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0. Introduction

Let K = F((X1)) be a field of formal power series in variable X; over an
arbitrary field F. We fix an element ¢ € F*, and let K, = K[X», X;'!] be the ring
of Laurent polynomials in variable X, over K with the relation X>X| = ¢X1X>
(cf. Section 1). We call this K, the completed quantum torus associated with
q € F*. For / €Zs,, we let 4, ; be a Cartan matrix with simple roots IT =
{o,... 0,1}, and let A;.ljl be an affine Cartan matrix of tier number 1 with
affine simple roots Il = {a; = (¢1,0),...,a, ; = (¢,_;,0),a0 = (—o, 1)}, where
oo is the highest root of the root system of type A, , with respect to Il. Let
M(Z,K,) be the ring of ¢ x / matrices with entries in K,, and we let GL(Z,K,)
be the multiplicative group of M (/, K,). Then we can construct the elementary
subgroup E(A;,.IJNK)(] of GL(¢,K,), and the affine Steinberg group St(A;.ljl,K)q
associated with ¢ge F*. Let Kg(A;]jl,K) , be the kernel of the canonical
homomorphism of St(A;}jl,K)q onto E(A;-IJI,K) ,» and we have the fact that
Kz(A;.l_)l,K) is central (cf. [17]). Using these notations, we obtain the main result
below:

q

THEOREM. KZ(A;}_)I,K)‘] is isomorphic to the abelian group L generated by

the symbols c,(u,v) and d(w) for all aelly, u,ve K* and weK;y =
{ue K* |X2uX2’1 =uy with the following defining relations:

(L1)  ca(u, v)caluw, 1) = ca(u, vi)ca(v, 1)

(Lz) Ca(la 1) =

(L3) ca(u,v) = co(ut vt

(L4) co(u,v) = co(u, (1 —u)v) with u # 1

(L5) co(u,v(ab)) = cp(u(ba),v)

(L6) cap(u,v) is bimultiplicative

(LD) d(w)d(x) = d(wx)ca, (W, X)cq, (x, w) = d(wx)ca, (X, w)cq, (W, Xx)
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for all a= (a,m), b= (p,n) ey, u,v,t € K* and w,x € Ky y,, where Cap(u,0) =
cq(u,v(ab)) = cp(u(ba),v) and the symbol u(ab) is equal to u=' X"~ u=tXp=m if
/=2 and (a,b) = (ap,a1), or X" "u='XJ" if £/ >3 and (a,b) = (ao,a1), or
u*k otherwise.

1. Completed Quantum Tori

Let F be a field (of any characteristic). We fix an element ¢ of F*. Let
K = F((X,)) be the field of formal power series in X; over F, that is, K =
25, a;X/|meZ,ajeF}, and let K, =K[X>, X;'] be the (not necessarily
commutative) ring of Laurent polynomials in X, over K with X>X] = ¢X1 X5, that
is, K, = {1 ai(X\) X} |k,/ € Z,k < /,a;(X)) € K}.

We call K, the completed quantum torus associated with ge F*. If
a(X)) e K and i€ Z, then we have Xja(X;) = a(q in)XZi. In general, we obtain

(S0, ) (57, 80 =50, 37 om0
—Z;‘*:%(Z’” : (Xl)W))X,.

Using the spread of degrees in X>, we find that K, is a Euclidean ring and
that K, has no (nonzero) zero-divisor.

2. General Linear Groups

Let M(/,K,) be the ring of / x / matrices whose entries are in K, and we
set GL(/,K,) = M(/,K,)”, the multiplicative group of M(Z,K,).

Let ® = {& —¢|1 <i+#j</} be a root system of type 4, ;, where the &
give an orthonormal basis of a certain Euclidean space with an inner product

(,-), and let TT = {ay,..., o, |} be a simple system of ®, where o; =& — &41.
We put @ = {o; + 0y +---+ 0|1 <i<j</—1}, the set of positive roots,
and @~ = —®", the set of negative roots, and hence ® = ®~ U®". Then oy =

op + o+ -+, is the highest root of ® with respect to Il. The associated
abstract affine (real) root system is defined by ®; = ® x Z. As simple roots of
®,, we choose a; = (21,0), a» = (12,0),...,a, ; = (¢,_,0), ap = (—ao, 1), that is,
I, = {ai,ay...,a; ,a0} is a simple system of ®;. Let ®f = (" x Z>o)U
(O X Z~p) and @] = (O x Z) U (D x Zo), which are called positive roots
and negative roots of ®; respectively. Sometimes we write (& — ¢, m) = (ij, m)
simply. For each o € @, we define

{E,] ifO(:OCi+O(i+1+"'+OCj,1:Eifé'j (l<]),
€y = . . .
” Ej,' lfOC:—OCi—OCi+1—"'—OCj_1:Sj—é‘i (l>]),
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where Ej; is the matrix unit with 1 in the (i, j) position and 0 elsewhere. For
a=¢—¢e® and reK,, we put x,(r)=x;(r)=1,+re, where I, =Ej +
E» +---+ E,; is the identity matrix. Then the elementary subgroup E(4, |, K,)
is defined to be the subgroup of GL(/,K,) generated by x,(r) for all € ® and
reK,.

In a standard way, the Weyl group W of @ is generated by o, for all o € @,
where g, is the reflection along with o. Then the associated affine Weyl group W
is generated by g, for all a = (o, m) € ®;, where a,(b) = (6,f,n — 23 ﬂ;m for
a=(a,m), b= (p,n) e ®;. We call W, the affine Weyl group of ®. Usually ® is
identified with @ x {0} in ®@;.

. ifn>0
Now we define an automorphism f, of K by f,(r) =

r
{X 'rX;"  otherwise
for all re K and neZ. For example, we have f. o f ,(r)=X,"rX; and
fjnl o fu(r) = XJrX;". And sometimes we write r, = X;'rX;" for convenience.
Using these f,, we will consider the elementary subgroup E (A(l) ) which

, 1
is defined to be the subgroup of GL(/,K,) generated by x,(r) = xa( Sn(r ) ") =

1
I+ fu(r)X)"e, for all a = (a,m)e ®; and re K, and we have E(A4 ; ,K), =
E(A; 1, Ky).
For a=(a,m)e®;, a =¢—¢e®, reK and ue K*, we define the fol-
lowing symbols:

Wa(u) = Xa()x—a(—u"")xa(u) (= wal () X3")),
ha(u) = wa(u)wa(=1) (= diag(l,..., 1, fu(),1, ..., 1, fu(@=1),1,...,1)).
— — =

ith j-th
Then we put
E=E(4)),K), = E(4;.,K,),
U, =<x4(r)|re Ky for all ae ®y,
U=<U|ae®p),
Yo = {xa(r)Upxo(—r) |r € K,b € ®\{a}) for each a eIl
N =<{w,(u)|ae ®,ue K*),
T =<hy(u)|ae®,ue K*),
B=<U,T>,

S ={w,(1) mod T'|aeIl,}.
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Sometimes we identify S with {w,(l)|aeIl;}. Then, we have the following
results as in [17].

LemMA 2.1. Notation is as above and let a € I1;. Then:

N/T ~ W,.
(N/T,S) is a Coxeter system.
U=Y,>xU,.

PROPOSITION 2.2.  Notation is as above. Then, (E,B,N,S) is a Tits system with
the corresponding affine Weyl group W. In particular, we have E = Uwewl BwB
(Bruhat decomposition).

3. Affine Steinberg Groups

Let St(A,_,,K,) be the Steinberg group over K,, which is defined by the
generators X;(y) for all 1 <i#j< / and y € K, and the defining relations:

(RA) X;(y)%;(z) = X5(y + 2)

(yz) if =k,
(RB) [x;(y), %u(z)] = {fckj(—zy) if i =1,
1 otherwise
forall 1<i#j</and 1 <k+#1</ with (i, j) # (k,]), and for all y,zeK,.
Exactly this definition is valid for / > 3. If / = 2, then we should replace (RB) by
the following (RB’):

(RB') 4o (1) X)Wy (—1) = X (—17" yt ™)
for all i, j with {7, j} = {1,2}, that is (i, j) = (1,2) or (2,1), and for all ye K,
and 7€ K, where w;(1) = x(0)x(—1")x;(2).

Next, we let SZ(A?_) »K), be the affine Steinberg group associated with
¢ € F*, which is defined by the generators X,(r) for all « € ®; and r € K with the
defining relations:

(A) Xa(r)Xa(s) = Xa(r + )

(A7) [)Ac(oc,m)(r)a)e(oan) (s)] =1

St LU o)) F = .

(B) (X (1)s Xty ()] = § X, mm) (i (o (10) S (5))) i i = 1,

1 otherwise
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forall ae®, r,seK, a=¢—¢e® mnel, 1 <i#j</and 1<k#I</
with (i, j) # (k,). Exactly this definition is valid for /> 3. If /=2, then we
should replace (B) by the following (B'):

(B/) 1’i’(oc,m)(“)fc(oc,n)(r)w(oc,m)(“)71 = fc(—oc,n—2m)(*fnilzm(f—m(uilu;_lm)fn(r—m»)
for all xe ®, re K and ue K*, where w,(u) = %,(u)%_,(—u")%,(u). We note
that (B’) holds in case of /> 3. In fact, if we choose an index k different from
both i and j, such that X; ,)(r) = [X(i,n)(r), Xxj,0)(1)], then we have

W37 ) () X35y () W7y (1)~

= Rgj,m) WX e, nm) (g o @) fr(r2))) Rty (7 Xk, -y (1) X 1,0y (1)]

X X(ij,my (—ut)

= [Rtn) (=) R ) (g (Lo ) (7)) iy (1),
X01.0) (= 1), -y (™) X170 (1)]

= (Rt (A S Ja(r-))) s R,y (7))

= R(ji.n-2m) (Lo o (fom (@ ) fa(rom))-

For all yeK, we can write y:roX2k+---—|—r1X2k+[ uniquely, where
kelZ, leZsy and ry,...,r;€ K. Then, there is a natural homomorphism
7 of St(d;,K) onto S(AY K), with y(i(reX} + - +nXfH)) =
R0 (i (r0) - Rgan (fh(r)) for all 1<i#j</, keZ leZsy and
ro,...,r; € K. Hence, we have the proposition below.

ProrosITION 3.1.  Notation is as above. Then, we have St(A;}jl,K)q:
St(A;_, Ky).

PrOOF. We can define a homomorphism ! :St(A;ljl,K)q — St(A,_,,K,)
with 71 (%,m) () = Xi(fm(r)X3") for all (ij,m) € @, and r e K. Then we should
check the following:

@D yx(left hand side of (RA) (resp. (RB), (RB’))) = y(right hand side of (RA)

(resp. (RB), (RB)),
@ x '(left hand side of (A) (resp. (A), (B), (B"))) =y '(right hand side of

(A) (resp. (A), (B), (B))).
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By the definitions, it is easy to prove Q) and the case of not (RB) in (D). Hence
we should check y(left hand side of (RB)) = y(right hand side of (RB)). For
each y,zeK,, we have y= yoXJ' + -+ y, X2 2= 20X 4 4z, X)"
for yo,...,ys,20,-..,20, €K, mneZ and /1,/2 € Zso. Then we have y(left
hand side of (RB)) = y(right hand side of (RB)) if j =k as follows:

2% (3)s % (D) = Begom) ' (90)) = Rgmery) oy (901)5
(jk n)(f l(ZO)) A(jk,n+/2)(f;.1:rl/2(2//2))}
= Xt mn) Fyin (00X3"20X5™))

% Ximtn ) it (0 X321 X5 + p1X3" 20 X" 1)

~ +/ —m—{
X x([k;m+n+/1+/2)<fm-&n+/1+/2(y/1X IZ X 1))
= x(Zie(y2))-

Hence, a similar calculation yields our desired result in other case of (RB).
q.e.d.

Similarly we put Ay (1) = Wa(u)Ww,(—1) for all a e ®; and u e K*. Then, we
obtain the lemma below by direct calculation.

Lemma 3.2. Let ae @, mneZ, re K, u,ve K*, a,f € ®, where o and f
are written as o =& —& and = ¢ —& with (i,)) # (k,0), 1 <i# j</ and
1<k +#1</{ Then the following relations hold.

(1) Wa(u)_l = Wa(—u), Wa(u) = 1'T;—a(_l’rl)'

(2) W(oc n) ( )X( ( )W(x m)( u)

FonF )(_f;_ir] (f5m(u Flu + ) Ja(rem))) if = =a,
gy (1 ) i (
il, n-+m) (J(rfl;n(ﬁﬂ(“

kj, n+m)

X

=

><>

0
Ju(rm))) i a+ B #0, k=],
Ja(r)) if a £ B#0,1=1,
/- lm(f m@ D furm))) if o+ B#0, k=1,
St (fom ) 1)) i 0 £ B0, 1= j.

=

><>

(=
Jln— m)(
)(

ki,n—m)

(
(
_ )X
(
(
X(
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(3) W(a,m)( ) (ﬁn( ) am)( u)

WHHHm(ﬁﬁﬂﬂw( ) fu(vgm)) i B = ta,
wipm() if (o, f) =
AWMMEQU(WM%»)ﬁaiﬂ¢Qk:L

Wi(kj, n+m) ( fn+1m(ﬁﬂ(”n)fn(v)>) if o+ B#0,1=1i,

(4) ha(u) =

jlnm( nl( Som(u _]) (v-m))) if o+ B#0, k=i,
Wi, nm) (S o (fom () Ja(0))) i e £ f#0, 1= .
h_a(u)”™!

(5) w(oc,m)( )h(ﬁ n)( ) (a m)( u)

(6) i’(zx,m) (u)

(7) il(o(, m) (u)

by (@) i (2,8) =0,
h(i/,n+m)(j;111m(fm( )fn(vm))) (i, n+m)(fn+mfm( ))
Cif a0 k=],
h(kj,n+m( fy,er(fm(un)fn( ))) (kj, n+m)( fnjrlmfm(un))_l
A if o +p#0,1=1
h(jl,nfm)(_fn_—lm(f—m(u_l)f;l(v—m))) (jl,n— m( fn mf ”1( )) :
A if a+p#0, k=1,
h(ki.,nfm)(fn_—lm(f m( _])fn( ))) (ki,n—m) (fn mf m( )) :
if ot fA0,1= ]

)AC(/;”() O'm( ) !

ﬁuv Voem@tug,)) i B =t

()i (.8) =0,
xwﬂ#.fﬂ 1) if e+ B0 k=,

gy (7 o (L)) i £ B #0, 1 =4,
x(/;,,(rf Un(u)) if a £ B#0, k=i,

W;mwnM)ﬁaiﬁ¢Q1:f

( Vi, ()"
mﬂﬂffﬂwﬂﬁbﬂﬁﬂnfmwwﬁwylwﬁ:ﬂ,
h(ﬂn)(v) if (o, 8) =0,

By 0L @ N hg f o)™ i w £ f#0, k= j,
hwmﬂfVW(AMﬁmmU.f(an” if ot fr0 [=1i
m“(f»%(»ﬁnUfM(»q if ot B0, k=i,

$on) (O on )Yy S ot )™ 3F a2 0,1 =
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Now we define the subgroups of St(A;-l_)l,K)q:

U,

Xq4(r)|re Ky for all ae @,

Q>

(Uilae @,

Y, = {xUpx7!|xe U, be ®\{a}y for each aelly,

S = {i,(1) mod T'|aell}.

Then, we have the following results (cf. [17]).

LEmMA 3.3.  Notation is as above and let a € I1;. Then:

(1) U<«B=UT.

(2) T<1N

(3) BAN =T.

(4) N/ ~ W

(5 (A /T ) S) is s a a Coxeter system.

6) Y,«U=Y,U,.

(7) Voa(u) Yoo (—u) = Y, for all ue K*.

PRrROPOSITION 3.4.  Notation is as above. Then, (Sl( / 1, )q,B, N, S) is a Tits
system with the corresponding affine Weyl group W,. In particular, we have
St(A4 ;>1,K) = UWGW‘ BwB (Bruhat decomposition).

PROPOSITION 3.5. Notation is as above. Then, Si(A4, M K)

17
central extension of E(A ;)],K)

p is a universal

4. Presentation of Elementary Subgroups

We put KZ(A; )1,K) = Ker ¢, where ¢ is the canonical homomorphism of

Sl(Ai,.ljl,K)q onto E(A;)I,K)q with ¢(x,(r)) = x,(r) for all a e ®; and re K.
First we suppose that £ = 2, that is, the rank of @ is 1 in the sense of root

systems. Namely we assume IT; = {a; = (12,0),a0 = (21,1)}. Let E(4; AW K), be

the group defined by generators X,(r) for all a € ®; and re K and the deﬁmng

relations (A), (A’) and (B’) together with the following relation:
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(C) ha(u)h ( ) = ho(uv) for all ae ®, and u,ve K>
(D) hgy(W)ha () 1 for all we Ky
where Ky ={ue K*|[u,X>] =1}, and for all ae ®, and u,ve K*, we put

Wa(t) = X0 ()X _o(— X(u), () = Wa(u)Wa(—1)

and where x, w in the relations (A), (A’) and (B’) should be changed into X, w
respectively. Using the above discussion, we obtain the following proposition.

ProposITION 4.1.  Notation is as above. Then, we have E(A(ll),K)q:

E(A(11>,K)q. In  particular, Kz(A§1>,K)q = {u, v}u,cf(»v) |aell,uve K*,
we Ky >, where {u,v}, = o (W)ha(0)ha(u0) ™" and d(w) = hay(W)ha, ().

Proor. The homomorphism ¢ : St(Agl),K)q — E(A(ll),K)q induces two ca-
nonical homomorphisms called ¢ and ¢, that is, ¢ : St(A(ll),K)q — E(A%”,K)q,
é: E(A(I”,K)q — E(A%”,K)q, which are defined by @(%,(r)) = %,(r) and
#(X4(r)) = x4(r) with the following diagram:

o EAK),
V ¢ X
1 1
si(a, k), E(4{",K),
We use the same notation for subgroups of E(A21>>K)q as in St(AEl),K)q
changing ~ into ", namely #(°) = ~. Then, we find two kinds of Bruhat
decompositions:

E(AY K), = yew, BvB > B =UT

| |

E(A<11>7K)q =ye w, BWB > B =UXT

Therefore, by these decompositions, we can obtain Ker ¢ = B. We take an
clement X € Ker ¢. Then, we write X as ¥ = yZ for some ye U and Ze T. Put
y=¢(p) and z=¢(Z). Since xeKerg, we have 1= ¢(x)=@(7)¢(z) = yze
U > T which implies y =z = 1. Hence, we obtain 7,7 e Ker 4.

Claim 1. y=1.

Using the degree map of K[X3] in X, we can establish that U is the free

0 57) 0 (g 1)

product of
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Hence, U is isomorphic to U, and y=1

Claim 2. z=1.

By (B') and (C), we have h,(u)hy(v)ha(u)™" = hy(v), so T is commutative.
And we have iza(u) e(T, s T, w»> by induction on the length of the shortest
expression in W, where T, = {h,(u)|ue K*). Hence we obtain T = T,,T,,,
and one can write Z = &, (u)h,, (v) for some u,v e K*. Since ¢(Z) = 1, we see that
u=veK;y by

X ulx, 0N/v O X lulxor 0
o (S (e 2 (5 0

Consequently, z=1 by (D).
Therefore, we just reached %=1, which implies that E (Agl), K) .=
E(4V, K) qed.

.
PRrROPOSITION 4.2.

K>(A1,K,) ~ Kz(Agl),K)q = <{u,v}a,ci(w) laeIl, u,ve K*,we K/ y>.

Proor. Since St(A},K), ~ St(41,K,) and E(4\",K), ~E(4,,K,), we
have K>(41,K,) ~ KZ(AEI),K) , from the following commutative diagram by the
five lemma.

SN E(Agl),K) —— 1 (exact)

1 1
I —— KA K), — st(4}",K), .

J l J

] — KZ(AI,Kq) —_— St(Al,Kq) _— E(Al,Kq) —— 1 (exact)

And we have Kz(A(ll),K)q = {u, U}a,cf(w) laeIl,u,ve K*,we Ky y,> by
Proposition 4.1. g.e.d.

We suppose 7 > 3. Then, in general, there exists a canonical homomorphism
of Kz(Agl),K) , into KZ(A;IJI,K) ;,» Which is induced from the following diagram
(cf. [13]):

I —— K(4",K), — st(4}",K)
) ()
l — Kz(A/'_NK)q — St(A/—l’

—— E(4",K), —— 1 (exact)
SN E(A;}_)I,K)q —— 1 (exact)

q

K),

Since K, is a Euclidean ring, the homomorphism of Kz(AEI),K)q into

KQ(A;IJI,K)q is surjective by [5]. Hence, we have the following.
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THEOREM 4.3. Suppose { > 3. Let E(A/ . )q be the group generated by
Xq(r) for all ae (I)1 and r € K with the defining relations (A), (A'), (B), (C) and

(D
(D). Then, E( ;. 17K) is isomorphic to E(4,” ,K),.

If /=3, we have the equations
w(23,0) (D W(r2,0) (D{u, v} 23, 0)W(12,0) (= 1)W23,0) (= 1) = {u, v} (159  and
was,0) (Dwear, 1y (D{u, v} 1ywen n (=Dwas 0 (—1) = {u, v} 15,0)

then we have {u,v}, = {u,v}, = {u,v},. Similarly, by simply computation, we
have {u,v}, = {u,v}, == {u,v}, | for £>3. Hence we can write {u,v};, =
{u,v} if />3, for simple. Therefore, we have the following.

PROPOSITION 4.4.  Suppose £ > 3. Then, we have

KA, ,K,) ~ KZ(A/ . )q:<{u,v},d(w)|u,veKX,1veK;X2>.

5. Kj-groups and Presentations

We put {u,v}, = [h(u),hy(v)] for any w,veK* and a=(a,m), b=
(B,n) e ;. Then we have

{u, o7t Y, = {ufl u,' v}, if £ =2 and the pair (a,b) = (ap,a),
{u, 0}y = S {u, 05,0} = {071} if /> 3 and the pair (a,b) = (a9, a1),
{u, 0P} = {uh “>, v}y otherwise.
Hence, using the notation
w'ul if /=2 and the pair (a,b) = (a0, 1),
(ab) {umln if />3 and the pair (a,b) = (a9, ay),
ul B> otherwise,

we can write {u, v}, = {u,v(ab)}, = {u(ba),v}, for convenience. In particular,
we have wu(ab)(ba) =u if {o,fY{f,a) =1 and w(0a)w(la)---w(/ —1,a) =1,
where w e K/ y,. Also, we have the following using the fact that {u, v}, is central:

{u, 0} {1} gy = () by (0)ha (1)~ [ (), Iy (w) iy (0) ™!
= () by (V) by (W) ha (1)~ By (w) ™y (0) !
= [ha(1t), hp(vw)]

= {u,vw} .

Also we can get {u,v},{w,v}, = {uw,v}, similarly, hence {u,v}

is
bimultiplicative.

ab
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For example, we can compute the following identities:

If / =2, we have {u,v},, = {u, 0" 0=1}, = {u'u;', v}y, {u,0},, = {u,0*}, =
{uz,v}a,_ {u7 _l}ab = {_1’u}ab =1

If />3, we obtain {u,v};, == {u,v},, ., ={u,v},| o= {u,v"'} and

{ua U}Ol = {u—lvvil} = {urvlil}'

LemMmA 5.1. For any u,ve K*, aeIl;, we have the following relations.

(1) i’a(”)i’u(v) i’a(”zv)i’u(“_l) :il (0" (uv ?).

(2) ha(uv(1 —Av))flaﬂ(u(l —v))' = ( >f} (™!
(3) ha(w?) = @wmerf=ug D hula) = ()
@) {u, v}, = ha(u o™ (Y (0.

Using the above Lemma 5.1 and the fundamental properties of {u,v} ,, we

ab>
have the following:

LEMMA 5.2. Let £ =2. Then, the following relations hold for all t,u,ve K*,
w,xe Ky, and a= (a,m), b= (p,n) e;:
(L1) {0}, fuw, = {06} {0,
(L2) {1,1}, =1,
(L3) {u,o}, = fu oo,
(L4) {u,v}, ={u, (1 —u)v}, with u#1,
(L5) {u,v(ab)}, = {u(ba),v},,
(L6) {u v}, i bimultiplicative,
(

D) d(w)d(x) = d(wx){w,x},{x,w}, = d(wx){x, w},{w, x},.

.

Lemma 5.3. Let t,u,ve K*, w xeKqu, aell; and £=2. Then the

relations (L1)~(L6) and (LD) in Lemma 5.2 yield the following relations.
(1) {u,1}, =1,

(2) {u, v}, ={u(l —v), v},

(3) {u7 U}a = {u’ 7”1)}0 = {71’”]7 v}w

@) {u,u’}, =1,

(5) {uvv}a = {lf u} - {v’ uil}a = {u7 uil}a = {vilﬁuvz}w
(6) =1, X5 )}, = 1,

() dos)deed) = dwe),

(8) d(wx)d((1 —w)x) =d(x)d(w(l —w)x)

ProoF.
(1) Put v=1¢=1 and then apply (L1) and (L2) to obtain (1).
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(2) We can obtain {u(1 — v),v}, = {1 — v,uv}, {u,v},{1 —v,u}," = {u,v}, by
(L1) and (L4).

(3) We have {u,v}, = {u, (1 —u)v}, = {u, —uv(l —u=")},

— e (=),
= {u717 _uilvil}a = {u, _uu}a
by the previous (2) and (L3), (L4).

(4) By (1), (3) of this Lemma 5.3, we can show (4).

(5) By (L1), (L3) and (3) of this Lemma 5.3, we see (5).

(6) We have {—1,uu1}, = {u?,, —u= 2} {-1,uu_ -1},

= {2y, —uu_ },{~u"f,uu_}, by (LI)

= {uflv _uufl}ll{_u:%vuil}lo

= {u_r,uu i}y {u"f,u'}y, by (LS), (L6)

= {2y uuy }y{uf, uur}y

={u?,u '} {u}ul},=1 by (L5), (L6)
Also we have {—1,uu”}, =1 similarly.

(7) By (4) of this Lemma 5.3, we have 1= {x,x*2}, = {x,x¥!},,, and
this implies {x,w},, = {x,wx},, = {xw,w},, by (L6). Then we obtain
{w,x" g = {w, " whye = {x, 37wy = {x,wh

(8) By (2) of this Lemma 5.3 and (L4). q.e.d.

LEmMMA 5.4. Let £ > 3. Then, in KZ(A; >1, K),, the relations corresponding to

(L1)~(L6) and (LD) of Lemma 5.2 hold.

Lemma 5.5. Let t,u,ve K*, w,xe Ky, and { >3. Then the relations
L1)~(L6) and (LD) yield the following relalzons

(1) {u,0}{u,t} = {u,vt} and {u,v}{1, U} = {ut,v}.
@) {u, v} ={v,u'} = {v"u} = {v,u}”"

3) { ,0} = {um,um} for all meZ,

(@) dow)d(x) = d(wn).

Let L be the abelian group generated by the symbols ¢(u, v), and d(w) for all

u,ve K*, aell; and we Ky, with the defining relations (L1)~(L6) and (LD)
replacing {u,v}, and d(w) by c,(u,v) and d(w) respectively. Hence there is one

and only one homomorphism ( : L—>K2(A(l) K), which carries c,(u,v) to

{u,v}, and d(w) to d(w) respectively for all u,ve K*, we K} y, and a € I1;. Then
we obtain the following, the proof of which will be given at the last part of this
section.

THEOREM 5.6. Notation is as above. Then we have L ~ K, (Ai,l ’ )
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To prove this, we introduce the group H, which is generated by the symbols
ho(u) and z() for all aeTl;, ue K* and /e L with the following defining
relations:

(H1) () (0) = =(ea(t,v)y (),
(H2) h,(u)hy(v) = z(cap(u, v))hp(0) (1),
(H3) z(h)z(h) = z(hb),

(H4) o (u)=(1) = z(lghaw),

(H5) ho(w)hi(w) -~ hy_y (w) = z(d(w))

for all a,b eIly, u,ve KX, we KXX2 and /, /1,5 € L, where ¢4 (u, v) is the element
of L corresponding to {u,v},. We see that H contains the subgroup consisting of
z(I) for all [ € L, which is isomorphic to L, hence we can identify / € L with z(/).
In particular, all the relations in Lemma 5.1 and Lemma 3.2 (7) hold in H.

Now we let T, = <h,(u) |ue K*) ~ K* for each a; € I1;, as a subgroup of
T. Then, using the fact 7= T, x Ty x ---x T,,  we construct a central ex-
tension (H,7)

l-L—-HZT 1

of T by L, where 7 denotes the associated homomorphism of H onto T.

Next, we will construct some central extension of the monomial subgroup N
by L which is compatible with the extension (fI ,m) of T. To do so, we first
obtain the presentation of N in a similar way as in Proposition 4.1, and then
construct an action of N on H.

LemMaA 5.7.  Notation is as above. Then N is the group generated by w,(u) for
all aell; and ue K* with the following defining relations:

(N1) wu(u)™ = wy(—u),

(N2) wa(1)hy()wa(—1) = hy(u)hy(u(ab) ),

(N3) ha(u)ha(v) = ha(uv),

(N4) ha(u)hp(v) = hy(v)ha(v),

(N5) ho(w)hy(w) ---hy_ (w) =1,

(N6) w,(Dwe(D)ywy(1) = we(Dwa(Dwe(1) if o, pd<y,ad =1,

(
(NT7) wa()we(1) = we(1)wa(1) i o, y<p, o) =0

Jor all u,ve K*, we Ky y,, a = (a,m), b= (p,n), c=(p,k) e} and o # +y.

PROPOSITION 5.8. We define the action of N on H in the following way:

wa (1) - by (0) = wa (1) (0)Wa(—u) = hy(v)ha(v(ab) ™) ea (1, v) "
for all u,ve K* and a = (a,m), b= (B,n) el,. Then H becomes an N-group.
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PrOOF. First we have w,(u) - ho(v) = ho(v™ ) cw(u,v) ™" and hy(u) - hy(v) =
Iy (0)cap(u,v). We should check that the action of N preserves all the relations
(H1)~(HS5). We easily see that (H3) and (H4) are obvious, because of w,(u) -1 =1
for all /e L. We will comfirm the other relations.

(HD): wa(2) - (ho(u)hp(v))
= Iy (u)ha(u(ab) " Vi (0)ha(v(ab) ™ ew (t,uv) ™ by (L6)
= Ty (1) () g (u(ab ™) o (0(ab™") ) cap (2, uv) " cap(u(ab™"),v) by (H2)
= iy (uv)hy ((uv) (ab) ™ ew (t,uv) ' cap(u(ab) ™, v)
x cq(u(ab) ™", v(ab) ™" )ep(u, v)
= }f;,(uv){ta((uv)(ab)fl)ca;,(t7 uv) " cap(u(ab) ™", v)ea (u(ab) ™", v ey (u, v)
= Iy (uv)hy (uv) (ab) ™" )eas (t,uv) " ep(u,v) by (L6)

)
(H2): wy(t -(/}b(u h
)ha(

= w,(1) - (cpe(u U)}Nzé(
(HS): wa (1) - (i L)
= ho(W)ha(w(@0)™") -y (Wha(wla, £ = 1) eao(t,w) - ¢ oy (2 W)
= ho(w) -+ Iy (W)ha(w(a ) w(a, =17
X cq(t,w(a0)---w(a, —1)) by (H2)
= ho(w) iz/_l(w) by w(a0)---w(a,/ —1)=1

= () (d(w)). ~
Therefore, w, gives an automorphism of H. Next we should check that both
sides in the relations (N1)~(N7) give the same effect on H.
(ND): wa(u) - (wa( =) - Ty (0)) = wa (o) - (o (0 (0(ab) e (~10,0) ")
= hy(0)ha(v(ab) ") eas (1, ) ha(v(ab))

X Caa(U v(ab)fl)flcab(fu, 0)71
= hy(v)ca(—1, v(ab))ca(—1,0) "
= hy(v)
(N2): (wo(D)hp(u)wa(—1)) - he(v
(wa(1)h (1)) - (he(v)ha(v(ac) " Yeae(=1,0) ")
wa(1) + (he(0)ha(v(ac) ™ Yeae(=1,0) " e (1, V) epa(u, v(ac) ™)
c c

c(W)ea(=1,v(ac))cae(—1,v _lcbc(u, v)cba(u,v(ac)_l)
(u,v(ac)”") by (L5)

cb(,(u,v)c[,g(lu(ab) 'v) by (L3) and (L5)
)



16 Hideyuki SAKAGUCHI

(N5): (ho(w)hi (w) -~ hy_y (w)) - ha(u)
:}ju(u)coa(w u)cra(wyu) - -cy (w,u)
:}fa(u)co(w(Oa)w(la) -w(f —1,a),u) by (LS5) and (L6)
:ha(u)
(N6): (w1 (1)) - (1) ) )
= hy(uha(u(ab) ™ Yhe(u (Cb)_ Vha(u(ch)(ac))hy(u(ab))
X h.(u(ab)(ca))h,(u(ab)™ ) by u(ac)(ca) = u(ca)(ac) =u
— Iy(ha(u(ab) " Yh(u(cb) ™V (u(ch)(ac) . (u(ab) (ca),
(e a(Dwe(1) - ) ~ ~
= iy (u)he(u(ch) ™ Y (u (ab)* Vhe(u(ab)(ca))h(u(ch))
< u(ch) (a0) (u(ch) ™) )
— T ()ha(u(ab) Vo (b)Y (u(cb) (ac) e ((ab) (ca)).

(u
(N3), (N4) and (N7) are easy to be checked, hence H is an N-group. q.e.d.

Let Ny be the group generated by the symbols W, for all a e II; with the
following deﬁning relations:

(W1) hgiph;! = =wy

(W2) wowow, = ww,w, if o, pd<{y,ay =1

(W3) wow, = wew, if {o,y>{p,a> =0
for all a = (a,m), b= (B,n), c=(y,k) ell; with o #+y and h, = w2, where
d= (—1)<“"ﬁ>. Put 7 = <}~za|ae I1,> = Ny, and N* = H X Ny, where we note
that Ny acts on H by w, h= wa(—1) hforallae IT; and he H. Then T is the
group generated by h, for all aeTl, with the following defining relation:

(T) hahyh' = he for all a= (a,m), b= (,n) eIl with d = (—1)*".

Hence, there is a canonical homomorphism  of T into H with 1(h,) = ha(—1)
for all aell;. Let J be the subgroup (which is normal in this case) of
N* generated by (7,1(7)”") for all 7e T, and N :=N*/J denote the quotient
group of N* by J, and let Ww,J be the canonical image of W, in N. Clearly H
can be embedded into N, we denote its image in N by H again. Similarly, we use
the same notation of 4 in N as the original element 4 e H. Then, putting
Wa(u) :== hy(u)w;'J, we have the following for all a e IT; and u e K*:

Wa(—1) = (=)W, T = hy(—=1)ha(=1) " Wud = 0al,
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Thus, we see that we(—1) = W,, Wa(u) ™" = Wa(—u) and hy(u) = wa(u)wa(—1)
hold in N. Note that there is a canonical homomorphism & of N* onto the
monomial subgroup N such that &(w,) = wu(—1) and E(ha(u)) = ha(u) for all
aell, and u e K* and that J < Ker . Hence ¢ induces a homomorphism, again
called & of N onto N. Let ¢* be the canonical homomorphism of N* onto N,
which implies ,(u) = &* (ha(u))E*(W,)"". Since the restriction of &* to H is
injective, we identify H with &*(H).

PROPOSITION 5.9. The pair (N, &) is a central extension of N by L:
1-L—N 5 N — 1

In particular, the restriction of & to H coincides with .
Here, we will show the following lemma for later use.

LemMa 5.10. Let £ > 2. Then:

(1) Every matrix e eE(A;-l_)l,K)q can be written as a product e = uwv with
u,ve U and we N.

(2) The monomial matrix part w is uniquely determined by e. (Thus a well
defined retraction t : E(A;,-IJVK)q — N is defined by the formula t(uwv) = w.)

Proor. (1) First, we have a Bruhat decomposition in E(A;lj 1,K) g by
Proposition 2.2:

1 L. .
E(A(.) K), = |_|XGN/T BsB (disjoint union)

By this decomposition and B= U X T, we get e = uwv for some u,v € U and
weN.
(2) Next we show the uniqueness of w. If there are u’,v’ € U and w’ € N such

—1 1

that ¢ = uwv = u’w'v’, then we have aw = u'"'uw = w'v’v™' = w’b for suitable

elements a,b € U. On the other hand, every matrix in U can be expressed as an
element in

| + K[Xo] X
K[X;]

K[Xz]Xz
1 + K[X>] X,
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since e € BsB, we have w'=w mod 7. Thus, a= (a;), b= (by), w= (wy),

w' = (w};) satisfy
1+ fiXo ifi=j 14+g:Xy ifi=
aj = fy ifi<j, bj=1gy if i< j,
fiXo ifi>j 9ii X2 ifi>j

BV B
g =Wi= :
0 otherwise

with fi, g; € K[X2], y; e K, and
Vij + fiXoyw; if i =k,

aw = (¢j), ¢ =anwy+- -+ AipWy; = QifgWiyj = Jit Vi if i <k,
fik/‘Xzykff if i > kj

Here, w'b:= (d;) induces (c;) = (dyj) and di;=wp by +---+w b, =
J
Wi i = y,w + ¥i,;95X2 for yk] = yr; mod T, we get following.

Clj = Vigj + [iXoVij = Vi + Vi g Xo = dij.
Therefore, y;,; = y,’q/ for all j, and then we have w =w’'. q.e.d.
Now we proceed as in Matsumoto [12] (also see [13], [20]). For all we N, we
can express w = P, diag(u,...,u,) using suitable elements u;,...,u, € K, where

P, is the permutation matrix corresponding to some permutation w of the
numbers between 1 and /. Then we have

WX,y (MW = Xeo(i).mea) (fn}ld(uifm(V)sz”le{mfd)),

W X ) (W = Xt (), maty St (U 0 Fon (F) X3t () X))

for all (ij,m) eI, and r € K, where d = deg(uj*lu,-) d = deg( ,1() 1(7)- We
often write (w(ij),m+d) = w(ij,m) and (= '(ij),m+d") = w'(ij, ) for con-
venience. Also, for all eeE(A; >1,K) and a,beIl;, we can assume e =

yx.(r)wx,(s)z for suitable y e Y,, z€ Y, r,s € K and w € N. In particular, r (resp.
s) is uniquely determined for a (resp. ). Thus, we have the following lemma
below.

LeEMMA 5.11. Let e = yx,(r)wxp(s)z € E(A;, )1’K) and w=
P diag(u, . .. u;) € N be as above, where y € Y,, z € Yp, r,s€ K, uy,...,u; € Kf
and a = (ij,m), b = (ki,n) e I1;. Then the following results hold.

1) t(we(1)e) is equal either to w,(1)w, or to h,(—r Y. In detail, we have
( q .
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Wa(1)x,(r)w
Wa(DWXy @) Sk (b (X U >X*”H")) if =0 or wl(a) e d},
= x“(_r_l)ha(_r)_lwa"(*a)( —1111 d’( ( )XZ mr W’l(i)X2m+d,))
if w'(a) ¢ @f

where d' = deg(u_' Lo H1(5)-
(2) t(ewp(—1)) is equal either to wwy(—1), or to why(s). In detail, we have

wxp(s)wp(—1)

IET! (S (upes X3 P X5 4) Ywwy (— 1) if s=0 or w(b)edy,
Xy (g (X5 g X)) why(s)xp(=s7") i w(b) ¢ @F

where d = deg(u; "uy).

Proor. (1) We have
Wa(1)xa(r)w = wa(1)wx,, 1 (o) (fortar (uz ()er <j>X2””’d')) and
Xt a) ok (U (7 X3t GHX" ) e U if r=0 or wl(a) e .
Otherwise, we have
Wa(D)xa(r)w = xa(=rYha(=r) " Wy (o (s ) X5 Nty X3 0)
and X1 (/o (b () X5 1y X)) € U,
using the equation x,(r) = x_,(r Dwa(r)x_o(r~). (2) is proved in a similar way

as above. g.e.d.

Now, we put X := {(e,W) € E(A; )],K)q x N|t(e) = (W)} and define several

permutations y(h), y*(h), w(u), ©*(u), n;, n; of X for he H, ue U and /€T, as
follows.

y(h) (e, w) := (E(h)e, hw)
(e )" (h) = (e&(h), wh)
() (e, ) = (ue, W)
(e, W)’ () = (e, )
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(e )y = {(ew;,(—l),wth(—l)) if 7(ew;(—1)) = ww;(—1)
T (ews (< 1), o)) if tews(—1)) = why(s)

Let G (resp. G*) be the permutation group of X generated by y(h), u(u), n,
(resp. y*(h), u*(u), n;) for all he H, ue U and ZeTl;.

Here, we will show some relations in N. For all ie Z//Z, we put some
notations in case of /> 3:

S = w1 (1)wi(1),
ti = SiSiv1 - Sin,

G = (=D (=1) o (= Dt (=D 5 (1) i (1),

In particular, we have &(f) = diag(X;",...,X,7) with n;---n,=1 and
n =ni =1, and (i) = diag(1,...,1, Xa | Xz_l ,1,...,1). Then we have the
. N~
following: ith (i1 1)-th
Siot-hi(u) = by (u(i —1,0)7),
571 ki) = hi (u(i+1,0)7Y),
fi - hi(u) = hi(XouX;"),

i - hy(u) = hy(u) if o, By =0

i - wi(1) = w;(1) if (o, ) =0

for all i, je Z/{Z, a; = (o, m), a; = (f,n) eI} and u e K*. Then, we obtain the

following lemma.

Lemma 5.12. Let ue K*, a=(a,m)ell;, a =& —&e€ll and we No such
that E(w) = (by), where 1 <k #1 < /, by € Ky with bj = b; = 1. Then we have

w - ila(u) = hy(u) and w-W,(1) = Ww,(1).

PrOOF. By proposition 59, we have Ker &= L. Then we can write
w=xyz for suitable xeL, yelw.(l)|c=(p,n)ell,<a,pfy=0) and
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ze {uy|ay = (B,n) e}, <a,f>=0>. Hence, we obtain w- ila(u) = iza(u) and
w - Wwe(1) = w,(1). q.e.d.

Lemma  5.13. Let wvy,...,v,€K*, wvi---v,€[K*,K*], m,...,n;eL,
a= (ijj,m), bell, weN  such that  w(a)=b and &E(w)=
P, diag(ci X," e c/-inf) diag(vy,...,v;),  where ci,...,c,e{l,=1}  and
ci=c¢;=1if £ =3. Then we have the following relations.

(1) whe(uyw™! = hb(~X2”"vifjnl1(v]T1)qu_”’)hb(XZ"'vifjrgl(ujfl)Xz_"")_l.

(2) wivg(=1)w=" = hy(= X370 /2, (0, ) Xy ")y (1).

Proor. (1) By definition of N, we can write w = hih for suitable /e L,
b= ho(ro)hy(r1) - - -iz,;l(rf;l) with &(h) = diag(vi,...,v,), ri,...,r;,_; € K* and
W e Ny with E(w) = P, diag(c{Xz'”,...,c;XZ"‘;), where ¢f,...,c;e{l,—1} and we

can put ¢, =¢/ =1 if / > 3. Then, we easily obtain:

il()(U/'leil_lXz_lu)ilo(U/'szl_lXz_l)_] if a= ap,

ila(v,-v;'u)iza(vivj‘l)fl otherwise.

Ihhy(u)h 17! = {

Next, we will calculate W, (u)w .
Case 1. a=(ij,m) =b = qy.
In this case, we have n; = n;. Then &(Wz, ™) is a matrix with entry 1 at both
positions i and jj, which implies Wh,(u)Ww ™" = hy(u,,) by Lemma 5.12.
Case 2. a=a; and b=a; with 1 <i#k</—1.
{sk_ll--.g,.l-iza(u) if i<k
1 ha(

In this case, we have n; =n;;; and ilb(u) =93 . _ . :
Skt 8im u) if i >k

Then we have

ha () = 57 5 G v () = ()

if i < k. Similarly we have Wwh,(u)w™' = hy(u,) if i > k.

Case 3. a=ap and b =q; with 1 <k </—1.

In this case, we have n; =n,+ 1 and 5, ---55" - ha(u) = hp(u_1), then we
have

Wha ()t = 555 Go Sty "Dy - ha(u) = hy(un,) = by ()
since the diagonal matrix part of &(5; !, ---§5;!) is diag(z1,...,z,) with z, = X, !
Z] = 1.

Case 4. a=a; and b=ap with 1 <i</—1.
In this case, we have n;.; =n;— 1 and §---§_; iza(u) :izb(ul), then we
have
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Wha (W)™ = 8o S (57 -5 WET YT hy(u) = By (uy,)

i i

since the diagonal matrix part of &(So---§-1) is diag(zi,...,z,) with z; = X,
Zi+1 - 1.
Therefore, we have

why(u)w™" = hy (X3 0, Xov7 Xy Xy " Yy (X 0, Xovy Xy X ™) @ = ao,
¢ izb(XZ”"vivj‘luXE"’)izb(Xz”"vivjflX{”")_l otherwise.

(2) We assume w = hh as in (1) of this lemma. By Proposition 5.8, we have
the equation

hk(r) : wa(l) = ila(r(ak))wa(l)

which implies

o - : N ha(v, X207 Xy Yo, (1) if a = ay,

h-vw,(1) = h, 0) -1, (a,f — 1))g(1) =4 - .
Wa(l) (ro(a0) Ty 1(61 ))Wa(1) {ha(v,-vj‘l)wa(l) otherwise

izb(Xzilfv/~szl’1X2_’1’_l)W;,(l) if a = ay,

and  wi, (w1 =772 e _
by (X5 w07 Xy " )y (1) otherwise

in a similar way as in (1) of this lemma. Then we have:

(= X370, X071 X, " Y1) if @ = a,

(= X0 XY . q.e.d.
=X, oo X, " )wp(1) otherwise.

wing(=w™! = {{lb
hy

LEmMMA 5.14. Let (e,w) e X, g€ G and g* € G*. Then the following equation
(x) holds.

Proor. It suffices to show this for the generators of G and G*. Then,
the only nontrivial case is when g = #, and g* = #;, and one only has to compare
the second components. Here, we let #,(Wn;) (resp. (n,w)n;) be the second
component of #,((e,w)n;) (resp. (n,(e,w))n;) for simplicity. We write e =
Yxa(r)wxp(s)z € E(Ai}jl ,K),
P, diag(ui,...,u)) e N with uy = 1 X3"vy,...,uy = ¢, X, v, € K as in Lemma
5.13, and a = (ij,m), b = (kl,n) e I1;.

Case 1 w(b) # +a.

In this case, we have the following by Lemma 5.11 and the general fact that

[(0,) = {4} for all ZeIl;, where I'(c) = {d € ®] |o.(d) € D} }.

for suitable yeY, zeVY, r,seK, and w=



A Matsumoto-type theorem for linear groups 23

(17,w)1;
W (1) (—1) if “w™(a)e®] or r=0" and “w(b) e ®] or s=10"
_ ) (1) (s) if “w™(a) e®] or r=0" and w(b) ¢ O
ha(=r) Yo (=1) if wl(a) ¢ @ and “w(b) € ® or s=0"
ho(=r) "Why(s)  if wl(a) ¢ ®F and w(b) ¢ O
= 1,(Wity)

Case 2 w(b) =a.
In this case, we have to show

vf)a(l)ﬂ/ilb(s + u,:erzmule_mJ“""_”’) = iza(—r — ukst"ul_le_”_""J’"l)*lvf)wb(—l)

where, n; = deg(uy). Here, we have n—m = —n; +n; by w(b) =a, and put
t = —r — uesXyu; ' X5, Then we can write the equation above in the following
way:

Wa(D)Why (= (X X5 = ha(2) vy (—1).

If =0, then this is obvious. Otherwise, we obtain the above equation as
follows.

Wa (1) Why (—u;  eX3" w0 X5™)

Wa(l )ilg(_ink Ukvjzl X;nk tX2m+n[ Ungnf:nl (U;l )ink)

><iza(XZ”"kafnl(U[I)XZ”")_IW by Lemma 5.13 (1)
= Wa(Dha(= (X3 0 f2) (0 )X ™ by X" () = o) Xy
= ha(=1ha(X5 0 £ ) X)W (1)
= ha(=1" Y ha(O 0 ) (00 X54) (=X v f ) (o D) XG4)

x wwy(—1) by Lemma 5.13 (2)

= ha(—t Yha(=1) "oy (=1)

Case 3 w(b) = —a.

First, if r = s = 0 then (*) is obvious, and in the case when at least one of r
and s is 0, (%) holds by a simple computation (cf. [20]). Hence we assume that
both r and s are not 0. Then, in this case, we have to show
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ha(=y)~"Why(s) = ha(—r) " Wiy (2)
where, y=r+uwX;"s u ' X;" and z=s+u ' X;™r 'y X;". Then, by the
fact that w,(—1)w(b) =a and

f(ﬂiu(—l)ﬂ’) = P; diag(ul, ey Uk, —szuk, Upt 1y e - -y u/,l,X{’"uh .. .),
we have the following:
ha(=r)ha(=y) ™"

By (2) by (s) !

I
=

= Wa(1) (Wa(— 1)0) s (2) I (5) ™" (a(— 1)) Wu(—1)
= wu(l)ilu(*xznﬁmusz:nl (U;I)Xzinkim)ilu(*inkﬂnvksf:nl(Ulil)Xzinkim)ilwu(*l)

= iza(Xz’"ukz/\’z”uf1 )_liza(Xz’"ukst”ufl).

This means that we have to show A, (XJ"uesXyu; Yh(—y) =
ha( X wezXJu; Yha(—r).  Setting p=—r and x= XJ'wsXJu;', this is
ha(X)ha(p — x71) = ha(x — p~Dha(p), so we have to establish c¢,(x,p—x') =
ca(x — p~', p). However, we see the following by (L1)~(L4):

ca(x, p— x N =c(x, 1 - px) = ca(x(1 =1 —&—px)*l’l — px) = cu(p_],l — pXx)
=ca(l = px,p) = calx —p ', p).
Thus, the equation () holds. q.e.d.

LEMMA 5.15.  The group G and G* operates in a simply transitive manner on X.

ProOF. Transitivity: E (A;lj 1+ Kq) is generated by U and the elements w,(1).
Therefore operating on (e, w) € X by some sequence of the permutations u(u) and
7, we can certainly transform the first component e of (e,w) to e’. That is, we
can find a g9 € G with go(e, w) = (¢/,w*). Since both (¢/,w’) and (¢’,w*) lie in X,
we conclude w' =Ww* mod L. Hence operating on (e’,w*) by a suitable y(h) we
obtain (e’,w’). This proves the existence of g with g(e, w) = (¢/,w’) and we prove
the transitivity of G. By a similar way, we prove the transitivity of G*.
Uniqueness: For any x € X, we choose ¢;,¢> € G such that g;x = g,x. Then,
for any g* e G*, we have ¢g(xg*) = g2(xg*) by Lemma 5.14. This implies
g1x' = gox’ for every x' € X by the transitivity of G*, which yields g, = g».
Therefore, we prove the uniqueness of G, and uniqueness of G* in a similar way.
q.e.d.
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PropoOSITION 5.16. The map ¥ : G — E(A;}_)I,K)q is an epimorphism, and the

following exact sequence is a central extension of E(A;lj 1,K) -
¥
1—-L— G—>E(A(/»]7)1,K)q—>l

Proor. First note that the action of an element g € G on the first com-
ponent of a pair (e,w)e X is just the left multiplication by some element
Y(g) e E (A;.l_) 1+ K),- This fact is true for the generators of G, and hence is true for
arbitrary elements of G. This defines a homomorphism ¥ : G — E(A;.l_) 1K)y
Since G acts transitively on X, it follows that ¥ is an epimorphism.

The kernel of ¥ can be computed as follows. If g € Ker ¥ then g(e,w) =
(e,w’). The equation 7(e) = &(w) = &(W') implies that W' = W for some /e L.
Thus, g(e,w) = y(/)(e,w). Using the simply transitivity of the action of G, this
proves that g = y(/). Therefore, we have Ker ¥ = y(L) ~ L = Z(G). q.e.d.

Hence, it is easy now to establish Theorem 5.6 in a standard way as follows
(cf. [13]).

PrROOF OF THEOREM 5.6. We get the diagram below.

| — L s G s EAY K), —— 1 (ce)
F ]
I —— K4 K), — si(4 | K), —*— EUY k), — 1 (uce)

Then p: St(A;ljl,K)q — G is unique. HenceA we have p(Kz(A;ljl,K)q) cL

and we see p({u,v},) =cq,(u,v) as well as p(d(w)) =d(w) for all u,veK*,
we Ky . But { carries ¢,(u,v) to {u,v}, and d(w) to d(w) for all u,veK*,

we Ky . Since KZ(A;}jI,K)q is generated by {u,v}, and d(w), and L is gen-

erated by c¢,(u,v) and d(w), one completes the proof of L~ Kj(4, ,,K),
g.e.d.
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