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ASYMPTOTIC CONDITIONAL DISTRIBUTIONS RELATED
TO ONE-DIMENSIONAL GENERALIZED DIFFUSION
PROCESSES

By

Masaru lizuka, Miyuki MAENO and Matsuyo TOMISAKI

Abstract. For a one-dimensional generalized diffusion process
{X(¢) : >0} on an interval I, we consider an expectation condi-
tional on no hitting the end points of /. If the end points are not
accessible, we take two sequences {&,} and {#,} which converge to
the end points as n — oo, instead of end points. We obtain the
asymptotic behavior of this conditional expectation as ¢t — oo and
n — oo. As an application of our results, we discuss the asymptotic
conditional distribution and related quantities in population genetics.

1 Introduction

Let I be an open interval, ¥ = (d/dm)(d/ds) be a generalized diffusion
operator on I, and D = [X (1) : t = 0, P, : x € I,,] be a one-dimensional generalized
diffusion process with the generator ¥, where I, is the support of the speed
measure dm. We set ) =inf I,, and r, =sup I,,. In this paper we study the
asymptotic behavior of the conditional expectations

(L1) EJf(X(0) |1 <0y nayl, E[f(X(z)|t <o, < 0],

as t — oo for measurable functions f and 0 < 7 < 1, where g, is the first hitting
time to a point a € I,, and & An = min{&, 5}.

In the case that the scale is natural, |ri| + |m(r;)| < oo, r» = 00, and the speed
measure is regularly varying at infinity, Li et al. ([19]) studied that the probability
law of {v(r)X () : 0 < v < 1} conditioned by {o,, > 7t} converges as t — oo to a
conditioned Bessel excursion where v(#) is a suitable function. However it seems
to be hard to deduce the asymptotic behavior of (1.1) from the results in [19].
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When D is recurrent and f e L'(I,m), Minami et al. ([22]) showed a global
asymptotic estimate of the elementary solution of the generalized diffusion
equation

(1.2) ou(x,t)/ot = Lu(x,t), t>0,xel,

and obtained the asymptotic behavior of E,[f(X(¢))] for large ¢. In [24] and [30],
the problem of asymptotic behavior is studied that corresponds to the case that
D is transient and f € L} (I,m). In this paper we follow the same method as in
[22], [24], [30] to discuss the asymptotic behavior of (1.1) for f satisfying some
conditions.

The asymptotic behavior of (1.1) is also discussed in the theory of population
genetics. For a diffusion process [X(7):¢>0,P,:0 < x < 1] with the generator

Ewens ([5], [6]) obtained the nontrivial limits

(1.3) tlirn Px(X(t)eE|[<Uo/\01):J dy,
(1.4) lim P(X(r) e E|1 < o1 <0p) = J 2y dv,

for xe (0,1) and a Borel set E. These limits are referred to as the asymptotic
conditional distributions by Ewens. We should notice that these limit distributions
are derived from our results by putting f(x) = 1g(x) or f(x) = 1g(x)Py(01 < ay),
where lg(x)=11if xe E, 1g(x) =0 if x¢ E (see Sec. 6 for details). Note that
lim, o, P(X() e E)=0 if EN{0,1} = . For this diffusion process, we will
also see that

lim P(X(tt) e E|t<apnar) = tlim P.(X(tt)e E|t < a1 < 0p)
t— o0 — o0

:6J yd=y)dy, 0<t<]1,
E

(see Example 6.1). This result is different from those of (1.3) and (1.4). The cases
that t =1 and 0 < 7 < 1 are referred to as the regularly divergent limit and the
slowly divergent limit, respectively. The asymptotic conditional distributions in
the regularly divergent limit (z = 1) correspond to the behavior when the time
from ¢ =0 is large enough to be close to the stationary state if it exists. On the
other hand, those in the slowly divergent limit (0 < 7 < 1) correspond to the
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behavior when the time from 7= 0 is very large but it is not enough to be close
to the stationary state.

We will state our main results in Sect. 2. The definition of the elementary
solution will be given in Sect. 3. The proofs of the main results are presented in
Sect. 4. We will see some examples in Sect. 5. Finally we will consider population
genetics models in Sect. 6.

2 Main Results

Let R = [0, +00] and m be a nondecreasing right continuous function from
R into R. We set

I=(,h), 6 =inf{xeR:m(x)>—ow}, bL=sup{xeR:m(x)< 0}

Let s be a real valued continuous increasing function on /. We sometimes use the
same symbols m and s for the induced measures dm(x) and ds(x), respectively.
They are called the speed measure and the scale function, respectively. For a
function u on I, we set u(/;) = lim,_,; yes u(x) if there exists the limit, for i = 1, 2.
We set

L, ={x:xel with m(x;) < m(x;) for every x; < x < xz,
or x = with |m()| + |s()| < 00, i=1,2},
I.=(r,rn), r=infl,, r =supl,.

We assume 1, NI, # ¢ throughout this paper. Let us fix a point ¢, € I, arbi-
trarily and set

(2.1) 1<x>=jm ,]ds<y>jwdm<z>, iw=|  dnn| as). wer

(¢os ] (co,¥]

where the integral j<a_ p 1s read as —j(b o if a>b. Following [7], we call the
boundary /; to be

regular if I(/;) < oo, J(I;) < 0,
exit if I(l;) < o0, J(I;) = o0,
entrance if I(/;) = oo, J([;) < 0,
natural if I(/;) = oo, J(I;) = co.

Note that /; = r; if /; is not entrance. For 0 < p < oo, let L?(I,m) be the space
of all functions f on I satisfying [, |f|” dm < oo. Let D(<) be the space of all
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functions u € L*(I,m) which have continuous versions u (we use the same symbol)
satisfying the following conditions:

i) There exist two complex constants A4, B and a function /4, € L>(I,m) such
that

(2.2) u(x) = A+ Bs(x) + L ]{s(x) —s(») Y, (y) dm(y), xel.
Coy X]
ii) If /; is regular, then u(/;) =0 for each i=1,2.

We define the generalized diffusion operator # from D(%) into L*(I,m) by
ZLu=h,. We sometimes use the symbol ¥ = (d/dm)(d/ds). Due to S. Wata-
nabe’s argument, the above setting includes all cases of sticky elastic bound-
ary conditions for regular boundaries as well (see [18], [31]). In the following,
for a measurable functions # on I, u'(x) stands for the right derivative
limg o{u(x + &) — u(x)}/{s(x + &) — s(x)}, provided it exists. We denote by m, the
restriction of m to I,. Namely,

—o0, x<ry,
m.(x) =< m(x), xel,
o0, X =>r.

The generalized diffusion operator . = (d/dm.)(d/ds) on I, is defined in the
same way as above. Let X, be the spectrum of —%,. We put A, = inf X,, which
is nonnegative because —.%, is nonnegative in Lz(I*,m).

Let D=[X(¢): t>0,P,:x€l,] be a one-dimensional generalized diffusion
process having # as the generator ([12]). We denote by g, the first hitting time
to a point a € l,, that is, g, =inf{t > 0: X(t) =a} if {>0:X(¢) =a} # T,
g, = oo otherwise. It is known that P.(g,, < 0) >0, xe [, NI, if and only if
I(r;) < oo ([12]).

First we consider the asymptotic behavior of (1.1) in the case that /; and L
are not natural. Let (4k),, k=1,2,...,5, i=1,2, be the following conditions.

(A1), |s(r))] < oo and |m(r;)]| < 0.

(42);,  |s(r;)| < o0, |m(r;)] = o0, and < o0

J,. . tutomeoy anto

for some ¢; € I, where u(x)= sup |m(y){s(r;) —s(»)}|-

XAF<Y<XVI;

(43);  Is(ri)| < 0, |m(r;)| = 0, and < .

j 15(r1) — s(x)[ "2 dhm()
(cos1i)
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(A44);, [ is entrance and /; =r;.
(45);, |s(r)] =0, |m(r;)| < oo, and J {v(x)/s(x)} ds(x)| < oo
(Cr«,"i)
for some ¢; € I,, where v(x)= sup |s(p){m(r;) —m(y)}|
XAF<Y<XVFi

Here &v#n denotes max{¢{,n#}. We use the usual conventions av (—o0) =a,
an o = a. The condition (A1), is satisfied if and only if /; is regular, or entrance
with /; # r;. The condition (A42); or (A43), implies that /; is exit. The condition
(AS), implies (A44);. We denote by # the set of all measurable functions f on I,
satisfying the following conditions.

@3] o) =0 )] ()] < 0 (A1) or (42) is satisied
(24) o Is(ri) = s() 2/ (9)] dm(y)| < oo if (43); is satisfied,

@) || 0)O) ()| < oo if (44), is satifed.

@6) ] VN dn(y)| <o if (45), is satisfed.

THEOREM 2.1. Let i,je {1,2} and i # j. Assume one of (Al),, (A2),, (A43),,
and one of (Ak)j, k=1,2,...,5 Then there exists a unique function V, on I,
satisfying the following properties.

(i) v, is positive and continuous on I., and satisfies Y, (c,) =1 and

7 VYW = | @), el
X, )

(2.8) Y (ri) =0 if (Al),, (A2); or (A3), is satisfied,

(2.9) Vi) =0 if (A44), or (A5); is satisfied,

(2.10) Wy, € L'Y(I.,m) N L*(I,,m),

(2.11) V.S e L\Lom), feL'(Lm) for fe#.

(ii) It holds that
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(2.12)  lim E.[f(X(z?)]|t < 0/ AG)]

— o0

(L V() dm(y))lL V() () dm(y), 0<T<l,

~1
(j v dm<y>) [ v.rwyan. o=t
for xel, NI, and [ € K.

COROLLARY 2.2. Assume one of (Ak),, k=1,2,...,5, and one of (Al),,
(A42),, (A3),. Let y, be the function in Theorem 2.1. Then it holds that

lim ELf(X(20) |1 < 7, < 3]
-1
([ 2 ant) [ @) ann. 0<e<n,
I I,

(], w9060 sty )

x L V() = st} () dm(y),  Is(n)] < o0, T=1,

-1

(j v.(») dm<y>) | w.0r0ramtn, st = e=1
1. 1.

for xel,NI, and f e H.

ReMARK 2.1. If (44), and (A44), are satisfied, then Py(o,, Ad,, = 0) =1,
x €1, and it holds that lim,_,, E.[f(X(z1))] = {m(l) — m(l})} " I, f(y) dm(y),
xel,, 0<t<1, feL'(I,m) ([22, Corollary 1], see also Theorem 2.8).

Next we consider the case that /, is natural. We divide our argument into two
cases. The first case is related to periodic generalized diffusion operators. Let (A46)
be the following condition.

(46) L =r =0 or/ is entrance with /; <r =0. L =1, = 00. 5(0) =m(0) = 0.
There is a positive constant x such that for every x,y € [0, o0),
s(x+ 1) =s(y+ 1) =x{s(x) =s(»)}, mlx+1) =m(y+1) =x"{m(x) —m(y)}.

Note that (46) implies that /, is natural.
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THEOREM 2.3.  Assume (A6) with i # 1. Then there exists a unique function
W, on I, satisfying the following properties.
(1) , is positive and continuous on I, and satisfies (2.7), ¥,(0) = 0, . (0) = 1,

and

(2.13) sup k¥2(1 +x) "y, (x) < o0,
xel,
(2.14) W, e LYIL,m) if x> 1.

(i) Let 0 <k <1 and f satisfy
(2.15) J 121+ )| £ ()] dim(x) < oo.
L

Then it holds that

(2.16) lim £32e*"E.[f(X (t1)) |t < o)

t—o0
= A P50 | W IFs0S () d( ),
for x e L,N 1., where Cy is a positive constant specified by (4.17), and F(y;7) =

S() i 0< <1, and F(y;1) =s(b) (€ (0, 0).
(iti) Let k> 1. If 0 <t <1, then it holds that

(2.17)  lim PPE[f(X(er) |1 < o] = Cro (1 — T)_MJ V(1) () dm(p),
— o0 I,

for xel,NI, and f satisfying
(2.18) J ¥ (1 + x)*|f(x)| dm(x) < 0.

L
If 1 =1, then it holds that

-1
219) fim B )<l = (] w0y an() | 0070 dni,
L. L

for xe I, NI, and f satisfying (2.15).

REMARK 2.2. By means of (2.13), ¥, f € L'(I.,m) for f satisfying (2.15), and
Y2f e L'(I.,m) for f satisfying (2.18).
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For a measurable function f on I, we set

supp[f] = {x el : J |f| dm > 0 for any neighborhood U of x}.
U

THEOREM 2.4. Assume (A6) with k =1. If 0 <t <1, then it holds that

(2.20) lim 32E[f(X(z1)) |t < a0)

— 27 (1) 2s(1) T 21 — )2 J,, s(»)*f () dm(y),

for xel, NI, and f e L'(I.,m) such that supp|f] is compact in [0,0). If =1
and f satisfies (2.15), then sf € L'(I,,m) and it holds that

(221) lim (ELS(X(0) |1 < ] =27 | s (3) )
for xel,NI..

Next we consider the case that the speed measure is regularly varying near
the boundary 5. Let 0 < f <1 and L be a positive slowly varying function at
infinity, that is, lim,_, L(cx)/L(x) =1, ¢ > 0. Let (47) and (A48) be the fol-
lowing conditions.

(A7) h=r=0o0r/ isentrance with /; <r; =0. L =r; < 0. s(x) = x, x € L.
m satisfies m(0) =0 and

(2.22) lim x "VPL(x) " 'm(h — 1/x) = 1.

X—00

(48) L =r=0o0r/ isentrance with /; <r; =0. L =r, = 0. s(x) =x, x € L.
m satisfies m(0) =0 and

(2.23) lim x'"" Y L(x) " 'm(x) = 1.

X—00

Note that [, is natural if (47) or (A48) is satisfied. It is known that, under the
assumption (2.22) or (2.23), there is a slowly varying function L satisfying

(2.24) lim L)’ L(x’L(x)) = lim L(x)’L(x"’L(x)) =1,

X—00 X—00

(cf. [27]). Let denote by C;, i =2,3, positive constants given by
G ={BA+B/T(B),  C= {1 - B} /T(B),

where I'(z) is the gamma function defined by I'(z) = [, e """ dL.
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THEOREM 2.5. Let xel,NI. and f satisfy yf(y)e L'(L.,m).
(i) Assume (AT). Also assume that supp[f] is compact in [0,h). If 0 <7< 1,
then it holds that

(2.25)  lim ("PLOE[f (X (z1)) |t < 09] = CZT’I’ﬁIEZJ Yy (y) dm(y).

— o0 L

If =1, then it holds that

(2.26) lim (" PL()EL[f(X () | < a0o] = Coly Jﬂ()()~

— o0

(i) Assume (A8). If 0 <t < 1 and supp[f] is compact in [0, c0), then it holds
that

(2.27) lim (MPL(OE[f (X (21)) |t < 09] = C3r~ 1P (1 — r)fﬂJ v (y) dm(y).

t— o0 1
f

If © =1, then it holds that

(2.28) nma@vum»w<od:ﬁLyﬂw¢mw.

t— o0

If I(l;) = o0 with [; =r; for i =1 and 2, then P\(0,, Ag,, = 0) =1, x€,.
Including this situation, we consider other asymptotic conditional expectations.
Let {&,} and {5,} be sequences satisfying

(2'29) él‘l? ’7}1 € I}”’ én < C() < 17}1 (n € N)7 én l, r17 ’7}1 T rz a‘s n — 0.

THEOREM 2.6. There exist subsequences {&,} and {n,} (denoted by the same
symbols), a function \, on I, and three sequences {V< Y, 7 =1,2,3, satisfying the
following properties.

(i) W, is positive and continuous on I, and satisfies (2.7) and ¥, (c,) = 1.

(ii) {V,Ej)}, j=1,2,3, are sequences of positive numbers and it holds that
(2.30)  lim VY lim E.[f(X(z0)|t < 0¢, Ay |

n— o0 t— o0

= lim ¥V lim E([f(X(w) |1 <0y, < o]
— 00

n— o0

me%wmm,o«<n

(2.31) hm,lmEV@@W<%A%FL%Mﬂwmm,

n— oo — o0
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(232)  lim V9O lim EJ[f(X(0) |t < a, <0,

n— o0 — o0

j{ U ()s() = s(rm)}F () dm(y), [s(r)] < oo,

|| w021 amiy), s(r)] = o0,
for xel, and f e L'(I.,m) with supp[f] being compact in I..

ReMARK 2.3. If /;=r; and |s(/;)]=c0 for i=1 or 2, then Y, =1 in
Theorem 2.6 (see Proposition 4.3).

We note that Theorem 2.6 is a kind of extension of Theorem 2.1 and
Corollary 2.2. We also note that if (41), and (A1), are satisfied, then the double
limits (n — oo and ¢— o0) are commutable. More precisely we obtain the
following.

COROLLARY 2.7. Assume (A1), and (Al),. Then it holds that
(2.33)  lim lim E.[f(X(z1))|t < o¢, Aoy, ]

n—oo [—o0

= lim lim E.[f(X(t1))|t < g,, < o¢,]

n—oo [—00

_ (J, b () dm y))l [, 100, 0 <o <,

(2.34) lim lim E.[f(X(?))|t < ge, ATy, ]

n—00 [—0

~([ w0ran) | w10 an,

(2.35) lim lim E.[f(X(t1))|t < gy, < o¢,]

n—00 [—0

_ (J 0.(0)4s(0) — ()} dm(y))_l

y j V() {s(9) = s(r)} £ () dm(y),

for any sequences {&,} and {n,} satisfying (2.29), f satisfying (2.3), and the func-
tion . given in Theorem 2.1.
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In some cases we can obtain asymptotic conditional expectations of
lim, o, E[f(X(z1)) |t <0og rno,] and lim,.. E([f(X(tt))|t <o, <og] as
t— 0.

THEOREM 2.8. Assume l; =r;, |s(l;)| = oo and |m(l;)| < oo for i=1,2. Let
xel,, 0<t<1 and feL'(I,m). Then it holds that

(236) lim lim E,[f(X(z0)) |1 < 05, ncy,] = {mh) —m(ll)}*lj 7(3) dm(y).
—00 n—o0 I

Assume that there exists the limit s, = lim,_,|s(&,)|/s(n,) € (0, c0]. Then it holds

that

(2.37) lim lim E.[f(X(t1))|t < g, <og]={m(h) - m(l)}! Lf(y) dm(y).

[—00 n— 0
If 5. €(0,00), then it also holds that

(2.38) lim lim E.[f(X(c1)) |t < o¢, Aoy, ]

n—oo [—oo

= lim lim E\[f(X(tt))|t < o, < 0¢,]

n—oo (—oo

= (1) = m)}™" | S dm(y).
This theorem implies that the double limits (» — oo and # — o0) are commutable
if we take appropriate sequences {&,} and {#,}, when there exists a stationary
distribution. However this commutability does not hold in general as we can see
in the following.
We consider again the case that the speed measure is regularly varying near
the boundary /. Let 0 < f <1 and L be a positive slowly varying function at
infinity. Let (49) and (A410) be the following conditions.

(A49) ¢4i=ri, )| = oo for i =1,2. s(x) = x, x € I, m(x) satisfies (2.23) and there
exists the limit

(2.39) 0 = lim kx(1)/ki(1) € [0, ),

— o0

where k(f) and k(f) are the inverse functions of the mapping [0, )3 x —
—xm(—x) and [0, 00) > x — xm(x), respectively.

(410) /1 =r1 > —o0 and /> = ry = 0. s(x) = x, x € I, and m(x) satisfies (2.23).
Further assume that
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lim |x?m(x)/m(l +1/x)| = 0.

X— 00

Since (2.23) is satisfied, there is a slowly varying function L satisfying (2.24).

THEOREM 2.9. Assume (A9). Let xel,, 0 <t <1 and f € L'(I,m). Then it
holds that

(2.40) lim /L) lim EJ[f(X(2t) |t < 0, AGy | = Car™ P Jlf(y) dm(y),

where
Co=ppA-pYTA =P 1+0)"

If there exists the limit s, =lim,_|&,|/n, € (0, 0], then

(241) lim "L lim EJ[f(X(z0)]1 < o, <ag)=Cyr "M JI f(y) dm(y).

[—0o0 n—oo

Further assume that s, € (0,00). Then there exist subsequences {&,} and {n,}
(denoted by the same symbols) and positive constants o/ ), Jj=1,2,3, such that
the statement (i) of Theorem 2.6 holds with Vi) = vWm(n,), W, =1 and f e

LY(I,m).

REMARK 2.4. Note that vij>, j=1,2,3, are not necessarily the same (see
Sect. 6.3).

THEOREM 2.10. Assume (A10). Let xeI,NI, 0<t<1 and fe L' (I,m)
with supp|f]| being compact in I. Then it holds that
(2.42) lim "7L(7) lim E[f(X(z0)|t < 0¢, ATy |

11— 0 n—oo

= lim /"PL(z) lim E.[f(X(zt))|t < oz, < 5y]

t— o0 n—o0

= s 1) | (=0 (3) ).
There exist subsequences {&,} and {n,} (denoted by the same symbols) such
that the statement (i) of Theorem 2.6 holds with a function . (y)=
B(y—c,)+1, yel, where B is a real number satisfying 0 < B < (¢, — )"
If limsup,_, |m(&,)|/n,m(n,) < oo, then {V,E‘i)}, Jj=1,2,3, satisfy the following
properties.
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(2.43) liminf V7 /m(y,) >0, j=1,2,
n—oo
(2.44) limsup VY /n2m(y,) < o, Tlimsup V% /n,m(y,) < o,
n—oo n—oo
(2.45) li’rgiorc;f v fnm(n,) >0, limsup V® /pdm(y,) < oo.
n—oo

REMARK 2.5. In the same way as in the proof of Theorem 2.8 we can show
that

lim E[f(X(z1)) |1 <0y, <og,] = E[f(X(zt){X (1) = h}]/E[X (1) = 4],

n—oo

under the assumption of Theorem 2.10. By means of Proposition 3.1 in the next
section,

0<E(X(t)—h]< o0, xel,NI, t>0.

But it seems to be difficult to consider the asymptotic behavior of E.[X () — /1] as
t — oo since x — I ¢ L'(I,m). So that there are no results on the conditional
asymptotic behavior of lim,_., E[f(X(t1))|t <0, < o] as t — 0.

3 Preliminaries

In this section we define the elementary solution p(¢, x, y) of the generalized
diffusion equation (1.2) following [12], [21] and [33]. Then we study its properties.

Let I, m, s, etc. be those given in the preceding section. Let ¢;(x, 1), i = 1,2,
A€ C, be the solutions of the integral equations

(3.1) ¢1<x,z>=1+zj (5(x) — s()}or (3, 2) dm(y), xel,

(coX]

(3:2) pa(xd) =s(x) = s() + 2| {500 = s 2) dm(y), wel,

(€o,]

where ¢, € I, is fixed arbitrarily. Then for each o > 0, there exist the limits
(o) = —lim ,(x,2) /gy (x,2), ha(@) = lim s(x,2) /gy (x,2).

Define the function /(x) by the equality

U/h(e) = 1/hi(2) + 1/ ha ().
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We set

() = ha), hy(a) = —{hi (@) + ha(x)} ",
hia(@) = hot (2) = —h(a) /().

The functions hj;(a), i, j = 1,2, can be analytically continued to C\(—oc0,0]. The
spectral measures o, i,j = 1,2 are defined by

1%
oy da)) =t [ (24 V=Te)

07'[;“1

for all continuity points 4; and 4, of g (41 < A2). The matrix valued measure
[0;j(d2)]; j—1 » is symmetric and nonnegative definite. We define the elementary
solution of the generalized diffusion equation (1.2) by

(33) p(l7 X, y) = Z J e_;'t(pi(xv _}v)w/‘(.% _;“)o'fj(d)”)a > Ov X, )€ I
i, j=1,2 10, 0) '

Note that p(¢,x,y) = p(t, y,x) and p(z, x, y) is positive and continuous for ¢ > 0,
x,yel.

Next we give the definition of the Green function G(e, x, y) of the generalized
diffusion equation (1.2). Define the functions u;(x,a), i=1,2, « >0, xel, by

(3-4) ui(x, %) = 9y (x, ) + (=1)" gy, 0) /().

It is well known that u;(x, o) [resp. ux(x,a)] is positive and nondecreasing [resp.
nonincreasing] in x € I, and wu;(x,a), i = 1,2, satisfy

(3.5) ul(lz,oc) < oo if 1(12) < 00,

(3.6) uz(ll,oc) < oo if 1(11) < 00,

(3.7) lim  w(x,0) =0, lim u (x,0) =0 if /; is natural,
x—l,xel x—li,xel
68) || wlnn ()| <o,
(cos 1)

(see [12], [18]). We define G(o, x, y) by
(39) G(OC,X, y) = G(OC, y,x) = h(oc)ul(x, O()le(y, OC)7 o> 07 X<y, X,y€ I

We note the following facts ([21], [22]).
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(3.10) sup p(t,x,y) < oo, if m(x) <m(y), {(l,x)U(»,L)}N1L, # &.

>0
(3.11) p(t,x,y)=p(t,xvry,r), t>0,xel,ye(l,r] if I <r.
(3.12) p(t,x,y) = p(t,x A1), t>0,x€el, ye(r,hb) if rn<h.

(3.13)  p(t,x, ) < p(t,x,x) Pp(t, v, 9)'2 >0, x, el

(3.14) p(tx,x) <t 'G(r ! x,x), t>0,xel.

(.15 G xx) < G(o, p, ) +s(x) —s(y)], >0, x pel

(3.16) ‘ llim , G, x,x) =0, o>0, if I(}) < c0.
(3.17) l[im , plt,x,y)=0, t>0,yel, if I(l})< co.

Let D=[X(¢):t>0,P,:x€l,] be a one-dimensional generalized diffusion
process with the generator % as in the preceding section. Then it holds that

(3.18) PX(X(I)EE):Jp(t,x,y)dm(y), xel, >0, Ee Al

([12]). We find the following properties from [12], [21] and [22].

¢ ul(ava) _ uZ(baO{)
1 Ea oap — — E AT, — e ‘ ,
(3.19) [e™*] (b 2) ble™ %) i(a,2) o>0
if a,bel,,a<hb.
t
(3.20) pltx3) = | =0 3)Py(o € di)

t
= J p(t—u,x,a)P,(o, €du), t>0,
0

if x,y,ael,, x<a<y.

Obviously the expectation E.[f(X(¢))] of f(X(¢)) with respect to the proba-
bility measure P, is finite for bounded measurable functions f on I. It is easy to
show that it is finite for f e L'(1,m). Now we observe that E.[s(X ()] is finite.

ProrosiTiON 3.1. It holds that
(3.21) E[s(X(0)]] < oo,
for xel, NI, and t > 0.
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PrOOF. By means of (3.18),

(322)  Efs(X(0)] = jlpo, %, )Is(3)| dm(y)

- J(l ) pt,x, )|s(y)| dm(y) +J p(t,x, p)|s(y)| dm(y).

C()JZ)

We only show

(3.23) J(, P D] d(y) <

If seL'((co,hh),m) or |s(h)] < oo, then (3.23) holds obviously. Assume s ¢
L'((¢c,,l),m) and s(L) = co, which implies that / is natural. We note that

(3.24) J( N |s(V)|ua(y, o) dm(y) < o0, o> 0.

Indeed, since by (3.7), ux(x,o) satisfies
“uf(x0) | wr.0) dm(y)
(x,)
we see by (3.7) again that

0 > up(cy, ) = —J uy (x,0) ds(x)
(00;12)

- j ds<x>j us(y, o) dm(y)
((‘,,,12) (X. 12)

— ocJ(C /){S(y) — s(eo)Yur(y, o) dm(p).

Combining this with (3.8) we obtain (3.24). Let /; < a < b < /. Then by means
of (3.9), (3.13) and (3.14),
1/2

_ 1/2 _
sup p(t,x,») <t 'Pp(t,x,x)"* sup G(r'',,)
a<y<b a<y<b

= () Pp(t ) sup wn(p, ) Pun(y, )

a<y<b

< fl/zh(fl)l/zp(t, X, x)l/zul(lL 171)1/2“2(51,[71)1/2 = F(t,x,a,b).
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Since /, is natural, (x,5) N1, is an infinite set. We can take a,, b, € I,, such that
m(x) < m(a,) < m(b,), so that M, = sup,o p(u,x,a,) < oo in view of (3.10). By
means of (3.19) and (3.20) we see that for y e [b,,5) N1,

p([a X, y) < MoPy(O-aU < l) < MaEy[el_Jaa/[] = MaeuZ(ya t_l)/u2(a07 t_l)~

This estimate coupled with (3.24) implies that

j( P B0 dn(y)

= e )+ [ a0l dnty

(6o, 12)

< F(1,x,c0,by) L | Blan()

+Moeu2<ao,z-'>-1j ua(y, 1) [s(p)] dm(y) < oo.
[bo, 1)
This shows (3.23). O

Let p.(t,x, y) be the elementary solution of the generalized diffusion equation
(1.2) with ¥ and I replaced by %, and I, respectively. Note that p.(¢, x, y)
coincides with p(¢,x,y) whenever /; =r; and , = r,. Also note that

(3.25) P.(X(tAoy ANTY,) EE)
= J p(t,x,y)dm(y), xel,NI, t>0,EeB().
E

The conditional expectation E,[f (X (¢)) |t < o, A0y, is finite for xe I,, NI, 1 >0
and f which is bounded on I, or feLl(I*Jn).

In the rest of this section, we assume that both of /;, i = 1,2, are not natural.
Then the spectrum X, of —%, only consists of point spectrum, A, (=inf X,) € X,,
and (3.3) corresponding to p.(z,x, y) is reduced to

(3.26) Pt y) = e M(x, = A(y,—4), >0, x,y€el,
AEX,
where the functions (x, —41), A€ X,, satisfy

(327) ab*(y,—z)—w*(x,—z):—zj Wz —2) dm(z), xyel,

(x,)]
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(3.28) Wy(ri,—4) =0 1if I(l;) < oo, or [; is entrance with /; # r;,
(3.29) yt(l;,—2A) =0 if [; is entrance with [; = r;,

(3.30) J W(x, — )% dm(x) = 1,

(3.31) JI V(x, =AY (x,—p) dm(x) =0 if 1 #pu.

In view of [14, Theorem 1],

(3.32) Y(x,—2) >0, xel.

ProposiTION 3.2. Let i,je{1,2} and i # j. Assume one of (Al), (A2),,
(43),, and one of (Ak)j, k=1,2,...,5 Then y(-,—A.) belongs to L'(I,,m), and
W, =2)fC), (-, —2)f () also belong to L'(I,,m) whenever f e #. Further
there is a nonincreasing function K(t) on (0,00) such that

(3.33) Hp.(t,x,y) < KWOH(XH(y), >0, x yel.,

where H(x) = Hi(x)1(, ¢, )(x) + Ha(x)1(, ,)(x), and for each i=1,2,

ls(x) = s(ri)l, if (A1), or (A2), is satisfied,
o2 . .
(3.34) Hilx) = |s(x) s(;l’,)2| ., if (A43), is satisfied,
1+ |s(x)]"?, if (44); is satisfied,
1, if (A45); is satisfied.
Consequently it holds that
639 | pwr e A 0E)] dn(rdn) < .

for u,t >0, xel, and f,ge H.

ProOF. By means of (3.14), (3.15) and (3.16) corresponding to m. and I, in
place of m and I, respectively, we see that

(3.36) pe(t,x,x) <tV s(x) —s(r)|, t>0,xel, if I(r)< oo.
Since I(r;) < oo for i=1 or 2, it holds that

(3.37) p.(t,x,x) < 7' min{s(x) — s(r1),s(r2) — s(x)}, >0, xel,.
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We show that

(3.38) sup  pu(t,x,x)/Hy(x)* < o0, t>0.

xe(r1,¢)
If (A43), is satisfied, then (3.36) implies (3.38). If (44), is satisfied, then |s(r)| =
and one of (A41),, (42),, (A43), is satisfied, and hence |s(r2)| < co. Therefore by
means of (3.37) we obtain (3.38).

Let us assume (A45),. Then by using the results in [20, Sect. 4] and [23, (6.4)],
we find that p,(z, x,x) is bounded in x € (r, ¢,] for each fixed ¢ > 0, which shows
(3.38).

If (A1), or (A2), is satisfied, then in the same way as [20, Sect. 4] we can
show that sup,, . P4 X, x){s(x) —s(r1)}? is finite for each 7> 0. Thus we
obtain (3.38).

In the same way as above, we can obtain that

(3.39) sup  p.(t,x,x)/Hy(x)* < o0, 1>0.

X€(Co,12)

It follows from (3.38) and (3.39) that

(3.40) K(t) = sup p.(t,x,x)/H(x)> < o0, 1>0.

xel.

Since (x, —4)* < e™'p,(t,x,x), there is a positive constant C such that
(3.41) 0<y(x,—4) <CH(x), xel.

Next we show (3.33). We may assume that X, \{A.} # . There is a d € (0,1)
such that 1, <oJA, Ae€X\{A}, from which it holds that (1 —-9J)A< 21— 4,
AeZ\{4}. Then we see that

% pa(t, %, 3) =06, =2 (=)l = | > eI, = Ay, )

reX\{A.}

< > =2 Wy, -2

leX,
< p((1=0)t,x,%) (1= 0)t, y, ) 2.
Combining this with (3.40) and (3.41), we find that
eMp.(t,x,y) < pu((1=0)t,x,%) (1= 0)t, 3, 1) + 9 (x, =2 ) (y, — 1)

< {K((1=6)t) + C*YH(x)H(y).
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Putting K(7) = K((1 —d)¢) + C? leads us to (3.33). Since p.(t,x,x) is non-
increasing in ¢, so is K(z).
It is easy to see that

(3.42) HelL'(I,,m), HfeL'(l.,m), HfelL'(l.,m),

for f e #. Combining (3.41) with (3.42), we obtain that y(-,—A1.), ¥(-, —=4.)f(")
and (-, —4,)%f(-) belong to L'(I,,m). The result of (3.35) immediately follows
from (3.33) and (3.42). O

REMARK 3.1. If one of (41),, (42),, (A45), is satisfied for each i = 1,2, we
can show (3.33) with H replaced by (-, —4.), that is, sup, ,.; p.(t,x,¥)/
V(x, =2 )W (y,—4s) < oo for each ¢>0. This implies that % is intrinsically

ultracontractive (cf. [2]).

4 Proof of Theorems

In order to show Theorem 2.1, we prepare the following.

PropPOSITION 4.1.  Under the assumption of Theorem 2.1, it holds that

(4.1) lim E.[f(X(z2))g(X (1)) |t < 6}, ATy,

11— o0

— (Jl W(y, =) dm(y))ljlx Wy, =) () dm(y)

<[ v -2006z) i),
for xel,NI,, 0<t<1 and f,ge H.

ProoF. By virtue of (3.25) and Markov property,

(4.2) Ef(X()g(X (1)) |t <01, Aoy

= E[f(X(20)g(X (1)), 1 < 05y A0/ Pe(t < 0y ATy)

:memwmww>

X JI (1 =), ,2)g(2) dm(z)/ Pi(t < 7, Ay,
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which is finite in view of (3.35). Note that

(43) Pt < 0, nGy) = j pu(t,x, y) dm(y).

It follows from (3.26) that

(4.4) lim e*'p.(t,x, ) = y(x, =2 )W (y,— ), x,yel.

o
By means of Proposition 3.2,
eMp.(tt,x, y)pu((1 = 01, y,2)
< K(tt,)K((1 = 0)t,)H(X)H(p)*H(z), t>1t,, x,ye€l,

for each 7, > 0. Combining this with Lebesgue’s dominated convergence theorem,
(3.42) and (4.4), we obtain

@) Jim | (et (1 = 02 (0)g(2) dm( i)

1— o0

= Y(x,~ 1) ” =W =) (3)g(E) dm(s)m(2)

Since len, i pe(tt,x, p)p (1= )8, ¥, 2) dm(y) = p.(t,x,2) and
I v, —2.)* dm(y) = 1, the asymptotic behavior (4.1) is derived from (4.2), (4.3)
and (4.5). O

PROOF OF THEOREM 2.1. Put v, (x) = (¢, —4) " W(x, —4,), x € L. It follows
from (3.27), (3.28), (3.29), (3.30), (3.32), and Proposition 3.2 that y, satisfies all
of the properties in the statement (i). Further by means of Proposition 4.1,

(4.6) lim E.[f(X(z1)g(X (1)) |t < 0, A0},

—o0

~(] wor dm<y>)_l (J 0.(5) dm())

x j V(91 () dm(y) j V. (2)g(2) dm(2).

-1

We find (2.12) with 0 <7< 1 and 7=1 by putting g=1 and f =1 in (4.6),
respectively. O

PrOOF OF COROLLARY 2.2. By Markov property, we have
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E’»[f(X(Tl)) | 1< sz < Jrl] = E«\[f X(Tt))v 1< 0"2 < o-rl]/PX(l < 01’2 < Jrl)
EJf(X(z)®(X(1)) [t < 0, Aan]

— <1
E[O(X(0) |1 <onnon ==

where

s(x) = s(r)}/{s(r2) = s(r)}, i |s(r1)] < o0,
4.7) ®(x) = Pi(o, ) = .
@7 o) = Pon <) ={} s
Since ® € /#, we obtain the corollary by means of Proposition 4.1. O

Next we prove Theorems 2.3 and 2.4. In [25] and [29], the asymptotic
behavior of elementary solutions of periodic generalized diffusion equations was
studied. We list up some results from [25] and [29]. Let ¢;(x, 1), i = 1,2, be the
solutions of the equations (3.1), (3.2) with ¢, =0, which exist because of the
assumption (A6). It holds that, under the assumption (A6),

(4.8) A« >0 if and only if x #1,
(49) wZ(X’ _l*) > 07 X € 1*7

(4.10)  sup k(1 +x) oy (x, —4) < 0,

xel.
(4.11) J K21+ x) dn(x) < oo if x> 1,
L.
(4.12)  y(-,—A) e L'(I,m) if x> 1,
(4.13)  sfeL'(I,,m) if k=1 and f satisfies (2.15),
(414) thm t3/ze;b*[p*(ta X, y) = Cl(oZ(x7 _i*)(p2(yv _/l*)a X,y € I*a

(4.15)  limsup 2" sup & C2(1 4+ x) 71+ ) palt,x, ¥) < o0,

t—o0 x,yel;

(4.16)  lim sup x*(1 +x)"

11— 00 xel,

X

(20 j (6,3, )1 () dm(y)

— Cigpa(x, 1) J 023, — ) f(3) dm(y)| =0,

for f satisfying (2.15), where C; is a positive constant given by
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4.17) ¢ =2""a 2 A A ()Y e, (1, —20) 7Y

A(A) = (1,=2) + kg3 (1,=4), A'(A) = %A(A) . (<0).

PrOOF OF THEOREM 2.3. Put y,(x) = ¢,(x, —4s), x € I,. By means of (3.2),
(4.9), (4.10) and (4.12), we see that i, satisfies all of the properties of the
statement (i).

Let 0 <x <1 and f satisty (2.15). We note that
(4.18) lim Py(t < g9) = Px(0p = ) = s(x)/s(h) € (0,0), xel.

11—

If 0 <7< 1, then in the same way as in the proof of Proposition 4.1,

(4.19) E.[f(X(z1)) |t < a9]
- j pu(at,x, 2 )P(1 = 2)t < 0) dm(y) /Pyt < ).

By using (4.14), (4.15), (4.18), (4.19), and Lebesgue’s dominated convergence
theorem, we obtain (2.16) with 0 <7 < 1. If 7 =1, then

(4.20) Ef(X(0) [t < a0] = L p+(t,x, ) (y) dm(y)/Pu(t < 00).
Therefore (2.16) with 7 =1 immediately follows from (4.16) and (4.18).

Let x > 1. In this case, f =1 satisfies (2.15) by means of (4.11), and hence
we obtain (4.16) with f = 1. Therefore

(4.21) lim sup x2(1+x)"

=% xer,Nl,

< [PREHPt < o0) = Cupalx, =) | =) dm)| =
L
If 0 <7< 1 and f satisfies (2.18), then (2.17) is obtained by (4.14), (4.15), (4.19),
(4.21) and Lebesgue’s dominated convergence theorem. If 1 =1 and f satisfies
(2.15), then (2.19) follows from (4.16), (4.20) and (4.21). O

PrOOF OF THEOREM 2.4. Noting x =1, we find 1. =0, ¢,(x, —4.) = s(x),
C; = {m(1)/4ns(1)}"/* ([25)), and

lim x7's(x) =s(1), lim x 'm(x) =m(1).

X— 00 X— 00
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Hence by means of [24, Corollary 1],

lim 1112 j po(t,x, ) din(y) = {m(1)/ms(1)} 2s(x).

t—o0
Combining this with (4.3), we find that

(4.22) lim 1'2P(t < a9) = {m(1)/ms(1)}"*s(x).

t—00

Since Px(t < 0y) and s(x) are nondecreasing in x € I,, and x € I,, respectively, and
s(x) is continuous, the convergence in (4.22) is uniform in x € 1, N [0, a] for each
a e I,. Therefore if 0 <t < 1, f e L'(I,m) and supp[f] is compact in [0, c0), we
obtain (2.20) by means of (4.14), (4.15), (4.19), (4.22), and Lebesgue’s dominated
convergence theorem. If 7 = 1 and f satisfies (2.15), then sf € L'(I.,m) by means
of (4.13), and (2.21) follows from (4.16), (4.20) and (4.22). O

We turn to the proof of Theorem 2.5. Under the assumption (A7) or (A48),
the asymptotic behavior of the elementary solution p.(¢,x, y) was studied in [30].
We summarize some results which we need below.

ProposITION 4.2, If (A7) is satisfied, then

(4.23) lim sup [("PL(Ox"y pa(t,x,y) — G2 =0, ael.
=% x ye(0,4]

If (A8) is satisfied, then

(4.24) lim sup |{"PL(Oxy pa(t,x,y) — G| =0, ael,

=% ye(0.d

(4.25) limsup "*?L(¢) sup y~'p.(t,x, ) < o0,

t— o0 yel

t— o0

(4.26) lim tﬁi(z)J p.(t,x, ) dn(y) = B Csx,
I

t— o0

@2 lim L) | puex ) ) () = Cax | 3 () dm(),
for f satisfying yf(y) e L'(I.,m).

Proor. In [30], (4.24), (4.25), (4.26) and (4.27) are obtained. We will show
(4.23). We note that, under the assumption (A7), there exist the solutions ¢,(x, 1),
i=1,2, of the equations (3.1) and (3.2) with ¢, = 0. We also note that (3.3)
corresponding to p.(t,x,y) is reduced to
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(4.28) p.(t,x,y) = J e Moy (x, =)@y (y, =)o (dA), t>0,x,yel.
(0,0)

By virtue of [30, (5.11)],

(4.29) lim z”/‘i(t)J e Hap(di) = Cly 2.
(0,0)

t— o0

In view of (4.28) and (4.29), it is enough to show that

(4.30) lim sup t1+ﬂz,(t)J e HMx 1y oy (x, =)@y (9, =) — 1|an(d2) =0,

2%y ye(0,d) (0,)

for each a e I.. Due to [13, (2.27)], we have
(431) 2 (x, =2)| < [x] exp{2"/2|2xm(x)[ '},
(4.32) |92, 4) = x| < |2 m(x)| | exp{2' | om(x)| 2},

for xe I and 1 € C. Fix a point a € I, arbitrarily. By means of (4.31) and (4.32),
we have

sup  |x"'y oy (x, =g (v, —2) — 1]

x,y€(0,4]

< sup |xlop(x, =) = 1|y oy(y, =) + sup [y loa(y,—4) — 1
x,y€(0,q] y€(0,q]

< 2|Alam(a) exp{2/*|iam(a)|"/*}.

Fix a positive 7 arbitrarily and take a positive A such that AT? > 32am(a).
Then it holds that sup,. g ;. exp{—it/2+2%?(am(a))'*} <1. Noting
max,so xe ¥ < e~ !, we see that for every t > T,

sup t1+ﬂi(Z)J ey oy (x, =) (3, —2) — 1ona(d2)
x,y€(0,q (0,00)

< 2am(a)PL(1) J 7 expl—it + 22 (iam(a)) Yo (d2)
(0,00)

< 2am(a){1 + exp{23/2(Aam(a))1/2}}tl+ﬁi(t)J S (d7)
(0,00)

< 8¢ lam(a){1 + exp{23/2(Aam(a))1/2}}tﬁ£(z)J ey (dA).
(0,0)

Combining this with (4.29), we obtain (4.30). O
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PrOOF OF THEOREM 2.5. (i) Let us assume (A7). Let f satisfy yf(y)e
L'(I,m) and supp|[f] being compact in [0,/). Note that

(4.33) lim P.(t < g9) = Py(0g = 0) = x/b.

— o0

If 0 <7< 1, we notice that (4.19) holds in this case, too. By (4.23), (4.33), and
Lebesgue’s dominated convergence theorem, we obtain

lim ("PL(E[f (X (2t)) |t < a0]

— o0

= lim ¢"*7L(1) JI p(tt, %, ) f (9) By (1 = )t < a0) dm(p)/Px(t < a0)

t— o0

= o 2 [ () dm().

*

Let 7 =1. By means of (4.20), (4.23), (4.33), and Lebesgue’s dominated con-
vergence theorem, we obtain

lim ("PLOE[f(X(2) |t < a0]

11— 0

= lim L) [ (150 (0) dm(y)/Prle < )

— o0

=Gl J[ f () dm(y).

(i) Assume (A48) and yf(y) e L'(I,,m). Combining (4.26) with (4.3), we
have

(4.34) lim PL(t)P(t < 09) = ' Csx,

— o0

uniformly in x in [0,a4] N1, for each ae .. If 0 < 7 < 1 and supp[f] is compact
n [0,00), by using (4.19), (4.24), (4.25), (4.34) and Lebesgue’s dominated con-
vergence theorem, we obtain

lim (I PL()E[f(X ()|t < o]

t— o0

t— o0

_ lim L) JI (e, 3, ) ()P (1 = 2t < 00) dim(»)/Ps(t < o)

Gy (1 — 1) j Y () dm(y).
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If =1, by using (4.20), (4.27), (4.34) and Lebesgue’s dominated convergence
theorem, we obtain

lim (E[/(X (1)) [ < 00

— o0

11— o0

— Jim tJ, po(8,%, )/ () dm(y)/Pe(t < )

- ﬁj{ V() dm(y),

which completes the proof. O

Let {&,} and {#,} be sequences satisfying (2.29). We set

— 00, X < éna d d
{m<x)7 én <Xx <17, Sn(x) = l(f/n’?,,)(x)s(x)v & = % K

+o, n<x,

my(x) =

Denote by %, the spectrum of —%, and put A, , = inf Z,,. Since the assumptions
(41),, i = 1,2, are satisfied for m,, s, and (&,,n,), there exists a unique positive
continuous function v, , on (&,,7,) satisfying , ,(c,) = 1 and (2.7), (2.8), (2.10)
with v, 4. and I replaced by y, ,, 4., and (&,,7,), respectively.

PROPOSITION 4.3. There exist a subsequence {, ,} (denoted by the same
symbol) and a positive continuous function \, on I, satisfying (2.7), ¥.(c,) = 1, and

n—o0 ye

(435) lim sup |W*7n(x) - W*(x)l = 07
K

for every compact set K < I,.
Assume r; =1; and |s(;)| = oo for i=1 and 2. Then Y, (x) =1, xel. If {&,}
and {n,} satisfy

(4.36) 0 < liminf |s(¢,)[/s(n,) < limsup|s(¢,)|/s(n,) < oo,
then
(4.37) sup ¥, ,(x) < 0.

& <x<n,,n

Assume 4, =0, r; =1 for i=1,2, |s(h)| < oo and s(,) = co. Then Y, (x) =
B{s(x) —s(co)}+ 1, xel, where B is a real number satisfying 0<B <
{s(co) — s(I)Y". For each ael, it holds that
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(4.38) sup () < o0,
¢ <x<a,n

(4.39) sup W, ,(x)/s(x) < oo if s(a) > 0.
a<x<n,.n

Proor. Following the same argument as the proof of [14, Theorem 1], we
can show that there exist a subsequence {i, ,} and a positive continuous function
v, satistying (2.7), ¥.(c,) =1 and (4.35).

Assume r; = [; and |s(/;)| = oo for i =1 and 2. Then A, = 0 by virtue of [18,
Theorem 3]. Therefore it follows from (2.7) that ,(x) = Bis(x) + By, x€l,
where B; and B, are constants. Noting that ¥, (x) >0, xe [ and ¥, (c,) =1, we
see that By =0 and B, =1, that is, ¥, (x) =1, xe . Let {&,} and {n,} satisfy
(4.36). We will show (4.37). By virtue of (2.7),

(440) () = 1+ Y, () 5(0) = s(e0))
] )OI (), xe G

and it holds that

+ c 1 - lﬁ*,n(fn) v 1 - ‘//*,n(r]n)
(441) |lrb*7n( 0)| = S(Co) — S(én) S(rln) - S(CU)

< {s(eo) = (&)} v {s(m,) = s(eo)} "

Combining this with (4.36), we see that

M, = . <S):~l<p” n|l//:n(00){s(x) *S(CO)H
< Sgp{{s(ﬂn) — s(co) Hs(co) = s(&)} v {is(co) — (&) His(m,) — s(c0)} '}

< 0.
By using (4.40) again, we have

sup Y, (x) < 1+ M.

& <x<n,,n

Assume A, =0, r,=1 for i=1,2, |s(/)] < oo, and s(/) = c0. Noting
V() =0, in the same way as above we find that v, (x) = B{s(x) — s(c,)} + 1,
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xel,and 0 < B < {s(c,) —s(l})} " Let aeI. Since M, = sup, ., (c,)| < oo by
means of (4.41), it follows from (4.40) that

sup Y, (x) < 1+ Mals(a) = s(co)l,

¢t <x<a,n

sup Y, ,(x)/s(x) < s(a)_l + Mo{1 +|s(¢c,)|/s(a)} if s(a) >0,

a<x<n,,n

which shows (4.38) and (4.39). O

PrOOF OF THEOREM 2.6. Let {&,} and {5,} be subsequences corresponding
to {, ,} in Proposition 4.3. Let f € L'(I,,m) such that supp[f] is compact in ..
We may assume that supp[f] = (&,,7,) for sufficiently large n. Then f satisfies

(2.3) with r; = ¢, or ry = 7,,. By means of Theorem 2.1 and Corollary 2.2, we see
that

lim E,[f(X(x1)) |1 < 05, nay,] = lim E[f(X()|1 < 0, < o]
-1
=<j w*,n<y>2dm<y>> j Vo ()Y () dm(y), 0<z<1,
(&ns11) (&nstn)

lim E[f(X (1) |1 < o, ATy,

— o0

-1
- (j V() dm<y>> | a0 din,
(&nstin) (Cnst1n)

lim E.[/(X(1))|1 < gy, <oe)]

— o0

-1
= <LE )%,n(y){S(y) —s(&n)} dM(y)>

x j Vo () — sEDYS () dm().
(Ensty)
We put

(“42) V= j(y 3 (),
Snyln

443 v = Lf V) (),
Sns M
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| 0a0)s) @)y dm(), st < o
(4.44) p3) — ) )

n

Jo . a0 =Y dn), )l =
w1l
Then we obtain (2.30), (2.31) and (2.32) by virtue of (4.35). O

PrOOF OF COROLLARY 2.7. We put ¥, ,(x) =0 for x € L\(¢,,n,) and n e N.
Then, by means of (41), and (A41),, we can show that y, ,(n € N) are uniformly
bounded and equicontinuous on I.. Therefore there exist a subsequence {y, ,}
(denoted by the same symbols) and a positive continuous function 1/;* on I, such
that

lim sup |lp*,n<x> - !p*(x)‘ =0.

n— oo xe ]*

We note that ¥, satisfies (2.7) with y, replaced by V., tﬁ*(c(,) =1 and 1/;*(;’,-) =0

(i=1,2). Since the function v, in Theorem 2.1 is unique, we see that ¥, coin-
cides with ,, and

(445) lim sup |l//*n(x) - l//*(x” = 07

=% yel, i
for every sequence {y, ,}. It is easy to see that (2.30), (2.31) and (2.32) are
valid for every f satisfying (2.3) and V", j=1,2,3, given by (4.42), (4.43),
(4.44) with |s(r)| < co. By means of (4.45), (41), and (A41),, we find that

lim V= | y,(»)7 dm(y),

n—oaoo I
J Ly

lim V® = | y.(y) dm(y),

n—oo I
*

lim Vi = |y, (0){s(y) = s(r)} dm(y).

n—oo I
*

Thus we obtain (2.33), (2.34) and (2.395). ]

PrOOF OF THEOREM 2.8. Let 0 <7t <1 and f e L'(I,m). It is easy to see
that

(4.46)  lim E[f(X(e))) |1 <o, Aoy] = Ex[f(X(w0))] = LP(U, x, )f(y) dm(y).

n—oo

This formula together with [22, Corollary 1] implies (2.36).
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Assume that there exists the limit s, = lim,_|s(&,)|/s(n,) € (0, c0]. In the
same way as the proof of Corollary 2.2,

Ex[f X(Tt))q)n(X(t))’ t<og A 0-’7,,]

(447) EJ(X @)t <on, <o) =—"p g @) r<omno]

where

s(x) — 5(&n)
S(ﬂn) - S(én) .

Since lim,_,, @,(x) = s.(1 +s*)_1 € (0,1], we see that

(4.48) ®,(x) = Py(oy,, <o0¢,) =

(4.49) Tim E[f(X(0) |1 < 0, < 0] = ELf(X(0)],
from which (2.37) follows.

Next we assume 0 < s, < 00. By means of Proposition 4.3, ¢, (x) =1, xel
and it is the unique positive continuous function on [ satisfying (2.7) and
¥, (c,) =1 because of 4, = 0. By (4.37) and the dominated convergence theorem,
we see that (2.30), (2.31) and (2.32) are valid for y, = 1, any sequences satisfying
(2.29) and (4.36), and f € L'(I,m). Note that we do not need the condition that
supp[f] is compact in I. Noting (4.37), (4.42), (4.43) and (4.44), we find that

lim VY =m(L) —m(l), j=1,2,3.

n
n—oo

Combining this with Theorem 2.6, we obtain (2.38). O

PrOOF OF THEOREM 2.9. Let 0 <t <1 and f e L'(I,m). Since (4.46) also
holds in this case, by means of [16, Theorem 2] and [22, Remark 2] we obtain
(2.40).

Assume that there exists the limit s, = lim,_|&,|/#, € (0,00]. In the same
way as the proof of Theorem 2.8, we can show (2.41). Further assume s, €
(0, 0). Then we see that (2.30), (2.31) and (2.32) hold with ¥, =1, and f €
L'(I,m). Here we do not need the condition that supp[f] is compact in 1.
Since (2.23) and (2.39) imply lim,_,|m(—x)|/m(x) € [0, 00), by means of (4.37),
(4.42), (4.43) and (4.44) we also see that the sequences {V,Ej)/m(;yn)}, j=12.73,
are bounded, and hence there are subsequences {¢&,}, {#,}, {V,Sj)}, j=1,2,3,
(denoted by the same symbols) satisfying o) = lim,_,, V) /m(n,) €[0,0), j=
1,2,3. We will show that uﬁj) >0, j=1,2,3. It follows from (4.40) that

(450) l//*,n(x) > (”n - x)/(nn - Cﬂ)7 Co <X < Mns
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which implies

W ", 5 - ; /2 B 5 -
v > J U, () dm(y) > (nn_CO)ZL (1, — y)" dm(y)
2
> D 12) — e}
(nn_cﬂ)

Combining this with (2.23) we see that v!" >2-0+1/f) In the same way we
obtain o'/ >0, j=2,3. O

PrOOF OF THEOREM 2.10. Let 0 <t <1 and f e L'(I,m) such that supp[f]
is compact in /. Since (4.46) also holds in this case, by means of [30, Theorem 1]
we see that

lim "YPL(7) lim E([f(X(c1)) |t < e, Aay,]

t— 00 n—oo

Oy P — mL(y— 1)/ () dm(y).

Next we note that

Ef(X(0)¥a(X (1)), 1 < a¢, Ay, ]
Ex[\Pn(X(t))vl < og, Aa’?n] 7

EJf(X(z0)|t <o, < ay,] =

where

My — X
Y, (x) = Pios <0,)= .
n(X) = Py(oe, <oay,) p—

Since lim,_.,, ¥,(x) =1, we see that

lim E.[f(X(z1)) |t <o, < 0,] = EJ[f(X(z1))].

n—oo
Therefore we obtain

lim ¢"7L(r) lim E[f(X(z0)) |t < 0¢, < 7y,]

— o0 n—oo

e mj (v — ) (y) dm(y).

1

Note that A, =0 by virtue of [18, Theorem 3], and hence by means of Prop-
osition 4.3, ,(x) = B(x—¢,)+1, xel with 0<B< (¢, —1)'. Thus there
exist subsequences {&,} and {#,} (denoted by the same symbols) such that the
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statement (ii) of Theorem 2.6 holds with this i,. Assume that limsup,_, . |m(&,)|/
n,m(1,) < co. Fix a point @ € I such that s(a) > 0. By using (4.38) and (4.39) we
see that

limsup V3" /nam(n,)

n—o0

n—oo Hym

= limsu 71 2 dm 2 dm
— limsup—, <nn>{J@,,,a] Vo ()2 dm(y) + j(w Vo) d <y>}

< sup Y, ,(»)° limsup{m(a) — m(&,)}/n2m(n,)

&i<y<an n—o0

+ sup ¥, (»)7/y? < 0.

A<y <iy,n
In the same way we obtain

limsup V2 /n,m(n,) < oo, limsup V2 /nm(n,) < oo.

n—oo n—oo

Since (4.50) is also valid in this case, (2.43) follows by the same method as in the
proof of Theorem 2.9. We also see that

Ve = J« )= &) dm()
CSnalln

]
M= Co J g, 3.,02)

(77”/2) (7711/3 - én)

My — Co

(1, = ¥)(y = &,) dn(y)

Y

{m(n,/2) —m(n,/3)}.
Combining this with (2.23) we obtain liminf,_ 4% /n.m(n,) > 0. ]

5 Examples

We observe two examples in this section.

5.1 Bessel Processes

Let D=[X(¢):t>0,P,: xe] be a diffusion process whose generator is
given by

1d> o-1d

[ =—— 42 - %
2a’x2Jr 2x dx’

xel,



306 Masaru Iizuka, Miyuki MAENO and Matsuyo TOMISAKI

where o e R, and 7 =(0,1) or (0,00). This process is referred to as the a-
dimensional Bessel process on [ if o > 0. In particular, D is the Brownian motion
on / in the case that o« = 1. We set

X X

so(y) dy, m(x) = j mo(y) dy,

Co

(5.1) s,(x) =x"% my(x) =2x*7, s(x) = J
Co
where ¢, is a fixed point in 7 arbitrarily. We assume that m(x) = —oo for x < 0,
and further assume that if 7 = (0,1), then m(x) = oo for x > 1. Thus /; =r; =0
and hb=r=1if I =(0,1), or L, =r, =0 if I =(0,00). Then the generator L
is reduced to ¥ = (d/dm)(d/ds) which is a generalized diffusion operator defined
in Sect. 2, and s and m above are the scale function and the speed measure,
respectively. We note that (A1), or (42), or (45), is valid according to 0 < o < 2
or a <0 or a>2.
(i) Let us consider the case I = (0,1). In this case (41), holds. Let J,(x) be
the Bessel function defined by

0=(3) Sarn ety

n=!

We denote by J(v) the set of positive zeros of J,, that is, J(v) = {x > 0: J,(x) = 0}.
It is known that J(v) is a countable infinite set, it has no accumulating points in
[0, 00), and

Joo1(X)ps1(x) #0  for x e J(v),
(cf. [32, Ch.15]).
If o <2, then

ptx )= D W) aap ()] e (x0) TR L (X)) (k).
keJ(1-u/2)

Suppose that 1 satisfies fol/z x|f(x)] dx < oo and fll/z(l — x>)|f(x)| dx < c0. By
virtue of Theorem 2.1 and Corollary 2.2, it holds that for x e[,

1
fim £/ (@) |1 < a0 n] = [ 7007 (0)

1
lim E7(X(0)1 <01 <o) = | 1200)10)
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52)  fU(r,y) = Pz, y)

=207 2(€0)T2—opa(€0) |~ V1 opa(€0p),

if 0<t<l,
-1

1
(5.3) f(l)(lmy):yd/z']l1/2(60)})<J0y“/2']1rx/Z(eoy) dy) :

1 -1
(5.4) £, y)yzo‘/le_“/z(eoy)<Ly21/2.71—0(/2(60)/) dy> ,

where ¢, = min J(1 — «/2). In the case that « =1, (5.2), (5.3) and (5.4) are re-
duced to

W, y)= fO(z,y) =2sin*zy, if 0<z<1,
SV, y) = (7/2) sin ny,

21, y) = =y sin my.

If o > 2, then Py(X(tt) e E|t <aognoy) =Pu(X(tt) e E|t < o1) = P(X(12) €
E|t<0’1 <0'0)alld

ptx )= 3 Wap(k) () e 2 0p) 2 01 () 01 (1cp).
xed(a/2-1)

By means of Theorem 2.1, we find that

t— o0

1
lim E[f(X (1) |t <a1] = L S (@) f(y) dy,

(5'5) f*(‘L', y) = 2|Ja/2(50)*]a/272(50)|_1ny/271(50)/)2; if 0<t< 17
1 -1
(56 S(Ly) =y 1 (607) (jo Y 1 Goy) dy) ,

where J, =minJ(x/2—-1) and f satisfies f()l/zx“"1|f(x)| dx < oo and
[ip(1 =X (x)] dx < 0.

(i) Let I = (0,00). We set m(x) =m(s~!(x)), where s~!(x) stands for the
inverse function of s(x). Then #i(x) is a continuous increasing function on
(5(0),5(0)). Let & = (d/d)(d/d§) with §(x) = x, which is a generalized dif-
fusion operator. Let p(¢,x,y) be the elementary solution of the generalized
diffusion equation (1.2) with % replaced by £. Then it holds that

p(t,s(x),s(y) = p(t,x,y), x,yel.
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Let 0 <a<2. Then —oo < (0), s(c0) =00, and |m(0)| < co. Further it
holds that

lim m(x)/x*? = lim m(x)/s(x)*? = 207" (2 — ).

X—00 X— 00

This shows that m satisfies (2.23) with f =1 — /2 € (0,1). By virtue of Theorem
2.5 (ii), it holds that for x e[,

(5.7)  lim >*2E[f(X(z1)) |t < 79

— 0

.
=200 a2y R R )y 0,
0

(58)  Tim (ELF(X(1) |1 < o0] = j: V() dy,

— o0

where [ satisfies [;” x[f(x)| dx < o and in particular for (5.7) it is necessary that
supp[f] is compact in [0, c0).

Let o < 0. Since s(c0) = o0, m(c0) < oo in this case, we can not apply our
theorems to see the asymptotic behavior of (1.1) as ¢ — co. Noting (5.1), we
deduce from [1] that

(5.9) pt,x, ) = (20) (xp) T2 IR (/1)

where I, is the modified Bessel function defined by

B X vV o0 (x/z)Zn
1(x) = (2) ;n!r(n vty
By using this, we can obtain the asymptotic behavior of (1.1) as t — oo. Indeed,
Pt <o) = | pexsym(y) dy

= 2722 — ) 2) T2 e (1,2 — ) 2; X2 21),

where F(a,b;z) is the hypergeometric function defined by

bj)
F(a,b;z) = az

n:0

Here we used the following relation.
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J v e"’zxzx"’llv(bx) dx
0

T+ v)/2)b"

2v+1aﬂ+vr‘(v+ 1)

F((u+v)/2,v+1;b%/4a%), if u+v>0.

Therefore we find that

lim sup |/'"2x* 2P (1 < 69) — 27 T(2—/2)7' | =0, ael

=% <x<a

If supp([/f] is compact in [0,00) and [;° x*7*|f(x)| dx < oo, then

(5.10)  lim PPEf(X (1) |t < o)

= lim 2~%/? J: p(tt,x, »)Py((1 — 1)t < 00) f(y)mo(y) dy/Py(t < ap)

— o0

o0
= 27120 (2 — g/2) T 2] ) j P dy, 0<T<I.
0

If [, x|f(x)| dx < oo, then
lim (E,[/(X(1) | < o]
—tim o[ ot I dy/ Pt < o) = [ ar) oy

The above argument is still valid in the case that 0 < o < 2, and the asymptotic
behavior coincides with (5.7) and (5.8). We note that it is enough for (5.10) that
x37%f(x) is integrable near the end point 0. This fact is also valid for (5.7).
Let o > 2. In this case we also find that (5.9) holds by virtue of [1], and
Pi(op Aoy < 00) =0. Then we derive the following asymptotic behavior.

lim *2E[f(X(1))|t < oo Anoy] = lim *PE[f(X(1))]

— o0
=212y [y
0
for f such that [;”x*'|f(x)| dx < oo and supp[f] is compact in [0, ).

5.2 Birth and Death Processes

For given 0 < x, u < o0, we put

1/ x if K
s(x):{(K_l) (k*=1) if kK #1,

: x €0, 00),
X if k=1,
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o0

(=17t D d (1= 1" gy (%), if 5 # 1,
m(x) | "0 xel0, ),
2ﬂzn1[11,n+1)(x)7 if k=1,
n=0
m(x) = —o0, xe€(—00,0).

Then ¥ = (d/dm)(d/ds) is a generalized diffusion operator and it is a periodic
diffusion operator

Lf(n) ={f"(n) = /7 (n= D)} /{m(n) —mn - 1)},

where f*(n) ={f(n+1)— f(n)}/{s(n+1) —s(n)}. Feller ([8]) pointed out that
the generator of a birth and death process can be represented as a difference
operator as above. Since (A46) is satisfied, we find that all of the statements of
Theorems 2.3 and 2.4 hold. The spectrum of —% has been studied in [25] and
[29], from which

— e+ D7 2 DY, O = 2 2 A e 1) 2,

¢ (x, =) = s(x), x€[0,1],

oy 1, —2) = (k7" + 1) V22 D2
x [sin n60 + { (2 — 2'/? 4+ 1) sin n6 — k'/? sin(n — 1)0}s(x)],
xe[0,1),neN.

where ¢,(x,—1) is the solution of the equation (3.2) with ¢, =0, and 0 is
the positive number satisfying sin @ = (x~' + 1)"/?|x'/2 — 1| and cos 0 = k'/2 +
x /2 1. By means of Theorems 2.3 and 2.4, we obtain the following. Let
k eN.

Assume that 0 <x <1 and f satisfies 37, x"2(1 +n)|f(n)|{m(n)—
mn—1)} <co. If 0 <7< 1, then

lim 7% exp{(x+ 1)~ ("2 = 1) "} B[/ (X (2)) | 1 < 0]

— 2717_[71/2’{1/4(}(?_’_ 1)1/2/11/2

0

x 732(1 — ik (1—x") —2)f (m){m(n) —m(n —1)}.

n:l
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If =1, then
lim % exp{(x + 1)~ (&"/? = 1)%0 " Y E[f (X (1) |1 < 00)
— 00

— 2 1 12V e 4 1) V212

MS

x (1= )" gy K, /1) ¢2(n, =4) f(n){m(n) —m(n — 1)}.

n=1

Assume k =1. If 0 <7 < 1, then

lim 32E.[f(X(t1)) |t < o)

— o0
:(27_[) 1/2 1/2 2/2 1/22112]( (}’l—l)}

for every f such that >°" | f(n)|{m(n) — m(n— 1)} < oo and supp|[f] is compact
n [0,00). If 7 =1, then

fim LX) |1 < 0] =273 ) ) = mn = 1),
n=1
for every f satisfying >.,2,(1+n)|f(n)|{m(n) —m(n —1)} < co.

Assume xk > 1. If 0 <7< 1, then

lim 32E[f(X(z1)) |1 < ay)

t—o0

_ 2_1ﬂ_1/2Kl/4(K+ 1)1/2ﬂl/2
(1 3/22% (n, =2.)"f (m){m(n) —m(n — 1)},
for every f satisfying Y-, K"(1 4 n)*|f (n)|[{m(n) —m(n — 1)} < 0. If 7=1,
then

lim E.[f(X(?)) |t < a0

t— o0

=<sz<n,—i*>{m< min—1) ) sz {m(n) —m(n - 1)},

n=1

for every f satisfying 3", x"2(1 +n)|f(n)|{m(n) —m(n — 1)} < co.
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6 Application to Population Genetics

In this section, we consider the asymptotic conditional distributions in pop-
ulation genetics since this concept was first introduced in population genetics (see
[4]). We consider a locus with two alleles in a randomly mating population of N
diploid individuals. We denote by A; the wide-type allele and by 4, the mutant
allele. Let X(n) be the relative frequency (gene frequency) of A4; at the n-th
generation in the population (n=0,1,2,...). Mutation, selection and random
genetic drift are the factors which change gene frequency X (n). The Wright-
Fisher model and the stochastic selection model are the fundamental stochastic
models in population genetics. The Wright-Fisher model is a stochastic model due
to random genetic drift and this stochastic force has no correlation between
distinct generations. On the other hand, in the stochastic selection model sto-
chastic force of selection has autocorrelation from generation to generation in
general. These models are described by discrete time stochastic processes because
we regard the generation as the time unit. It is difficult, however, to analyze these
discrete time models. Then diffusion approximations are employed for the original
discrete time models. In other words, we approximate a discrete time stochastic
process in population genetics by an appropriate diffusion process by introducing
a new time scaling. For approximating methods and applicability of diffusion
approximations, see [3], [11] and cited therein. A general stochastic model may
be obtained by combining these diffusion models. We will deal with a diffusion
process D =[X(z):¢>0,P,:xel] that is the diffusion model with random
genetic drift and stochastic selection, where [ is the interval with end points 0 and
1. Further we introduce two deterministic factors of mutation and selection in this
diffusion model.

It is known that the generator of the diffusion process D is given by

2
L:%a(x)%—i-b(x)%,

6.1) a(x):%x(l —x) 4 px*(1 = x)?,

b(x)=v—(u+ v)x—l—%px(l —x)(1 =2x)

+ {(S11 — 2812+ S)x + Si2 — Sn}x(1 — x)

(see [10]). The meaning of each variable and parameter are as follows. The
variable x is the gene frequency of A4; (0 <x <1). The parameter N is the
population size (1 < N < o). Note that the case that N = oo corresponds to
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that without random genetic drift. Three genotypes A;A4;, A;A; and A,A; have
fitnesses 1+ w,, + Sq1, 1+%wn + S and 1+ S5 in the original discrete time
model. Here w, is the stochastic part of selection parameters at the n-th gen-
eration, and Sj;, S;; and Sy, are the deterministic part of selection parameters
(min{w, + Si1,3w, + S12, 82} > —1). It is assumed that stochastic selection has
no dominance. We assume that {w, : 0,+1,+2,...} is a discrete time stationary
process with the mean E[w,] =0. The parameter y=> /" _ E[w,w|/4 is a
degree of autocorrelated stochastic selection (0 <y < o0). The parameter p de-
notes the type of stochastic selection (p > 1). The case that p =1 with N < oo is
called the TIM model ([28]) and the case that p > 1 with N = oo is called the
SAS-CFF model ([9]). The mutation rate per generation from A, to A, [resp.
from A4, to A;] is denoted by u [resp. v] (u,v = 0).

In this section, we consider the one-dimensional diffusion process D =
[X(¢) : >0, Py :xe(0,1)] with the generator defined by (6.1) and X(0) = x. Let
us fix a point ¢, € (0,1) arbitrarily and set

X

5w = [ w0 @ me) = [ mo) .

Co Co

_ T b(y)
6.2 so(x) = C, ! ex {—2J —Zdye,
(6.2) (x) p Y
2 L 2G, { Jx b(y) }
my(x) = ——s5,(x)" = exps2 | —=dy,,
W= a3, el
for 0 < x < 1, where C, is a positive constant. We also set m(x) = —oo, x <0

and m(x) = oo, x > 1. Then the generator L is reduced to & = (d/dm)(d/ds)
which is a generalized diffusion operator defined in Sect. 2, and s and m given by
(6.2) are the scale function and the speed measure, respectively. The densities s,
and m, can be expressed as follows. If N < oo and y = 0, then the densities are

$o(x) = x V(1 — x) M exp{—4N(S12 — S»)x — 2N(S11 — 2512 + S»)x2},
my(x) = 4Nx'(1 — x) s, (x) 7.

If N <oo and y > 0, then the densities are
50(x) = X V(1 — )™V (1 = 2x = 8) /(1 — 2x 4 6)}0 (2NN (S0 =S}

x {ypx(1 — x) + I/ZN}zNu+2Nu—p+y—1<s“—2s12+522)’

mo(x) = 2x7'(1 —x) " {px(1 — x) + 1/2N} s, (x) 7",
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where 0 = (1 +2/Ny)1/2. If N=oo and y > 0, then the densities are

SD(X) _ x—p—Zy’l(U—”—Szz-FSlz)(l _ x)fpfz"/’l(ufvfslri*Slz) eXp[Zy_l{u(l _ x)fl + UX_I}],

my(x) =2y x2(1 — x) s, (%)

We classify the states of the end points 0 and 1 in Tables 1 and 2.* We will
consider the asymptotic conditional distributions and some related asymptotic
properties of the diffusion process with L given by (6.1).

Table 1. The state of the end point 0

[s(0)] | |m(0)] state
N<ow, v=0 < oo = exit
N <, 0<4Nv < 1 < © < regular
N < 0, 4Nv > 1 =0 < 0 entrance
N=ow, v>0 = < w0 entrance
N=ow,v=0,u<Sp—-Sn+yp—1/2 | =w | <w© natural
N=ow, v=0,u=Sp—-Sn+yp-1)/2 | =w = natural
N=ow, v=0, u>Sn—-Sn+yp—-1)/2 | <o = natural

Table 2. The state of the end point 1

s(1) | m(1) state

N<o,u=0 <o | = exit

N <, 0<4Nu < 1 <o | <o | regular
N < 0, 4Nu > 1 = | < oo | entrance
N=ow, u>0 =00 | < oo | entrance

N =00, u=0, U<S12—S11+y(/)—1)/2 = o0 < 00 natural

N=ow,u=0,v=8Sp—-Su+yp-1)/2 | =0 | =w natural

N=ow, u=0,v>Sp—-Su1+7p—-1)/2 | <oo | =00 | natural

*The states of the end points 0 and 1 in general cases are presented in Appendix (Tables 3 and 4).
Tables 1 and 2 are special cases of Tables 3 and 4, respectively.
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6.1 The Case that N < oo with 4Nu <1 or 4Nv < 1

By Tables 1 and 2, this is the case that at least one of the boundaries is
regular or exit. It is easy to see that (A1), [resp. (A1),] is satisfied if 0 < 4Nv < 1
[resp. 0 < 4Nu < 1], (43), [resp. (43),] is satisfied if v =0 [resp. u = 0], and
(A44), [resp. (A44),] is satisfied if 4Nv >1 [resp. 4Nu > 1]. For E e %((0,1)),
f(x) =1g(x) belongs to #. We apply Theorem 2.1 to find the following
asymptotic conditional distribution.

lim Py(X(tt) e E|t < apnay)

11— o0

(L v, (»)° dm()’)>1L v, (1) dm(y), 0<t<1,

<JL v-(7) dm(y)>_lJE Yo (y)dm(y), =1

If 0 <4Nu < 1 <4Nv, then 5(0) = —oo by Table 1 and hence P.(g; < gy) =

P(o) < 0) =1, and
P(X(tt)eE|t<agnay) =P X(zt) e E|t < ay)
=P (X(tt)eE|t<o1<ap), 0<t<l

If 0 <4Nv <1 <4Nu, then s(1) = oo by Table 2 and hence P.(gy < 01) =
P.(op < o0)=1 and P (X(tt)e E|[t <01 <ap) =0.

If 0 <4Nu, 4Nv < 1, then —oo < s(0) < s(1) < oo, and

Py(o1 < 00) = {s(x) —5(0)}/{s(1) = s(0)},

which is the probability that 4, fixes in the population before it disappears from
the population. By putting f(x) = 1g(x) in Corollary 2.2, we obtain the following.

P (X(zt) e E|t < g <ay)

(L v.(»)° dm(y)>1JE . () dm(y), 0<r<l,

-1
(J lﬂ*(y){S(y)—S(O)}dM(y)> J Y (){s(y) —s5(0)} dm(y), =1
I, E

We consider the special case that N < oo and y = S1; — Si2 =S —S;2=0
(no selection) in the following examples. The generator is given by

1 d?

d
L:mx(l —x)dxz—i—{v—(u—i—v)x}a.
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The density of scale function is given by s,(x) = x (1 — x)™*" and that of
speed measure is given by m,(x) = 4Nx*Nv-1(1 — x)*Ve !,

ExamPpLE 6.1. We consider the case that 0 < 4Nu, 4Nv < 1. It is easy to see

that
1 -1

Piov<ao) = ([ v - a) e - e,

The probability density function p(¢,x,y) has an eigenfunction expansion (see
[17)).
p(t,x,y) = (4N)71{1"(2 _ 4Nv)}*2(xy)1’4N”{(1 — X - y)}174N”

o0
x Y F(2—4N(u+v)+i1—i,2—4Nv,x)

i=1
X F(2—4N(u+v)+i,1 —i,2 — 4Nv, p){(i — 1)!T(i + 1 — 4Nu)} "
X {1 —4N(u+v) +2i}T(2 —4N(u+v) + )T (1 — 4Nv + i)

X exp[—(4N)'i{i + 1 — 4N (u + v) }1,

where F(o,f,y,x) is the hypergeometric function defined by

z":l‘ a+nm)(f+n)x

(aﬂ7y7 y+n n'

n:O

The asymptotic conditional distributions are as follows.

lim P.(X(tt) e E|t < agnay) :J SW(z, ) dy,
E

—o0

lim P(X(tt) e E|t <01 <0y) = J Sz, p) dy,
E

[— o0

Oy =% y)
={3—4Nu+v)}I'(3—4N(u+v)){T'(2 —4Nv)

X T(2 — 4Nu)} 'y =41 — )™ if 0 < < 1,

Y1,y =1,
1 -1

}7
FO1,y) = (J (] — )N dz) J (] — )T gz,
0 0
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Note that this case with u = v = 0 and 7 = 1 coincides with results due to Ewens
(5], [6]). Also note that, in this case with u=v =0 and 0 <t <1, fV(r,y) =

[z, y) = 6y(1 — ).

ExaMpLE 6.2. We consider the case that 0 <4Nu < 1 <4Nv. The proba-
bility density function p(¢,x, y) has an eigenfunction expansion (see [17]).
p(t,x,p)

= (4N) T (4Nv)} > {(1 = x)(1 — y)}
X iF(4N(v—u) +i,1 —i,4Nv,x)F(4N(v —u) +i,1 — i,4Nv, y)
i=1
x {(i— )i+ 1)} {4N(@w —u) +2i — 1}T(AN (v — u) + ) (4Nv + i — 1)
x exp[—(4N) " {i® + (4N (v — u) — 1)i + 4Nu(1 — 4Nv)}1].

The asymptotic conditional distributions are as follows.

lim Py(X(tt) e E|t<agnor) =1lim P (X(tt) e E|t < a1 < ay)
t— 00

— o0
= lim P(X(t) € E|1 <o) = J 1z, y) dy,
— 00 E

S (2, y) = {4N (v — u) + 1}T(4N (v — u) + 1){T(2 — 4Nu)T(4Nv)} !

4Nv71(1 _ )1—4Nu

Xy y , if 0<7<1,

FU, ) = aNpy*Nl,

6.2 The Case that |s(/)| = o0, |m({)| < w0, £ =0,1

Note that this is the case that there exists the stationary distribution of X (7).
By Tables 1 and 2 this is the case that one of the following conditions is valid.

(6.3) N <o, 4Nu>=1, 4Nv=>1.

(6.4) N=ow, u>0, v>0.

(6.5) N=ow, Sp—-Sn+ylp—-1)/2>u>v=0.

(6.6) N=ow, Sp-Su+t+ylp—-1/2>v>u=0.

(6.7) N=o0, Sp+y(p—1)/2>max{Si,S»n}, u=v=0.
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Note that y > 0 in (6.3), and y > 0 in (6.4), (6.5), (6.6) and (6.7). Let {&,} and
{n,} be sequences such that

(6.8) &, <mn, meN), ¢,10 and 5,71 asn— oo,
(6.9) there exists the limit s, = lim |s(&,)[/s(7,)-

Putting 7, = s~ (C|s(&,)|), n € N, with some positive number C leads us to (6.9)
with s, = C~!, where s~! denotes the inverse function of s. Thus we may assume
that s, € (0,0). In view of Theorem 2.8, we obtain the following asymptotic
conditional distributions. Let 0 <7 <1, 0 <x <1 and E e #%((0,1)). Then

lim lim P(X(tt) e E|t <o Aay,)

{— 00 n—oo

= lim lim P(X(tt) e E|t < g, <o)

—o0 n—o

= lim lim P(X(tt) e E|t <0 AaTy)

n—0o0 [—o0

= lim lim P(X(et)e E|t <o, <o)
—o0

n—oo

-1

_ (J; my(y) dy) JE mo() dy.

Note that the last quantity of the above formulas is the stationary distribution of
X (f). Note also that the double limits (n — oo and ¢ — o0) are commutable for
these cases.

6.3 The Case that |s(/)| = o0, |m({)]= o0, /=0 or 1

By Tables 1 and 2 this is the case that N = oo, y > 0, and one of the
following conditions is satisfied.

(6.10) Sp=Su+yp-1)/2=v>u=0.

(6.11) Snp—=Sn+yp-—1/2=u>v=0.

(6.12) S <Su=Sn+yp-1)/2, u=v=0.
(6.13) S < Sn=Sn+pp—1)/2, u=v=0.
(6.14) Si=Sn=Sn+yp—-1)/2, u=v=0.
(6.15) Si>Sn=Sn+yp—1)/2, u=v=0.
(6.16) Sn>Su=Sn+yp—1)/2, u=v=0.
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Let {&,} and {7,} be sequences satisfying (6.8) and (6.9). We may assume that
s« € (0,00) in above cases except (6.15) and (6.16). Also s, = oo in case (6.15),
and s, = 0 in case (6.16). We set m(x) = m(s~'(x)). Then m(x) is a continuous
increasing function on (s(0),s(1)). Let & = (d/dm)(d/d5) with §(x) = x, which is
a generalized diffusion operator. Let p(z,x, y) be the elementary solution of the
generalized diffusion equation (1.2) with % replaced by . Then it holds that

ﬁ(t,s(x),s(y)):p(nx,y), X7y€(071)'

The double limits (n — oo and ¢t — c0) are not commutable in these cases as it is
shown in the following.
We now consider the case (6.10) or (6.12). We see that

5(0) = —oc0, (1) = o0,

lim 7a(x) > —oo, lim x"'m(x) = 11%111 s(x)'m(x) =2y~ le
Denoting by k;(z) and k(z) the inverse functions of the mapping [0, ) 3 x —
—xm(—x) and [0, c0) 3 x — x#(x), respectively, we find that

(6.17) 0 = lim k(1) /k, (1) = 0.

— o0

Thus it follows from Theorem 2.9 that

(6.18) lim "2 lim Py(X(ct) € E|t <oz, naTy)

[— o0 n—oo

= lim ¢'/? lim P(X(wt) e E|t < a, <o)

— o0 n—oo

=) 2 | () dy
for 0<7<1, 0<x<1 and Ee%((0,1)) satisfying [, m,(y)dy < oo. In the
cases (6.11) and (6.13), we similarly obtain (6.18) where we have to replace v by
u in the last formula.
Let us consider the case (6.14). We see that s(0) = —oc0, s(1) = o0, and

li 1 =1 -1 — 2yl
Jim|x (0] = limls(x) " m(x)| =27,

lim x!
X— 00

m(x) = 1){?11 s(x)'m(x) =297\,

Hence (6.17) holds with € =1 in place of # = 0. By using Theorem 2.9 we obtain
that
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lim ¢'/2 lim Py(X(ct) e E|t < oz, nTy)

[— o0 n—oo

= lim ¢'/? lim P (X(tt) e E|t<a, <o)

1— o0 n—oo
— 12 (87r) V2 j mo() dy,

for 0<7<1,0<x<1 and Eec%((0,1)) satisfying [, m,(y) dy < 0.

Let us assume (6.15). Then it holds that s(0)=—o0, s(1)< oo,
lim,— oo [x i (—x) = 297, limygg {s(1) — s(x)}(1 — x) 257 = /208y — 85,
and lim,y, m(x)(1 — x)?S1=52)/7 — 1/(8), — Sy,). Therefore
lim I a(—x)e/a(s(1) = 1/x)] = (2/7) lim{s(1) = s} m(x) = .

X— 0
By exchanging the role of /; and /; in Theorem 2.10, we obtain that

lim 2 lim Py (X(ct) e E|t < o, ATy )

1— 00 n—o0

= lim A7 lim P(X(wt) e E|t<a, <o)

— 128y P s(1) — s(x)} L_{sm — 5(7)}mo(3) dy.

for 0<t<1,0<x<1 and Ee%((0,1)) with E = (0,1).

Let wus assume (6.16). Then it holds that [s(0)] < oo, s(1)= o0,
limy_o, m(x)/x =2/y, limyo{s(x) —s(0)}x~ 7 =1/g and lim, o|m(x)|x? =2/gy,
where g =1 — p — 2(S12 — S»2)/y > 0. Therefore

X— 00

lim |x?m(x)/m(s(0) + 1/x)| = 2y~ lilll(}{s(x) —5(0)} 7 /Im(x)| = 0.
By means of Theorem 2.10, we obtain that

lim /2 lim Py(X(ct) e E|t < oz, ATy)

= (5P s() = 500} | {500 = s0) () i,

for 0<z<1,0<x<1 and E e #((0,1)) with E = (0,1).
Next, we consider the other order of limits. In cases (6.10) to (6.14), in view
of Theorem 2.9, there exist subsequences {&,} and {#,} (denoted by the same

symbols) and positive constants ,ugg/), j=1,2,3, such that
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lim V, 11m P.(X(tt)e E|t < 0g, NTy,)

n— o0

n— o0

= lim V, hm P.(X(tt)e E|t <oy, <a¢”):/¢i1)J me(y)dy, 0<t<I1,
E

lim ¥, hm P.(X(t)e E|t<ag Aay,) :,uiz)J my(y) dy,
E

n— o0

lim ¥, hm P(X(t)eE|t<o, <o) = ﬂf)J my(y) dy,
n— oo E

for 0<x<1 and Ee%((0,1)) satisfying [.m,(y)dy < oo, where V,=
fé” my(y) dy. We note that ,ui]), j=1,2,3 are not necessarily the same. For
example, let us consider the case that u=v=S;; — S, =S»n—-Sp=p—-1=0.
Then s(x) and m(x) defined by (6.2) reduce to

s(x) = log{x/(1 = %)}, m(x) = 2" log{x/(1 — x)}.

Putting 7, = s~ (C|s(&,)|), n e N, implies (6.9) with s, = C~!, where C is a pos-
itive number. It is easy to see that ,uil) =2, uf) =2"1g, yff) =(1+0C)"

By applying Theorem 2.6, in cases (6.15) and (6.16), we see that there are
subsequences {én} {n,} (denoted by the same symbols), and sequences of positive
numbers {V( }, j=1,2,3, and a positive continuous function y, satisfying (2.7)

with A, =0 and y,(c,) =1 such that

(6.19) lim ¥V lim Py (X (ct) e E|t < oz, ATy )

n—oo t— o0

= lim ¥V lim P(X(tr) € E|t <0y, <o)
— 00

n—oo

= JE v(0)’m,(y) dy, 0<t<I,

(6.20) lim V lim P(X (1) e E|t<ae nay )= JE v, (y)my(y) dy,

n— oo — o0

(6.21) lim V3 lim P (X(1) e E|t < a,, < 0¢,)

n— o0 — o0

L%MMﬁ—WWMW@,MW<w

LMMMUM% 15(0)] = oo,

for 0<x<1 and Ee #((0,1)) with E <= (0,1).
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6.4 Other Cases

Let us consider the case that N = co, y > 0 and one of the following con-
ditions is satisfied

(6.22) Sp—=Su+yp-1)/2<v, v>u=0.
(6.23) Sp—Sn+yp—-1)/2<u, u>v=0.
(6.24) S+ y(p—1)/2 <min{Si,S»n}, u=v=0.
(6.25) Su>Su+y(p—1)/2>8», u=v=0.
(6.26) Su<Sn+yp—1)/2<S»n, u=v=0.

We should notice that A, > 0 in these cases by means of [18, Theorem 3]. Since
the end points are entrance or natural in these cases, P.(opAag; = ) =1,
0 < x < 1. We note that |s(0)| < oo in cases (6.23), (6.24) and (6.26), |s(0)| = o
in cases (6.22) and (6.25). By virtue of Theorem 2.6, we see that there are
subsequences {&,}, {n,} (denoted by the same symbols), and sequences of positive
numbers {V,gj)}, j=1,2.3, and a positive continuous function , satistfying (2.7)
with 4, >0 and y,(c,) = 1, for which (6.19), (6.20) and (6.21) are satisfied. In
these cases we can only show that
lim e*'p,(t,x,y) =0, x,yel.

— o0

Therefore we can not obtain the asymptotic behavior of lim,_,., Py(X(tt) e E|t <
o, Aoy,) and lim,_,, P(X(tt)e E|t <0, <o) as t — o0.

Appendix
Let D=[X(#):t>0,P,:x€(0,1)] be the diffusion process with the gen-
erator
1 d? d
L = EG(X)W‘F b(x)a,

where a(x),b(x) e C((0,1)) and a(x) is positive on (0,1). Let us fix a point
€ (0,1) arbitrarily and set

wo-enf 2 S0}, mio-Zyenl] 20)
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We classify the state of the end points 0 and 1 according to the asymptotic
behavior of a and b near the end points. We set the following.

ASSUMPTION. (i) For some real numbers p and q there exist the limits

ap = lim alx) € (0,00), a =lim a(x)

X0 xP X1t (1 —x)? € (0, %0).

(i) If b #0, then for some real numbers p and v there exist the limits

by = lim % ER\{0}, by =lim ff’?c)v e R\{0}.

(i-1) If u—p+1=0, and one of
p:2, bo/a():l/z, bo/a()Z(p—l)/2,
is satisfied, then there exists a real number Ay such that

lim sup M—@-l—Ao =0.
el0 gxeela(x) @ x

(ii-2) If v—q+1=0, and one of
q=2, bifay=-1/2, bijar=—(¢—1)/2,

is satisfied, then there exists a real number Ay such that

lim su — . A, =0.
¢l0 1—a<5<1 alx) a 1-—x !

(ii-3) If u— p+1 <0, then a and b are differentiable near the end point 0, and
satisfy lyggl(a(x)/b(x))/ =0.

(ii-4) If v—q+1 <0, then a and b are differentiable near the end point 1, and
satisfy li?ll(a(x)/b(x))/ =0.

Under the Assumption we obtain Tables 3 and 4. It follows from the def-
inition of the classification of boundary that

|s(£)] < o0, [m(/)| < oo if the end point / is regular,

|s(£)] < o0, [m(/)] = o if the end point ¢ is exit,
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|s()] = o0, [m(£)] < o0

[s()] + [m()] = oo

where / = 0 or 1. Therefore it is quite easy to see the results on the cases ), @,
®, @, @ on both tables. In order to obtain those on the other cases, we have to
observe the convergence or the divergence of I(/) and J(/) for the functions
and J defined in Sect. 2. After a tedious calculation, we obtain results on all cases

in Tables 3 and 4.

if the end point / is entrace,

if the end point 7 is natural,

Table 3. The state of the end point 0
[s(0)] | |m(0)] state

p<l < < regular | D

b=0]1<p<2 < © = exit ©)
p=2 < oo = natural | @
p<l < o0 <o regular | @
I<p<u+l, p<2 < = exit ®
I<p<u+l, p=2 < =0 natural | ®
p=p+1, p<2 2by/ay < p—1 <w | = exit @)
p=p+1, p<2, p—1<2by/ag <1 | <o < regular
p=u+1, p<2, 2by/ay =1 = < o | entrance | Q)
p=pu+1=2 2by/ag <1 < =0 natural | @©

b#0 | p=u+1=2, 2by/ag =1 =0 | = natural | @
p=pu+1=2 2by/ag > 1 = < natural | @
p=u+1l, p>2 2by/ay <1 < o =0 natural | @
p=p+1, p>2, 1<2by/ay<p—-1| = = natural
p=up+1, p>2 2by/ay > p—1 = < natural | ©
p>u+1, by<0, pu<1 < =0 exit (@)
p>u+1, by<0, pu=1 < o =0 natural | @
p>pu+1,bp>0, <l = < oo | entrance
p>u+1, by>0, u=>1 =0 < natural
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Table 4. The state of the end point 1

s(1) | m(1) state
g<1 <o | <o | regular | @
b=0|1<¢g<?2 <o | =0 exit ©)
q=2 <o | =0 | natural | @
g<1 <o | <o | regular | @
I<g<v+1,g<2 <o | =0 exit ®
I<g<v+1l,¢g=2 <o | =0 | natural | ©®
g=v+1, ¢<2, 2bj/ay < -1 = | <oo | entrance | @
g=v+1, ¢<2, -1<2bJa; <—(¢g—1) | <o | <oo | regular
g=v+1, ¢<2, 2bj/ay > —(q—1) <o | = exit ®
qg=v+1=2, 2b/a; < —1 = o | <o | natural
b#0 | g=v+1=2, 2b/ay = -1 =ow | =c | natural | @
g=v+1=2, 2b/a; > —1 <o | =0 | natural | @
qg=v+1, ¢>2, 2bj/ay < —(q—1) =o | <oo | natural | @
g=v+1,¢>2, —(¢q—1)<2bhJa; <—1 | =0 | =o0 | natural
g=v+1, ¢>2, 2bj/ay > —1 <o | =0 | natural | ©®
g>v+1,b>0,v<1 <o | =w exit (@)
g>v+1, b >0,v>1 < oo | =00 | natural | @
g>v+1, b <0, v<1 = o | < oo | entrance
g>v+1, b1 <0, v>1 = o | < oo | natural
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