CONSTRUCTION OF HARMONIC MAPS BETWEEN SEMI-RIEMANNIAN SPHERES

By

Kouhei MIURA

Abstract. We describe a method of manufacturing harmonic maps between semi-Riemannian spheres out of those in Riemannian geometry. After normalization, the resulting maps give examples of helical geodesic immersions in semi-Riemannian geometry.

1. Introduction

Some harmonic maps between semi-Riemannian spheres were obtained by Konderak [5]. Unlike the Riemannian case, it is not so easy to construct harmonic maps between semi-Riemannian spheres, since the semiorthogonal group of the semi-Euclidean *n*-space \mathbf{R}_t^n loses compactness and the Laplacian on \mathbf{R}_t^n is not elliptic for $1 \le t \le n-1$. Therefore only finite many harmonic maps were constructed in [5]. Ding and Wang [2] proved that the *d*-homogeneous harmonic polynomials on the Lorentzian *n*-space \mathbf{R}_1^n are given by a Wick rotation of those on the Euclidean *n*-space $\mathbf{R}_0^n = \mathbf{R}_0^n$. Using this result, they constructed all harmonic maps of the Lorentzian 2-sphere (resp. hyperbolic 2-space) all of whose components form a basis of the space of *d*-homogeneous harmonic polynomials on \mathbf{R}_1^3 .

In this paper, we shall construct all harmonic maps between semi-Riemannian spheres all of whose components form a basis of the space of *d*-homogeneous harmonic polynomials on a semi-Euclidean space. Using Weyl algebras, we first generalize the Ding and Wang's result on the harmonic polynomials, that is, the *d*-homogeneous harmonic polynomials on \mathbf{R}_t^n ($0 \le t \le n$) are given by Wick rotations of those on \mathbf{R}^n . Applying this result to the canonical basis of the space of *d*-homogeneous harmonic polynomials on \mathbf{R}^{n+1} (Vilenkin [12]), we obtain the required harmonic maps in the explicit form. By multiplying a suitable constant

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C50; Secondary 53C40.

Key words and phrases. harmonic map, standard λ -eigenmap, helical geodesic immersion. Received September 27, 2006.

factor, the resulting maps are isometric immersions and corresponding to the standard minimal immersions of Riemannian spheres. In Riemannian geometry, it is well-known that the standard minimal immersions are helical geodesic immersions. We show that our isometric immersions are helical geodesic immersions in semi-Riemannian geometry.

2. Harmonic Polynomials on Semi-Euclidean Spaces

Let $F[x] = F[x_1, ..., x_n]$ be the polynomial algebra in *n*-variables $x_1, ..., x_n$, where F is the complex numbers C or the real numbers R. The natural decomposition $C = R \oplus \sqrt{-1}R$ induces

(1)
$$\boldsymbol{C}[x] = \boldsymbol{R}[x] \oplus \sqrt{-1}\boldsymbol{R}[x].$$

So, for any polynomial f of C[x], there exist two polynomials $\Re f$ and $\Im f$ of R[x] such that $f = \Re f + \sqrt{-1}\Im f$. Then we denote $\Re f - \sqrt{-1}\Im f$ by \overline{f} . We shall denote by $F_d[x]$ the space of *d*-homogeneous polynomials in F[x] ($d \in N_0$).

Let $\operatorname{End}_{F}(F[x])$ be the set of all *F*-linear mappings of F[x]. We define addition in $\operatorname{End}_{F}(F[x])$ to be the addition of *F*-linear mappings, and multiplication to be the composition. For any $\xi, \eta \in \operatorname{End}_{F}(F[x])$, we will write the multiplication $\xi \circ \eta$ simply $\xi\eta$ when no confusion can arise. We can consider any $f \in F[x]$ as an element of $\operatorname{End}_{F}(F[x])$ by $g \mapsto fg$ for any $g \in F[x]$. Thus $F[x] \subset \operatorname{End}_{F}(F[x])$. Moreover, we put $\operatorname{Der}_{F}(F[x]) = \{\theta \in \operatorname{End}_{F}(F[x]) | \theta(fg) =$ $\theta(f)g + f\theta(g)$ for $f, g \in F[x]\}$, whose element is called a *derivation* of F[x]. There exists $\partial_{i} \in \operatorname{Der}_{F}(F[x])$ for $1 \leq i \leq n$ such that, $\partial_{i}(x_{j}) = \delta_{ij}$. We can see $\operatorname{Der}_{F}(F[x]) = \bigoplus_{i=1}^{n} F[x]\partial_{i}$. Denote the subalgebra of $\operatorname{End}_{F}(F[x])$ which F[x] and $\operatorname{Der}_{F}(F[x])$ generate by $W_{n}(F)$. We will use the symbol N_{0} to denote the set of all non-negative integers. For a multi-index $\alpha = (\alpha_{1}, \ldots, \alpha_{n}) \in N_{0}^{n}$, we put $x^{\alpha} =$ $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, $\partial^{\alpha} = \partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$ and $|\alpha| = \alpha_{1} + \cdots + \alpha_{n}$. For arbitrary $D \in W_{n}(F)$, we have the unique expression:

$$D = \sum_{|\alpha| \le k} f_{\alpha} \partial^{\alpha},$$

where $k \in N_0$ and $f_{\alpha} \in \mathbf{F}[x]$ $(|\alpha| \le k)$.

Let GL(n, F) be the general linear group of degree *n* over *F*. To each element $g = (g_{ij})$ of GL(n, F) corresponds a ring homomorphism L(g) in the space F[x], which transforms the generators x_i into the polynomial of degree one:

$$L(g)(x_i) = \sum_{j=1}^n \hat{g}_{ij} x_j, \quad g^{-1} = (\hat{g}_{ij}),$$

and L(g)(1) = 1. Evidently, $L(g_1g_2) = L(g_1)L(g_2)$ and so L is a representation of $GL(n, \mathbf{F})$. We note that L(g) is degree-preserving (i.e., $L(g)(\mathbf{F}_d[x]) \subset \mathbf{F}_d[x]$ for any $d \in N_0$), and that $L(I) = \mathrm{id}_{\mathbf{F}[x]}$, where $I = (\delta_{ij})$ is the unit matrix of degree n.

Hereafter, for any integer t satisfying $0 \le t \le n$, we set

$$\varepsilon_{t,i}^n = \begin{cases} -1 & \text{for } 1 \le i \le t, \\ +1 & \text{for } t < i \le n. \end{cases}$$

Then we put $I_t^n = (\varepsilon_{t,i}^n \delta_{ij}) \in GL(n, \mathbf{R})$. Let $O_t(n)$ be a semiorthogonal group with signature (t, n - t), that is,

$$O_t(n) = \{ g \in GL(n, \mathbf{R}) \, | \, I_t^{n \, t} g I_t^n = g^{-1} \},\$$

where ${}^{t}g$ denotes the transpose of g. We define $\Delta_{t}^{n} = \sum_{i=1}^{n} \varepsilon_{t,i}^{n} \partial_{i}^{2} \in W_{n}(\mathbf{R})$ and $\mathscr{H}(\mathbf{R}_{t}^{n}) = \ker \Delta_{t}^{n} \subset \mathbf{R}[x]$. From a straightforward calculation, we can see that Δ_{t}^{n} is an $O_{t}(n)$ -invariant operator, that is,

$$\Delta_t^n \circ L(g) = L(g) \circ \Delta_t^n$$
 for any $g \in O_t(n)$.

Hence the kernel $\mathscr{H}(\mathbf{R}_t^n)$ of Δ_t^n is an $O_t(n)$ -invariant vector subspace of $\mathbf{R}[x]$. A polynomial f is harmonic with respect to Δ_t^n , if $f \in \mathscr{H}(\mathbf{R}_t^n)$. Especially we put

$$\mathscr{H}_d(\mathbf{R}^n_t) = \mathbf{R}_d[x] \cap \mathscr{H}(\mathbf{R}^n_t)$$

that is, the space of *d*-homogeneous harmonic polynomials with respect to Δ_t^n . It is also an $O_t(n)$ -invariant space of $\mathbf{R}[x]$ since L(g) $(g \in O_t(n))$ is degree-preserving. In a similar way to discussions of Vilenkin [12, pp. 444–445] (see Liu [6, p. 7] also), we can see

dim
$$\mathscr{H}_d(\mathbf{R}_t^n) = (2d + n - 2) \frac{(n+d-3)!}{(n-2)!d!}$$

Thus the dimension of $\mathscr{H}_d(\mathbb{R}_t^n)$ is independent of the index *t*. Put $\Delta_t^{nC} = \sum_{i=1}^n \varepsilon_{t,i}^n (\partial_i)^2 \in W_n(\mathbb{C}), \ \mathscr{H}(\mathbb{C}_t^n) = \ker \Delta_t^{nC} \subset \mathbb{C}[x]$ and $\mathscr{H}_d(\mathbb{C}_t^n) = \mathbb{C}_d[x] \cap \mathscr{H}(\mathbb{C}_t^n)$. Then, from (1), $f \in \mathscr{H}_d(\mathbb{C}_t^n)$ if and only if both $\Re f$ and $\Im f$ are in $\mathscr{H}_d(\mathbb{R}_t^n)$, that is,

(2)
$$\mathscr{H}_d(\mathbf{C}_t^n) = \mathscr{H}_d(\mathbf{R}_t^n) \oplus \sqrt{-1} \mathscr{H}_d(\mathbf{R}_t^n).$$

We put $\rho_t = L(\sqrt{I_t^n}^{-1})$, where $\sqrt{I_t^n} = (\sqrt{\varepsilon_{t,i}^n} \delta_{ij}) \in GL(n, \mathbb{C})$. There exists the ring homomorphism $\tilde{\rho_t} : W_n(\mathbb{R}) \to W_n(\mathbb{C})$ satisfying $\tilde{\rho_t} = \rho_t$ on $\mathbb{R}[x]$. By the definition of $\tilde{\rho_t}$, we have for the generators δ_i of $\text{Der}_{\mathbb{R}}(\mathbb{R}[x])$,

$$\widetilde{\rho_t}(\partial_i) = \frac{1}{\sqrt{\varepsilon_{t,i}^n}} \partial_i = \begin{cases} -\sqrt{-1}\partial_i & \text{for } 1 \le i \le t, \\ \partial_i & \text{for } t < i \le n. \end{cases}$$

Therefore, for the ordinary Laplacian $\Delta_0^n = \Delta$, we have

(3)
$$\widetilde{\rho_t}(\Delta_0^n) = \Delta_t^{nC} \in W_n(C).$$

Moreover the following diagram is commutative for any $D \in W_n(\mathbf{R})$:

(4)
$$\begin{array}{ccc} \boldsymbol{R}[x] & \stackrel{\rho_{t}}{\longrightarrow} & \boldsymbol{C}[x] \\ D & & & \downarrow \\ \boldsymbol{R}[x] & \stackrel{\rho_{t}}{\longrightarrow} & \boldsymbol{C}[x]. \end{array}$$

We define $\sigma_t = \rho_t \circ \rho_t = L(I_t^n)$ for $0 \le t \le n$. Since σ_t is involutive (i.e., $\sigma_t \circ \sigma_t = id_{R[x]}$), we obtain for $0 \le t \le n$,

$$\boldsymbol{R}[x] = \boldsymbol{P}_t^+ \oplus \boldsymbol{P}_t^-,$$

where P_t^{\pm} is the eigenspace of σ_t corresponding to the eigenvalue ± 1 . It is easily seen that $\sigma_t(x^{\alpha}) = (-1)^{\alpha_1 + \dots + \alpha_t} x^{\alpha}$. Hence $\sigma_t \circ \partial_i^2 = \partial_i^2 \circ \sigma_t$ for $1 \le i \le n$ and $0 \le t \le n$. This implies for $0 \le s, t \le n$,

(5)
$$\sigma_t \circ \Delta_s^n = \Delta_s^n \circ \sigma_t.$$

Putting $\mathscr{H}_{d,t}^{\pm}(\mathbf{R}_s^n) = P_t^{\pm} \cap \mathscr{H}_d(\mathbf{R}_s^n)$ for $0 \le s, t \le n$, by virtue of (5), we have the following direct decomposition:

$$\mathscr{H}_d(\boldsymbol{R}^n_s) = \mathscr{H}^+_{d,t}(\boldsymbol{R}^n_s) \oplus \mathscr{H}^-_{d,t}(\boldsymbol{R}^n_s).$$

By the definition, P_t^+ (resp. P_t^-) is the subspace which consists of polynomials whose terms are of even (resp. odd) degree with respect to x_1, \ldots, x_t . Thus ρ_t maps any polynomials in $\mathscr{H}_{d,t}^+(\mathbf{R}_s^n)$ (resp. $\mathscr{H}_{d,t}^-(\mathbf{R}_s^n)$) to those in $C_d[x]$ which have purely real (resp. imaginary) coefficients. So, because of the injectivity of ρ_t , we have

(6)
$$\rho_t(\mathscr{H}_d(\mathbf{R}^n_s)) = \rho_t(\mathscr{H}^+_{d,t}(\mathbf{R}^n_s)) \oplus \sqrt{-1}\Im(\rho_t(\mathscr{H}^-_{d,t}(\mathbf{R}^n_s))).$$

LEMMA 2.1. For any $n, d, t \in N_0$ satisfying $n \ge 1$ and $0 \le t \le n$, we obtain

$$\rho_t(\mathscr{H}_{d,t}^+(\mathbf{R}_0^n)) = \mathscr{H}_{d,t}^+(\mathbf{R}_t^n), \quad \Im(\rho_t(\mathscr{H}_{d,t}^-(\mathbf{R}_0^n))) = \mathscr{H}_{d,t}^-(\mathbf{R}_t^n).$$

Hence we obtain $\rho_t(\mathscr{H}_d(\mathbf{R}_0^n)) = \mathscr{H}_{d,t}^+(\mathbf{R}_t^n) \oplus \sqrt{-1}\mathscr{H}_{d,t}^-(\mathbf{R}_t^n).$

PROOF. By the commutative diagram (4), the decomposition (6) and Equation (3), we have for any $f^{\pm} \in \mathscr{H}_{d,t}^{\pm}(\mathbb{R}_0^n)$,

$$0 = \rho_t(\Delta_0^n f^+) = (\widetilde{\rho_t}(\Delta_0^n))(\rho_t(f^+)) = \Delta_t^{nC} \rho_t(f^+) = \Delta_t^n \rho_t(f^+),$$

$$0 = \rho_t(\Delta_0^n f^-) = (\widetilde{\rho_t}(\Delta_0^n))(\rho_t(f^-)) = \Delta_t^{nC} \sqrt{-1} \Im \rho_t(f^-) = \sqrt{-1} \Delta_t^n \Im \rho_t(f^-).$$

Hence $\rho_t(\mathscr{H}_{d,t}^+(\mathbb{R}_0^n)) \subset \mathscr{H}_{d,t}^+(\mathbb{R}_t^n)$ and $\Im(\rho_t(\mathscr{H}_{d,t}^-(\mathbb{R}_0^n))) \subset \mathscr{H}_{d,t}^-(\mathbb{R}_t^n)$. Since ρ_t is injective, the real dimension of $\rho_t(\mathscr{H}_d(\mathbb{R}_0^n))$ is equal to the one of $\mathscr{H}_d(\mathbb{R}_t^n)$ (or $\mathscr{H}_d(\mathbb{R}_0^n)$). Therefore we obtain this lemma.

REMARK 2.2. It is known that the following identity on $W_n(\mathbf{R})$:

(7)
$$r_{0,n}^2 \Delta_0^n - E(E+n-2) = \sum_{i < j} (x_i \partial_j - x_j \partial_i)^2$$

holds, where $E = \sum_{i=1}^{n} x_i \partial_i$ is Euler's degree operator. This identity is known as Capelli's identity for $O_0(n)$ ([13]). Applying $\tilde{\rho_t}$ to (7), we can immediately get Capelli's identity for $O_t(n)$ $(1 \le t \le n)$ as follows:

$$r_{t,n}^2 \Delta_t^n - E(E+n-2) = \sum_{i < j} \varepsilon_{t,i}^n \varepsilon_{t,j}^n (x_i \partial_j - x_j \partial_i)^2.$$

3. Harmonic Maps between Semi-Riemannian Spheres

In this section, we construct harmonic maps of semi-Riemannian unit spheres. We denote the semi-Riemannian *n*-sphere with constant sectional curvature *k* and index *t* by $S_t^n(k) \subset \mathbf{R}_t^{n+1}$, that is, $S_t^n(k) = \{p \in \mathbf{R}_t^{n+1} | -x_1^2(p) - \cdots - x_t^2(p) + x_{t+1}^2(p) + \cdots + x_{n+1}^2(p) = k^{-1}\}$ and the unit *n*-sphere $S_t^n(1)$ by S_t^n . So, from now on, $\mathbf{R}[x]$ stands for $\mathbf{R}[x_1, \ldots, x_n, x_{n+1}]$ as the space of all polynomials on \mathbf{R}^{n+1} . We denote the semi-Riemannian *n*-sphere with constant sectional curvature *k* and index *t* by $S_t^n(k) \subset \mathbf{R}_t^{n+1}$, and the unit *n*-sphere $S_t^n(1)$ by S_t^n .

Now we recall the standard λ -eigenmaps and the standard minimal immersions of the ordinary *n*-sphere $S^n = S_0^n$ (see [3], [4] and [11] for examples). Let Δ^{S^n} be the Laplacian on S^n . It is well-known that all eigenvalues are given by $\lambda_d = d(d + n - 1)$ ($d \in N_0$) and the eigenspace V_d of Δ^{S^n} corresponding to the eigenvalue λ_d is

$$V_d = \{ f|_{S^n} \, | \, f \in \mathscr{H}_d(\mathbf{R}_0^{n+1}) \}.$$

(See [4, Theorem (1.9), p. 132] for more details.) Then V_d is an orthogonal $O_0(n+1)$ -module. The $O_0(n+1)$ -module structure on V_d is given by L and we choose as an $O_0(n+1)$ -invariant scalar product \langle , \rangle on V_d the L^2 -scalar product:

$$\langle f_1, f_2 \rangle = \int_{S^n} f_1 f_2 \, dv_{S^n}, \quad f_1, f_2 \in V_d,$$

where dv_{S^n} is proportional to the volume element of S^n and normalized in such a way that $\int_{S^n} dv_{S^n} = \dim V_d$. For simplicity, we put

$$k(d) = \frac{n}{d(d+n-1)}, \quad m(d) = (2d+n-1)\frac{(d+n-2)!}{d!(n-1)!} - 1.$$

Then we have dim $V_d = m(d) + 1 = \dim \mathscr{H}_d(\mathbf{R}_0^{n+1})$. Let $\{f_i\}_{i=1}^{m(d)+1}$ be an orthonormal basis of V_d , which, at the same time, identifies V_d with $\mathbf{R}^{m(d)+1}$. We obtain

(8)
$$\sum_{i=1}^{m(d)+1} (f_i)^2 = 1 \quad \text{on } S^n.$$

Then we have the standard λ_d -eigenmaps (resp. the standard minimal immersions of order d):

$$\phi_{n,d} = \phi_{n,d,0} = (f_1, \dots, f_{m(d)+1}) : S^n \to S^{m(d)},$$

(resp. $\psi_{n,d} = \psi_{n,d,0} = \phi_{n,d} \circ \chi_{n,d} : S^n(k(d)) \to S^{m(d)}),$

where $\chi_{n,d}$ is the homothetic transformation such that $\chi_{n,d}(p) = k(d)^{1/2} \cdot p$ for $p \in \mathbb{R}^{n+1}$. These are uniquely determined up to congruence on the range. Let $T^{n+1,d} = T_0^{n+1,d} : O_0(n+1) \to O_0(m(d)+1)$ denote the homomorphism associated to the $O_0(n+1)$ -module structure of V_d under the identification $V_d \cong \mathbb{R}^{m(d)+1}$. It is obvious that $\phi_{n,d}$ and $\psi_{n,d}$ are equivariant with respect to $T^{n+1,d}$. We note that $\mathscr{H}_d(\mathbb{R}_0^{n+1})$ has an $O_0(n+1)$ -invariant scalar product induced from the one of V_d since every d-homogeneous polynomials are uniquely determined by its values on S^n .

Hereafter we put

$$\mathscr{K}_d = \{ (k_1, \dots, k_{n-2}, k_{n-1}) \in \mathbb{Z}^{n-1} \mid d \ge k_1 \ge \dots \ge k_{n-2} \ge |k_{n-1}| \}.$$

For convenience' sake, we may put $k_0 = d$ and $k_n = 0$. It is easy to check $\#\mathscr{K}_d = \dim \mathscr{K}_d(\mathbf{R}_t^{n+1})$. We put $r_{t,n+1}^2 = \sum_{i=1}^{n+1} \varepsilon_{t,i}^{n+1} x_i^2 \in \mathbf{R}_2[x]$, which is an $O_0(n+1)$ -invariant polynomial in $\mathbf{R}[x]$. For the later use, we summarize [12, pp. 466–467] as follows.

LEMMA 3.1. For any $K = (k_1, \ldots, k_{n-2}, k_{n-1}) \in \mathscr{K}_d$, we put

$$\Xi_{K}^{d}(x) = A_{K}^{d} \prod_{j=0}^{n-2} \left(r_{0,n+1-j}^{k_{j}-|k_{j+1}|} C_{k_{j}-|k_{j+1}|}^{(n-j-1)/2+|k_{j+1}|} \left(\frac{x_{n+1-j}}{r_{0,n+1-j}} \right) \right)$$
$$\times (x_{2} + \operatorname{sgn}(k_{n-1})\sqrt{-1}x_{1})^{|k_{n-1}|},$$

where $sgn(k_{n-1})$ is the signature of k_{n-1} , $C_m^p(t)$ are Gegenbauer polynomials

$$C_m^p(t) = \frac{2^m \Gamma(p+m)}{\Gamma(p)} \left(\sum_{k=0}^{[m/2]} \frac{(-1)^k (p+m-k-1)!}{2^{2k} k! (m-2k)! (p+m-1)!} t^{m-2k} \right).$$

and A_K^d is the normalizing factor. Then Ξ_K^d are in $\mathscr{H}_d(\mathbb{C}_0^{n+1})$, and any harmonic polynomial of $\mathscr{H}_d(\mathbb{R}_0^{n+1})$ can be uniquely represented as a linear combination of Ξ_K^d . Moreover we have for any $K, M \in \mathscr{H}_d$,

$$\int_{S^n} \Xi_K^d \overline{\Xi_M^d} \, dv_{S^n} = \delta_{KM},$$

where the measure dv_{S^n} is normalized by $\int_{S^n} dv_{S^n} = \dim \mathscr{H}_d(\mathbf{R}_0^{n+1})$, and $\delta_{KM} = 1$ if K = M, $\delta_{KM} = 0$ if $K \neq M$.

In this paper, for $1 \le i_1 < \cdots < i_t \le n+1$, we denote by $\deg_{x_{i_1},\ldots,x_{i_t}} f$ the degree of a polynomial $f \in \mathbf{R}[x]$ with respect to variables x_{i_1},\ldots,x_{i_t} . By the definition of Ξ_K^d , we can show that

(9)
$$\deg_{x_{n+1-i}} \Xi_K^d = 2 \sum_{j=0}^{i-1} \left[\frac{k_j - |k_{j+1}|}{2} \right] + |k_i| - |k_{i+1}| \text{ for } 0 \le i \le n-1.$$

We note that $k_{n-1} = 0$ if and only if Ξ_K^d is real. So $\{\Xi_K^d\}_{K \in \mathcal{K}_d}$ is not a basis of $\mathscr{H}_d(\mathbb{R}_0^{n+1})$. However, from the decomposition (2), it is a simple matter to obtain an orthonormal basis of $\mathscr{H}_d(\mathbb{R}_0^{n+1})$. In fact, for $K = (k_1, \ldots, k_{n-2}, k_{n-1}) \in \mathscr{H}_d$, we put

$$U_{K}^{d} = \begin{cases} \Xi_{K}^{d} & \text{for } k_{n-1} = 0, \\ \sqrt{2} \Re \Xi_{K}^{d} & \text{for } k_{n-1} > 0, \\ \sqrt{2} \Im \Xi_{K}^{d} & \text{for } k_{n-1} < 0. \end{cases}$$

Then $\{U_K^d\}_{K \in \mathscr{K}_d}$ is an orthonormal basis of $\mathscr{H}_d(\mathbb{R}_0^{n+1})$. The following two polynomials in $\mathbb{R}_I[x_1, x_2]$:

$$U_{+}^{l} := \Re(x_{2} + \sqrt{-1}x_{1})^{l} = \sum_{i=0}^{\lfloor l/2 \rfloor} (-1)^{i} \binom{l}{2i} x_{1}^{2i} x_{2}^{l-2i},$$
$$U_{-}^{l} := \Im(x_{2} + \sqrt{-1}x_{1})^{l} = \sum_{i=0}^{\lfloor (l-1)/2 \rfloor} (-1)^{i} \binom{l}{2i+1} x_{1}^{2i+1} x_{2}^{l-(2i+1)}$$

satisfy

$$\mathscr{H}_{l}(\mathbf{R}_{0}^{2}) = \operatorname{Span}\{U_{+}^{l}, U_{-}^{l}\}, \quad (U_{+}^{l})^{2} + (U_{-}^{l})^{2} = r_{0,2}^{2l},$$

and U_{+}^{l} (resp. U_{-}^{l}) is of even (resp. odd) degree with respect to x_{1} . For $2 \le t \le n+1$, by virtue of (9) and the definitions of U_{K}^{d} and Ξ_{K}^{d} , we can get

(10)
$$\deg_{x_1,\ldots,x_t} U_K^d \equiv k_{n+1-t} \pmod{2},$$

and see that if $\deg_{x_1,\ldots,x_t} U_K^d$ is even (resp. odd), then each terms of U_K^d are also of even (resp. odd) degree with respect to x_1,\ldots,x_t . So we put $\mathscr{K}_{d,0}^+ := \mathscr{K}_d$, $\mathscr{K}_{d,0}^- := \emptyset$,

$$\begin{aligned} \mathscr{K}_{d,1}^+ &:= \{ (k_1, \dots, k_{n-2}, k_{n-1}) \in \mathscr{K}_d \mid k_{n-1} \ge 0 \}, \\ \mathscr{K}_{d,1}^- &:= \{ (k_1, \dots, k_{n-2}, k_{n-1}) \in \mathscr{K}_d \mid k_{n-1} < 0 \}, \end{aligned}$$

from (10), for $2 \le t \le n+1$,

$$\mathscr{K}_{d,t}^+ := \{ K \in \mathscr{K}_d \mid k_{n+1-t} : \text{even} \}, \quad \mathscr{K}_{d,t}^- := \{ K \in \mathscr{K}_d \mid k_{n+1-t} : \text{odd} \}.$$

Then we have for $0 \le t \le n+1$,

(11)
$$\mathscr{H}_{d,t}^{\pm}(\mathbf{R}_0^{n+1}) = \operatorname{Span}\{U_K^d | K \in \mathscr{H}_{d,t}^{\pm}\}.$$

Then, since $\{U_K^d\}_{K \in \mathscr{K}_d}$ is an orthonormal basis of $\mathscr{H}_d(\mathbf{R}_0^{n+1})$, and $r_{0,n+1}^2 = 1$ on S_0^n , from Equation (8), we have in $\mathbf{R}_{2d}[x]$,

(12)
$$\sum_{K \in \mathscr{K}_d} (U_K^d)^2 = r_{0,n+1}^{2d}.$$

We put $U_{K,t}^d = \rho_t(U_K^d)$ for $K \in \mathscr{H}_{d,t}^+$ and $U_{K,t}^d = \Im \rho_t(U_K^d)$ for $K \in \mathscr{H}_{d,t}^-$, hence $U_{K,0}^d = U_K^d$ for $K \in \mathscr{H}_d$. Using (11) and Lemma 2.1 and applying ρ_t to (12), we have

LEMMA 3.2. The polynomials $\{U_{K,t}^d\}_{K \in \mathscr{K}_d}$ form a basis of $\mathscr{H}_d(\mathbf{R}_t^{n+1})$. Especially we have

$$\begin{aligned} & \operatorname{Span} \{ U_{K,t}^{d} \, | \, K \in \mathscr{K}_{t}^{+} \} = \mathscr{H}_{d,t}^{+}(\mathbf{R}_{t}^{n+1}), \\ & \operatorname{Span} \{ U_{K,t}^{d} \, | \, K \in \mathscr{K}_{t}^{-} \} = \sqrt{-1} \mathscr{H}_{d,t}^{-}(\mathbf{R}_{t}^{n+1}). \end{aligned}$$

Moreover we obtain

(13)
$$-\sum_{K \in \mathscr{K}_{d,t}^{-}} (U_{K,t}^{d})^{2} + \sum_{K \in \mathscr{K}_{d,t}^{+}} (U_{K,t}^{d})^{2} = r_{t,n+1}^{2d}.$$

We call $\{U_{K,t}^d\}_{K \in \mathscr{K}_d}$ the canonical basis of $\mathscr{H}_d(\mathbf{R}_t^{n+1})$. Hereafter we put $l(d,t) = \#\mathscr{K}_{d,t}^-$.

PROPOSITION 3.3. $\mathscr{H}_d(\mathbf{R}_t^{n+1})$ has the $O_t(n+1)$ -invariant scalar product of index l(d,t), for which the canonical basis $\{U_{K,t}^d\}_{K \in \mathscr{H}_d}$ is orthonormal. With respect to the scalar product, $\mathscr{H}_d(\mathbf{R}_t^{n+1})$ is the orthogonal $O_t(n+1)$ -module by $T_t^{n+1,d}$ which is the representation given by L in $\mathscr{H}_d(\mathbf{R}_t^{n+1})$.

PROOF. Let \langle , \rangle be the scalar product in $\mathscr{H}_d(\mathbb{R}_t^n)$ for which $\{U_{K,t}^d\}_{K \in \mathscr{H}_d}$ is an orthonormal basis such that $\langle U_K^d, U_K^d \rangle = +1$ (resp. -1) when $K \in \mathscr{H}_{d,t}^+$ (resp. $K \in \mathscr{H}_{d,t}^-$). We identify $\mathscr{H}_d(\mathbb{R}_t^{n+1})$ with $\mathbb{R}_{l(d,t)}^{m(d)+1}$ by $\{U_K^d\}_{K \in \mathscr{H}_d}$. For any $g \in O_t(n+1)$, we can write $L(g)(U_K^d) = \sum_{M \in \mathscr{H}_d} c_{MK} U_M^d$ since $\mathscr{H}_d(\mathbb{R}_t^{n+1})$ is an $O_t(n+1)$ -invariant subspace of $\mathbb{R}[x]$. Using Equation (13), we can see that the scalar product is $O_t(n+1)$ -invariant and $(c_{MK}) \in O_{l(d,t)}(m(d)+1)$ under the identification $\mathscr{H}_d(\mathbb{R}_t^{n+1}) \cong \mathbb{R}_{l(d,t)}^{m(d)+1}$, since $r_{t,n+1}^2$ is an $O_t(n+1)$ -invariant polynomial. Therefore the proof is complete.

For any $n, d, t \in N_0$ satisfying $n, d \ge 1$ and $0 \le t \le n$, we define $\phi_{n,d,t} : S_t^n \to \mathbf{R}_{l(d,t)}^{m(d)+1}$ by

$$\phi_{n,d,t} = (U_{K_1,t}^d, \dots, U_{K_{l(d,t)},t}^d, U_{K_{l(d,t)+1},t}^d, \dots, U_{K_{m(d)+1},t}^d)$$

where $K_1, \ldots, K_{l(d,t)} \in \mathscr{K}_{d,t}^-$ and $K_{l(d,t)+1}, \ldots, K_{m(d)+1} \in \mathscr{K}_{d,t}^+$, and $K_i \neq K_j$ when $i \neq j$. From Proposition 3.3, we can see that these are uniquely determined up to congruence on the range. To prove Theorem 3.5, we quote a special case of a result in [5, Corollary I.3.7]:

LEMMA 3.4. If $w : \mathbf{R}_t^{n+1} \to \mathbf{R}_s^{m+1}$ consists of d-homogeneous harmonic polynomials and $w(S_t^n) \subset S_s^m$, then $w|_{S_t^n} : S_t^n \to S_s^m$ is a harmonic map.

Moreover we note that if $f \in \mathscr{H}_d(\mathbf{R}_t^{n+1})$, then $f|_{S_t^n}$ is an eigenfunction of the Laplacian on S_t^n with eigenvalue $\lambda_d = d(d+n-1)$ ([5, Corollary I.3.5] and [6, Theorem 2]).

THEOREM 3.5. For any $n, d, t \in N_0$ satisfying $n, d \ge 1$ and $0 \le t \le n$, $\phi_{n,d,t}$ are harmonic maps $S_t^n \to S_{l(d,t)}^{m(d)}$, which is equivariant with respect to the homomorphism $T_t^{n+1,d}$.

PROOF. By (13) in Lemma 3.2, the image of $\phi_{n,d,t}$ is contained in the unit sphere $S_{l(d,t)}^{m(d)} \subset \mathbf{R}_{l(d,t)}^{m(d)+1} \cong \mathscr{H}_d(\mathbf{R}_t^{n+1})$. From Proposition 3.3, it is obvious that $\phi_{n,d,t}$ is $O(\mathbf{R}_t^{n+1})$ -equivariant. So, according to Lemma 3.4, we have the required harmonic map.

We note that the map $A_t^{n+1}: \mathbf{R}_t^{n+1} \to \mathbf{R}_{n+1-t}^{n+1}$ given by

$$A_t^{n+1}(x_1,\ldots,x_{n+1}) = (x_{t+1},\ldots,x_{n+1},x_1,\ldots,x_t)$$

is an anti-isometry that carries $S_t^n(k)$ anti-isometrically onto $H_{n-t}^n(k)$ ([10, Lemma 24, p. 110]), and if $f: X \to S_t^n(k)$ and $g: S_t^n(k) \to Y$ are maps between semi-Riemannian manifolds, then f is harmonic if and only if $A_t^{n+1} \circ f$ is harmonic; the same equivalence we have for g and $g \circ A_t^{n+1}$ ([5, Remark I.3.2, p. 471]). Thus we obtain

COROLLARY 3.6. For any $n, d, t \in N_0$ satisfying $n, d \ge 1$ and $0 \le t \le n$, there exist the following harmonic maps:

$$\begin{split} \phi_{n,d,t} &: S_t^n \to S_{l(d,t)}^{m(d)}, \\ \phi_{n,d,t}^{+-} &= A_{l(d,t)}^{m(d)+1} \circ \phi_{n,d,t} : S_t^n \to H_{m(d)-l(d,t)}^{m(d)}, \\ \phi_{n,d,n-t}^{-+} &= \phi_{n,d,t} \circ A_t^{n+1} : H_{n-t}^n \to S_{l(d,t)}^{m(d)}, \\ \phi_{n,d,n-t}^H &= A_{l(d,t)}^{m(d)+1} \circ \phi_{n,d,t} \circ A_t^{n+1} : H_{n-t}^n \to H_{m(d)-l(d,t)}^{m(d)} \end{split}$$

Furthermore we put $\psi_{n,d,t} = \phi_{n,d,t} \circ \chi_{n,d} : S_t^n(k(d)) \to S_{l(d,t)}^{m(d)}$. Of course, $\psi_{n,d,0} = \psi_{n,d}$ is the standard minimal immersion of order *d* of the ordinary *n*-sphere $S_0^n = S^n$. It is well known that $\psi_{n,d,0} : S_0^n(k(d)) \to S_0^{m(d)}$ is a helical geodesic immersion of order *d* (see [8]).

Here we recall the definition of helices and helical geodesic immersions in semi-Riemannian geometry. (For details, see [9].) Let N be a semi-Riemannian manifold. Let c be a unit speed curve in N. The curve c is said to be a *helix of order d* in N, if it has the orthonormal frame field $c_1 = c', c_2, \ldots, c_d$ and the following Frenet formulas along c are satisfied for all $1 \le i \le d(\le \dim N)$:

$$\begin{cases} \langle c_i, c_i \rangle = \varepsilon_i, \\ \nabla_{c'} c_i = -\varepsilon_{i-1} \varepsilon_i \lambda_{i-1} c_{i-1} + \lambda_i c_{i+1}, \end{cases}$$

where ∇ denotes the Levi-Civita connection of $N, d \in N$, $\lambda_0 = \lambda_d = \varepsilon_0 = 0$, $c_0 = c_{d+1} = 0$, λ_i $(1 \le i \le d-1)$ is a positive constant and $\varepsilon_i \in \{-1, +1\}$ $(1 \le i \le d)$. In this paper, we may call such a curve a helix of type $\Lambda = (d; \lambda_1, \dots, \lambda_{d-1}; \varepsilon_1, \dots, \varepsilon_d)$. Let $f: M \to \tilde{M}$ be an isometric immersion between semi-Riemannian manifolds. Suppose that there exist space-like geodesics on M, let γ be any unit speed space-like geodesic of M. If the curve $f \circ \gamma$ in \tilde{M} is a helix of type Λ which are independent of the choice of γ , then f is called a

helical space-like geodesic immersion of type Λ (or of order d simply). We also define that f is a helical time-like geodesic immersion in the same way. To prove the following proposition, we quote [1, Lemma 1.1].

LEMMA 3.7. Let V be an n-dimensional real vector space equipped with a nondegenerate scalar product g of index t. For any r-linear map T on V to a real vector space W and $\varepsilon = -1$ or +1 ($-t \le \varepsilon \le t$), the following conditions are equivalent:

- (a) T(u,...,u) = 0 for any vector u of V such that $g(u,u) = \varepsilon$,
- (b) $T(v, \ldots, v) = 0$ for any vector v of V.

Since $\psi_{n,d,0}$ is a helical geodesic immersion of order *d* between Riemannian spheres, we can put its type $\Lambda_0 = (d; \lambda_1, \dots, \lambda_{d-1}; +1, \dots, +1)$.

PROPOSITION 3.8. For any $n, d, t \in N_0$ such that $n, d \ge 1$ and $0 \le t \le n, \psi_{n,d,t}$ is an isometric immersion with vanishing mean curvature. Moreover, for $1 \le t \le n-1$, $\psi_{n,d,t}$ is a helical space-like geodesic immersion of type Λ_0 .

PROOF. It suffices to prove that the assertion follows for the maps $\tilde{\chi}_{n,d} \circ \phi_{n,d,t} : S_t^n \to S_{l(d,t)}^{m(d)}(k(d)^{-1})$, where $\tilde{\chi}_{n,d}$ is the homothetic transformation such that $\tilde{\chi}_{n,d}(p) = k(d)^{1/2} \cdot p$ for $p \in \mathbf{R}^{m(d)+1}$. We use the same latter $\psi_{n,d,t}$ for $\tilde{\chi}_{n,d} \circ \phi_{n,d,t}$.

When $x_1 = \cdots = x_t = 0$, we have

$$\begin{split} U^d_{K,0} &= U^d_{K,t} & \text{ for any } K \in \mathscr{K}^+_{d,t}, \\ U^d_{K,0} &= U^d_{K,t} = 0 & \text{ for any } K \in \mathscr{K}^-_{d,t}. \end{split}$$

At first, we deal with the case of $1 \le t \le n-1$. Let γ be a unit speed space-like geodesic $(0, \ldots, 0, \cos s, \sin s)$ of S_0^n (resp. S_t^n), which is on $S_0^n \cap S_t^n$ since $1 \le t \le n-1$. When $K \in \mathscr{K}_{d,t}^-$, the components of $\psi_{n,d,t} \circ \gamma$ and $\psi_{n,d,0} \circ \gamma$ are vanishing. Hence $\psi_{n,d,t} \circ \gamma$ is in a positive definite subspace properly. Noting that the Levi-Civita connection of $\mathscr{H}_d(\mathbb{R}_0^{n+1})$ coincides with the one of $\mathscr{H}_d(\mathbb{R}_t^{n+1})$, we can see that $\psi_{n,d,t} \circ \gamma$ satisfies the same Frenet equation of $\psi_{n,d,0} \circ \gamma$. Therefore $\psi_{n,d,t} \circ \gamma$ is a helix of type Λ_0 . Since $\psi_{n,d,t}$ is $O_t(n+1)$ -equivariant, $\psi_{n,d,t}$ maps any space-like geodesic c of S_t^n to a helix $\psi_{n,d,t} \circ c$ of type Λ_0 in $S_{l(d,t)}^{m(d)}$. Especially $\psi_{n,d,t} \circ c$ is unit speed. So we have $g(x, x) = \psi_{n,d,t} * \tilde{g}(x, x)$ for x is any unit space-like vector of S_t^n , where g (resp. $\psi_{n,d,t} * \tilde{g}$) is the metric of S_t^n (resp. the pull-back of the metric \tilde{g} of $\mathscr{H}_d(\mathbb{R}_t^{n+1})$). Using Lemma 3.7, we see that $g = \psi_{n,d,t} * \tilde{g}$ on

 S_t^n . By a semi-Riemannian version of Takahashi's theorem ([7, Theorem 1] for example), the mean curvature of $\psi_{n,d,t}$ is vanishing. Therefore we have this proposition in this case.

Next, we deal with the case of t = n. By the definition, we have

$$U^{d}_{K,n}(x_1,0,\ldots,0,x_{n+1}) = U^{d}_{K,1}(x_1,0,\ldots,0,x_{n+1}) \text{ for } K \in \mathscr{K}_d.$$

Moreover, for any $K \in (\mathscr{K}_{d,n}^+ \cap \mathscr{K}_{d,1}^-) \cup (\mathscr{K}_{d,n}^- \cap \mathscr{K}_{d,1}^+) =: \mathscr{L}$, each terms of $U_{K,n}^d$ and $U_{K,1}^d$ are of odd degree with respect to variables x_2, \ldots, x_n . So $\deg_{x_2, \ldots, x_n} U_{K,n}^d = \deg_{x_2, \ldots, x_n} U_{K,1}^d \ge 1$. Thus, for any $K \in \mathscr{L}$, we have

$$U_{K,n}^d(x_1,0,\ldots,0,x_{n+1}) = U_{K,1}^d(x_1,0,\ldots,0,x_{n+1}) = 0.$$

We note that, for $K \in (\mathscr{K}_d \setminus \mathscr{L})$, the components $U_{K,n}^d$ of $\psi_{n,d,n}$ and $U_{K,1}^d$ of $\psi_{n,d,1}$ are the same causal character each other. Let γ be a unit speed time-like geodesic $(\sinh s, 0, \ldots, 0, \cosh s)$ of S_1^n (resp. S_n^n), which is on $S_1^n \cap S_n^n$. Since we had seen that $\psi_{n,d,1}$ is isometric, $\psi_{n,d,1} \circ \gamma$ is a unit speed time-like curve in $S_{l(d,1)}^{m(d)}$. On account of the above arguments, we can see that $\psi_{n,d,n} \circ \gamma$ satisfies the same equation of $\psi_{n,d,1} \circ \gamma$, hence it is a unit speed time-like curve in $S_{l(d,n)}^{m(d)}$. Therefore the same arguments as in the case of $0 \le t \le n-1$ imply that $\psi_{n,d,n}$ is isometric. We accomplished the proof.

By the same reason to get Corollary 3.6, we have

COROLLARY 3.9. For any $n, d, t \in N_0$ such that $n, d \ge 1$ and $0 \le t \le n$, $\psi_{n,d,n-t}^H = A_{l(d,t)}^{m(d)+1} \circ \psi_{n,d,t} \circ A_t^{n+1} : H_{n-t}^n(k(d)) \to H_{m(d)-l(d,t)}^{m(d)}$ is an isometric immersion with vanishing mean curvature, where A_t^{n+1} and $A_{l(d,t)}^{m(d)+1}$ are the antiisometries in respective vector spaces. Moreover, for $1 \le t \le n-1$, $\psi_{n,d,n-t}^H$ is a helical time-like geodesic immersion of type $(d; \lambda_1, \ldots, \lambda_{d-1}; -1, \ldots, -1)$.

REMARK 3.10. In [9], the author showed the following result. Let $f: M \to \tilde{M}$ be an isometric immersion between semi-Riemannian manifolds and M indefinite. If f is a helical space-like geodesic immersion of type $\Lambda = (d; \lambda_1, \ldots, \lambda_{d-1}; \varepsilon_1, \ldots, \varepsilon_d)$, then f is a helical time-like geodesic immersion of type $\overline{\Lambda} = (d; \lambda_1, \ldots, \lambda_{d-1}; (-1)^1 \varepsilon_1, \ldots, (-1)^d \varepsilon_d)$. Using this result, we can see that $\psi_{n,d,t}$ $(1 \le t \le n-1)$ is a helical time-like geodesic immersion of type $\overline{\Lambda}_0 = (d; \lambda_1, \ldots, \lambda_{d-1}; (-1)^1, \ldots, (-1)^d)$. From the same arguments as in the case of t = n in the proof of Proposition 3.8, we can prove that $\psi_{n,d,n} \circ \gamma$ satisfies the same Frenet equation of $\psi_{n,d,1} \circ \gamma$, hence it is a helix of type $\overline{\Lambda}_0$ in $S_{l(d,n)}^{m(d)}$.

Consequently, $\psi_{n,d,n}$ is a helical time-like geodesic immersion of type $\overline{\Lambda_0}$ since $\psi_{n,d,n}$ is $O_n(n+1)$ -equivariant.

References

- Abe, N., Nakanishi, Y. and Yamaguchi, S., Circles and spheres in pseudo-Riemannian geomerty, Aequationes Mathematicae 39 (1990), 134–145.
- [2] Ding, Q. and Wang, J., A remark on harmonic maps between pseudo-Riemannian spheres, Northeast. Math. J. 12(2) (1996), 217–221.
- [3] DoCarmo, W. P. and Wallach, N. R., Minimal immersions of spheres into spheres, Ann. of Math. 93(1) (1971), 43–62.
- [4] Eells, J. and Ratto, A., Harmonic maps and minimal immersions with symmetries, Annals of mathematics studies. Princeton university press, Princeton, New Jersey, 1993.
- [5] Konderak, J. J., Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces, Proc. Amer. Math. Soc. 109(2) (1990), 469–476.
- [6] Liu, H. L., Minimal immersion of pseudo-Riemannian manifolds, Tsukuba J. Math. 16(No. 1) (1992), 1–10.
- [7] Markvorsen, S., A characteristic eigenfunction for minimal hypersurfaces in space forms, Math. Z. 202 (1989), 375–382.
- [8] Mashimo, K., Order of the standard isometric minimal immersions of CROSS as helical geodesic immersions, Tsukuba J. Math. 7(No. 2) (1983), 257–263.
- [9] Miura, K., Helical geodesic immersions of semi-Riemannian manifolds, submitted.
- [10] O'Neill, B., Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983.
- [11] Toth, G., Harmonic Maps and Minimal Immersions Through Representation Theory, Academic Press, Boston, 1990.
- [12] Vilenkin, N. J., Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22 American Mathematical Society, Providence, R. I. 1968.
- [13] Weyl, H., The classical groups, their invariants and representations, Princeton Univ. Press, 1946.

Department of Mathematics Faculty of Science Tokyo University of Science Wakamiya-cho 26, Sinjuku-ku Tokyo, Japan 162-0827 E-mail address: miura@ma.kagu.tus.ac.jp