CONSTRUCTION OF HARMONIC MAPS BETWEEN SEMI-RIEMANNIAN SPHERES

By

Kouhei Miura

Abstract

We describe a method of manufacturing harmonic maps between semi-Riemannian spheres out of those in Riemannian geometry. After normalization, the resulting maps give examples of helical geodesic immersions in semi-Riemannian geometry.

1. Introduction

Some harmonic maps between semi-Riemannian spheres were obtained by Konderak [5]. Unlike the Riemannian case, it is not so easy to construct harmonic maps between semi-Riemannian spheres, since the semiorthogonal group of the semi-Euclidean n-space \boldsymbol{R}_{t}^{n} loses compactness and the Laplacian on \boldsymbol{R}_{t}^{n} is not elliptic for $1 \leq t \leq n-1$. Therefore only finite many harmonic maps were constructed in [5]. Ding and Wang [2] proved that the d-homogeneous harmonic polynomials on the Lorentzian n-space \boldsymbol{R}_{1}^{n} are given by a Wick rotation of those on the Euclidean n-space $\boldsymbol{R}^{n}=\boldsymbol{R}_{0}^{n}$. Using this result, they constructed all harmonic maps of the Lorentzian 2-sphere (resp. hyperbolic 2-space) all of whose components form a basis of the space of d-homogeneous harmonic polynomials on \boldsymbol{R}_{1}^{3}.

In this paper, we shall construct all harmonic maps between semi-Riemannian spheres all of whose components form a basis of the space of d-homogeneous harmonic polynomials on a semi-Euclidean space. Using Weyl algebras, we first generalize the Ding and Wang's result on the harmonic polynomials, that is, the d-homogeneous harmonic polynomials on $\boldsymbol{R}_{t}^{n}(0 \leq t \leq n)$ are given by Wick rotations of those on \boldsymbol{R}^{n}. Applying this result to the canonical basis of the space of d-homogeneous harmonic polynomials on \boldsymbol{R}^{n+1} (Vilenkin [12]), we obtain the required harmonic maps in the explicit form. By multiplying a suitable constant

[^0]factor, the resulting maps are isometric immersions and corresponding to the standard minimal immersions of Riemannian spheres. In Riemannian geometry, it is well-known that the standard minimal immersions are helical geodesic immersions. We show that our isometric immersions are helical geodesic immersions in semi-Riemannian geometry.

2. Harmonic Polynomials on Semi-Euclidean Spaces

Let $\boldsymbol{F}[x]=\boldsymbol{F}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial algebra in n-variables x_{1}, \ldots, x_{n}, where \boldsymbol{F} is the complex numbers \boldsymbol{C} or the real numbers \boldsymbol{R}. The natural decomposition $\boldsymbol{C}=\boldsymbol{R} \oplus \sqrt{-1} \boldsymbol{R}$ induces

$$
\begin{equation*}
\boldsymbol{C}[x]=\boldsymbol{R}[x] \oplus \sqrt{-1} \boldsymbol{R}[x] . \tag{1}
\end{equation*}
$$

So, for any polynomial f of $\boldsymbol{C}[x]$, there exist two polynomials $\Re f$ and $\Im f$ of $\boldsymbol{R}[x]$ such that $f=\Re f+\sqrt{-1} \Im f$. Then we denote $\Re f-\sqrt{-1} \Im f$ by \bar{f}. We shall denote by $\boldsymbol{F}_{d}[x]$ the space of d-homogeneous polynomials in $\boldsymbol{F}[x]\left(d \in \boldsymbol{N}_{0}\right)$.

Let $\operatorname{End}_{\boldsymbol{F}}(\boldsymbol{F}[x])$ be the set of all \boldsymbol{F}-linear mappings of $\boldsymbol{F}[x]$. We define addition in $\operatorname{End}_{\boldsymbol{F}}(\boldsymbol{F}[x])$ to be the addition of \boldsymbol{F}-linear mappings, and multiplication to be the composition. For any $\xi, \eta \in \operatorname{End}_{\boldsymbol{F}}(\boldsymbol{F}[x])$, we will write the multiplication $\xi \circ \eta$ simply $\xi \eta$ when no confusion can arise. We can consider any $f \in \boldsymbol{F}[x]$ as an element of $\operatorname{End}_{\boldsymbol{F}}(\boldsymbol{F}[x])$ by $g \mapsto f g$ for any $g \in \boldsymbol{F}[x]$. Thus $\boldsymbol{F}[x] \subset \operatorname{End}_{\boldsymbol{F}}(\boldsymbol{F}[x])$. Moreover, we put $\operatorname{Der}_{\boldsymbol{F}}(\boldsymbol{F}[x])=\left\{\theta \in \operatorname{End}_{\boldsymbol{F}}(\boldsymbol{F}[x]) \mid \theta(f g)=\right.$ $\theta(f) g+f \theta(g)$ for $f, g \in \boldsymbol{F}[x]\}$, whose element is called a derivation of $\boldsymbol{F}[x]$. There exists $\partial_{i} \in \operatorname{Der}_{\boldsymbol{F}}(\boldsymbol{F}[x])$ for $1 \leq i \leq n$ such that, $\partial_{i}\left(x_{j}\right)=\delta_{i j}$. We can see $\operatorname{Der}_{\boldsymbol{F}}(\boldsymbol{F}[x])=\bigoplus_{i=1}^{n} \boldsymbol{F}[x] \partial_{i}$. Denote the subalgebra of $\operatorname{End}_{\boldsymbol{F}}(\boldsymbol{F}[x])$ which $\boldsymbol{F}[x]$ and $\operatorname{Der}_{\boldsymbol{F}}(\boldsymbol{F}[x])$ generate by $W_{n}(\boldsymbol{F})$. We will use the symbol \boldsymbol{N}_{0} to denote the set of all non-negative integers. For a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \boldsymbol{N}_{0}^{n}$, we put $x^{\alpha}=$ $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. For arbitrary $D \in W_{n}(\boldsymbol{F})$, we have the unique expression:

$$
D=\sum_{|\alpha| \leq k} f_{\alpha} \partial^{\alpha}
$$

where $k \in \boldsymbol{N}_{0}$ and $f_{\alpha} \in \boldsymbol{F}[x](|\alpha| \leq k)$.
Let $G L(n, \boldsymbol{F})$ be the general linear group of degree n over \boldsymbol{F}. To each element $g=\left(g_{i j}\right)$ of $G L(n, \boldsymbol{F})$ corresponds a ring homomorphism $L(g)$ in the space $\boldsymbol{F}[x]$, which transforms the generators x_{i} into the polynomial of degree one:

$$
L(g)\left(x_{i}\right)=\sum_{j=1}^{n} \hat{g}_{i j} x_{j}, \quad g^{-1}=\left(\hat{g}_{i j}\right),
$$

and $L(g)(1)=1$. Evidently, $L\left(g_{1} g_{2}\right)=L\left(g_{1}\right) L\left(g_{2}\right)$ and so L is a representation of $G L(n, \boldsymbol{F})$. We note that $L(g)$ is degree-preserving (i.e., $L(g)\left(\boldsymbol{F}_{d}[x]\right) \subset \boldsymbol{F}_{d}[x]$ for any $d \in \boldsymbol{N}_{0}$), and that $L(I)=\operatorname{id}_{\boldsymbol{F}[x]}$, where $I=\left(\delta_{i j}\right)$ is the unit matrix of degree n.

Hereafter, for any integer t satisfying $0 \leq t \leq n$, we set

$$
\varepsilon_{t, i}^{n}= \begin{cases}-1 & \text { for } 1 \leq i \leq t \\ +1 & \text { for } t<i \leq n\end{cases}
$$

Then we put $I_{t}^{n}=\left(\varepsilon_{t, i}^{n} \delta_{i j}\right) \in G L(n, \boldsymbol{R})$. Let $O_{t}(n)$ be a semiorthogonal group with signature $(t, n-t)$, that is,

$$
O_{t}(n)=\left\{g \in G L(n, \boldsymbol{R}) \mid I_{t}^{n t} g I_{t}^{n}=g^{-1}\right\}
$$

where ${ }^{t} g$ denotes the transpose of g. We define $\Delta_{t}^{n}=\sum_{i=1}^{n} \varepsilon_{t, i}^{n} \partial_{i}^{2} \in W_{n}(\boldsymbol{R})$ and $\mathscr{H}\left(\boldsymbol{R}_{t}^{n}\right)=\operatorname{ker} \Delta_{t}^{n} \subset \boldsymbol{R}[x]$. From a straightforward calculation, we can see that Δ_{t}^{n} is an $O_{t}(n)$-invariant operator, that is,

$$
\Delta_{t}^{n} \circ L(g)=L(g) \circ \Delta_{t}^{n} \quad \text { for any } g \in O_{t}(n)
$$

Hence the kernel $\mathscr{H}\left(\boldsymbol{R}_{t}^{n}\right)$ of Δ_{t}^{n} is an $O_{t}(n)$-invariant vector subspace of $\boldsymbol{R}[x]$. A polynomial f is harmonic with respect to Δ_{t}^{n}, if $f \in \mathscr{H}\left(\boldsymbol{R}_{t}^{n}\right)$. Especially we put

$$
\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right)=\boldsymbol{R}_{d}[x] \cap \mathscr{H}\left(\boldsymbol{R}_{t}^{n}\right),
$$

that is, the space of d-homogeneous harmonic polynomials with respect to Δ_{t}^{n}. It is also an $O_{t}(n)$-invariant space of $\boldsymbol{R}[x]$ since $L(g)\left(g \in O_{t}(n)\right)$ is degree-preserving. In a similar way to discussions of Vilenkin [12, pp. 444-445] (see Liu [6, p. 7] also), we can see

$$
\operatorname{dim} \mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right)=(2 d+n-2) \frac{(n+d-3)!}{(n-2)!d!}
$$

Thus the dimension of $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right)$ is independent of the index t. Put $\Delta_{t}^{n C}=$ $\sum_{i=1}^{n} \varepsilon_{t, i}^{n}\left(\partial_{i}\right)^{2} \in W_{n}(\boldsymbol{C}), \mathscr{H}\left(\boldsymbol{C}_{t}^{n}\right)=\operatorname{ker} \Delta_{t}^{n C} \subset \boldsymbol{C}[x]$ and $\mathscr{H}_{d}\left(\boldsymbol{C}_{t}^{n}\right)=\boldsymbol{C}_{d}[x] \cap \mathscr{H}\left(\boldsymbol{C}_{t}^{n}\right)$. Then, from (1), $f \in \mathscr{H}_{d}\left(\boldsymbol{C}_{t}^{n}\right)$ if and only if both $\Re f$ and $\Im f$ are in $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right)$, that is,

$$
\begin{equation*}
\mathscr{H}_{d}\left(\boldsymbol{C}_{t}^{n}\right)=\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right) \oplus \sqrt{-1} \mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right) . \tag{2}
\end{equation*}
$$

We put $\rho_{t}=L\left({\sqrt{I_{t}^{n}}}^{-1}\right)$, where $\sqrt{I_{t}^{n}}=\left(\sqrt{\varepsilon_{t, i}^{n}} \delta_{i j}\right) \in G L(n, \boldsymbol{C})$. There exists the ring homomorphism $\widetilde{\rho_{t}}: W_{n}(\boldsymbol{R}) \rightarrow W_{n}(\boldsymbol{C})$ satisfying $\widetilde{\rho_{t}}=\rho_{t}$ on $\boldsymbol{R}[x]$. By the definition of $\widetilde{\rho_{t}}$, we have for the generators ∂_{i} of $\operatorname{Der}_{\boldsymbol{R}}(\boldsymbol{R}[x])$,

$$
\widetilde{\rho}_{t}\left(\partial_{i}\right)=\frac{1}{\sqrt{\varepsilon_{t, i}^{n}}} \partial_{i}= \begin{cases}-\sqrt{-1} \partial_{i} & \text { for } 1 \leq i \leq t \\ \partial_{i} & \text { for } t<i \leq n\end{cases}
$$

Therefore, for the ordinary Laplacian $\Delta_{0}^{n}=\Delta$, we have

$$
\begin{equation*}
\widetilde{\rho_{t}}\left(\Delta_{0}^{n}\right)=\Delta_{t}^{n C} \in W_{n}(\boldsymbol{C}) . \tag{3}
\end{equation*}
$$

Moreover the following diagram is commutative for any $D \in W_{n}(\boldsymbol{R})$:

We define $\sigma_{t}=\rho_{t} \circ \rho_{t}=L\left(I_{t}^{n}\right)$ for $0 \leq t \leq n$. Since σ_{t} is involutive (i.e., $\left.\sigma_{t} \circ \sigma_{t}=\mathrm{id}_{\boldsymbol{R}[x]}\right)$, we obtain for $0 \leq t \leq n$,

$$
\boldsymbol{R}[x]=P_{t}^{+} \oplus P_{t}^{-}
$$

where $P_{t}^{ \pm}$is the eigenspace of σ_{t} corresponding to the eigenvalue ± 1. It is easily seen that $\sigma_{t}\left(x^{\alpha}\right)=(-1)^{\alpha_{1}+\cdots+\alpha_{t}} x^{\alpha}$. Hence $\sigma_{t} \circ \partial_{i}^{2}=\partial_{i}^{2} \circ \sigma_{t}$ for $1 \leq i \leq n$ and $0 \leq t \leq n$. This implies for $0 \leq s, t \leq n$,

$$
\begin{equation*}
\sigma_{t} \circ \Delta_{s}^{n}=\Delta_{s}^{n} \circ \sigma_{t} . \tag{5}
\end{equation*}
$$

Putting $\mathscr{H}_{d, t}^{ \pm}\left(\boldsymbol{R}_{s}^{n}\right)=P_{t}^{ \pm} \cap \mathscr{H}_{d}\left(\boldsymbol{R}_{s}^{n}\right)$ for $0 \leq s, t \leq n$, by virtue of (5), we have the following direct decomposition:

$$
\mathscr{H}_{d}\left(\boldsymbol{R}_{s}^{n}\right)=\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{s}^{n}\right) \oplus \mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{s}^{n}\right) .
$$

By the definition, P_{t}^{+}(resp. P_{t}^{-}) is the subspace which consists of polynomials whose terms are of even (resp. odd) degree with respect to x_{1}, \ldots, x_{t}. Thus ρ_{t} maps any polynomials in $\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{s}^{n}\right)\left(\right.$ resp. $\left.\mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{s}^{n}\right)\right)$ to those in $\boldsymbol{C}_{d}[x]$ which have purely real (resp. imaginary) coefficients. So, because of the injectivity of ρ_{t}, we have

$$
\begin{equation*}
\rho_{t}\left(\mathscr{H}_{d}\left(\boldsymbol{R}_{s}^{n}\right)\right)=\rho_{t}\left(\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{s}^{n}\right)\right) \oplus \sqrt{-1} \Im\left(\rho_{t}\left(\mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{s}^{n}\right)\right)\right) \tag{6}
\end{equation*}
$$

Lemma 2.1. For any $n, d, t \in N_{0}$ satisfying $n \geq 1$ and $0 \leq t \leq n$, we obtain

$$
\rho_{t}\left(\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{0}^{n}\right)\right)=\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{t}^{n}\right), \quad \Im\left(\rho_{t}\left(\mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{0}^{n}\right)\right)\right)=\mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{t}^{n}\right) .
$$

Hence we obtain $\rho_{t}\left(\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n}\right)\right)=\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{t}^{n}\right) \oplus \sqrt{-1} \mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{t}^{n}\right)$.
Proof. By the commutative diagram (4), the decomposition (6) and Equation (3), we have for any $f^{ \pm} \in \mathscr{H}_{d, t}^{ \pm}\left(\boldsymbol{R}_{0}^{n}\right)$,

$$
\begin{aligned}
& 0=\rho_{t}\left(\Delta_{0}^{n} f^{+}\right)=\left(\widetilde{\rho_{t}}\left(\Delta_{0}^{n}\right)\right)\left(\rho_{t}\left(f^{+}\right)\right)=\Delta_{t}^{n C} \rho_{t}\left(f^{+}\right)=\Delta_{t}^{n} \rho_{t}\left(f^{+}\right), \\
& 0=\rho_{t}\left(\Delta_{0}^{n} f^{-}\right)=\left(\widetilde{\rho_{t}}\left(\Delta_{0}^{n}\right)\right)\left(\rho_{t}\left(f^{-}\right)\right)=\Delta_{t}^{n C} \sqrt{-1} \Im \rho_{t}\left(f^{-}\right)=\sqrt{-1} \Delta_{t}^{n} \Im \rho_{t}\left(f^{-}\right) .
\end{aligned}
$$

Hence $\rho_{t}\left(\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{0}^{n}\right)\right) \subset \mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{t}^{n}\right)$ and $\Im\left(\rho_{t}\left(\mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{0}^{n}\right)\right)\right) \subset \mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{t}^{n}\right)$. Since ρ_{t} is injective, the real dimension of $\rho_{t}\left(\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n}\right)\right)$ is equal to the one of $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right)$ (or $\left.\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n}\right)\right)$. Therefore we obtain this lemma.

Remark 2.2. It is known that the following identity on $W_{n}(\boldsymbol{R})$:

$$
\begin{equation*}
r_{0, n}^{2} \Delta_{0}^{n}-E(E+n-2)=\sum_{i<j}\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right)^{2} \tag{7}
\end{equation*}
$$

holds, where $E=\sum_{i=1}^{n} x_{i} \partial_{i}$ is Euler's degree operator. This identity is known as Capelli's identity for $O_{0}(n)$ ([13]). Applying $\widetilde{\rho_{t}}$ to (7), we can immediately get Capelli's identity for $O_{t}(n)(1 \leq t \leq n)$ as follows:

$$
r_{t, n}^{2} \Delta_{t}^{n}-E(E+n-2)=\sum_{i<j} \varepsilon_{t, i}^{n} \varepsilon_{t, j}^{n}\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right)^{2}
$$

3. Harmonic Maps between Semi-Riemannian Spheres

In this section, we construct harmonic maps of semi-Riemannian unit spheres. We denote the semi-Riemannian n-sphere with constant sectional curvature k and index t by $S_{t}^{n}(k) \subset \boldsymbol{R}_{t}^{n+1}$, that is, $S_{t}^{n}(k)=\left\{p \in \boldsymbol{R}_{t}^{n+1} \mid-x_{1}^{2}(p)-\cdots-x_{t}^{2}(p)+\right.$ $\left.x_{t+1}^{2}(p)+\cdots+x_{n+1}^{2}(p)=k^{-1}\right\}$ and the unit n-sphere $S_{t}^{n}(1)$ by S_{t}^{n}. So, from now on, $\boldsymbol{R}[x]$ stands for $\boldsymbol{R}\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$ as the space of all polynomials on \boldsymbol{R}^{n+1}. We denote the semi-Riemannian n-sphere with constant sectional curvature k and index t by $S_{t}^{n}(k) \subset \boldsymbol{R}_{t}^{n+1}$, and the unit n-sphere $S_{t}^{n}(1)$ by S_{t}^{n}.

Now we recall the standard λ-eigenmaps and the standard minimal immersions of the ordinary n-sphere $S^{n}=S_{0}^{n}$ (see [3], [4] and [11] for examples). Let $\Delta^{S^{n}}$ be the Laplacian on S^{n}. It is well-known that all eigenvalues are given by $\lambda_{d}=d(d+n-1)\left(d \in N_{0}\right)$ and the eigenspace V_{d} of $\Delta^{S^{n}}$ corresponding to the eigenvalue λ_{d} is

$$
V_{d}=\left\{\left.f\right|_{S^{n}} \mid f \in \mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)\right\} .
$$

(See [4, Theorem (1.9), p. 132] for more details.) Then V_{d} is an orthogonal $O_{0}(n+1)$-module. The $O_{0}(n+1)$-module structure on V_{d} is given by L and we choose as an $O_{0}(n+1)$-invariant scalar product \langle,$\rangle on V_{d}$ the L^{2}-scalar product:

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{S^{n}} f_{1} f_{2} d v_{S^{n}}, \quad f_{1}, f_{2} \in V_{d}
$$

where $d v_{S^{n}}$ is proportional to the volume element of S^{n} and normalized in such a way that $\int_{S^{n}} d v_{S^{n}}=\operatorname{dim} V_{d}$. For simplicity, we put

$$
k(d)=\frac{n}{d(d+n-1)}, \quad m(d)=(2 d+n-1) \frac{(d+n-2)!}{d!(n-1)!}-1 .
$$

Then we have $\operatorname{dim} V_{d}=m(d)+1=\operatorname{dim} \mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$. Let $\left\{f_{i}\right\}_{i=1}^{m(d)+1}$ be an orthonormal basis of V_{d}, which, at the same time, identifies V_{d} with $\boldsymbol{R}^{m(d)+1}$. We obtain

$$
\begin{equation*}
\sum_{i=1}^{m(d)+1}\left(f_{i}\right)^{2}=1 \quad \text { on } S^{n} \tag{8}
\end{equation*}
$$

Then we have the standard λ_{d}-eigenmaps (resp. the standard minimal immersions of order d):

$$
\begin{aligned}
\phi_{n, d} & =\phi_{n, d, 0}=\left(f_{1}, \ldots, f_{m(d)+1}\right): S^{n} \rightarrow S^{m(d)} \\
\left(\text { resp. } \psi_{n, d}\right. & \left.=\psi_{n, d, 0}=\phi_{n, d} \circ \chi_{n, d}: S^{n}(k(d)) \rightarrow S^{m(d)}\right),
\end{aligned}
$$

where $\chi_{n, d}$ is the homothetic transformation such that $\chi_{n, d}(p)=k(d)^{1 / 2} \cdot p$ for $p \in \boldsymbol{R}^{n+1}$. These are uniquely determined up to congruence on the range. Let $T^{n+1, d}=T_{0}^{n+1, d}: O_{0}(n+1) \rightarrow O_{0}(m(d)+1)$ denote the homomorphism associated to the $O_{0}(n+1)$-module structure of V_{d} under the identification $V_{d} \cong$ $\boldsymbol{R}^{m(d)+1}$. It is obvious that $\phi_{n, d}$ and $\psi_{n, d}$ are equivariant with respect to $T^{n+1, d}$. We note that $\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$ has an $O_{0}(n+1)$-invariant scalar product induced from the one of V_{d} since every d-homogeneous polynomials are uniquely determined by its values on S^{n}.

Hereafter we put

$$
\mathscr{K}_{d}=\left\{\left(k_{1}, \ldots, k_{n-2}, k_{n-1}\right) \in \boldsymbol{Z}^{n-1}\left|d \geq k_{1} \geq \cdots \geq k_{n-2} \geq\left|k_{n-1}\right|\right\} .\right.
$$

For convenience' sake, we may put $k_{0}=d$ and $k_{n}=0$. It is easy to check $\# \mathscr{K}_{d}=\operatorname{dim} \mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$. We put $r_{t, n+1}^{2}=\sum_{i=1}^{n+1} \varepsilon_{t, i}^{n+1} x_{i}^{2} \in \boldsymbol{R}_{2}[x]$, which is an $O_{0}(n+1)$-invariant polynomial in $\boldsymbol{R}[x]$. For the later use, we summarize [12, pp. 466-467] as follows.

Lemma 3.1. For any $K=\left(k_{1}, \ldots, k_{n-2}, k_{n-1}\right) \in \mathscr{K}_{d}$, we put

$$
\begin{aligned}
\Xi_{K}^{d}(x)= & A_{K}^{d} \prod_{j=0}^{n-2}\left(r_{0, n+1-j}^{k_{j}-\left|k_{j+1}\right|} C_{k_{j}-\left|k_{j+1}\right|}^{(n-j-1) / 2+\left|k_{j+1}\right|}\left(\frac{x_{n+1-j}}{r_{0, n+1-j}}\right)\right) \\
& \times\left(x_{2}+\operatorname{sgn}\left(k_{n-1}\right) \sqrt{-1} x_{1}\right)^{\left|k_{n-1}\right|},
\end{aligned}
$$

where $\operatorname{sgn}\left(k_{n-1}\right)$ is the signature of $k_{n-1}, C_{m}^{p}(t)$ are Gegenbauer polynomials

$$
C_{m}^{p}(t)=\frac{2^{m} \Gamma(p+m)}{\Gamma(p)}\left(\sum_{k=0}^{[m / 2]} \frac{(-1)^{k}(p+m-k-1)!}{2^{2 k} k!(m-2 k)!(p+m-1)!} t^{m-2 k}\right)
$$

and A_{K}^{d} is the normalizing factor. Then Ξ_{K}^{d} are in $\mathscr{H}_{d}\left(\boldsymbol{C}_{0}^{n+1}\right)$, and any harmonic polynomial of $\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$ can be uniquely represented as a linear combination of Ξ_{K}^{d}. Moreover we have for any $K, M \in \mathscr{K}_{d}$,

$$
\int_{S^{n}} \Xi_{K}^{d} \overline{\Xi_{M}^{d}} d v_{S^{n}}=\delta_{K M}
$$

where the measure $d v_{S^{n}}$ is normalized by $\int_{S^{n}} d v_{S^{n}}=\operatorname{dim} \mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$, and $\delta_{K M}=1$ if $K=M, \delta_{K M}=0$ if $K \neq M$.

In this paper, for $1 \leq i_{1}<\cdots<i_{t} \leq n+1$, we denote by $\operatorname{deg}_{x_{i_{1}}, \ldots, x_{i t}} f$ the degree of a polynomial $f \in \boldsymbol{R}[x]$ with respect to variables $x_{i_{1}}, \ldots, x_{i_{t}}$. By the definition of Ξ_{K}^{d}, we can show that

$$
\begin{equation*}
\operatorname{deg}_{x_{n+1-i}} \Xi_{K}^{d}=2 \sum_{j=0}^{i-1}\left[\frac{k_{j}-\left|k_{j+1}\right|}{2}\right]+\left|k_{i}\right|-\left|k_{i+1}\right| \quad \text { for } 0 \leq i \leq n-1 . \tag{9}
\end{equation*}
$$

We note that $k_{n-1}=0$ if and only if Ξ_{K}^{d} is real. So $\left\{\Xi_{K}^{d}\right\}_{K \in \mathscr{H}_{d}}$ is not a basis of $\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$. However, from the decomposition (2), it is a simple matter to obtain an orthonormal basis of $\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$. In fact, for $K=\left(k_{1}, \ldots, k_{n-2}, k_{n-1}\right) \in \mathscr{K}_{d}$, we put

$$
U_{K}^{d}= \begin{cases}\Xi_{K}^{d} & \text { for } k_{n-1}=0 \\ \sqrt{2} \Re \Xi_{K}^{d} & \text { for } k_{n-1}>0 \\ \sqrt{2} \Im \Xi_{K}^{d} & \text { for } k_{n-1}<0\end{cases}
$$

Then $\left\{U_{K}^{d}\right\}_{K \in \mathscr{K}_{d}}$ is an orthonormal basis of $\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$. The following two polynomials in $\boldsymbol{R}_{l}\left[x_{1}, x_{2}\right]$:

$$
\begin{aligned}
& U_{+}^{l}:=\Re\left(x_{2}+\sqrt{-1} x_{1}\right)^{l}=\sum_{i=0}^{[l / 2]}(-1)^{i}\binom{l}{2 i} x_{1}^{2 i} x_{2}^{l-2 i}, \\
& U_{-}^{l}:=\Im\left(x_{2}+\sqrt{-1} x_{1}\right)^{l}=\sum_{i=0}^{[(l-1) / 2]}(-1)^{i}\binom{l}{2 i+1} x_{1}^{2 i+1} x_{2}^{l-(2 i+1)}
\end{aligned}
$$

satisfy

$$
\mathscr{H}_{l}\left(\boldsymbol{R}_{0}^{2}\right)=\operatorname{Span}\left\{U_{+}^{l}, U_{-}^{l}\right\}, \quad\left(U_{+}^{l}\right)^{2}+\left(U_{-}^{l}\right)^{2}=r_{0,2}^{2 l}
$$

and U_{+}^{l} (resp. U_{-}^{l}) is of even (resp. odd) degree with respect to x_{1}. For $2 \leq t \leq n+1$, by virtue of (9) and the definitions of U_{K}^{d} and Ξ_{K}^{d}, we can get

$$
\begin{equation*}
\operatorname{deg}_{x_{1}, \ldots, x_{t}} U_{K}^{d} \equiv k_{n+1-t} \quad(\bmod 2) \tag{10}
\end{equation*}
$$

and see that if $\operatorname{deg}_{x_{1}, \ldots, x_{t}} U_{K}^{d}$ is even (resp. odd), then each terms of U_{K}^{d} are also of even (resp. odd) degree with respect to x_{1}, \ldots, x_{t}. So we put $\mathscr{K}_{d, 0}^{+}:=\mathscr{K}_{d}$, $\mathscr{K}_{d, 0}^{-}:=\varnothing$,

$$
\begin{aligned}
\mathscr{K}_{d, 1}^{+} & :=\left\{\left(k_{1}, \ldots, k_{n-2}, k_{n-1}\right) \in \mathscr{K}_{d} \mid k_{n-1} \geq 0\right\} \\
\mathscr{K}_{d, 1}^{-} & :=\left\{\left(k_{1}, \ldots, k_{n-2}, k_{n-1}\right) \in \mathscr{K}_{d} \mid k_{n-1}<0\right\}
\end{aligned}
$$

from (10), for $2 \leq t \leq n+1$,

$$
\mathscr{K}_{d, t}^{+}:=\left\{K \in \mathscr{K}_{d} \mid k_{n+1-t}: \text { even }\right\}, \quad \mathscr{K}_{d, t}^{-}:=\left\{K \in \mathscr{K}_{d} \mid k_{n+1-t}: \text { odd }\right\} .
$$

Then we have for $0 \leq t \leq n+1$,

$$
\begin{equation*}
\mathscr{H}_{d, t}^{ \pm}\left(\boldsymbol{R}_{0}^{n+1}\right)=\operatorname{Span}\left\{U_{K}^{d} \mid K \in \mathscr{K}_{d, t}^{ \pm}\right\} . \tag{11}
\end{equation*}
$$

Then, since $\left\{U_{K}^{d}\right\}_{K \in \mathscr{H}_{d}}$ is an orthonormal basis of $\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$, and $r_{0, n+1}^{2}=1$ on S_{0}^{n}, from Equation (8), we have in $\boldsymbol{R}_{2 d}[x]$,

$$
\begin{equation*}
\sum_{K \in \mathscr{K}_{d}}\left(U_{K}^{d}\right)^{2}=r_{0, n+1}^{2 d} \tag{12}
\end{equation*}
$$

We put $U_{K, t}^{d}=\rho_{t}\left(U_{K}^{d}\right)$ for $K \in \mathscr{K}_{d, t}^{+}$and $U_{K, t}^{d}=\Im_{t}\left(U_{K}^{d}\right)$ for $K \in \mathscr{K}_{d, t}^{-}$, hence $U_{K, 0}^{d}=U_{K}^{d}$ for $K \in \mathscr{K}_{d}$. Using (11) and Lemma 2.1 and applying ρ_{t} to (12), we have

Lemma 3.2. The polynomials $\left\{U_{K, t}^{d}\right\}_{K \in \mathscr{H}_{d}}$ form a basis of $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$. Especially we have

$$
\begin{aligned}
& \operatorname{Span}\left\{U_{K, t}^{d} \mid K \in \mathscr{K}_{t}^{+}\right\}=\mathscr{H}_{d, t}^{+}\left(\boldsymbol{R}_{t}^{n+1}\right), \\
& \operatorname{Span}\left\{U_{K, t}^{d} \mid K \in \mathscr{K}_{t}^{-}\right\}=\sqrt{-1} \mathscr{H}_{d, t}^{-}\left(\boldsymbol{R}_{t}^{n+1}\right) .
\end{aligned}
$$

Moreover we obtain

$$
\begin{equation*}
-\sum_{K \in \mathscr{H}_{d, t}^{-}}\left(U_{K, t}^{d}\right)^{2}+\sum_{K \in \mathscr{H}_{d, t}^{+}}\left(U_{K, t}^{d}\right)^{2}=r_{t, n+1}^{2 d} . \tag{13}
\end{equation*}
$$

We call $\left\{U_{K, t}^{d}\right\}_{K \in \mathscr{K}_{d}}$ the canonical basis of $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$. Hereafter we put $l(d, t)=\# \mathscr{K}_{d, t}^{-}$.

Proposition 3.3. $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$ has the $O_{t}(n+1)$-invariant scalar product of index $l(d, t)$, for which the canonical basis $\left\{U_{K, t}^{d}\right\}_{K \in \mathscr{K}_{d}}$ is orthonormal. With respect to the scalar product, $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$ is the orthogonal $O_{t}(n+1)$-module by $T_{t}^{n+1, d}$ which is the representation given by L in $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$.

Proof. Let \langle,$\rangle be the scalar product in \mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n}\right)$ for which $\left\{U_{K, t}^{d}\right\}_{K \in \mathscr{K}_{d}}$ is an orthonormal basis such that $\left\langle U_{K}^{d}, U_{K}^{d}\right\rangle=+1$ (resp. -1) when $K \in \mathscr{K}_{d, t}^{+}$ (resp. $\left.K \in \mathscr{K}_{d, t}^{-}\right)$. We identify $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$ with $\boldsymbol{R}_{l(d, t)}^{m(d)+1}$ by $\left\{U_{K}^{d}\right\}_{K \in \mathscr{K}_{d}}$. For any $g \in O_{t}(n+1)$, we can write $L(g)\left(U_{K}^{d}\right)=\sum_{M \in \mathscr{H}_{d}} c_{M K} U_{M}^{d}$ since $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$ is an $O_{t}(n+1)$-invariant subspace of $\boldsymbol{R}[x]$. Using Equation (13), we can see that the scalar product is $O_{t}(n+1)$-invariant and $\left(c_{M K}\right) \in O_{l(d, t)}(m(d)+1)$ under the identification $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right) \cong \boldsymbol{R}_{l(d, t)}^{m(d)+1}$, since $r_{t, n+1}^{2}$ is an $O_{t}(n+1)$-invariant polynomial. Therefore the proof is complete.

For any $n, d, t \in N_{0}$ satisfying $n, d \geq 1$ and $0 \leq t \leq n$, we define $\phi_{n, d, t}: S_{t}^{n} \rightarrow$ $\boldsymbol{R}_{l(d, t)}^{m(d)+1}$ by

$$
\phi_{n, d, t}=\left(U_{\left.K_{1}, t\right)}^{d}, \ldots, U_{K_{l(d, t)}, t}^{d}, U_{K_{l(d, t)+1}, t}^{d}, \ldots, U_{K_{m(d)+1}, t}^{d}\right)
$$

where $K_{1}, \ldots, K_{l(d, t)} \in \mathscr{K}_{d, t}^{-}$and $K_{l(d, t)+1}, \ldots, K_{m(d)+1} \in \mathscr{K}_{d, t}^{+}$, and $K_{i} \neq K_{j}$ when $i \neq j$. From Proposition 3.3, we can see that these are uniquely determined up to congruence on the range. To prove Theorem 3.5, we quote a special case of a result in [5, Corollary I.3.7]:

Lemma 3.4. If $w: \boldsymbol{R}_{t}^{n+1} \rightarrow \boldsymbol{R}_{s}^{m+1}$ consists of d-homogeneous harmonic polynomials and $w\left(S_{t}^{n}\right) \subset S_{s}^{m}$, then $\left.w\right|_{S_{t}^{n}}: S_{t}^{n} \rightarrow S_{s}^{m}$ is a harmonic map.

Moreover we note that if $f \in \mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$, then $\left.f\right|_{S_{t}^{n}}$ is an eigenfunction of the Laplacian on S_{t}^{n} with eigenvalue $\lambda_{d}=d(d+n-1)([5$, Corollary I.3.5] and [6, Theorem 2]).

Theorem 3.5. For any $n, d, t \in N_{0}$ satisfying $n, d \geq 1$ and $0 \leq t \leq n, \phi_{n, d, t}$ are harmonic maps $S_{t}^{n} \rightarrow S_{l(d, t)}^{m(d)}$, which is equivariant with respect to the homomorphism $T_{t}^{n+1, d}$.

Proof. By (13) in Lemma 3.2, the image of $\phi_{n, d, t}$ is contained in the unit sphere $S_{l(d, t)}^{m(d)} \subset \boldsymbol{R}_{l(d, t)}^{m(d)+1} \cong \mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$. From Proposition 3.3, it is obvious that $\phi_{n, d, t}$ is $O\left(\boldsymbol{R}_{t}^{n+1}\right)$-equivariant. So, according to Lemma 3.4, we have the required harmonic map.

We note that the map $A_{t}^{n+1}: \boldsymbol{R}_{t}^{n+1} \rightarrow \boldsymbol{R}_{n+1-t}^{n+1}$ given by

$$
A_{t}^{n+1}\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{t+1}, \ldots, x_{n+1}, x_{1}, \ldots, x_{t}\right)
$$

is an anti-isometry that carries $S_{t}^{n}(k)$ anti-isometrically onto $H_{n-t}^{n}(k)$ ([10, Lemma 24, p. 110]), and if $f: X \rightarrow S_{t}^{n}(k)$ and $g: S_{t}^{n}(k) \rightarrow Y$ are maps between semiRiemannian manifolds, then f is harmonic if and only if $A_{t}^{n+1} \circ f$ is harmonic; the same equivalence we have for g and $g \circ A_{t}^{n+1}$ ([5, Remark I.3.2, p. 471]). Thus we obtain

Corollary 3.6. For any $n, d, t \in N_{0}$ satisfying $n, d \geq 1$ and $0 \leq t \leq n$, there exist the following harmonic maps:

$$
\begin{aligned}
\phi_{n, d, t} & : S_{t}^{n} \rightarrow S_{l(d, t)}^{m(d)}, \\
\phi_{n, d, t}^{+-} & =A_{l(d, t)}^{m(d)+1} \circ \phi_{n, d, t}: S_{t}^{n} \rightarrow H_{m(d)-l(d, t)}^{m(d)}, \\
\phi_{n, d, n-t}^{-+} & =\phi_{n, d, t} \circ A_{t}^{n+1}: H_{n-t}^{n} \rightarrow S_{l(d, t)}^{m(d)}, \\
\phi_{n, d, n-t}^{H} & =A_{l(d, t)}^{m(d)+1} \circ \phi_{n, d, t} \circ A_{t}^{n+1}: H_{n-t}^{n} \rightarrow H_{m(d)-l(d, t)}^{m(d)} .
\end{aligned}
$$

Furthermore we put $\psi_{n, d, t}=\phi_{n, d, t} \circ \chi_{n, d}: S_{t}^{n}(k(d)) \rightarrow S_{l(d, t)}^{m(d)}$. Of course, $\psi_{n, d, 0}$ $=\psi_{n, d}$ is the standard minimal immersion of order d of the ordinary n-sphere $S_{0}^{n}=S^{n}$. It is well known that $\psi_{n, d, 0}: S_{0}^{n}(k(d)) \rightarrow S_{0}^{m(d)}$ is a helical geodesic immersion of order d (see [8]).

Here we recall the definition of helices and helical geodesic immersions in semi-Riemannian geometry. (For details, see [9].) Let N be a semi-Riemannian manifold. Let c be a unit speed curve in N. The curve c is said to be a helix of order d in N, if it has the orthonormal frame field $c_{1}=c^{\prime}, c_{2}, \ldots, c_{d}$ and the following Frenet formulas along c are satisfied for all $1 \leq i \leq d(\leq \operatorname{dim} N)$:

$$
\left\{\begin{array}{l}
\left\langle c_{i}, c_{i}\right\rangle=\varepsilon_{i}, \\
\nabla_{c^{\prime}} c_{i}=-\varepsilon_{i-1} \varepsilon_{i} \lambda_{i-1} c_{i-1}+\lambda_{i} c_{i+1},
\end{array}\right.
$$

where ∇ denotes the Levi-Civita connection of $N, d \in \boldsymbol{N}, \quad \lambda_{0}=\lambda_{d}=\varepsilon_{0}=0$, $c_{0}=c_{d+1}=0, \quad \lambda_{i}(1 \leq i \leq d-1) \quad$ is a positive constant and $\varepsilon_{i} \in\{-1,+1\}$ $(1 \leq i \leq d)$. In this paper, we may call such a curve a helix of type $\Lambda=\left(d ; \lambda_{1}, \ldots, \lambda_{d-1} ; \varepsilon_{1}, \ldots, \varepsilon_{d}\right)$. Let $f: M \rightarrow \tilde{M}$ be an isometric immersion between semi-Riemannian manifolds. Suppose that there exist space-like geodesics on M, let γ be any unit speed space-like geodesic of M. If the curve $f \circ \gamma$ in \tilde{M} is a helix of type Λ which are independent of the choice of γ, then f is called a
helical space-like geodesic immersion of type Λ (or of order d simply). We also define that f is a helical time-like geodesic immersion in the same way. To prove the following proposition, we quote [1, Lemma 1.1].

Lemma 3.7. Let V be an n-dimensional real vector space equipped with a nondegenerate scalar product g of index t. For any r-linear map T on V to a real vector space W and $\varepsilon=-1$ or $+1(-t \leq \varepsilon \leq t)$, the following conditions are equivalent:
(a) $T(u, \ldots, u)=0$ for any vector u of V such that $g(u, u)=\varepsilon$,
(b) $T(v, \ldots, v)=0$ for any vector v of V.

Since $\psi_{n, d, 0}$ is a helical geodesic immersion of order d between Riemannian spheres, we can put its type $\Lambda_{0}=\left(d ; \lambda_{1}, \ldots, \lambda_{d-1} ;+1, \ldots,+1\right)$.

Proposition 3.8. For any $n, d, t \in N_{0}$ such that $n, d \geq 1$ and $0 \leq t \leq n, \psi_{n, d, t}$ is an isometric immersion with vanishing mean curvature. Moreover, for $1 \leq t \leq$ $n-1, \psi_{n, d, t}$ is a helical space-like geodesic immersion of type Λ_{0}.

Proof. It suffices to prove that the assertion follows for the maps $\tilde{\chi}_{n, d} \circ \phi_{n, d, t}: S_{t}^{n} \rightarrow S_{l(d, t)}^{m(d)}\left(k(d)^{-1}\right)$, where $\tilde{\chi}_{n, d}$ is the homothetic transformation such that $\tilde{\chi}_{n, d}(p)=k(d)^{1 / 2} \cdot p$ for $p \in \boldsymbol{R}^{m(d)+1}$. We use the same latter $\psi_{n, d, t}$ for $\tilde{\chi}_{n, d} \circ \phi_{n, d, t}$.

When $x_{1}=\cdots=x_{t}=0$, we have

$$
\begin{array}{ll}
U_{K, 0}^{d}=U_{K, t}^{d} & \text { for any } K \in \mathscr{K}_{d, t}^{+}, \\
U_{K, 0}^{d}=U_{K, t}^{d}=0 & \text { for any } K \in \mathscr{K}_{d, t}^{-} .
\end{array}
$$

At first, we deal with the case of $1 \leq t \leq n-1$. Let γ be a unit speed space-like geodesic $(0, \ldots, 0, \cos s, \sin s)$ of S_{0}^{n} (resp. $\left.S_{t}^{n}\right)$, which is on $S_{0}^{n} \cap S_{t}^{n}$ since $1 \leq t \leq n-1$. When $K \in \mathscr{K}_{d, t}^{-}$, the components of $\psi_{n, d, t} \circ \gamma$ and $\psi_{n, d, 0} \circ \gamma$ are vanishing. Hence $\psi_{n, d, t} \circ \gamma$ is in a positive definite subspace properly. Noting that the Levi-Civita connection of $\mathscr{H}_{d}\left(\boldsymbol{R}_{0}^{n+1}\right)$ coincides with the one of $\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)$, we can see that $\psi_{n, d, t} \circ \gamma$ satisfies the same Frenet equation of $\psi_{n, d, 0} \circ \gamma$. Therefore $\psi_{n, d, t} \circ \gamma$ is a helix of type Λ_{0}. Since $\psi_{n, d, t}$ is $O_{t}(n+1)$-equivariant, $\psi_{n, d, t}$ maps any space-like geodesic c of S_{t}^{n} to a helix $\psi_{n, d, t} \circ c$ of type Λ_{0} in $S_{l(d, t)}^{m(d)}$. Especially $\psi_{n, d, t} \circ c$ is unit speed. So we have $g(x, x)=\psi_{n, d, t}{ }^{*} \tilde{g}(x, x)$ for x is any unit spacelike vector of S_{t}^{n}, where g (resp. $\left.\psi_{n, d, t}{ }^{*} \tilde{g}\right)$ is the metric of S_{t}^{n} (resp. the pull-back of the metric \tilde{g} of $\left.\mathscr{H}_{d}\left(\boldsymbol{R}_{t}^{n+1}\right)\right)$. Using Lemma 3.7, we see that $g=\psi_{n, d, t}{ }^{*} \tilde{g}$ on
S_{t}^{n}. By a semi-Riemannian version of Takahashi's theorem ([7, Theorem 1] for example), the mean curvature of $\psi_{n, d, t}$ is vanishing. Therefore we have this proposition in this case.

Next, we deal with the case of $t=n$. By the definition, we have

$$
U_{K, n}^{d}\left(x_{1}, 0, \ldots, 0, x_{n+1}\right)=U_{K, 1}^{d}\left(x_{1}, 0, \ldots, 0, x_{n+1}\right) \quad \text { for } K \in \mathscr{K}_{d} .
$$

Moreover, for any $K \in\left(\mathscr{K}_{d, n}^{+} \cap \mathscr{K}_{d, 1}^{-}\right) \cup\left(\mathscr{K}_{d, n}^{-} \cap \mathscr{K}_{d, 1}^{+}\right)=: \mathscr{L}$, each terms of $U_{K, n}^{d}$ and $U_{K, 1}^{d}$ are of odd degree with respect to variables x_{2}, \ldots, x_{n}. So $\operatorname{deg}_{x_{2}, \ldots, x_{n}} U_{K, n}^{d}=\operatorname{deg}_{x_{2}, \ldots, x_{n}} U_{K, 1}^{d} \geq 1$. Thus, for any $K \in \mathscr{L}$, we have

$$
U_{K, n}^{d}\left(x_{1}, 0, \ldots, 0, x_{n+1}\right)=U_{K, 1}^{d}\left(x_{1}, 0, \ldots, 0, x_{n+1}\right)=0
$$

We note that, for $K \in\left(\mathscr{K}_{d} \backslash \mathscr{L}\right)$, the components $U_{K, n}^{d}$ of $\psi_{n, d, n}$ and $U_{K, 1}^{d}$ of $\psi_{n, d, 1}$ are the same causal character each other. Let γ be a unit speed time-like geodesic $(\sinh s, 0, \ldots, 0, \cosh s)$ of $S_{1}^{n}\left(\right.$ resp. $\left.S_{n}^{n}\right)$, which is on $S_{1}^{n} \cap S_{n}^{n}$. Since we had seen that $\psi_{n, d, 1}$ is isometric, $\psi_{n, d, 1} \circ \gamma$ is a unit speed time-like curve in $S_{l(d, 1)}^{m(d)}$. On account of the above arguments, we can see that $\psi_{n, d, n} \circ \gamma$ satisfies the same equation of $\psi_{n, d, 1} \circ \gamma$, hence it is a unit speed time-like curve in $S_{l(d, n)}^{m(d)}$. Therefore the same arguments as in the case of $0 \leq t \leq n-1$ imply that $\psi_{n, d, n}$ is isometric. We accomplished the proof.

By the same reason to get Corollary 3.6, we have

Corollary 3.9. For any $n, d, t \in N_{0}$ such that $n, d \geq 1$ and $0 \leq t \leq n$, $\psi_{n, d, n-t}^{H}=A_{l(d, t)}^{m(d)+1} \circ \psi_{n, d, t} \circ A_{t}^{n+1}: H_{n-t}^{n}(k(d)) \rightarrow H_{m(d)-l(d, t)}^{m(d)} \quad$ is an isometric immersion with vanishing mean curvature, where A_{t}^{n+1} and $A_{l(d, t)}^{m(d)+1}$ are the antiisometries in respective vector spaces. Moreover, for $1 \leq t \leq n-1, \psi_{n, d, n-t}^{H}$ is a helical time-like geodesic immersion of type $\left(d ; \lambda_{1}, \ldots, \lambda_{d-1} ;-1, \ldots,-1\right)$.

Remark 3.10. In [9], the author showed the following result. Let $f: M \rightarrow \tilde{M}$ be an isometric immersion between semi-Riemannian manifolds and M indefinite. If f is a helical space-like geodesic immersion of type $\Lambda=\left(d ; \lambda_{1}, \ldots, \lambda_{d-1} ; \varepsilon_{1}, \ldots, \varepsilon_{d}\right)$, then f is a helical time-like geodesic immersion of type $\bar{\Lambda}=\left(d ; \lambda_{1}, \ldots, \lambda_{d-1} ;(-1)^{1} \varepsilon_{1}, \ldots,(-1)^{d} \varepsilon_{d}\right)$. Using this result, we can see that $\psi_{n, d, t}(1 \leq t \leq n-1)$ is a helical time-like geodesic immersion of type $\overline{\Lambda_{0}}=\left(d ; \lambda_{1}, \ldots, \lambda_{d-1},(-1)^{1}, \ldots,(-1)^{d}\right)$. From the same arguments as in the case of $t=n$ in the proof of Proposition 3.8, we can prove that $\psi_{n, d, n} \circ \gamma$ satisfies the same Frenet equation of $\psi_{n, d, 1} \circ \gamma$, hence it is a helix of type $\overline{\Lambda_{0}}$ in $S_{l(d, n)}^{m(d)}$.

Consequently, $\psi_{n, d, n}$ is a helical time-like geodesic immersion of type $\overline{\Lambda_{0}}$ since $\psi_{n, d, n}$ is $O_{n}(n+1)$-equivariant.

References

[1] Abe, N., Nakanishi, Y. and Yamaguchi, S., Circles and spheres in pseudo-Riemannian geomerty, Aequationes Mathematicae 39 (1990), 134-145.
[2] Ding, Q. and Wang, J., A remark on harmonic maps between pseudo-Riemannian spheres, Northeast. Math. J. 12(2) (1996), 217-221.
[3] DoCarmo, W. P. and Wallach, N. R., Minimal immersions of spheres into spheres, Ann. of Math. 93(1) (1971), 43-62.
[4] Eells, J. and Ratto, A., Harmonic maps and minimal immersions with symmetries, Annals of mathematics studies. Princeton university press, Princeton, New Jersey, 1993.
[5] Konderak, J. J., Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces, Proc. Amer. Math. Soc. 109(2) (1990), 469-476.
[6] Liu, H. L., Minimal immersion of pseudo-Riemannian manifolds, Tsukuba J. Math. 16(No. 1) (1992), 1-10.
[7] Markvorsen, S., A characteristic eigenfunction for minimal hypersurfaces in space forms, Math. Z. 202 (1989), 375-382.
[8] Mashimo, K., Order of the standard isometric minimal immersions of CROSS as helical geodesic immersions, Tsukuba J. Math. 7(No. 2) (1983), 257-263.
[9] Miura, K., Helical geodesic immersions of semi-Riemannian manifolds, submitted.
[10] O'Neill, B., Semi-Riemannian Geometry with Application to Relativity, Academic Press, New York, 1983.
[11] Toth, G., Harmonic Maps and Minimal Immersions Through Representation Theory, Academic Press, Boston, 1990.
[12] Vilenkin, N. J., Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs,Vol. 22 American Mathematical Society, Providence, R. I. 1968.
[13] Weyl, H., The classical groups, their invariants and representations, Princeton Univ. Press, 1946.

> Department of Mathematics
> Faculty of Science
> Tokyo University of Science
> Wakamiya-cho 26, Sinjuku-ku
> Tokyo, Japan 162-0827
> E-mail address: miura@ma.kagu.tus.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C50; Secondary 53C40.
 Key words and phrases. harmonic map, standard λ-eigenmap, helical geodesic immersion. Received September 27, 2006.

