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UPPER BOUND FOR SUM OF DIVISORS FUNCTION

AND THE RIEMANN HYPOTHESIS

By

Aleksander Grytczuk

Abstract. Let sðnÞ denote the sum of divisors function. We prove

that if ð2;mÞ ¼ 1 and 2m > 39 then 10 sð2mÞ < 39
40 e

g2m log log 2m,

and for all odd integers m > 39

2 , we have 20 sðmÞ < egm log log m.

Moreover, we show that if sð2mÞ < 3
4 e

g2m log log 2m, for m > m0

and ð2;mÞ ¼ 1, then the inequality sð2amÞ < eg2am log log 2am is

true for all integers ab 2 and m > m0. Robin criterion implies that

the Riemann hypothesis is true for these cases.

1. Introduction

The Riemann zeta function zðsÞ for s ¼ sþ it is defined by Dirichlet series

zðsÞ ¼
Xy

n¼1
n�s;

which converges for s > 1, and it has analytic continuation to the complex plane

with one singularity, a simple pole with residue equal to 1, at s ¼ 1.

In 1859 Riemann [10] stated conjecture which concerns the complex zeros

of the Riemann zeta function. Namely, the Riemann hypothesis states that the

nonreal zeros of the Riemann zeta function zðsÞ all lie on the line s ¼ 1
2 . The

connection of the Riemann hypothesis with prime numbers has been considered

by Gauss.

Let

pðxÞ ¼
X

1<pax

1;
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then it is well-known that the Riemann hypothesis is equivalent to the assertion

that for each e > 0 there is a positive constant C ¼ CðeÞ such that

jpðxÞ � LiðxÞjaCðeÞx1=2þe;

where

LiðxÞ ¼
ð x

2

dt

log t
:

The Riemann hypothesis is a special case of questions concerning general-

izations of L-functions and their connections with many important and di‰cult

problems in number theory, algebraic geometry, topology, representation theory

and modern physics (see; Berry and Keating [1], Katz and Sarnak [6], Murty [8]).

In 1984 Robin [11] proved the following criterion connected with sum divisors

function.

Robin’s criterion. The Riemann hypothesis is true if and only if

sðnÞ < egn log log nð*Þ

for all positive integers nb 5041, where

sðnÞ ¼
X
djn

d; and gA0:57721 is Euler’s constant:

In 2002 Lagarias [7] proved the following criterion.

Lagarias’ criterion. Let Hn ¼
Pn

j¼1
1
j
. The Riemann hypothesis is true if

and only if

sðnÞaHn þ expðHnÞ logðHnÞ;ðLÞ

for each positive integer nb 1, and with equality in (L) only for n ¼ 1.

In this paper Lagarias noted that for all positive integers nb 3 we have

egn log log na expðHnÞ logðHnÞ;ðL1Þ

and therefore Lagarias’ citerion is an extension Robin’s criterion.

Many others criterions and interesting results connected with the Riemann

hypothesis are described by Conrey in his elegant article [2].
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We also note that it is well known that the Riemann hypothesis is related to

estimates of error terms associated with the Farey sequence of reduced fractions

in the unit interval. Interesting and important results in this direction has been

given by Yoshimoto ([13], [14], [15]) and Kanemitsu and Yoshiomoto ([4], [5]).

2. Basic Lemmas

In the proofs of our results we use two following Lemmas:

Lemma 1 (Rosser-Schoenfeld’s inequality [12], Cf. [9], p. 169). Let jðnÞ be

the Euler’s totient function. Then for all positive integers nb 3 the following

inequality is true

n

jðnÞ a eg log log nþ 2:5

eg log log n

� �
ð**Þ

except, when n ¼ 2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � 23 ¼ 223092870, and in this

case the constant c ¼ 2:5 must be replaced by the constant c1 ¼ 2:50637 < 2:51.

Lemma 2. Let n ¼ pa1

1 pa2

2 � � � pak
k , where pj are primes and aj b 1 for

j ¼ 1; 2; . . . ; k and let s and j be the sum divisors function and Euler’s totient

function, respectively. Then we have

sðnÞ
n

¼
Yk

j¼1
1 � 1

p
1þaj
j

 !
n

jðnÞ :ð***Þ

Proof. Since n ¼
Qk

j¼1 p
aj
j then we have

sðnÞ ¼
Yk

j¼1

p
ajþ1
j � 1

pj � 1
¼

n
Qk

j¼1 1 � 1

p
ajþ1

j

� �
Qk

j¼1 1 � 1
pj

� � :ð2:1Þ

On the other hand we have

jðnÞ ¼ n
Yk

j¼1
1 � 1

pj

� �
:ð2:2Þ

From (2.1) and (2.2) we obtain

sðnÞ
n

¼
Yk

j¼1
1 � 1

p
ajþ1
j

 !
n

jðnÞ ;

and the proof of Lemma 2 is complete. 9
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3. The Results

First we prove of the following theorem.

Theorem 1. Let n ¼ 2m, ð2;mÞ ¼ 1 and m ¼
Qk

j¼1 p
aj
j . Then for all odd

positive integers m > 39

2 we have

sð2mÞ < 39

40
eg2m log log 2mð3:1Þ

and

sðmÞ < egm log log m:ð3:2Þ

Proof. First we note that by (**) of Lemma 1 it follows that for all positive

integers nb 3 we have

n

jðnÞ < eg log log n 1 þ 2:51

egðlog log nÞ2

 !
:ð3:3Þ

Now, we remark that for all positive integers nb 39 ¼ 19683 we have

ðlog log nÞ2
b ðlogð9 log 3ÞÞ2 > ðlog 9:81Þ2 > ð2:28Þ2 > 5:19:ð3:4Þ

Since eg > e0:57 >
ffiffiffi
e

p
> 1:64 then

egðlog log nÞ2 > ð1:64Þxð5:19Þ ¼ 8:5116 > 8:51ð3:5Þ

By (3.3), (3.4) and (3.5) it follows that for all nb 39 we have

n

jðnÞ < eg log log n 1 þ 2:51

8:51

� �
< 1:3eg log log n:ð3:6Þ

Let n ¼ 2m, where ð2;mÞ ¼ 1 and let m > 39

2 > 9841. Then by (***) of

Lemma 2 and (3.6) it follows that

sð2mÞ
2m

¼ 1 � 1

22

� �
IðmÞ 2m

jð2mÞ <
3

4
� 13

10
eg log log 2m ¼ 39

40
eg log log 2m;ð3:7Þ

because IðmÞ ¼
Qk

j¼1 1 � 1

p
1þaj
j

� �
< 1.

Hence, the inequality (3.7) states that (3.1) is true for all even positive

integers n ¼ 2m > 39, such that ð2;mÞ ¼ 1.

From (3.7) and sð2mÞ ¼ sð2ÞsðmÞ ¼ 3sðmÞ, when ð2;mÞ ¼ 1 for m > 39

2 , we

obtain
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sðmÞ ¼ 1

3
sð2mÞ < 1

3
� 39

40
eg2m log log 2m ¼ 13

20
egm log log 2m:ð3:8Þ

It is easy to see that for all odd positive integers m > 39

2 we have

13

20
log log 2m < log log m:ð3:9Þ

From (3.8) and (3.9) follows that (3.2) is true for all odd positive integers

m > 39

2 > 9841 and the proof of the Theorem 1 is complete. 9

Theorem 2. If for odd positive integers m > m0, we have

sð2mÞ < 3

4
eg2m log log 2m;ð3:10Þ

then for all integers n ¼ 2am, ð2;mÞ ¼ 1, m > m0 and each integer ab 2, we have

sð2amÞ < eg2am log log 2am:ð3:11Þ

Proof. By well-known property of the sum divisors function it follows that

sð2amÞ ¼ sð2aÞsðmÞ ¼ ð2aþ1 � 1ÞsðmÞ;ð3:12Þ

and

sð2mÞ ¼ sð2ÞsðmÞ ¼ 3sðmÞ:ð3:13Þ

From (3.12) and (3.13) we obtain

sð2amÞ ¼ 2aþ1 � 1

3
sð2mÞ:ð3:14Þ

By the assumption (3.10) and (3.14) it follows that

sð2amÞ < 2aþ1 � 1

3

3

4
eg2m log log 2m < eg2am log log 2am;

and the proof of the Theorem 2 is complete. 9

Now, we remark that if m is greater than m in the assumption of the

Theorem 1, then we obtain better upper bound than (3.1) for sð2mÞ.
Namely, we have of the following theorem.
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Theorem 3. If ð2;mÞ ¼ 1 and n ¼ 2m then for all odd positive integers

m > 1
2 e

e7
we have

sðnÞ ¼ sð2mÞ < 39

50
eg2m log log 2m:ð3:15Þ

Proof. Since 2m > ee
7

then log log 2m > 7 and since eg > 1:64 then we get

egðlog log 2mÞ2 > 80:36ð3:16Þ

By (3.16) it follows that

2:51

egðlog log 2mÞ2
<

2:51

80:36
< 0:032:ð3:17Þ

From (3.17) and (3.3) we obtain

n

jðnÞ ¼
2m

jð2mÞ <
129

125
eg log log 2m:ð3:18Þ

By (3.18) and Lemma 2 for n ¼ 2m > ee
7
, with ð2;mÞ ¼ 1 it follows that

sð2mÞ
2m

<
3

4

2m

jð2mÞ <
387

500
eg log log 2m <

39

50
eg log log 2m;

and the proof of the Theorem 3 is complete. 9

Applying this result we can obtain corresponding upper bound for sðnÞ, if

n ¼ 2am, m > 1
2 e

e7

, ð2;mÞ ¼ 1 and when a ¼ 2 or 3.

Theorem 4. If m > 1
2 e

e7

and ðm; 2Þ ¼ 1 then we have

10. sð22mÞ < 91
100 e

g22m log log 22m,

20. sð23mÞ < 39
40 e

g23m log log 23m.

Proof. By the assumption that ðm; 2Þ ¼ 1 and the multiplicative property of

the sum divisors function it follows that

sð2mÞ ¼ sð2ÞsðmÞ ¼ ð22 � 1ÞsðmÞ ¼ 3sðmÞ;ð3:19Þ

sð22mÞ ¼ sð22ÞsðmÞ ¼ ð23 � 1ÞsðmÞ ¼ 7sðmÞ;ð3:20Þ

sð23mÞ ¼ sð23ÞsðmÞ ¼ ð24 � 1ÞsðmÞ ¼ 15sðmÞ;ð3:21Þ

From (3.19) and (3.20) and Theorem 3 we obtain
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sð22mÞ ¼ 7

3
sð2mÞ < 91

50
eg2m log log 2m <

91

100
eg22m log log 22m;

and 10 is proved.

In similar way from (3.20), (3.21) and Theorem 3 we get

sð23mÞ ¼ 15

7
sð22mÞ < 15

7

91

100
eg22m log log 22m <

39

40
eg23m log log 23m;

and the proof of the Theorem 4 is complete. 9

Now, we prove the following theorem.

Theorem 5. Let n ¼ 2m, ð2;mÞ ¼ 1, m ¼
Qk

j¼1 p
a1

1 pa2

2 � � � pak
k .

If for odd integers m > 1
2 e

e9
the inequality

IðmÞ ¼
Yk

j¼1
1 � 1

p
1þaj
j

 !
<

50

51
;ð3:22Þ

is satisfied, then for all integers 2m > ee
9
we have

sð2mÞ < 3

4
eg2m log log 2m:ð3:23Þ

Proof. Since 2m > ee
9

then we have

2:51

egðlog log 2mÞ2
< 0:02 ¼ 1

50
:ð3:24Þ

By (3.24) and (2.3) it follows that

2m

jð2mÞ <
51

50
eg log log 2m:ð3:23Þ

From Lemma 2 we obtain,

sð2mÞ
2m

¼ 1 � 1

22

� �
IðmÞ 2m

jð2mÞ ¼
3

4
IðmÞ 2m

jð2mÞ :ð3:24Þ

Hence, (3.24), (3.23) and (3.20) implies that for m > 1
2 e

e9
, we get

sð2mÞ
2m

<
3

4
eg log log 2m;

and the proof of the Theorem 5 is complete. 9

73Upper bound for sum divisors function



4. Remarks

Remark 1. If n ¼ 2am, ab 2, ð2;mÞ ¼ 1, m > 1
2 e

e9
and IðmÞ < 50

51 , then

sð2amÞ < eg2am log log 2am:ð4:1Þ

inequality (4.1) follows immediately from the Theorem 5 and Theorem 2.

Remark 2. Robin criterion implies that for the complete proof of the

Riemann hypothesis it su‰ces checked by computer the inequality (*) for integers

n A ð5040; ee
9Þ and proved that IðmÞ < 50

51 for odd integers m > 1
2 e

e9

.

Remark 3. The inequality (L) has been checked by computer for all integers

n A ½1; 5040�: (see, [7])

Remark 4. Gronwall in 1913 (see [3], Thm. 323, sect. 18.3 and 22.9) proved

the following result.

(G) The divisor sum function sðnÞ satisfies

lim sup
n!y

sðnÞ
n log log n

¼ eg;

where g is Euler’s constant.

Remark 5. Robin proved ([11]) that for all positive integers nb 3, we have

sðnÞ < egn log log nþ 0:6482
n

log log n
¼ egn log log n 1 þ 0:6482

egðlog log nÞ2

 !
:ðRÞ

From the inequality (R) follows that for integers n > 39, we have

sðnÞ < 1:076egn log log n:ðR1Þ

Hence, upper bounds given in the Theorem 1 are better than (R1) for

n ¼ 2m > 39, ð2;mÞ ¼ 1 and odd m > 39

2 .
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