general framework of
[2], but we shall have occasion to refer to two sources that were not available
when [2] was written. The work of Kawada [6] deals with the singular product
Sk (n), and is very relevant for us. Moreover, work of Ford [3] plays a role in a
crucial pruning process within the circle method work in §3. We explain the
mechanism behind this at a later stage.

Notation is standard or otherwise introduced when appropriate. Occas-
sionally we make use of the ¢-convention: whenever ¢ appears in a statement, it is
asserted that the statement is true for all real &> 0; implicit constants may
depend on &. We also write e(o) as an abbreviation for exp(2mia). The letter p
always denotes a prime.

2. A Mean Square Estimate

We prove the theorem with the aid of the circle method. The beginning is
conventional. Let

f(@) =" (log p)e(op).

P<N

We write P = Nk and then also put
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glo) =Y e(ox®), g7(@) = (log p)e(ep”).

x<P p<P

By orthogonality, it follows that whenever 1 <n < N, one has
1
() = | £@()e(-om) da @)

The same formula holds for r/(n) if g(a) is replaced by g*(«). We now ap-
proximate r(n) and r;(n), in mean square, by the major arc contribution. Before
we can do this, we need to define the Gauss sums

as well as the sums

o) = 3 e(Br), w(h) =73 e(px/i

x<N x<P

The following lemma is useful.

LemMa 1. Assume GRH. Let (a,q) = 1. Then

a _ M) 12+
f@+@ B0 0()+ O((aN) (1 + NIBI)

Moreover, if k>2 and q is square-free, then

a _S(g,9) w 1/2+¢ 12
gQ+@— L9 (8) + Ol (1 + NIg) )

and

«fa _S*(Qaa) W 1/2+¢ 1/2
g(fw)—¢@ (B) + O((¢P) (1 + NIB)2).

Proor. The formula for g(%—kﬁ) follows from Theorem 4.1 of Vaughan
[10]. The formulae for f (?I—i—ﬂ) and g*(§+ [)’) are essentially contained in
Lemmata 2 and 3 of Briidern and Perelli [2]. However, in [2] the sums f() and
g*(o) are over a dyadic range (like N < p <2N), and the sums v(f), w(f) are
replaced by their integral analogues. Yet, it is clear that the methods of [2] in
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conjunction with Euler’s summation formula completely cover the needs to
establish the current version of Lemma 1.

Let 1 <X < 1V/N, and let M(X) denote the union of the intervals

{ae0,1]:|qx—al < XN} (5)
with (a,q9) =1, 1 < ¢ < X. Note that these intervals are pairwise disjoint. For
simplicity, we write

M=MNY), m=[0,1\M.
For later use, we record here that the argument on p. 518 of Briidern and Perelli
[2] gives

sup | f(a)| « N7/8+¢, (6)

dEM

We are now prepared to introduce a first approximation to ri(n) and rj(n). When
weM is in the interval defined by (5) with X = N1/4, let

- ()

- )

() = J

M

and write

V(a)e(—an) do, (o) = J V*(o)e(—om) do. (7)

M

LemMA 2. Assume GRH. Then, for all k > 2 one has

S r(n) — te(m)|* << PAN!TV/G0),

n<N

*

The same is true if 1y, tx are replaced by rf, t;.

In the interest of expository simplicity, we present a detailed proof only of
the version with r;, 7/ and leave the (simple) changes required for the other
part of Lemma 2 to the reader. The main difficulty is that the major arcs IN
are extraordinarily ‘“‘thick” for a k-th power. Hence, the bulk of the work is a
pruning of the major arcs that we perform in section 4, after removing the minor
arcs in the next section.
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3. Proof of Lemma 2: First Steps

Consider the function, defined on [0, 1], that is given by f(«)g*(«) when
aem, and by f(a)g*(a) — V*(x) when ae . Its n-th Fourier coefficient is
ri(n) — ti(n), as a consequence of (4) and (7). Hence, by Bessel’s inequality,

S i)~ 00 < | 0" P dot [ 17" = V@ da (8)

n<N pile

In this section, we estimate the minor arc part of the right hand side of (8). Let
0> 0 be a fixed real number; we assume throughout that J is small. Take

s = [2 — log d]k*. )

Then, by combining a classical version of Vinogradov’s mean value theorem
(Vaughan [10], Theorem 5.1) with Theorem 1 of Ford [3], we obtain for each
integer m with 1 <m < k the estimate
1
J |g(OC)|2S do <« P2S—k+A/ﬂ1
0
where
1
A= 5k2 exp(—(2s — 2k —m(m — 1)) /(2k?)) < ok>.
We take m = k and then deduce that
1 o
J l9()]% <« PENT, (10)
0
On considering the underlying diophantine equations, we conclude that

1 1
J lg™ () |* do < (log N)ZXJ lg(o0)|* dow < (P log N)*N°~". (11)
0 0

We now apply Holder’s inequality in the form

1-1/s 1 1/s
(j 9" (@) d«) .

By Parseval’s identity, the first integral on the right hand side here does not
exceed O(N log N). Hence, by (6) and (11), we now infer the bound

|/ (2)g" ()| der < sup |f ()] 1 |/ (@)]* do
I ([

oEem 0
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J 1/ (2)g*(2)]? doe <« N/*(N log N)!7V¥(P log N)>N (/901

« le(l/s)(l/47(5) (lOg N)3P2-

We may now take J = ¢ ® and s = 10k? in accordance with (9) to confirm the
estimate

J |/ (2)g*(o)|* dor < N1=1/ (0K p2 (12)

that suffices for our purposes.
We now turn our attention to the second term on the right hand side of (8).
It is straightforward to estimate the contribution from the “pruned arcs”

N =MP'P).
In fact, by Lemma 1 we see that for o € 9t one has
f(2)g* () — V(o) < NPY3F2,

and hence, since 9t has measure O(P/*N-1),
Jm £ (0)g" (@) — V*(2)]2 do « NP2+ (13)

Note that the bound (13) is much smaller than the right hand side of (12). Hence,
it now remains to consider the “intermediate arcs” Mi\9t. This is often the most
difficult part, as is the case here. We use the elementary inequality

J If(oc)g*(a)—V*(a)lzda«J |f<a>g*<a>|2da+j Vi) do, (14)
M\N M\ M\ N

and estimate the two terms on the right hand side of (14) in the next section.

4. A Pruning Exercise

The treatment of the set M\ depends on our pruning lemma [1] for which
we now prepare the scene. When o € 9t is in the interval (5) (with X = N'/4), let

Y(2) = (q+ Nlgo — a]) ™" (15)

This defines Y (o) for o € M. For these o, Lemma 1 combined with elementary
estimates shows
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f(o) « (o(q)_'N<1 + N|o —ng + v/¢N(log N)2<1 +N

)
a__
q

« N'™oY (). (16)

It is perhaps worth pointing out that at this point GRH is indispensable, at the
current state of knowledge. Unconditional versions of (16) would involve Y(oc)l/ 2
rather than Y(«), and this is too weak to be of use in the argument below.
We cover the set M\ by O(log N) sets M(2X)\M(X) with P1/8 < X < N4,
For o€ M2X)\M(X) it follows from (16) that one has | (x)|* « NZX 1Y (),

and hence, for some X in the aforementioned range

j ()9 (@) der <« N>+ X! j Y(@)lg" ()2 do
M\RN M2x)

By Lemma 2 of Briidern [1] (with ¥(x) = |g*(2)]?), we find that

1
[ Y@@ dxen (x [ 1o dn+ o O)F)
M(2X) 0

« N¥*Y(XP + P?),
and therefore, with X as before,
J |f(0)g*()|* dow < N'**(P 4+ X' P?) « N'*TepI3/8, (17)
MR
The treatment of 7*(«) is elementary. By Lemma 5 of Hua [4] one has

S*(q,a) < q'/*+
follows that

when (a,q) = 1, and hence, by Lemma 2.6 of Vaughan [10] it

V*(a) < N'FePY () 1

holds for o€ M. A routine argument involving only straightforward estimates
then yields

J V7% () dox << N1+ P21/, (18)
M\RN

By (18), (17), (8), (12) and (14), the part of Lemma 2 relating to rj(n) now
follows. Almost all of the above estimates remain valid with the stars removed,
and in that case the work of §3 may even be simplified somewhat. This completes
the proof of Lemma 2.
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5. A Further Preparation of the Main Term

On writing

Higm) = Z saae(-2), man = Y sae(-2),

(a,9)=1 (a,9)

we define the truncated singular series by

N D) e e )
6k( 7M)*q;/[q¢(q)H(q> )7 6](( 7M) q;4§0((1)2H (qv ),

and may then annouce a counterpart of Lemma 2.

LEMMA 3. One has

> lin) = Si(n, NP < NP2,

n<N

and the same is true with t and Sy replaced by t; and S;.
Note that Lemma 3 is independent of GRH. We again give a detailed proof

only for the star version of Lemma 3, and leave (most) alterations for the other
case to the reader. We begin by defining the intervals

{oce[O, 1] :

a—g‘ £N2/3}
q

and note that these intervals with 0 <a<q<N'4 (a,q)=1 are pairwise
disjoint. Their union is denoted by K. Then 9t < K, and the definition of the
functions V' and V* on M extend naturally to K& We then put

up(n) = JR V(a)e(—an) do, uj(n) = JR V*(a)e(—on) da.
Then
G i = [ v e da

and hence, by Bessel’s inequality,
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S Jugn) — ()] < me V(@) da.

n<N

The bound for V*(«) used in §4 is still valid on &, and so,

Z |uy (n) — (n)|* « N2+3P2J Y(a)2+2/k da
KM

n<N
=y 2-2/k
&« N°? qg J L dp
q§/4 g N3/
« (NP2 ANV/A+e o NV p3/2, (19)

A similar estimate holds for ui(n) — #(n), and the proof is essentially identical.
Next, we evaluate u(n) and u; (n). Recalling the definitions of V" and V*, we
have

N-2/3
) = SN [ ol pwlpre=p) ap.
and this is also true with u;, €/ in place of ux, S. By orthogonality, we have

12
|| oBmBet-pn) dp = 3" mtt =t o(1),

71/2 m<n
and
1/2 .
J o(B)w(p)e(—pn) dff < J BIVE « NHGR),
N7 N-2/3
It follows that
ue(n) = Sy (n, NV4) (n'/F + O(N=2/BR)Y),

and again the star version of this evaluation also holds. From (31), (34) and (37)
of Briidern and Perelli [2] we have H*(q,n) « q'** whenever ¢ is square-free.
Likewise, the bound H(q,n) <« ¢'** follows from Kawada [6]. Consequently,
Sk(n, N'/*) « N*, and likewise for S;. It follows that

Z |uk(n) _ I’ll/kek(l’l,Nl/4)|2 « N172/(3k)+1:P2’

n<N

and again this also holds with stars attached. Lemma 3 now follows on com-
bining this with (19) and its analogue with the stars removed.
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6. The Singular Series

Recall that .#; is the set of all positive integers for which x*¥ —  is irreducible
in Z[x], and that the products S;(n) and &;(n) converge for n e . Indeed,
Kawada [6] observed this for S;(n), but when p .t n, one has o(n, p) = 0*(n, p),
and hence, the convergence of S(n) implies that of ©*(n). As a special case of
Corollary 1 of Kawada [6] (take d =5 and H = N in Kawada’s notation), we
also have

S(n,N'*) = S(n) + O(N~/(600k)y (20)

for all but O(N'-V(E00k%)) of the integers ne.f; that lie in the interval
IN<n<N.

We also require the star version of (20). One way to do this would be to
adjust the arguments in [6] to cover the star situation. Alternatively, we may
proceed as follows. By orthogonality, one has

H(p7n) = p(Q(nvp) - 1)’ H*(pvn) = (p - 1)(g*(n,p) - 1) + Q*(nvp)'

Let A(n,m) and A*(n,m) be the completely multiplicative functions defined on
primes by

An,p) =oln,p) =1, A*(n,p)=(0"(n,p) - 1)+@;(n,p)'

Then we may rewrite the truncated series as

Z ’uZ ), & (n,M)= Z %i*(ﬂ,m).

m<M¢

The Dirichlet series

() = iﬂ(nﬂi _ z“’:#(m)i* m)
“ = e(m)m*= ‘ ’ = pmm!
converge in Re(s) > 1, but also have Euler products. For p/tn, we recall
o*(n, p) = o(n, p) < k. Hence |A(n, p) — A*(n, p)| < k/(p—1) for these p, and so
the Euler product for Z,(s)/Z;(s) converges in Re(s) >1. It now transpires
that Kawada’s auxiliary estimates for zeros of Z,(s) remain valid for Z’(s), and
hence the star version of (20) also holds, by Kawada’s arguments.

It is now easy to establish the theorem. By a standard argument, we deduce
from Lemmas 2 and 3 that

rie(n) — S, NV nllk = O(n'/k N~1/(150K%)y
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holds for all but O(N'~1/(15%%) of the integers n € % with N < n < N. Apply
(20) to replace S;(n, N'/4) by S;(n). Now sum over dyadic ranges for N. This
proves the first part of the Theorem, and the star version follows mutatis
mutandis.
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