TSUKUBA J. MATH.
Vol. 32 No. 2 (2008), 323-334

A CHARACTERIZATION OF TILING GROUPS

By

Daisuke DoBASHI

Abstract. For one dimensional tilings, we can define associated
groups. And it is known that those groups has Gauss decomposition.
We will show one characterization of those groups.

1 Introduction

In this paper, we will consider an algebraic characterization of the group G
defined by a tiling 7. It is known that we can construct groups and Lie algebras
with Gauss decompositions from tilings (cf. [5]). We will treat one-dimensional
tilings in the present paper. We regard one-dimensional tilings as sequence of
letters. We will define finite subwords of a tiling (Section 2). And we will in-
troduce a new tiling generated 7 * by a given tiling 7. Then one can basically
treat any kind of tiling by this process. In addition, by our definition of 7 *, we
can keep all information of an original tiling 7 (Section 3). Then we will
construct tiling monoids (Section 4), tiling bialgebras (Section 5), tiling groups
(Section 6). Then we will define an abstract group G satisfying three relations,
and show that G has a Gauss decomposition (Section 7). And we will get one
characterization of G (Section 8).

2 Tiling

First we define finite subwords of the tiling. Let R be the real line. A tile in R
is a connected closed bounded subset of R, namely a closed interval [a, 5] whose
interior is nonempty. A tiling 7 of R is an infinite set of tiles which covers R
overlapping, at most, at their boundaries. Let W (7 ) be the set of all finite
subwords in 7. If w=X1X2---X, € W(7), then /(w) =r is called the length
of w. Let W,(7) be the set of all finite subwords with length r. Put Q=
Q(T )= Wi (), the set of all letters appearing in 7. For convenience, we
assume that Q is finite.
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3 Division into 3 Parts

Now we introduce a certain substitution which divides a tile into 3 parts. For
a given tiling 7, we define a substitution o as follows

o X - X'X"'X" ("XeQ).
Here the letters X/, X” and X" are totally new symbols. That is, the tiling .7 :
- XYZ---
is changed into
L X'X'X"Y'Y'Y"Z'Z"'Z" -
by o. And a finite subword
w=XXo--X,e W
is changed into
o(w) = X/ X' X" X} X)X} - X! X" X"

Hence, the substitution o creates a new tiling 7 * from 7. By the definition,
QT )| =3%x|Q(7)|. That is, Q(7 ") ={X", X", X" | X € Q(7)} without any

redundancy. And put V* =g(W(7)) ={a(w)|we W(T)} =« W(7 ). Then we
can express ve V* as follows

_ / " n / n " ! " "
v=X/X!'X"XJX!X}" - XXX

4 Tiling Monoids

For w= X1X; - X, € VV*, we choose twcl) positiozns (i,j) with 1 <i,j <rand
attach the labels 1 and 2 at X; and X; as X; and X; respectivelyl.2 We note that
each of i < j, i=j, i > jis allowed. If i = j, then we denote by X; to show that
X; has two labels 1 and 2 simultaneously. We call

1 2
XiXs- Xi X; oo X,

a doubly pointed words obtained from V*. And we write this double pointed
words as w(i, j) if necessary. Then D = D(7 *) denotes the set of all doubly
pointed words obtained from V*. Let M = M(7 ") = D(7 *)U{z,¢}, where z
and € are just independent abstract symbols. Now we will introduce a binary
operation on M. Let
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1 2
X:XIXZAXzX]X,

1 2
y=Y1Yr o Yoo Y- Y

be two elements of D(7*). Put a=min{j,k}, b=min{r— j s—k},
m =max{j, k} —min{j k}, n =max{r — j,s —k} — min{r — j,s — k}, and set

(r—i—s)—(m—i—n).

g=a+b= 5

If

Xiar1 = Yian

CHE A

Xivp = Yiup
then we define a new word

VARE 'ZmZm+1 T Zr11+qu+q+l T Zm+q+n»

where
X, if j>k
<p<m)=
Zy (I<p<m) {Yp it j<k
Zip (1<p<q) =Xjawip(= Yiarp)
X'+[;+ lf}’_]>S—k
Z l<p<n) =777 . .
miptq (I<p=<n {Yk+/,+p ifr—j<s—k
Put
y i ifj=k m+1 ifj>k , gt
i = . , = L , F=m n.
mi if j<k 7T if j<k 1

If (*) holds and new word Z,Z,---Z, belongs to V*, then we define
1 2
Xy:ZlZZ...Zl., Z],Z’, eD(g‘*)’

otherwise we define xy = z. Also we define mz = zm = z as well as mg = em = m
for all m € M. Then, the set M becomes a monoid with the above operation. We
call M the tiling monoid of a given tiling 7. In another sense, M can also be
regarded as an inverse monoid with zero (cf. [9]).
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It might be better for the readers to see several examples of our product here.
Fibonacci tiling % is one-dimensional tiling made by next substitution

_A — AB

T.BHA,

and we can write

F = ABAABABA - - -.
Therefore, # * is as follows

y* — A/A//A///B/B//B/// ..
Then it is recognised that
V* — {A/ANA///B/B//BNI B/B//B/NA/A//A/// A/A//A///A/A//ANI }
Let
1 2
X = A/A//AIIIB/B//BHI
y — j/ANA/”BIBlNB/”
v = B/Bl//B///A/A/lAI//A//f//A///

be elements of D(Z*). Then we have

Xy — IZZIA//A/NB/B”B/N

yX — A/A//A///Blll;z//B//l

Xy = Ii/A//A///B/B”B/NA/ANA/,,AII;//A/N
VX = Z.
And let
1 2

W= A/AHA///A/A//A///

be the element of D(F*). Because A'A"A"A'A"A" A'A" A" ¢ V*, we have

XW = Z.

5 Tiling Bialgebra

Let A = C[M] = @P,,.,, Cm be the monoid algebra of M over C. Then Cz is
a two-sided ideal of 4. And we set B= B(J ) = A/Cz. Then, B is sometimes
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called the tiling bialgebra (cf. [1], [10]) of 7. For a subset V* < W, we define
E = E(V*) to be the subset of D consisting of all doubly pointed words obtained
from V* with the pointed positions of type (i,i+ 1) forall i > 1. And F = F(V*)
the subset of D consisting of all doubly pointed words obtained from V* with the
pointed positions of type (i + 1,i) for all i > 1. Therefore, we can write E, F as
follows

E={w(i,i+1)eD|we V" 1<i<l(w)}

F={w(ii+1,i)eD|lweV*1<i<lI(w)}.

6 Tiling group

For each teC and e EUF, we put x:(t)=1+1teB(T")", where
B(7*)* is the multiplicative group of all units in B(7 *). Let G be the subgroup
of B(7 ") generated by x:(¢) for all £ EUF and te C. We call G the tiling
group associated with an original tiling 7. And for each ¢ € EUF and u e C*,
we set

we (u) = xe(u)xg(—u")xe(u)
he(u) = we(u)we(=1).
Then we define subgroups of G as follows
G, =<x.(t)|ee E,teC)
Go=<h:(u)|E€e EUF,ueC*)
G_=<{x/(t)| feF,teC).
Then we can obtain the following result
G =G+G1GoGy.

This relation is called the Gauss decomposition.

7 Gauss Decomposition of G

Now we define (R1), (R2) and (R3) as follows
*(R1) xe()x:(1)) = X (1 +1') (1,1 € C)

* (R2) X (1) - X, (4,) % (1) = Xg, (ur) -+ X, (us) Xe, (1) - - Xe, (1)



328 Daisuke DOBASHI

r

if Z Z (=) "tg, -+t by, -+ - 1, 0Ex, -+ Ep &y -+ &)y
mn=01<k <-<k,<r
I<h<-<h<r

= ”161 4+ .. _|_uSCS
(1 t,u € C, &, & € EUF, GG = GL)
* (R3) he(uhe(t) = he(ut)
(he(1) = %e(D)Xs(—17)Xe(t = DEe(1)%e(~1),E € EUF, 1,u e C)

Then we define G generated by %:(7), ¢ € EUF, te C with relations (R1),
(R2) and (R3). And we define three subgroups of G as follows:

Gy = (Fe()[EeE1eC)
Go = <he(u)|E€ EUF,ue C*)
G =(X:(t)|EeF,teC).

Then we obtain the following Theorem.

THEOREM 1. We define G, Gi, Gy as above. Then we have

G = G.G:GyGy.
For the proof of this theorem, we show some lemmas.

LemMmA 1. For each &€ EUF, we have
(xe(1), Xg(1) |t € C) ~ SL(2,C).
Proor.  We give X¢(1),xs(1) € G the next correspondence

xé(z)HG) i) xé(t)H(i ?)

Then we have this lemma. O

Before the next lemma, we define an operation. For ae W5(7 ") with
o=XY and (e EUF, we say ¢+ a if and only if

iJ
E=2Z1Z,- XY - Z,



A Characterization of Tiling Groups 329

with {i,j} ={1,2}. Let

U2,+ :<)~C§(t)|ZEC7é€E,éFOC>

for each ae Wr(7 ).

LEMMA 2. For h:(u) € T,, we have the next relation

ilc(“) 09!&;’5(“)71 = 01-,i~

Proor. For each y e EUF with #F o, we have the next relation

helnie()™ =3 um (- )
i=1

Then by (R2)
i’é(”)*n(t) = Xy, (u1) -~ 'xn.\(ux)ilé(”)-

So the relation

he(u)%(0he(u) ™ € U, +

is obtained from (R2). Therefore we prove this lemma. O

LemMMA 3. Let o€ Wo (T *). Then we have

G, =U,.U,+T,U,..

PrOOF. Let e G, and we set
g =X (11)Xe(n) -+ - Xe (1)
with ;e EUF and t;€C for i=1,2,...r. Then we put
B(§) =<& &1 <i<r.

And we define E(§) = ENB(G), F(§) = FNB(G). Let G(§) be a subgroup of G
generated by X:(¢) for all ¢ e E(§) UF(§) and re C. Then we have that G(g) is
isomorphic to the direct product of finite copies of SL(2,C). And we set
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Ui (g) = <x:(1) |E € E(g), 1€ C)
T(§) = <he(u)| ¢ e E(G)UF(g),ue C)
U_(g) = (xe(1) |E € F(g), 1€ C).

Then we obtain G(§) = U, (§)U_(§)T(§)U,(g). Therefore we see

(

Qe
=1

ge )C Ua‘+02,—TaUa,+~

And this relation implies G, = l~/‘1_,+(~/%77~} .+ Similarly we can obtain G, =
U, U, T,U, . O

Now we define

h

<5€ ~,[J’,i5€71 \Sce Ua,iaﬂ € W2(7*)7ﬁ # OC>

!
o, +
T! =(Tg|fe Wa(T*)).

Then we obtain the following.

LEmMMA 4.
(1) Gi = Ua if]r;‘i = 0;4;[7& +
() Go=T,T. = T'T,
Proor. (1) follows the definition of U, 1. (2) follows from (R2). ]

Then we can prove Theorem 1.

ProOF OF THEOREM 1. First we put X = G.G_GyG,. Let ¢ EUF and
teC. Then there is € W5(7*) such that &+ o. If &€ E, then X:(1)X = X. If
¢ e F, then we have

)?g(t)i € Uaﬁf
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Therefore GX = X. This relation shows G = X. Similarly we can establish
G = G_G, GyG_. Therefore, we have finished to prove theorem.

8 Characterization of G

Here, we put 7: G — G: epimorphism. Then we obtain some lemmas.

Lemma 5. We set By =<¢|SeE), Z(B), = B, NZ(B). Then we have

PrOOF. Let z€ Z(B),. Suppose z # 0. We write z = ), #;x;, where x; € M,
t; € C, t; # 0. Then we choose xy such that /(x() is minimal in the /(x;) for all i.
And we set hy = xoX9, M. = M N B,, then we have

0 = [ho, z] = tox0 + Z tix; (x;e My, t;eC).
1) > 1(x0) ‘
;xj/.’;éxo

Because it contradicts 7y # 0, we obtain

Similarly we can prove Z(B)_=0.

LemMa 6. Let Z(G) be the center of G. Then we have

ker 7 = Z(G).

PrOOF. We put g =X¢ (1) - X (t,) ekern. Then n(g) =1. So we get

n(g)nn(g) =n. And then we obtain gx,(t) = X,(t)g. Therefore g € Z(G). O
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LEMmA 7.

G() >~ Go.

ProorF. We put 7 : G — G: epimorphism. For each §, € ker 7N Gy, we can
write

gO :ilfl (ul)ilfz(u2)"'ilf/c(uk) (£€EUF’ H,‘EC).

Then by Lemma 4 and (R3), we can assume &; #¢; (i#j) and [(&)) <
[(&) < ---. Then

L=n(gy) = (14 (= D&EE + (' = DéE)

(U (e = DEE A+ (' — DEE)

e D N (R SRS S (e
+ ijzl_#j(ui = Dy~ 1)EEEE
Y= D = 1DEEEE
D = D - DG
3 = D = DéEEES,
Ho (= 1) (e = DEE - &
ot =) g = DEE &G

=1+ (u — DEE + (' = 1)E¢E
+ ZfeE.é;&é] 1:88+ ZfeE.f;&él 1Lé¢ (€K, tt.eC).

Therefore u; = 1. Similarly, we obtain #; = 1. So we have §, = 1. Therefore
Go ~ Gy. O
We define Z(G), = Z(G) N Gy. Then we have the following lemma.

LEmMA 8.

ker 7 = Z(G), Z(G)_.
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ProorF. By Theorem 1, we can write

Therefore for all §' € Z(G), we have §§'§' € GxGyG, for each § € G+. Therefore
we obtain

Z(G) = G+GyG.
Then for §e Z(G), we can write

9=29-909; € G-GoG.

Therefore
n(g) = n(g-)n(go)m(dy)-
Now let
Bi= @ Cw(j,j+i).

w(j,j+i)eB
We set

n(g_)=1+b_

n(go) = bo

n(d,)=1+b,

(b=b1+bz+--~+b,~ )
,bjGBl' .
by =bi+by+---+b,

Then we can rewrite
7() = (1+b_)bo(1 +b..)
=b_.by+ - + bobs.

Because n(g) =1, b_,by =boby=0. So b_,=b;=0. Then we have by =0.
Therefore we obtain §_g, € ker n. Therefore

ker 7 = Z(G), Z(G)_. O

Thus we have G and G.
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THEOREM 2.

PrOOF. By the definition, we obtain G/ker 7 ~ G. Therefore we have
finished to prove this theorem. [

Therefore we get one characterization of G.
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