HYPERSPACES OF FINITE SUBSETS OF NON-SEPARABLE HILBERT SPACES

By

Masato YAGUCHI

Abstract. Let $\ell_2(\tau)$ be the Hilbert space with weight τ and ℓ_2^f be the linear span of the canonical orthonormal basis of the separable Hilbert space ℓ_2 . In this paper, we prove that if a metric space X is homeomorphic to $\ell_2(\tau)$ or $\ell_2(\tau) \times \ell_2^f$ then the hyperspace $\operatorname{Fin}_H(X)$ of non-empty finite subsets of X with the Hausdorff metric is homeomorphic to $\ell_2(\tau) \times \ell_2^f$.

1. Introduction

Let $\operatorname{Cld}_H(X)$ be the space of all non-empty closed subsets of a metric space X = (X, d) which admits the (infinite-valued) Hausdorff metric $d_H : \operatorname{Cld}_H(X)^2 \to [0, \infty]$ defined as follows:

$$d_H(A, B) = \max\left\{\sup_{x \in B} d(x, A), \sup_{x \in A} d(x, B)\right\},\$$

where $d(x, A) = \inf\{d(x, a) | a \in A\}$. By $\operatorname{Fin}_H(X)$, we denote the subspace of $\operatorname{Cld}_H(X)$ consisting of all finite subsets of X, where the topology of $\operatorname{Fin}_H(X)$ coincides with the Vietoris topology. For an infinite cardinality τ , let $\ell_2(\tau)$ be the Hilbert space with weight τ , that is,

$$\ell_2(\tau) = \bigg\{ (x_\alpha)_{\alpha \in \tau} \in \mathbf{R}^{\tau} \bigg| \sum_{\alpha \in \tau} x_\alpha^2 < \infty \bigg\}.$$

Let ℓ_2^f be the linear span of the canonical orthonormal basis of the separable Hilbert space $\ell_2 = \ell_2(\aleph_0)$, that is,

$$\ell_2^f = \{ (x_i)_{i \in \mathbf{N}} \in \ell_2 \mid x_i = 0 \text{ except for finitely many } i \in \mathbf{N} \}.$$

Received November 10, 2004.

Revised December 12, 2005.

In [5], D. Curtis and Nguyen To Nhu proved that $\operatorname{Fin}_H(X)$ is homeomorphic to (\approx) the space ℓ_2^f if and only if X is non-degenerate, strongly countabledimensional, connected, locally path-connected and σ -compact. Recently, the hyperspace $\operatorname{Fin}_{AW}(X)$ with the Attouch-Wets topology and $\operatorname{Fin}_W(X)$ with the Wijsman topology have been studied. In [11], it has been shown that if X is an infinite-dimensional Banach space with weight $w(X) = \tau$ then $\operatorname{Fin}_{AW}(X) \approx$ $\ell_2(\tau) \times \ell_2^f$, and in [6] that if X is an infinite-dimensional separable Banach space then $\operatorname{Fin}_W(X) \approx \ell_2 \times \ell_2^f$.

Let $\operatorname{Comp}_H(X)$ be the subspace of $\operatorname{Cld}_H(X)$ consisting of all compact sets in X. In [4], it is proved that $\operatorname{Comp}_H(\ell_2) \approx \ell_2$.

In this paper, we prove the following:

THEOREM 1.1. Let τ be an infinite cardinal. If a metric space X is homeomorphic to $\ell_2(\tau)$ or $\ell_2(\tau) \times \ell_2^f$ then $\operatorname{Fin}_H(X) \approx \ell_2(\tau) \times \ell_2^f$. Moreover, in case $X \approx \ell_2(\tau)$, $\operatorname{Comp}_H(X) \approx \ell_2(\tau)$ and $\operatorname{Fin}_H(X)$ is homotopy dense in $\operatorname{Comp}_H(X)$.

2. The Characterization of $\ell_2(\tau) \times \ell_2^f$

Let S_X be the unit sphere in a normed linear space $X = (X, \|\cdot\|)$. For each $x \in X$ and $r \in (0, \infty)$, let $B(x, r) = \{x' \in X \mid \|x - x'\| < r\}$. For a subset $A \subset X$, cl A is the closure of A, card A is the cardinarity of A, and diam $A = \sup\{\|a - b\| \mid a, b \in A\}$.

To prove Theorem 1.1, we use the characterization of the space $\ell_2(\tau) \times \ell_2^f$ which is obtained in [10]. Before introducing this characterization, we need several definitions.

A σ -completely metrizable space is a metrizable space which is a countable union of completely metrizable closed subsets.

For each open cover \mathscr{U} of Y, two maps $f, g: X \to Y$ are \mathscr{U} -close (or f is \mathscr{U} -close to g) if each $\{f(x), g(x)\}$ is contained in some $U \in \mathscr{U}$. When Y = (Y, d) is a metric space, there exists a map $\alpha: Y \to (0, \infty)$ such that each open ball $B(y, \alpha(y)) = \{z \in Y | d(y, z) < \alpha(y)\}$ is contained in some $U \in \mathscr{U}$, whence if g is α -close to f, that is, $d(f(x), g(x)) < \alpha(f(x))$ for each $x \in X$, then g is \mathscr{U} -close to f.

A closed set $A \subset X$ is called a (strong) Z-set in X provided, for each open cover \mathscr{U} of X, there is a map $f: X \to X$ such that f is \mathscr{U} -close to id_X and $f(X) \cap A = \emptyset$ (cl $f(X) \cap A = \emptyset$). The union of countably many (strong) Z-sets in X is called a (strong) Z_{σ} -set in X. When X itself is a (strong) Z_{σ} -set in X, we call X a (strong) Z_{σ} -space. A Z-embedding is an embedding whose image is a Z-set.

A space X is said to be *universal for a class* \mathscr{C} (simply, \mathscr{C} -universal) if every map $f: C \to X$ of $C \in \mathscr{C}$ is approximated by Z-embeddings, that is, for each $C \in \mathscr{C}$, each map $f: C \to X$, and for each open cover \mathscr{U} of X, there is a Z-embedding $g: C \to X$ such that g is \mathscr{U} -close to f.

It is said that X is strongly universal for \mathscr{C} (simply, strongly \mathscr{C} -universal) when the following condition is satisfied:

 $(\mathfrak{su}_{\mathscr{C}})$ for each $C \in \mathscr{C}$ and each closed set $D \subset C$, if $f: C \to X$ is a map such that f|D is a Z-embedding, then, for each open cover \mathcal{U} of X, there is

a Z-embedding $h: C \to X$ such that h|D = f|D and h is \mathscr{U} -close to f.

Let $\mathfrak{M}_1(\tau)$ be the class of completely metrizable spaces with weight $\leq \tau$. The next proposition is the characterization of $\ell_2(\tau) \times \ell_2^f$:

PROPOSITION 2.1. A metrizable space X is homeomorpic to $\ell_2(\tau) \times \ell_2^f$ if and only if X is a strongly $\mathfrak{M}_1(\tau)$ -universal AR, which is a σ -completely metrizable strong Z_{σ} -space of $w(X) = \tau$.

3. **AR-property**

The following is due to D. Curtis and Nguyen To Nhu. In fact, it is a combination of Lemmas 3.5, 2.3 and the proof of Theorem 2.4 in [5].

PROPOSITION 3.1. The hyperspace $Fin_H(X)$ is an ANR (an AR) if and only if X is locally path-connected (and connected).

Here, we shall prove a result stronger than Proposition 3.1 above. In [8], Michael introduced uniform AR's and uniform ANR's. A uniform ANR is a metric space X with the property: for an arbitrary metric space Z = (Z, d)containing X isometrically as a closed subset, there exist a uniform neighborhood U of X in Z (i.e., $U = N(X, \gamma)$ for some $\gamma > 0$) and a retraction $r: U \to X$ which is uniformly continuous at X, that is, for each $\varepsilon > 0$, there is some $\delta > 0$ such that if $x \in X$, $z \in U$ and $d(x, z) < \delta$ then $d(x, r(z)) < \varepsilon$. When U = Z in the above, X is called a *uniform* AR.

PROPOSITION 3.2. The hyperspace $Fin_H(X)$ is a uniform ANR (a uniform AR) if and only if X is uniformly locally path-connected (and connected).

PROOF. Since $\operatorname{Fin}_H(X)$ is a Lawson semilattice, by Theorem 3.4 in [7], it suffices to show that $\operatorname{Fin}_H(X)$ is uniformly locally path-connected (and connected) if and only if so is X.

183

To see the "if" part, let $\varepsilon > 0$. Then we have $\delta > 0$ such that each δ -close points $x, y \in X$ can be connected by a path with diam $\langle \varepsilon/2$. If $A, B \in \operatorname{Fin}_H(X)$ with $d_H(A, B) < \delta$ then for each $a \in A$ there is $b_a \in B$ such that $d(a, b_a) < \delta$, hence we have a path $f_a : [0, 1] \to X$ such that f(0) = a, $f(1) = b_a \in B$ and diam $f_a([0, 1]) < \varepsilon/2$. Now we define $f : [0, 1] \to \operatorname{Fin}_H(X)$ as follows:

$$f(t) = B \cup \{f_a(t) \mid a \in A\} \text{ for each } t \in [0, 1]$$

Since A is finite, it is easy to see that f is continuous. Note that $f(0) = A \cup B$ and f(1) = B. Thus, f is a path from $A \cup B$ to B with diam $\langle \varepsilon/2$. Similarly, we can construct a path f' in Fin_H(X) from $A \cup B$ to A with diam $\langle \varepsilon/2$. Therefore, by connecting f and f', we have a path in Fin_H(X) from A to B with diam $\langle \varepsilon$.

Next, we show the "only if" part. By the uniform local path-connectedness of Fin_H(X), for each $\varepsilon > 0$, we have $\delta > 0$ such that each δ -close $A, B \in \text{Fin}_H(X)$ can be connected by an ε -path in Fin_H(X). Now, let $x, y \in X$ with $d(x, y) < \delta$. Then, there is a path $f : [0, 1] \to \text{Fin}_H(X)$ such that $\dim_{d_H} f([0, 1]) < \varepsilon/2$, $f(0) = \{x\}$ and $f(1) = \{y\}$. It suffices to show that x and y can be connected by a path in $\bigcup f([0, 1]) = \bigcup_{t \in [0, 1]} f(t)$ because $\dim_d \bigcup f([0, 1]) < \varepsilon$. By Lemma 2.2 in [5], $\bigcup f([0, 1])$ is compact and locally connected. Moreover, $\bigcup f([0, 1])$ is connected. Otherwise, there would be disjoint open sets U and V in X such that both U and V meet $\bigcup f([0, 1])$ and $\bigcup f([0, 1]) \subset U \cup V$. Then, [0, 1] could be separated into non-empty open sets $U' = \{t \in [0, 1] \mid f(t) \subset U\}$ and V' = $\{t \in [0, 1] \mid f(t) \cap V \neq \emptyset\}$, which contradicts to the connectedness of [0, 1]. Thus, $\bigcup f([0, 1])$.

By replacing ε by ∞ , it is shown that X is path-connected if and only if $\operatorname{Fin}_H(X)$ is path-connected.

For a normed linear space X, $\operatorname{Fin}_H(X)$ is a uniform AR by 3.2. Observe that $\operatorname{Fin}_H(X)$ is dense in $\operatorname{Comp}_H(X)$. Then, by Theorem 2 in [9], we have the following:

COROLLARY 3.3. For every normed linear space X, $\operatorname{Fin}_H(X)$ and $\operatorname{Comp}_H(X)$ are uniform AR's and $\operatorname{Fin}_H(X)$ is homotopy dense in $\operatorname{Comp}_H(X)$.

4. Weight of $Fin_H(X)$

For each $k \in \mathbb{N}$, let $\operatorname{Fin}^{k}(X) = \{A \in \operatorname{Fin}(X) | \operatorname{card} A \leq k\}$. The following proposition is similarly proved as Proposition 5.1 of [11].

PROPOSITION 4.1. For every metric space X, $\operatorname{Fin}_{H}(X)$ has the same weight as X.

PROOF. Let D be a dense set in X with card D = w(X). Then, $\operatorname{card} \operatorname{Fin}(D) = w(X)$ because

card
$$D \le \operatorname{card} \operatorname{Fin}(D) = \operatorname{card} \bigcup_{k \in \mathbb{N}} \operatorname{Fin}^k(D) \le \aleph_0 \operatorname{card} D = w(X).$$

For each $A \in \operatorname{Fin}_H(X)$ and $\varepsilon > 0$, we have $B \in \operatorname{Fin}(D)$ such that $d_H(A, B) < \varepsilon$. Therefore $\operatorname{Fin}_H(D)$ is dense in $\operatorname{Fin}_H(X)$. Thus $\operatorname{Fin}_H(X)$ has the same weight as X. \square

Since $\operatorname{Fin}_{H}(X)$ is dense in $\operatorname{Comp}_{H}(X)$, we have the following:

COROLLARY 4.2. For every metric space X, $\operatorname{Comp}_{H}(X)$ has the same weight as X.

5. σ -complete Metrizablity

In this section, we show that the hyperspace $\operatorname{Fin}_{H}(X)$ is σ -completely metrizable.

PROPOSITION 5.1. Let X = (X, d) be a complete metric space. Then the hyperspace $\operatorname{Fin}_{H}(X)$ is σ -completely metrizable.

PROOF. Note that $\operatorname{Cld}_H(X)$ is complete if X is complete [2, Theorem 3.2.4]. Since $\operatorname{Fin}_{H}(X) = \bigcup_{k \in \mathbb{N}} \operatorname{Fin}^{k}(X)$, it is enough to prove that $\operatorname{Fin}_{H}^{k}(X)$ is closed in $\operatorname{Cld}_H(X)$. For each $B \in \operatorname{Cld}_H(X) \setminus \operatorname{Fin}^k(X)$, we have k + 1 many distinct points $b_1, \ldots, b_{k+1} \in B$ and r > 0 such that $\mathbf{B}(b_i, r) \cap \mathbf{B}(b_j, r) = \emptyset$ if $i \neq j$. If $C \in \operatorname{Cld}_H(X)$ satisfies $d_H(B, C) < r$ then there are $c_1, \ldots, c_{k+1} \in C$ such that $d(b_i, c_i) < r$, whence $c_i \neq c_i$ if $i \neq j$. Then card $C \ge \operatorname{card}\{c_1, \ldots, c_{k+1}\} > k$. This implies that $C \in C$ $\operatorname{Cld}_H(X)\setminus\operatorname{Fin}^k(X)$, hence the complement of $\operatorname{Fin}^k(X)$ is open in $\operatorname{Cld}_H(X)$.

For each closed subset Y of a metric space X, $Cld_H(Y)$ can be regarded as a closed subspace of $\operatorname{Cld}_H(X)$.

COROLLARY 5.2. If a metric space X is σ -completely metrizable, then so is $\operatorname{Fin}_H(X)$.

PROOF. We can denote $X = \bigcup_{n \in \mathbb{N}} X_n$, where X_n is a completely metrizable closed subset of X with $X_n \subset X_{n+1}$. By Propositon 5.1, $\operatorname{Fin}_H^k(X_k)$ is a completely metrizable closed subset of $\operatorname{Cld}_H(X_k)$. Since $\operatorname{Cld}_H(X_n)$ is closed in $\operatorname{Cld}_H(X)$, it follows that $\operatorname{Fin}_H(X) = \bigcup_{k \in \mathbb{N}} \operatorname{Fin}_H^k(X_k)$ is σ -completely metrizable. \Box

The following is well-known. For completeness, we give a proof.

PROPOSITION 5.3. For every complete metric space X = (X, d), $\text{Comp}_H(X)$ is complete.

PROOF. Since $\operatorname{Cld}_H(X)$ is complete, it suffices to show that $\operatorname{Comp}_H(X)$ is closed in $\operatorname{Cld}_H(X)$. Let $A \in \operatorname{Cld}_H(X) \setminus \operatorname{Comp}_H(X)$. Since A is complete, A is not totally bounded. Then there exist $\varepsilon > 0$ and $a_i \in A$ $(i \in \mathbb{N})$ such that $d(a_i, a_j) > \varepsilon$ if $i \neq j$. If $B \in \operatorname{Cld}_H(X)$ and $d_H(A, B) < \varepsilon/3$ then we have $b_i \in B$ $(i \in \mathbb{N})$ such that $d(b_i, a_i) < \varepsilon/3$ for each $i \in \mathbb{N}$, whence $d(b_i, b_j) > \varepsilon/3$ if $i \neq j$. Thus, B is not totally bounded, hnce B is not compact. Therefore, $\operatorname{Cld}_H(X) \setminus \operatorname{Comp}_H(X)$ is open.

6. Strong Z_{σ} -space

PROPOSITION 6.1. Let X be a normed linear space with dim $X \ge 1$. Then, Fin_H(X) is a strong Z_{σ} -space.

PROOF. Since $\operatorname{Fin}_H(X) = \bigcup_{k \in \mathbb{N}} \operatorname{Fin}^k(X)$, it is sufficient to prove that each $\operatorname{Fin}^k(X)$ is a strong Z-set in $\operatorname{Fin}_H(X)$. As shown in the proof of Proposition 5.1, $\operatorname{Fin}_H^k(X)$ is a closed subset in $\operatorname{Fin}_H(X)$. Let $\alpha : \operatorname{Fin}_H(X) \to (0, 1)$ be any map. Take $v \in S_X$ and define a map $f : \operatorname{Fin}_H(X) \to \operatorname{Fin}_H(X)$ as follows:

$$f(A) = \left\{ a + \frac{j}{k+1} \alpha(A) v \, | \, a \in A, \, j = 0, \dots, k \right\}.$$

Then it is easy to see that card $f(A) \ge k+1$ and f is α -close to id.

We will show that $\operatorname{Fin}^{k}(X) \cap \operatorname{cl} f(\operatorname{Fin}_{H}(X)) = \emptyset$. Assume the contrary, that is, there is a sequence $A_{i} \in \operatorname{Fin}_{H}(X)$ $(i \in \mathbb{N})$ such that the sequence $f(A_{i})$ has a limit point $A \in \operatorname{Fin}^{k}(X)$. If $\liminf \alpha(A_{i}) = 0$ then by taking a subsequence, we can assume that $\alpha(A_{i}) \to 0$. Since f is α -close to id, it follows that $d_{H}(A_{i}, f(A_{i})) \to 0$, which implies that A_{i} converges to A. But this contradicts the continuity of α and $\alpha(A) > 0$. Therefore, we have $\beta = \liminf \alpha(A_{i}) > 0$. By taking a subsequence, we can assume that $\alpha(A_{i}) \to \beta$. For each $i \in \mathbb{N}$, let

Hyperspaces of finite subsets of non-separable Hilbert spaces

$$A'_i = \left\{ a + \frac{j}{k+1} \beta v \, | \, a \in A_i, \, j = 0, \dots, k \right\}.$$

Then, $A'_i \to A$ because $d_H(f(A_i), A'_i) < |\alpha(A_i) - \beta|$.

Let $\eta = \beta/(k+1) > 0$. Then we have an open neighborhood U_a for each $a \in A$ diam $U_a < \eta$ and $U_a \cap U_{a'} = \emptyset$ if $a \neq a'$. Since $d_H(A'_i, A) \to 0$, there is $i \in \mathbb{N}$ such that $A'_i \subset \bigcup_{a \in A} U_a$. Take any $x \in A_i$. Then

$$\left\{x+\frac{j}{k+1}\beta v \mid j=0,\ldots,k\right\} \subset A'_i \subset \bigcup_{a \in A} U_a.$$

Since card $A \le k$, there are $a \in A$ and $j \ne j' \le k$ such that

$$x + \frac{j}{k+1}\beta v, \quad x + \frac{j'}{k+1}\beta v \in U_a.$$

Then, it follows that

$$\eta = \frac{1}{k+1}\beta \le \left\| \left(x + \frac{j}{k+1}\beta v \right) - \left(x + \frac{j'}{k+1}\beta v \right) \right\| \le \text{diam } U_a < \eta.$$

But this is a contradiction.

7. Universality

The following is Proposition 2.4 of [11]:

PROPOSITION 7.1. An ANR X with weight τ is strongly $\mathfrak{M}_1(\tau)$ -universal if every open set in X is $\mathfrak{M}_1(\tau)$ -universal.

The following is well-known (cf. [3, Chapter VI, Theorem 5.1]):

LEMMA 7.2. The unit sphere S_X of an infinite-dimensional Banach space X with weight τ is homeomorphic to $X \approx \ell_2(\tau)$.

PROPOSITION 7.3. Let X be an infinite-dimensional Hilbert space with weight τ . Then Fin_H(X) is strongly $\mathfrak{M}_1(\tau)$ -universal.

PROOF. By Corollary 3.3 and Propositon 7.1, it suffices to show that every open subset $W \subset \operatorname{Fin}_H(X)$ is $\mathfrak{M}_1(\tau)$ -universal. Let $Y \in \mathfrak{M}_1(\tau)$, $f: Y \to W$ and $\alpha: W \to (0,1)$ be maps. Our purpose is to construct a Z-embedding $g: Y \to W$ which are α -close to f. Define $\beta: W \to (0,1)$ by

187

$$\beta(A) = \frac{1}{2} \min\{\alpha(A), d_H(A, \operatorname{Fin}_H(X) \setminus W)\}.$$

Note that if $g: Y \to \operatorname{Fin}_H(X)$ is 2β -close to f then g is α -close to f and $g(Y) \subset W$. Each $v \in \mathbf{S}_X$ has an open neighborhood U in \mathbf{S}_X such that $\langle v_1, v_2 \rangle > 0$ for each $v_1, v_2 \in U$, where $\langle v_1, v_2 \rangle$ is the inner product. Since $\mathbf{S}_X \approx \ell_2(\tau)$ is $\mathfrak{M}_1(\tau)$ -universal, we have a closed embedding $h: Y \to \mathbf{S}_X$ such that $\langle h(y), h(y') \rangle > 0$ for each $y, y' \in Y$.

First, we define $p: Y \to \operatorname{Fin}_H(\mathbf{R})$ by

$$p(y) = \{ \langle h(y), a \rangle | a \in f(y) \}$$
 for each $y \in Y$.

To see the continuity of p, let $\varepsilon > 0$ and $y \in Y$. For each $a \in f(y)$, there is $\delta_a > 0$ such that

$$v \in \mathbf{S}_X, \quad b \in X, \quad \|h(y) - v\|, \quad \|a - b\| < \delta_a \Rightarrow |\langle h(y), a \rangle - \langle v, b \rangle| < \varepsilon.$$

Since f(y) is finite, we have $\delta = \min\{\delta_a | a \in f(y)\} > 0$. By the continuity of h and f, we have $\eta > 0$ such that if $y' \in Y$ and $d(y, y') < \eta$ then

$$||h(y) - h(y')|| < \delta$$
 and $d_H(f(y), f(y')) < \delta$.

The last inequality implies that for each $a \in f(y)$, there is $b_a \in f(y')$ with $||a - b_a|| < \delta \le \delta_a$, whence

$$d(\langle h(y), a \rangle, p(y')) \le |\langle h(y), a \rangle - \langle h(y'), b_a \rangle| < \varepsilon.$$

Conversely, for each $b \in f(y')$, there is $a_b \in f(y)$ with $||b - a_b|| < \delta \le \delta_{a_b}$, whence

$$d(\langle h(y'), b \rangle, p(y)) \le |\langle h(y'), b \rangle - \langle h(y), a_b \rangle| < \varepsilon$$

Therefore, $d(y, y') < \eta$ implies $d_H(p(y), p(y')) < \varepsilon$, so p is continuous.

Next, define $q, r: Y \to \operatorname{Fin}_H(\mathbf{R})$ by

$$q(y) = \{0\} \cup \{s_i - s_{i-1} \mid 2 \le i \le m\},$$

$$r(y) = \{0, \beta(f(y))\} \cup \{x \in q(y) \mid x \le \beta(f(y))\}$$

where $s_1 < \cdots < s_m$ with $p(y) = \{s_i \mid i \le m\}$. For each $y \in Y$, let

$$u(y) = \min\{x > 0 \mid x \in r(y)\}.$$

To see the continuity of q, let $\varepsilon > 0$ and $y \in Y$. Assume that $y' \in Y$ is sufficiently close to y so that p(y') satisfies $d_H(p(y), p(y')) < \eta$, where $\eta = \min\{\varepsilon/2, u(y)/3\} > 0$. Denote $p(y') = \{t_j \mid j \le n\}$, where $t_1 < \cdots < t_n$. Then, for

each $i \le m$, we have $j \le n$ such that $|s_i - t_j| < \eta$. Since $p(y') \subset \bigcup_{i \le m} \mathbf{B}(s_i, \eta)$ and η -balls $\mathbf{B}(s_i, \eta)$ are pairwise disjoint, for each $i \le m$, there is $k \le n$ such that

$$k = \max\{j \le n \mid t_j \in \mathbf{B}(s_i, \eta)\} = \min\{j \le n \mid t_j \in \mathbf{B}(s_{i+1}, \eta)\} - 1.$$

Then, it follows that

$$|(s_{i+1} - s_i) - (t_{k+1} - t_k)| \le |s_{i+1} - t_{k+1}| + |t_k - s_i| < 2\eta \le \varepsilon$$

This means that $d((s_{i+1} - s_i), q(y')) < \varepsilon$. On the other hand, for each $j \le n$, we have $i, i' \le m$ such that $|t_j - s_i|, |t_{j+1} - s_{i'}| < \eta$. Then, it is easy to see that $i \le i' \le i + 1$. If i' = i then

$$|(t_{j+1}-t_j)-0| = |t_{j+1}-t_j| \le |t_{j+1}-s_{i'}| + |t_j-s_i| < 2\eta \le \varepsilon.$$

If i' = i + 1 then

$$|(t_{j+1}-t_j)-(s_{i+1}-s_i)| \le |t_{j+1}-s_{i'}|+|s_i-t_j| < 2\eta \le \varepsilon.$$

These mean that $d((t_{j+1} - t_j), q(y)) < \varepsilon$. Thus, we have $d_H(q(y), q(y')) < \varepsilon$. Consequently, q is continuous.

To see the continuity of r, let $\varepsilon > 0$ and $y \in Y$. By the continuity of q and β , we have $\delta > 0$ such that if $y' \in Y$ and $d(y, y') < \delta$ then

$$|\beta(f(y)) - \beta(f(y'))| < \varepsilon$$
 and $d_H(q(y), q(y')) < \varepsilon$.

For each $a \in q(y)$ with $a < \beta(f(y))$, there is $b_a \in q(y')$ such that $|a - b_a| < \varepsilon$. If $a \le \beta(f(y')) - \varepsilon$ then $b_a \le \beta(f(y'))$, whence $d(a, r(y')) \le |a - b_a| < \varepsilon$. If $\beta(f(y')) - \varepsilon < a$ then $d(a, r(y')) \le |a - \beta(f(y'))| < \varepsilon$ because $a < \beta(f(y)) < \beta(f(y')) + \varepsilon$. On the other hand, for each $b \in q(y')$ with $b < \beta(f(y'))$, there is $a_b \in q(y)$ such that $|b - a_b| < \varepsilon$. If $b \le \beta(f(y)) - \varepsilon$ then $a_b \le \beta(f(y))$, i.e., $a_b \in r(y)$. Hence, $d(b, r(y)) \le |b - a_b| < \varepsilon$. If $\beta(f(y)) - \varepsilon < b$ then $d(b, r(y)) \le |b - a_b| < \varepsilon$. If $\beta(f(y)) - \varepsilon < b$ then $d(b, r(y)) \le |b - \beta(f(y))| < \varepsilon$ because $b < \beta(f(y)) < \beta(f(y)) + \varepsilon$. Therefore, $d(y, y') < \delta$ implies $d_H(r(y), r(y')) < \varepsilon$, hence r is continuous.

Next, we define a map $g: Y \to Fin_H(X)$ as follows:

$$g(y) = \{a + bh(y) \mid a \in f(y), b \in r(y)\}.$$

Since f and r are continuous, it is easy to see that $g: Y \to \operatorname{Fin}_H(X)$ is continuous. Since diam $r(y) = \beta(f(y))$, it follows that $d_H(f(y), g(y)) < 2\beta(f(y))$. It should be remarked that

(*)
$$\langle h(y), x \rangle - \min p(y) \in \{0\} \cup [u(y), \infty)$$
 for each $x \in g(y)$.

Indeed, let $x = a + bh(y) \in g(y)$, where $a \in f(y)$ and $b \in r(y)$. Then,

189

 $\min p(y) \le \langle h(y), a \rangle \le \langle h(y), a \rangle + b \| h(y) \| = \langle h(y), a + bh(y) \rangle = \langle h(y), x \rangle.$

Since b = 0 or $b \ge u(y) > 0$, we have (*).

To see that g is injective, assume that there are $y \neq y' \in Y$ with g(y) = g(y'). Since $h(y) \neq h(y')$, it follows that

$$0 < \|h(y) - h(y')\|^{2} = \|h(y)\|^{2} + \|h(y')\|^{2} - 2\langle h(y), h(y') \rangle$$
$$= 2(1 - \langle h(y), h(y') \rangle),$$

hence $0 < \langle h(y), h(y') \rangle < 1$. Let $a \in f(y)$ with $\langle h(y), a \rangle = \min p(y)$. Note $a \in g(y')$ because $f(y) \subset g(y) = g(y')$. If $a \notin f(y')$ then there are $a' \in f(y') \subset g(y') = g(y)$ and $0 < b \le \beta(f(y'))$ such that a = a' + bh(y'), whence

$$\langle h(y), a' \rangle = \langle h(y), (a - bh(y')) \rangle = \langle h(y), a \rangle - b \langle h(y), h(y') \rangle < \min p(y).$$

This contradicts to (*). Therefore, $a \in f(y')$, hence $a + u(y')h(y') \in g(y') = g(y)$. On the other hand, we have no points $c \in g(y)$ with min $p(y) < \langle h(y), c \rangle < \min p(y) + u(y)$ by (*). Then,

$$\min p(y) + u(y) \le \langle h(y), (a + u(y')h(y')) \rangle$$
$$= \langle h(y), a \rangle + u(y') \langle h(y), h(y') \rangle$$
$$= \min p(y) + u(y') \langle h(y), h(y') \rangle.$$

Therefore, $0 < u(y)/u(y') \le \langle h(y), h(y') \rangle < 1$. By replacing y and y' by each others, we get 0 < u(y')/u(y) < 1 but this is impossible.

To see that g is a closed map, let $A \subset Y$ be a closed set in Y and $y_i \in A$, $i \in \mathbb{N}$, such that $g(y_i)$ converges to $G \in W$. Then $\liminf \beta(f(y_i)) > 0$. Otherwise, by taking a subsequence, we could assume that $\dim r(y_i) = \beta(f(y_i)) \to 0$, hence $d_H(f(y_i), g(y_i)) \to 0$ $(i \to \infty)$. In this case, $f(y_i)$ converges to G, hence $\beta(f(y_i)) \to \beta(G) > 0$, which is a contradiction. Now, for each $i \in \mathbb{N}$, let

$$x_i \in f(y_i)$$
 and $x'_i = x_i + \beta(f(y_i))h(y_i) \in g(y_i)$

Since $x_i \in g(y_i)$ and $g(y_i) \to G$, we have $z_i \in G$ such that $d(x_i, z_i) \to 0$. Since G is finite, by taking a subsequence, it can be assumed that all z_i are the same point $z \in G$, whence $x_i \to z$. By the same way, we can assume that there is $z' \in G$ such that $x'_i \to z'$. Note that $z \neq z'$ because $\liminf \beta(f(y_i)) > 0$. Hence, this implies that $h(y_i)$ converges to $(z'-z)/||z'-z|| \in \mathbf{S}_X$. Since h is a closed embedding, y_i converges to some $y \in A$, which implies that $G = g(y) \in g(A)$.

To see that g(Y) is a Z-set in W, for each a map $\alpha : W \to (0,1)$, take $y_0 \in Y$ and let

$$\gamma(A) = \frac{1}{2} \min\{\alpha(A), d_H(A, \operatorname{Fin}_H(X) \setminus W), u(y_0)\} > 0.$$

Define maps $p', q', r' : W \to \operatorname{Fin}_H(\mathbf{R})$ and $\varphi : W \to W$ as follows:

$$p'(A) = \{ \langle h(y_0), a \rangle | a \in A \},\$$
$$q'(A) = \{ 0 \} \cup \{ s_i - s_{i-1} | 2 \le i \le m \},\$$
$$r'(A) = \{ 0, \gamma(A) \} \cup \{ x \in q'(A) | x \le \gamma(A) \},\$$
$$\varphi(A) = \{ a + bh(y_0) | a \in A, b \in r'(y) \},\$$

where $s_1 < \cdots < s_m$ with $p'(A) = \{s_i | i \le m\}$. If $g(Y) \cap \varphi(W) \ne \emptyset$ then this intersection is $\{g(y_0)\}$ by the same way as above which shows the injectivity of g. If there is $A \in W$ such that $\varphi(A) = g(y_0)$ then for each $a \in A$ with $\langle h(y_0), a \rangle = \min p(y_0)$, we have $a' = a + \gamma(A)h(y_0) \in \varphi(A)$. But this is impossible because $\gamma(A) < u(y_0)$.

REMARK. In the above proof, when α is extended to a map $\tilde{\alpha} : \tilde{W} \to (0,1)$ of an open set \tilde{W} in $\operatorname{Comp}_H(X)$ such that $W = \tilde{W} \cap \operatorname{Fin}_H(X)$, it can be seen that g(Y) is closed in \tilde{W} as follows: In this case, β has the natural extension $\tilde{\beta} : \tilde{W} \to (0,1)$. If $g(y_i)$ converges to $G \in \tilde{W}$, we have $\liminf \beta(f(y_i)) > 0$ by the same arguments. Moreover, even if G is not finite, there is a subsequence of $(z_i)_{i \in \mathbb{N}}$ converging to some $z \in G$ because G is compact. Then, the corresponding subsequence of $(x_i)_{i \in \mathbb{N}}$ converges to z. Thus, we can assume that $x_i \to z$. Similarly, we can assume that $(x'_i)_{i \in \mathbb{N}}$ converges to some $z' \in G$. Hence, we have $G \in g(Y)$ by the same way.

PROPOSITION 7.4. Let X be an infinite-dimensional Hilbert space with weight τ . Then Comp_H(X) is strongly $\mathfrak{M}_1(\tau)$ -universal.

PROOF. The proof is similar to Propositon 7.3. Let $f: Y \to W$ be a map from $Y \in \mathfrak{M}_1(\tau)$ to an open set $W \subset \operatorname{Comp}_H(X)$. For each open cover \mathscr{U} of W, let \mathscr{V} be an open star-refinement of \mathscr{U} . Since $\operatorname{Fin}_H(X)$ is homotopy dense in $\operatorname{Comp}_H(X)$, it easily follows that $W \cap \operatorname{Fin}_H(X)$ is homotopy dense in W. Then, fis \mathscr{V} -close to a map $f': Y \to W \cap \operatorname{Fin}_H(X)$. By Propositon 7.3, f' is \mathscr{V} -close to a Z-embedding $g: Y \to W \cap \operatorname{Fin}_H(X)$, where g(Y) is closed in W by the above remark. Then, it follows that $g: Y \to W$ is a Z-embedding which is \mathscr{U} -close to f.

THEOREM 7.5. If a metric space X is homeomorphic to $\ell_2(\tau)$ then

$$\operatorname{Fin}_{H}(X) \approx \ell_{2}(\tau) \times \ell_{2}^{f}$$
 and $\operatorname{Comp}_{H}(X) \approx \ell_{2}(\tau)$.

PROOF. Since the topology of $\operatorname{Comp}_H(X)$ coincides with the Vietoris topology, we have $\operatorname{Fin}_H(X) \approx \operatorname{Fin}_H(\ell_2(\tau))$ and $\operatorname{Comp}_H(X) \approx \operatorname{Comp}_H(\ell_2(\tau))$. It has been proved that $\operatorname{Fin}_H(\ell_2(\tau))$ satisfies the all conditions in Propositon 2.1. Then $\operatorname{Fin}_H(X) \approx \ell_2(\tau) \times \ell_2^f$. On the other hand, $\operatorname{Comp}_H(\ell_2(\tau))$ is a strongly $\mathfrak{M}_1(\tau)$ -universal complete metric AR with weight τ . By $\operatorname{Toruńczyk's}$ characterization of $\ell_2(\tau)$ [12, Proposition 2.1] (cf. [13]), we have $\operatorname{Comp}_H(X) \approx \ell_2(\tau)$.

For a dense subspace $Z = \ell_2(\tau) \times \ell_2^f$ of $\ell_2(\tau) \times \ell_2 \approx \ell_2(\tau)$, the unit sphere \mathbf{S}_Z contains a copy $\mathbf{S}_{\ell_2(\tau)} \times \{0\}$ of $\mathbf{S}_{\ell_2(\tau)}$ as closed set. Then there is a closed embedding $h: Y \to \mathbf{S}_Z$ for each $Y \in \mathfrak{M}_1(\tau)$. By the same proof as Propositon 7.3, we can show the $\mathfrak{M}_1(\tau)$ -universality of $\operatorname{Fin}_H(Z)$. Consequently, we have the following:

THEOREM 7.6. If a metric space X is homeomorphic to $\ell_2(\tau) \times \ell_2^f$ then $\operatorname{Fin}_H(X) \approx \ell_2(\tau) \times \ell_2^f$.

8. Acknowledgment

The author would like to express thanks to Katsuro Sakai and Kotaro Mine for their helpful comments and suggestions.

References

- T. Banakh, M. Kurihara and K. Sakai, Hyperspaces of normed linear spaces with the Attouch-Wets topology, Set-Valued Analysis 11 (2003), 21–36.
- [2] Gerald Beer, Topologies on Closed and Closed Convex Sets, MIA 268, Kluwer Acad. Publ., Dordrecht, 1993.
- [3] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, MM 58, Polish Sci. Publ., Warsaw, 1975.
- [4] D. W. Curtis, Hyperspaces homeomorphic to hilbert space, Proc. Amer. Math. Soc. 75 no. 1 (1979), 126–130.
- [5] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to N₀-dimensional linear spaces, Topology Appl. 19 (1985), 251–260.
- [6] W. Kubiś, K. Sakai and M. Yaguchi, Hyperspaces of separable Banach spaces with the Wijsman topology, Topoloogy Appl. 148 (2005), 7–32.
- [7] M. Kurihara, K. Sakai and M. Yaguchi, Hyperspaces with the Hausdorff metric and uniform ANR's, J. Math. Soc. Japan, 57 no. 2 (2005), 523–535.
- [8] E. Michael, Uniform AR's and ANR's, Composito Math. 39 (1979), 129-139.
- [9] K. Sakai, The completions of metric ANR's and homotopy dense subsets, J. Math. Soc. Japan, 52 (2000), 835–846.

- [10] K. Sakai and M. Yaguchi, Characterizing manifolds modeled on certain dense subspaces of nonseparable Hilbert spaces, Tsukuba J. Math. 27 (2003), 143–159.
- K. Sakai and M. Yaguchi, Hyperspaces of Banach spaces with the Attouch-Wets topology, Set-Valued Anal. 12 (2004), 329–344.
- [12] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
- [13] H. Toruńczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89–93.

(M. Yaguchi) Institute of Mathematics University of Tsukuba Tsukuba, 305-8571, Japan E-mail address: masato@math.tsukuba.ac.jp