A CHARACTERIZATION OF TILING GROUPS

By

Daisuke Dobashi

Abstract. For one dimensional tilings, we can define associated groups. And it is known that those groups has Gauss decomposition. We will show one characterization of those groups.

1 Introduction

In this paper, we will consider an algebraic characterization of the group G defined by a tiling \mathcal{F} . It is known that we can construct groups and Lie algebras with Gauss decompositions from tilings (cf. [5]). We will treat one-dimensional tilings in the present paper. We regard one-dimensional tilings as sequence of letters. We will define finite subwords of a tiling (Section 2). And we will introduce a new tiling generated \mathcal{F}^* by a given tiling \mathcal{F} . Then one can basically treat any kind of tiling by this process. In addition, by our definition of \mathcal{F}^* , we can keep all information of an original tiling \mathcal{F} (Section 3). Then we will construct tiling monoids (Section 4), tiling bialgebras (Section 5), tiling groups (Section 6). Then we will define an abstract group \tilde{G} satisfying three relations, and show that \tilde{G} has a Gauss decomposition (Section 7). And we will get one characterization of G (Section 8).

2 Tiling

First we define finite subwords of the tiling. Let **R** be the real line. A tile in **R** is a connected closed bounded subset of **R**, namely a closed interval [a,b] whose interior is nonempty. A tiling \mathcal{F} of **R** is an infinite set of tiles which covers **R** overlapping, at most, at their boundaries. Let $W(\mathcal{F})$ be the set of all finite subwords in \mathcal{F} . If $w = X_1 X_2 \cdots X_r \in W(\mathcal{F})$, then l(w) = r is called the length of w. Let $W_r(\mathcal{F})$ be the set of all finite subwords with length r. Put $\Omega = \Omega(\mathcal{F}) = W_1(\mathcal{F})$, the set of all letters appearing in \mathcal{F} . For convenience, we assume that Ω is finite.

Key words: tiling, groups, Gauss decomposition. Received December 17, 2007.

3 Division into 3 Parts

Now we introduce a certain substitution which divides a tile into 3 parts. For a given tiling \mathcal{T} , we define a substitution σ as follows

$$\sigma: X \to X'X''X''' \quad (^{\forall}X \in \Omega).$$

Here the letters X', X'' and X''' are totally new symbols. That is, the tiling \mathcal{T} :

$$\cdots XYZ \cdots$$

is changed into

$$\cdots X'X''X'''Y''Y''Y''Z'Z''Z'''\cdots$$

by σ . And a finite subword

$$w = X_1 X_2 \cdots X_r \in W$$

is changed into

$$\sigma(w) = X_1' X_1'' X_1''' X_2' X_2'' X_2''' \cdots X_r' X_r'' X_r'''.$$

Hence, the substitution σ creates a new tiling \mathscr{T}^* from \mathscr{T} . By the definition, $|\Omega(\mathscr{T}^*)|=3\times |\Omega(\mathscr{T})|$. That is, $\Omega(\mathscr{T}^*)=\{X',X'',X'''\mid X\in\Omega(\mathscr{T})\}$ without any redundancy. And put $V^*=\sigma(W(\mathscr{T}))=\{\sigma(w)\mid w\in W(\mathscr{T})\}\subset W(\mathscr{T}^*)$. Then we can express $v\in V^*$ as follows

$$v = X_1' X_1'' X_1''' X_2' X_2'' X_2''' \cdots X_r' X_r'' X_r'''.$$

4 Tiling Monoids

For $w = X_1 X_2 \cdots X_r \in V^*$, we choose two positions (i, j) with $1 \le i, j \le r$ and attach the labels 1 and 2 at X_i and X_j as X_i and X_j respectively. We note that each of $i \le j$, i = j, $i \ge j$ is allowed. If i = j, then we denote by X_i to show that X_i has two labels 1 and 2 simultaneously. We call

$$X_1X_2\cdots \stackrel{1}{X_i}\cdots \stackrel{2}{X_j}\cdots X_r$$

a doubly pointed words obtained from V^* . And we write this double pointed words as w(i,j) if necessary. Then $D=D(\mathcal{F}^*)$ denotes the set of all doubly pointed words obtained from V^* . Let $M=M(\mathcal{F}^*)=D(\mathcal{F}^*)\cup\{\mathbf{z},\mathbf{\epsilon}\}$, where \mathbf{z} and $\mathbf{\epsilon}$ are just independent abstract symbols. Now we will introduce a binary operation on M. Let

$$\mathbf{x} = X_1 X_2 \cdots \overset{1}{X_i} \cdots \overset{2}{X_j} \cdots X_r$$
$$\mathbf{y} = Y_1 Y_2 \cdots \overset{1}{Y_k} \cdots \overset{2}{Y_l} \cdots Y_s$$

be two elements of $D(\mathcal{F}^*)$. Put $a = \min\{j, k\}$, $b = \min\{r - j, s - k\}$, $m = \max\{j, k\} - \min\{j, k\}$, $n = \max\{r - j, s - k\} - \min\{r - j, s - k\}$, and set

$$q = a + b = \frac{(r+s) - (m+n)}{2}$$
.

If

$$(*) \left\{ egin{array}{lll} X_{j-a+1} &= Y_{k-a+1} \ dots & dots & dots \ X_j &= Y_k \ dots & dots & dots \ X_{j+b} &= Y_{k+b} \end{array}
ight.$$

then we define a new word

$$Z_1\cdots Z_m Z_{m+1}\cdots Z_{m+q} Z_{m+q+1}\cdots Z_{m+q+n}$$

where

$$\begin{cases} Z_p & (1 \le p \le m) = \begin{cases} X_p & \text{if } j > k \\ Y_p & \text{if } j < k \end{cases} \\ Z_{m+p} & (1 \le p \le q) = X_{j-a+p} (= Y_{k-a+p}) \\ Z_{m+p+q} & (1 \le p \le n) = \begin{cases} X_{j+b+p} & \text{if } r-j > s-k \\ Y_{k+b+p} & \text{if } r-j < s-k \end{cases} \end{cases}$$

Put

$$i' = \begin{cases} i & \text{if } j \ge k \\ m+i & \text{if } j < k \end{cases}, \quad j' = \begin{cases} m+l & \text{if } j > k \\ l & \text{if } j \le k \end{cases}, \quad r' = m+q+n.$$

If (*) holds and new word $Z_1Z_2\cdots Z_{r'}$ belongs to V^* , then we define

$$\mathbf{x}\mathbf{y} = Z_1 Z_2 \cdots Z_{i'}^1 \cdots Z_{i'}^2 \cdots Z_{r'} \in D(\mathcal{F}^*),$$

otherwise we define $\mathbf{x}\mathbf{y} = \mathbf{z}$. Also we define $\mathbf{m}\mathbf{z} = \mathbf{z}\mathbf{m} = \mathbf{z}$ as well as $\mathbf{m}\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}\mathbf{m} = \mathbf{m}$ for all $\mathbf{m} \in M$. Then, the set M becomes a monoid with the above operation. We call M the tiling monoid of a given tiling \mathcal{F} . In another sense, M can also be regarded as an inverse monoid with zero (cf. [9]).

It might be better for the readers to see several examples of our product here. Fibonacci tiling \mathcal{F} is one-dimensional tiling made by next substitution

$$\tau: \begin{array}{ccc}
A & \to & AB \\
B & \to & A
\end{array},$$

and we can write

$$\mathscr{F} = ABAABABA \cdots$$

Therefore, \mathcal{F}^* is as follows

$$\mathscr{F}^* = A'A''A'''B'B''B'''\cdots$$

Then it is recognised that

$$V^* = \{A'A''A'''B'B'''B''', B'B'''B'''A'A'''A''', A'A''A'''A'''A''', \ldots\}.$$

Let

$$\mathbf{x} = \overset{1}{A'}A''A'''B'\overset{2}{B''}B'''$$

$$\mathbf{y} = \overset{2}{A'}A''A'''B'\overset{1}{B''}B'''$$

$$\mathbf{v} = B'B'''B'''A'A''A'''A'''A'''A'''A'''$$

be elements of $D(\mathcal{F}^*)$. Then we have

$$\mathbf{x}\mathbf{y} = \overset{12}{A'}A''A'''B'B''B'''$$

$$\mathbf{y}\mathbf{x} = A'A''A'''B'B''B'''$$

$$\mathbf{x}\mathbf{v} = \overset{1}{A'}A''A'''B'B''B'''A'A''A'''A'''A'''$$

$$\mathbf{v}\mathbf{x} = \mathbf{z}.$$

And let

$$\mathbf{w} = A' A'' A''' A''' A' A'' A'''$$

be the element of $D(\mathscr{F}^*)$. Because $A'A''A'''A''A''A''A'''A''' \notin V^*$, we have

$$\mathbf{x}\mathbf{w}=\mathbf{z}.$$

5 Tiling Bialgebra

Let $A = \mathbb{C}[M] = \bigoplus_{\mathbf{m} \in M} \mathbb{C}\mathbf{m}$ be the monoid algebra of M over \mathbb{C} . Then $\mathbb{C}\mathbf{z}$ is a two-sided ideal of A. And we set $B = B(\mathcal{F}) = A/\mathbb{C}\mathbf{z}$. Then, B is sometimes

called the tiling bialgebra (cf. [1], [10]) of \mathcal{F} . For a subset $V^* \subset W$, we define $E = E(V^*)$ to be the subset of D consisting of all doubly pointed words obtained from V^* with the pointed positions of type (i, i+1) for all $i \geq 1$. And $F = F(V^*)$ the subset of D consisting of all doubly pointed words obtained from V^* with the pointed positions of type (i+1,i) for all $i \geq 1$. Therefore, we can write E, F as follows

$$E = \{ w(i, i+1) \in D \mid w \in V^*, 1 \le i < l(w) \}$$
$$F = \{ w(i+1, i) \in D \mid w \in V^*, 1 \le i < l(w) \}.$$

6 Tiling group

For each $t \in \mathbb{C}$ and $\xi \in E \cup F$, we put $x_{\xi}(t) = 1 + t\xi \in B(\mathcal{F}^*)^{\times}$, where $B(\mathcal{F}^*)^{\times}$ is the multiplicative group of all units in $B(\mathcal{F}^*)$. Let G be the subgroup of $B(\mathcal{F}^*)$ generated by $x_{\xi}(t)$ for all $\xi \in E \cup F$ and $t \in \mathbb{C}$. We call G the tiling group associated with an original tiling \mathcal{F} . And for each $\xi \in E \cup F$ and $u \in \mathbb{C}^{\times}$, we set

$$w_{\xi}(u) = x_{\xi}(u)x_{\hat{\xi}}(-u^{-1})x_{\xi}(u)$$

 $h_{\xi}(u) = w_{\xi}(u)w_{\xi}(-1).$

Then we define subgroups of G as follows

$$G_{+} = \langle x_{e}(t) \mid e \in E, t \in \mathbf{C} \rangle$$

$$G_{0} = \langle h_{\xi}(u) \mid \xi \in E \cup F, u \in \mathbf{C}^{\times} \rangle$$

$$G_{-} = \langle x_{f}(t) \mid f \in F, t \in \mathbf{C} \rangle.$$

Then we can obtain the following result

$$G = G_{\pm}G_{\mp}G_0G_{\pm}.$$

This relation is called the Gauss decomposition.

7 Gauss Decomposition of \tilde{G}

Now we define (R1), (R2) and (R3) as follows

•
$$(R1)$$
 $\tilde{\mathbf{x}}_{\xi}(t)\tilde{\mathbf{x}}_{\xi}(t') = \tilde{\mathbf{x}}_{\xi}(t+t') \ (t,t' \in \mathbf{C})$

•
$$(R2)$$
 $\tilde{x}_{\xi_1}(t_1)\cdots\tilde{x}_{\xi_r}(t_r)\tilde{x}_n(t) = \tilde{x}_{\xi_1}(u_1)\cdots\tilde{x}_{\zeta_r}(u_s)\tilde{x}_{\xi_1}(t_1)\cdots\tilde{x}_{\xi_r}(t_r)$

if
$$\sum_{m,n=0}^{r} \sum_{\substack{1 \leq k_{1} < \dots < k_{m} \leq r \\ 1 \leq l_{1} < \dots < l_{n} \leq r}} (-1)^{n} t_{k_{1}} \cdots t_{k_{m}} t_{l_{1}} \cdots t_{l_{n}} t \xi_{k_{1}} \cdots \xi_{k_{m}} \eta \xi_{l_{n}} \cdots \xi_{l_{1}}$$

$$= u_{1} \zeta_{1} + \dots + u_{s} \zeta_{s}$$

$$(t_{i}, t, u_{j} \in \mathbf{C}, \xi_{i}, \eta, \zeta_{j} \in E \cup F, \zeta_{i} \zeta_{j} = \zeta_{j} \zeta_{i})$$

$$\bullet (R3) \ \tilde{h}_{\xi}(u) \tilde{h}_{\xi}(t) = \tilde{h}_{\xi}(ut)$$

$$(\tilde{h}_{\xi}(t) = \tilde{x}_{\xi}(t) \tilde{x}_{\xi}(-t^{-1}) \tilde{x}_{\xi}(t-1) \tilde{x}_{\xi}(1) \tilde{x}_{\xi}(-1), \xi \in E \cup F, t, u \in \mathbf{C}^{\times})$$

Then we define \tilde{G} generated by $\tilde{\chi}_{\xi}(t)$, $\xi \in E \cup F$, $t \in \mathbb{C}$ with relations (R1), (R2) and (R3). And we define three subgroups of \tilde{G} as follows:

$$\tilde{G}_{+} = \langle \tilde{x}_{\xi}(t) \mid \xi \in E, t \in \mathbf{C} \rangle
\tilde{G}_{0} = \langle \tilde{h}_{\xi}(u) \mid \xi \in E \cup F, u \in \mathbf{C}^{\times} \rangle
\tilde{G}_{-} = \langle \tilde{x}_{\xi}(t) \mid \xi \in F, t \in \mathbf{C} \rangle.$$

Then we obtain the following Theorem.

Theorem 1. We define $\tilde{G},\ \tilde{G}_{\pm},\ \tilde{G}_0$ as above. Then we have $\tilde{G}=\tilde{G}_{+}\tilde{G}_{\top}\tilde{G}_0\tilde{G}_{+}.$

For the proof of this theorem, we show some lemmas.

Lemma 1. For each $\xi \in E \cup F$, we have

$$\langle \tilde{x}_{\xi}(t), \tilde{x}_{\hat{\xi}}(t) \mid t \in \mathbb{C} \rangle \simeq SL(2, \mathbb{C}).$$

Proof. We give $\tilde{x}_{\xi}(t), \tilde{x}_{\hat{\xi}}(t) \in \tilde{G}$ the next correspondence

$$\tilde{x}_{\xi}(t) \leftrightarrow \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \quad \tilde{x}_{\hat{\xi}}(t) \leftrightarrow \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}.$$

Then we have this lemma.

Before the next lemma, we define an operation. For $\alpha \in W_2(\mathcal{T}^*)$ with $\alpha = XY$ and $\xi \in E \cup F$, we say $\xi \vdash \alpha$ if and only if

$$\xi = Z_1 Z_2 \cdots \overset{i}{X} \overset{j}{Y} \cdots Z_r$$

with $\{i, j\} = \{1, 2\}$. Let

$$\begin{split} \tilde{U}_{\alpha,+} &= \langle \tilde{x}_{\xi}(t) \mid t \in \mathbf{C}, \xi \in E, \xi \vdash \alpha \rangle \\ \tilde{U}_{\alpha,-} &= \langle \tilde{x}_{\xi}(t) \mid t \in \mathbf{C}, \xi \in F, \xi \vdash \alpha \rangle \\ \tilde{T}_{\alpha} &= \langle \tilde{h}_{\xi}(u) \mid u \in \mathbf{C}^{\times}, \xi \in E \cup F, \xi \vdash \alpha \rangle \\ \tilde{G}_{\alpha} &= \langle \tilde{U}_{\alpha,+} \rangle \end{split}$$

for each $\alpha \in W_2(\mathcal{T}^*)$.

Lemma 2. For $\tilde{h}_{\xi}(u) \in \tilde{T}_{\alpha}$, we have the next relation

$$\tilde{h}_{\xi}(u)\tilde{U}_{\alpha,\pm}\tilde{h}_{\xi}(u)^{-1}=\tilde{U}_{\alpha,\pm}.$$

PROOF. For each $\eta \in E \cup F$ with $\eta \vdash \alpha$, we have the next relation

$$\tilde{h}_{\xi}(u)\eta \tilde{h}_{\xi}(u)^{-1} = \sum_{i=1}^{s} u_i \eta_i \quad (\eta_i \vdash \alpha).$$

Then by (R2)

$$\tilde{h}_{\xi}(u)\tilde{x}_{\eta}(t)=\tilde{x}_{\eta_1}(u_1)\cdots\tilde{x}_{\eta_s}(u_s)\tilde{h}_{\xi}(u).$$

So the relation

$$\tilde{\boldsymbol{h}}_{\xi}(u)\tilde{\boldsymbol{x}}_{\eta}(t)\tilde{\boldsymbol{h}}_{\xi}(u)^{-1}\in\tilde{\boldsymbol{U}}_{\alpha,+}$$

is obtained from (R2). Therefore we prove this lemma.

Lemma 3. Let $\alpha \in W_2(\mathcal{T}^*)$. Then we have

$$ilde{G}_{\!\scriptscriptstyle lpha} = ilde{U}_{\!\scriptscriptstyle lpha,\,\pm} ilde{U}_{\!\scriptscriptstyle lpha,\,\mp} ilde{T}_{\!\scriptscriptstyle lpha} ilde{U}_{\!\scriptscriptstyle lpha,\,\pm}.$$

PROOF. Let $\tilde{g} \in \tilde{G}_{\alpha}$ and we set

$$\tilde{g} = \tilde{x}_{\xi_1}(t_1)\tilde{x}_{\xi_2}(t_2)\cdots\tilde{x}_{\xi_r}(t_r)$$

with $\xi_i \in E \cup F$ and $t_i \in \mathbb{C}$ for i = 1, 2, ...r. Then we put

$$B(\tilde{g}) = \langle \xi_i, \hat{\xi}_i | 1 \le i \le r \rangle.$$

And we define $E(\tilde{g}) = E \cap B(\tilde{g})$, $F(\tilde{g}) = F \cap B(\tilde{g})$. Let $\tilde{G}(\tilde{g})$ be a subgroup of \tilde{G} generated by $\tilde{x}_{\xi}(t)$ for all $\xi \in E(\tilde{g}) \cup F(\tilde{g})$ and $t \in \mathbb{C}$. Then we have that $\tilde{G}(\tilde{g})$ is isomorphic to the direct product of finite copies of $SL(2, \mathbb{C})$. And we set

$$\begin{split} \tilde{U}_{+}(\tilde{g}) &= \langle \tilde{x}_{\xi}(t) \mid \xi \in E(\tilde{g}), t \in \mathbf{C} \rangle \\ \tilde{T}(\tilde{g}) &= \langle \tilde{h}_{\xi}(u) \mid \xi \in E(\tilde{g}) \cup F(\tilde{g}), u \in \mathbf{C}^{\times} \rangle \\ \tilde{U}_{-}(\tilde{g}) &= \langle \tilde{x}_{\xi}(t) \mid \xi \in F(\tilde{g}), t \in \mathbf{C} \rangle. \end{split}$$

Then we obtain $\tilde{G}(\tilde{g}) = \tilde{U}_{+}(\tilde{g})\tilde{U}_{-}(\tilde{g})\tilde{T}(\tilde{g})\tilde{U}_{+}(\tilde{g})$. Therefore we see

$$\tilde{g} \in \tilde{G}(\tilde{g}) \subset \tilde{U}_{\alpha,+} \tilde{U}_{\alpha,-} \tilde{T}_{\alpha} \tilde{U}_{\alpha,+}$$
.

And this relation implies $\tilde{G}_{\alpha} = \tilde{U}_{\alpha,+} \tilde{U}_{\alpha,-} \tilde{T}_{\alpha} \tilde{U}_{\alpha,+}$. Similarly we can obtain $\tilde{G}_{\alpha} = \tilde{U}_{\alpha,-} \tilde{U}_{\alpha,+} \tilde{T}_{\alpha} \tilde{U}_{\alpha,-}$.

Now we define

$$\tilde{U}'_{\alpha,\pm} = \langle \tilde{x}\tilde{U}_{\beta,\pm}\tilde{x}^{-1} \mid \tilde{x} \in \tilde{U}_{\alpha,\pm}, \beta \in W_2(\mathscr{T}^*), \beta \neq \alpha \rangle
\tilde{T}'_{\alpha} = \langle \tilde{T}_{\beta} \mid \beta \in W_2(\mathscr{T}^*) \rangle.$$

Then we obtain the following.

LEMMA 4.

(1)
$$\tilde{G}_{\pm} = \tilde{U}_{lpha,\pm} \tilde{U}'_{lpha,\pm} = \tilde{U}'_{lpha,\pm} \tilde{U}_{lpha,\pm}$$

(2)
$$\tilde{G}_0 = \tilde{T}_{\alpha} \tilde{T}'_{\alpha} = \tilde{T}'_{\alpha} \tilde{T}_{\alpha}$$
.

PROOF. (1) follows the definition of $\tilde{U}_{\alpha,\pm}$. (2) follows from (R2).

Then we can prove Theorem 1.

PROOF OF THEOREM 1. First we put $\tilde{\mathfrak{X}} = \tilde{G}_+ \tilde{G}_- \tilde{G}_0 \tilde{G}_+$. Let $\xi \in E \cup F$ and $t \in \mathbb{C}$. Then there is $\alpha \in W_2(\mathscr{T}^*)$ such that $\xi \vdash \alpha$. If $\xi \in E$, then $\tilde{x}_{\xi}(t)\tilde{\mathfrak{X}} = \tilde{\mathfrak{X}}$. If $\xi \in F$, then we have

$$\begin{split} \tilde{\mathbf{X}}_{\xi}(t)\tilde{\mathbf{X}} &\in \tilde{U}_{\alpha,-}\tilde{\mathbf{X}} \\ &= \tilde{U}_{\alpha,-}(\tilde{G}_{+}\tilde{G}_{-}\tilde{G}_{0}\tilde{G}_{+}) \\ &= \tilde{U}_{\alpha,-}(\tilde{U}'_{\alpha,+}\tilde{U}_{\alpha,+})(\tilde{U}'_{\alpha,-}\tilde{U}_{\alpha,-})(\tilde{T}_{\alpha}\tilde{T}'_{\alpha})(\tilde{U}_{\alpha,+}\tilde{U}'_{\alpha,+}) \\ &= \tilde{U}'_{\alpha,+}\tilde{U}_{\alpha,-}\tilde{U}'_{\alpha,-}\tilde{U}_{\alpha,+}\tilde{U}_{\alpha,-}\tilde{T}_{\alpha}\tilde{U}_{\alpha,+}\tilde{T}'_{\alpha}\tilde{U}'_{\alpha,+} \end{split}$$

$$\begin{split} &= \tilde{U}_{\alpha,+}' \tilde{U}_{\alpha,-}' (\tilde{U}_{\alpha,-} \tilde{U}_{\alpha,+} \tilde{U}_{\alpha,-} \tilde{T}_{\alpha} \tilde{U}_{\alpha,+}) \tilde{T}_{\alpha}' \tilde{U}_{\alpha,+}' \\ &= \tilde{U}_{\alpha,+}' \tilde{U}_{\alpha,-}' (\tilde{U}_{\alpha,+} \tilde{U}_{\alpha,-} \tilde{T}_{\alpha} \tilde{U}_{\alpha,+}) \tilde{T}_{\alpha}' \tilde{U}_{\alpha,+}' \\ &= \tilde{U}_{\alpha,+}' \tilde{U}_{\alpha,+} \tilde{U}_{\alpha,-}' \tilde{U}_{\alpha,-} \tilde{T}_{\alpha} \tilde{T}_{\alpha}' \tilde{U}_{\alpha,+} \tilde{U}_{\alpha,+}' \\ &= \tilde{G}_{+} \tilde{G}_{-} \tilde{G}_{0} \tilde{G}_{+} \\ &= \tilde{\mathfrak{X}}. \end{split}$$

Therefore $\tilde{G}\tilde{\mathfrak{X}} = \tilde{\mathfrak{X}}$. This relation shows $\tilde{G} = \tilde{\mathfrak{X}}$. Similarly we can establish $\tilde{G} = \tilde{G}_{-}\tilde{G}_{+}\tilde{G}_{0}\tilde{G}_{-}$. Therefore, we have finished to prove theorem.

8 Characterization of G

Here, we put $\pi: \tilde{G} \to G$: epimorphism. Then we obtain some lemmas.

Lemma 5. We set
$$B_+=\langle \zeta \,|\, \zeta \in E \rangle, \ Z(B)_+=B_+\cap Z(B).$$
 Then we have $Z(B)_+=0.$

PROOF. Let $z \in Z(B)_+$. Suppose $z \neq 0$. We write $z = \sum_i t_i x_i$, where $x_i \in M_+$, $t_i \in \mathbb{C}$, $t_i \neq 0$. Then we choose x_0 such that $l(x_0)$ is minimal in the $l(x_i)$ for all i. And we set $h_0 = x_0 \hat{x}_0$, $M_+ = M \cap B_+$, then we have

$$0 = [h_0, z] = t_0 x_0 + \sum_{\substack{l(x_j') \ge l(x_0) \\ x_i' \ne x_0}} t_j' x_j' \quad (x_j' \in M_+, t_j' \in \mathbb{C}).$$

Because it contradicts $t_0 \neq 0$, we obtain

$$Z(B)_{+}=0.$$

Similarly we can prove Z(B) = 0.

Lemma 6. Let $Z(\tilde{G})$ be the center of \tilde{G} . Then we have

$$\ker \pi \subseteq Z(\tilde{\mathbf{G}}).$$

PROOF. We put $\tilde{g} = \tilde{x}_{\xi_1}(t_1) \cdots \tilde{x}_{\xi_r}(t_r) \in \ker \pi$. Then $\pi(\tilde{g}) = 1$. So we get $\pi(\tilde{g})\eta\pi(\tilde{g}) = \eta$. And then we obtain $\tilde{g}\tilde{x}_{\eta}(t) = \tilde{x}_{\eta}(t)\tilde{g}$. Therefore $\tilde{g} \in Z(\tilde{G})$.

Lemma 7.

$$\tilde{G}_0 \simeq G_0$$
.

PROOF. We put $\pi: \tilde{G} \to G$: epimorphism. For each $\tilde{g}_0 \in \ker \pi \cap \tilde{G}_0$, we can write

$$\tilde{g}_0 = \tilde{h}_{\xi_1}(u_1)\tilde{h}_{\xi_2}(u_2)\cdots\tilde{h}_{\xi_k}(u_k) \quad (\xi \in E \cup F, u_i \in \mathbf{C}).$$

Then by Lemma 4 and (R3), we can assume $\xi_i \neq \xi_j$ $(i \neq j)$ and $l(\xi_1) \leq l(\xi_2) \leq \cdots$. Then

$$\begin{split} 1 &= \pi(\tilde{g}_{0}) = (1 + (u_{1} - 1)\xi_{1}\hat{\xi}_{1} + (u_{1}^{-1} - 1)\hat{\xi}_{1}\xi_{1}) \\ &\cdots (1 + (u_{k} - 1)\xi_{k}\hat{\xi}_{k} + (u_{k}^{-1} - 1)\hat{\xi}_{k}\xi_{k}) \\ &= 1 + \sum_{i=1}^{k} (u_{i} - 1)\xi_{i}\hat{\xi}_{i} + \sum_{i=1}^{k} (u_{i}^{-1} - 1)\hat{\xi}_{i}\xi_{i} \\ &+ \sum_{i,j=1,i\neq j}^{k} (u_{i} - 1)(u_{j} - 1)\xi_{i}\hat{\xi}_{i}\xi_{j}\hat{\xi}_{j} \\ &+ \sum_{i,j=1,i\neq j}^{k} (u_{i} - 1)(u_{j}^{-1} - 1)\xi_{i}\hat{\xi}_{i}\hat{\xi}_{j}\xi_{j} \\ &+ \sum_{i,j=1,i\neq j}^{k} (u_{i}^{-1} - 1)(u_{j} - 1)\hat{\xi}_{i}\xi_{i}\hat{\xi}_{j}\xi_{j} \\ &+ \sum_{i,j=1,i\neq j}^{k} (u_{i}^{-1} - 1)(u_{j}^{-1} - 1)\hat{\xi}_{i}\xi_{i}\hat{\xi}_{j}\xi_{j} \\ &+ \cdots + (u_{1} - 1) \cdots (u_{k} - 1)\xi_{1}\hat{\xi}_{1} \cdots \xi_{k}\hat{\xi}_{k} \\ &+ \cdots + (u_{1}^{-1} - 1) \cdots (u_{k}^{-1} - 1)\hat{\xi}_{1}\xi_{1} \cdots \hat{\xi}_{k}\xi_{k} \\ &= 1 + (u_{1} - 1)\xi_{1}\hat{\xi}_{1} + (u_{1}^{-1} - 1)\hat{\xi}_{1}\xi_{1} \\ &+ \sum_{\xi \in E, \xi \neq \xi_{1}} t_{\xi}\xi\hat{\xi} + \sum_{\xi \in E, \xi \neq \xi_{1}} t_{\xi}'\hat{\xi}\xi \quad (\xi \in E, t_{\xi}, t_{\xi}' \in \mathbf{C}). \end{split}$$

Therefore $u_1 = 1$. Similarly, we obtain $u_i = 1$. So we have $\tilde{g}_0 = 1$. Therefore

$$\tilde{G}_0 \simeq G_0$$
.

We define $Z(\tilde{G})_{\pm} = Z(\tilde{G}) \cap G_{\pm}$. Then we have the following lemma.

LEMMA 8.

$$\ker \pi = Z(\tilde{G})_{+}Z(\tilde{G})_{-}.$$

PROOF. By Theorem 1, we can write

$$egin{aligned} ilde{G} &= ilde{G}_{\pm} ilde{G}_{\mp} ilde{G}_{0} ilde{G}_{\pm} \ &= igcup_{ ilde{g} \in ilde{G}_{+}} ilde{g} ilde{G}_{\mp} ilde{G}_{0} ilde{G}_{\pm} ilde{g}^{-1}. \end{aligned}$$

Therefore for all $\tilde{g}' \in Z(\tilde{G})$, we have $\tilde{g}\tilde{g}'\tilde{g}^{-1} \in \tilde{G}_{\mp}\tilde{G}_0\tilde{G}_{\pm}$ for each $\tilde{g} \in \tilde{G}_{\mp}$. Therefore we obtain

$$Z(\tilde{G}) \subseteq \tilde{G}_{\pm}\tilde{G}_0\tilde{G}_{+}$$
.

Then for $\tilde{g} \in Z(\tilde{G})$, we can write

$$\tilde{g} = \tilde{g}_{-}\tilde{g}_{0}\tilde{g}_{+} \in \tilde{G}_{-}\tilde{G}_{0}\tilde{G}_{+}.$$

Therefore

$$\pi(\tilde{g}) = \pi(\tilde{g}_{-})\pi(\tilde{g}_{0})\pi(\tilde{g}_{+}).$$

Now let

$$B_i = \bigoplus_{w(j,j+i) \in B} \mathbf{C}w(j,j+i).$$

We set

$$\pi(\tilde{g}_{-}) = 1 + b_{-}$$

$$\pi(\tilde{g}_{0}) = b_{0}$$

$$\pi(\tilde{g}_{+}) = 1 + b_{+}$$

$$\begin{pmatrix} b_{-} = b_{-1} + b_{-2} + \dots + b_{-r} \\ b_{+} = b_{1} + b_{2} + \dots + b_{s} \end{pmatrix}, b_{i} \in B_{i} \end{pmatrix}.$$

Then we can rewrite

$$\pi(\tilde{g}) = (1 + b_{-})b_{0}(1 + b_{+})$$
$$= b_{-r}b_{0} + \dots + b_{0}b_{s}.$$

Because $\pi(\tilde{g})=1$, $b_{-r}b_0=b_0b_s=0$. So $b_{-r}=b_s=0$. Then we have $b_\pm=0$. Therefore we obtain $\tilde{g}_-\tilde{g}_+\in\ker\pi$. Therefore

$$\ker \pi = Z(\tilde{G})_{+}Z(\tilde{G})_{-}.$$

Thus we have G and \tilde{G} .

THEOREM 2.

$$\tilde{G}/(Z(\tilde{G})_{+}Z(\tilde{G})_{-}) \simeq G.$$

PROOF. By the definition, we obtain $\tilde{G}/\ker \pi \simeq G$. Therefore we have finished to prove this theorem.

Therefore we get one characterization of G.

References

- [1] E. Abe: Hopf Algebras, Cambridge Tracts in Math. 74, Cambridge Univ. Press, New York, 1980.
- [2] S. Akiyama: On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), 283–308.
- [3] S. Akiyama and T. Sadahiro: A self-similar tiling generated by the minimal Pisot number, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 9–26.
- [4] S. Berman, J. Morita and Y. Yoshii: Some factorizations in universal enveloping algebras of three dimensional Lie algebras and generalizations, Canad. Math. Bull. 45 (2002), 525-536.
- [5] D. Dobashi: Gauss decompositions associated with one dimensional tilings, Master Thesis (in Japanese), University of Tsukuba, 2005.
- [6] J. Kellendonk and I. F. Putnam: Tilings, C*-algebras and K-theory (Directions in mathematical quasicrystals), CRM Monogr. Ser. 13 (2000), 177–206, Amer. Math. Soc., Providence, P.I.
- [7] K. Komatsu: Periods of cut-and-project tiling spaces obtained from root lattices, Hiroshima Math. J. 31 (2001), 435–438.
- [8] K. Komatsu and K. Sakamoto: Isomorphism classes of quasiperiodic tilings by the projection method, Nihonkai Math. J. 15 (2004), 119–126.
- [9] M. Lawson: "Inverse Semigroups (The Theory of Partial Symmetries)," World Scientific, Singapore, 1998.
- [10] T. Masuda and J. Morita: Local properties, bialgebras and representations for one-dimensional tilings, J. Phys. A: Math. Gen. 37 (2004), 2661–2669.
- [11] R. Moody and A. Pianzola: "Lie algebras with triangular decompositions," J. Wiley and Sons, New York, 1995.
- [12] J. Morita and E. Plotkin: Gauss decompositions for Kac-Moody groups, Comm. Algebra 27 (1999), 465–475.
- [13] J. Morita and H. Sakaguchi: Groups defined by extended affine Lie algebras with nullity 2, Tokyo J. Math. 29 (2006), no. 2, 347–383.