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REAL HYPERSURFACES OF A NONFLAT COMPLEX
SPACE FORM IN TERMS OF THE RICCI TENSOR

By
U-Hang K1 and Setsuo NAGAI

Abstract. We know the fact that there are no real hypersurfaces
with parallel Ricci tensors in a nonflat complex space form (cf. [5]).
In this paper we investigate real hypersurfaces in a nonflat complex
space form using some conditions of the Ricci tensor S which are
weaker than VS = 0. We characterize Hopf hypersurfaces of a non-
flat complex space form.

0 Introduction

A Kihler manifold of constant holomorphic sectional curvature c is called
a complex space form, which is denoted by M,(c). A complete and simply
connected complex space forms are isometric to a complex projective space CP,,
a complex Euclidean space C" or a complex hyperbolic space CH, as ¢ > 0,
c=0or c<O.

Let M be a real hypersurface of M,(c). Then M has an almost contact
metric structure (¢, ¢&,7,g) induced from the complex structure J and the Kdhler
metric of M,(c) (for details see §1). The structure vector £ is said to be principal
if A = af is satisfied, where A4 is the shape operator of M and o = #(A4¢&). A real
hypersurface is said to be a Hopf hypersurface if the structure vector & of M is
principal.

Typical examples of real hypersurfaces in CP, are homogeneous ones which
are orbits under subgroups of PU(n + 1). The complete classification of them was
obtained by Takagi [10] as follows:

THEOREM T [10]. Let M be a homogeneous real hypersurface of CP,. Then
M is a tube of radius r over one of the following Kdihler submanifolds:
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(A1) a hyperplane CP,_,, where 0 <r <%,

(A2) a totally geodesic CPy (1 <k <n-—2), where 0 <r<Z,

(B) a complex quadric Q,_1, where 0 <r <%,

(C) CPy x CP(,_y))2, where 0 <r <% and n>5 is odd,

(D) a complex Grassmann G, sC, where 0 <r <jand n=9,

(E) a Hermitian symmetric space SO(10)/U(S), where 0 < r <% and n = 15.

Also Berndt [I] classified all Hopf real hypersurfaces in CH, with constant
principal curvatures as follows:

THEOREM B [1]. Let M be a real hypersurface of CH,. Then M has constant
principal curvatures and & is principal if and only if M is locally congruent to one
of the following:

(Ao) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere, or a tube over a hyperplane CH,_,,
(A2) a tube over a totally geodesic CHy (1 <k <n-2),

(B) a tube over a totally real hyperbolic space RH,.

Let V and S be the Levi-Civita connection and the Ricci tensor of M, re-
spectively. There are many studies about Ricci tensors of real hypersurfaces (cf.
[2], 3] [4] [5]) [6]) [7), [8] [9]). Very important fact is that there are no real
hypersurfaces with parallel Ricci tensors S (that is, VxS = 0 for each vector field
X tangent to M) in M,(c), ¢ #0, n>3 (cf. [5]). Especially, there exist no
Einstein real hypersurfaces M in M,(c), ¢ #0, n > 3. So, it is natural to in-
vestigate real hypersurfaces M by using some conditions (on the derivatives of S)
which are weaker than VS = 0.

Recently, the first author, Hwang and Kim proved the following theorem:

THEOREM 0.1. Let M be a real hypersurface in a nonflat complex space form.
If the Ricci tensor S of M satisfies VeS =0, Vyy,eS =0 and SE = g(SE, &)E, then
M is locally congruent to one of the homogeneous real hypersurfaces of Theorem T
and Theorem B.

In this paper we pay particular attention to the fact that for each Hopf hyper-
surface M in M,(c), ¢ # 0 the characteristic vector ¢ of M is an eigenvector of
the Ricci tensor S of M. So it is natural to consider a problem that if the vector &
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is an eigenvector of the Ricci tensor S of a real hypersurface M in M,(c), ¢ # 0,

18 M a Hopf hypersurface?
The purpose of this paper is to eatablish the following theorem which gives a

partial answer to this problem:

THEOREM 4.1. Let M be a real hypersurface in My,(c), ¢ > 0. If it satisfies
Vgv.cS = 0 and at the same time satisfies S¢ = a{ for some constant o, then M is a
Hopf hypersurface.

The authors would like to express their sincere gratitude to the referee for his
valuable comments.

1 Preliminaries

Let M be a real hypersurface immersed in a complex space form (M,(c), G)
with almost complex structure J and the Kédhler metric G of constant holomorphic
sectional curvature ¢, and let C be a unit normal vector field on M. The
Riemannian connection V in M,(c) and V in M are related by the following
formulas for any vector fields X and Y on M:

VyX =VyX +g(4Y,X)C, (1.1)
VyC = —AX, (1.2)

where g denotes the Riemannian metric on M induced from that G of M,(c) and
A is the shape operator of M in M,(c). An eigenvector X of the shape operator
A is called a principal curvature vector. Also an eigenvalue A of 4 is called a
principal curvature. It is known that M has an almost contact metric structure
induced from the almost complex structure J on M,(c), that is, we define a tensor
field ¢ of type (1,1), a vector field &, an 1-form # on M by g(¢X,Y) = G(JX,Y)
and ¢g(&, X) =n(X) = G(JX, C). Then we have

$°X = -X +n(X)&, g(&é) =1, ¢&E=0. (1.3)

From we see that
(Vx@)Y =n(Y)AX — g(4X, Y)<, (1.4)
Vxl = ¢AX. (1.5)

Since the ambient space is of constant holomorphic sectional curvature c,
equations of the Gauss and Codazzi are respectively given by
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R(X,Y)Z = 2{4(Y.2)X — g(X.Z)Y + g($Y,2)¢X — g(¢X, Z)$Y

—29(¢X, Y)PZ} + g(AY,Z)AX — g(AX,Z)AY,  (1.6)

4

(VxA)Y = (VyA)X =7

{n(X)8Y —n(Y)pX — 29(¢X, Y)¢} (1.7)

for any vector fields X, Y and Z on M, where R denotes the Riemannian
curvature tensor of M. We shall denote the Ricci tensor of type (1,1) by S. Then
it follows from (1.6) that

SX = 2{(2;1 + 1)X = 39(X)E} + hAX — 42X, (1.8)
where h = trace 4. Further, using [1.5), we obtain
3
(VxS)Y = —2c{g(¢4X, Y)C +n(Y)AX} + (Xh)AY

+ (hI — A)(VxA)Y — (VyA)AY, (1.9)

where / is the identity map.

To write our formulas in convention forms, we denote a = n(A¢&), B = n(A>¢&),
u? = p —a? and Vf by the gradient vector field of a function f on M. In the
following, we use the same terminology and notation as above unless otherwise
stated.

If we put U = V¢, then U is orthogonal to the structure vector field £. Then

it is, using and [1.5), seen that
pU = —A + ad, (1.10)
which shows that g(U, U) = B — a?. By the definition of U, (1.3) and it is
verified that
g(Vx&, U) = g(4%¢, X) — ag(A¢, X). (1.11)

Now, differentiating covariantly along M and using [(1.4) and ((1.5), we
find

n(X)g(AU + Va,Y) + g(¢X,VyU)
which enables us to obtain

(VA)E = 24U + Va (1.13)
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because of (1.7). From we also have
V:U =3¢AU + adé — B¢+ ¢Va, (1.14)

where we have used (1.3), (1.5) and (1.11).
If A —g(A& E)E #0, then we can put

Aé = ol + uW, (1.15)

where W is a unit vector field orthogonal to . Then from it is seen that
U = ugW and hence g(U,U) = u?, and W is also orthogonal to U. Thus, we
see, making use of [1.5), that

rg(Vx W, &) = g(AU, X). (1.16)

2 Real Hypersurfaces Satisfying S& = g(S¢&,&)¢E

Let M be a real hypersurface of a nonflat complex space form M,(c). If it
satisfies

then we have by
A*E = hAE + (B — ha)e, (2.2)

where we have put g(S¢&,¢) = o,
ﬁ—ha=§(n—1)-a. (2.3)

In what follows we assume that u # 0 on M, that is, £ is not a principal
curvature vector field and we put Q = {pe M |u(p) # 0}. Then Q is an open
subset of M, and from now on we discuss our arguments on .

From and [2.2), we see that
AW =pué+ (h— o)W (2.4)
and hence
A*W = hAW + (B — ha)W (2.5)

because of u # 0.
Now, differentiating covariantly along Q, we find

(VxA)W + AVx W = (Xp) + pVxE+ X(h— )W + (h — a)Vx W. (2.6)

By taking the inner product with W in the last equation, we obtain
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g(Vx AW, W) = —29(4X,U) + Xh — Xu (2.7)

since W 1s a unit vector field orthogonal to £. We also have by applying & to
(2.6)

Hg(VxA)W,&) = (h—2a)g(AU, X) + p(Xu), (2.8)
where we have used [1.16), which together with the Codazzi equation (1.7) gives

p(Viw A)E = (h — 20)AU — g U+ uVp, (2.9)
W(VeA)W = (h— 20)AU — § U+ uvp. (2.10)

Replacing X by ¢ in (2.6) and taking account of (2.10), we find
¢

4
= u(EP)E + pPU + p(Eh — Ea) W, (2.11)

By the way, from ¢U = —uW we have

(h—20)AU — - U + uVu+ u{AV: W — (h — 2)V: W'}

g(AU, X)E — ¢Vx U = (X)W + uVx W.
Replacing X by ¢ in this and using and (1.14), we get
uVeW =34U0 — alU + Vo — (a)é — (E) W, (2.12)

which implies

Wa=¢p. (2.13)

From the last equations, it follows that
1
342U = 2hAU + AVa+5Vp — Vo + (och —B —2) U

= 2U(Wa)E + u(ERW — (h - 20)(Ea)E, (2.14)
which enables us to obtain
EB = 2a(&a) + 2u(Wa). (2.15)
Differentiating covariantly and making use of [1.5), we get
(VxA)AE + A(VyA)E + A*PAX — hAPAX
= (Xh)AE + h(VxA)E+ X (B — ha)é + (B — ha)pAX, (2.16)



Real hypersurfaces of a nonflat complex space form 517
which together with (1.7) implies that
3 {(VnX) —uX ()} +5 (h = 0g($Y, X) — g(4°¢AX, Y)
+9(A°¢AY, X) + 2hg($AX, AY) — (B — ha){g(¢pAY, X) — g(44X, Y)}
=9g(4Y,(VxA)E) — g(AX, (VyA)E) + (Yh)g(AL, X) — (Xh)g(4S, Y)
+ Y(B — ho)n(X) — X (B — ha)n(Y), (2.17)

where we have defined an 1-form u by u(X) = g(U, X) for any vector field X. If
we replace X by uW to the both sides of and take account of [1.13), [2.4),
(2.5), and [2.9), then we obtain

(3a—2h)A2U+z(h2+ﬁ—2ha+§)AU+(h—a)(ﬁ—ha—§>u

= uAVu + (ah — f)Va — % (h — )VB + u?Vh

— u(Wh)AE — pW (B — ha)¢. (2.18)
Using [1.15), the equation can be written as
A(VxA)E + (= B)(Vx A)E + u(Vo A) W

= (XM)AE + X (B — ha)é + (B — ha)gAX + hAPAX — A*¢AX.

Thus, replacing X by af + uW in this and making use of [1.5), (1.13), (1.15) and
(2.7)-(2.9), we find

2hA2U+2(och —p— h? —§>AU+ (hza—hﬁ+§h—%ca>u

= g(AE, Vh)AE — %AV,B + % (h — 20)VB + BVa
— 1PV + g(AE, V(B — ha))E. (2.19)

3 Real Hypersurfaces Satisfying Vsv.:S =0 and S = g(S¢&,&)¢

We continue now, our arguments under the same hypothesis S& = g(S¢&, &)¢
as in section 2. Furthermore, suppose that V4y,:S = 0, that is, V'S = 0 since we
now suppose that u # 0.

Then, by replacing X by W, we have from (1.9
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- %c(h — ) (u(Y)E + n(Y)U) + p(Wh)AY + uh(Vy A)Y
= pA(VwA)Y — u(VwA)AY, (3.1)

where we have used and (2.4). If we replace Y by W and make use of (2.7)
and (2.9), then we find

c

(Wh)AW = hAU ~ 3

1
U—2A2U+5V/>’—oth+AVh—AVa (3.2)
because of u # 0.

In the following we assume that o is constant on M and then f — ha =
constant. In this case we notice here that the following fact:

REMARK 3.1. A—a#0 on Q.

In fact, if not, then we have h = « and hence B — «? = constant, because
o = constant. Thus (3.2) implies Wh = Wa =0 and hence

242U = 0 AU — % U. (3.3)

Further, and [(2.18) turns out respectively to

242U - 204U + <oc2 iy - 45) U = —AVa + (o) A, (3.4)
aA2U+2(ﬂ—a2+§)AU=O. (3.5)

It is, using (3.3)-(3.5), verified that « # 0 on this set.
Combining with 3.5), we see that

aAU=2<a2-ﬁ—§)U (3.6)
and thus AU = vU because of o # 0, where we have put
2 c
av=2a —,B——Z . (3.7)

From this and [3.3), we obtain
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v2+ﬂ~oc2+§:0. (3.8)
Therefore v = constant # 0 because of [3.3]. Hence it is, using [3.7), seen that

o = constant and thus

3v2—2ocv+oc2——[3—§=0,

which together with and [3.8), produces a contradiction. Consequently
h—a#0 on Q is proved. In what follows we assume that 7 — o # 0 is satisfied

everywhere.
Differentiating covariantly, we find

(VxS)E+ SVx& =aVx¢
because o = constant is assumed, which together with hypothesis VS = 0 yields

SVwé = oVyi. (3.9)

By the way we have uVyé = (h—o)U with the aid of and (2.4),
implies SU = oU because of Remark 3.1. Hence leads to

A2U=hAU+(,B—hoc+%c)U. (3.10)

From we have
VB = aVh + hVa. (3.11)

Thus is reduced to

u(Wa) = (h —2a)(Ea) + a(Eh). (3.12)
Using ((1.15), (3.10) and [(3.12), the equation (2.14) turns out to be
hAU +2(f—ha+c)U = (éh)Aé—AVoz+hVoz—%Vﬂ. (3.13)

From and (2.10), we also find

(Zﬁ — 2ho+ %)AU + {h(hoc —B)+ 2 (o — 8h)} U + g(AE, Vh) AL

= %AVﬂ — pVa + (a - %h) VB + u*Vh. (3.14)
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Because of (3.2) and [3.10), we see that

(Wh)AW = —hAU—2(,B—hot+c)U+AVh—AVoc+%Vﬁ—oth,

which together with [(3.10) and 3.11) gives

AVh = (Wh)AW + (Eh)AE. (3.15)
Making use of [3.13) and [3.15), we have from
(48 — dha + h* 4+ ) AU + Gca - 2ch> U
= oa(Wh)AW — {(a — h)(Eh) + 2u(Wh) } AL
+ (Zozh —2/3—%}:2) Va + (Zﬁ—%ha)Vh. (3.16)

If we use [2.2), and [(3.10), then above equation implies

3

Zc{(4/3—4hoc +h2 4+ 0)AU + (%coc — 2ch) U}

1
= (Zah -28 - 5}:2) {A°Va — hAVo — (B — ha)Va}
+ (213 - %ha) {A*Vh — hAVh — (B — ha)Vh},
which together with yields

%c{(4ﬂ — 4ha + h? 4+ ¢)AU +§(3oc - 4h)U}
= <2ah — 28— %hz) {A*Va — hAVa — (B — ha)Va}

+<2ﬂ—%ha) (B — ha){(Wh)W + (ER)E — Vh). (3.17)

On the other hand, we have from

A*Va — hAVa + (hz+2ﬁ——2hoc+2c)AU+h(ﬂ—ha+%c)U

= (eh) A% ~ 5 AV,
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where we have used (3.10), or using 3.11) and [3.14),
A’V — hAVo + (f — ha)Va

— (4hoc—4ﬁ—h2 —gc)AU+§(5h—3a)U

1

— 5H*Va+ (/3 - %ha) Vh+ (Eh)A%E — g(AE, V)AL, (3.18)

If we take the inner product ¢ with this and make use of (1.15) and [2.2), then we
obtain

poi(Wh) = (2hoc Y- %hz) (&a) + (2/3 - %ha - az) Eh).  (3.19)
Substituting (3.18) into and taking account of [3.16), we find

%c{cAU +5(Ba—4)U + (h - ) <2cxh — 28 —%hz)dU}

= h(h — o) (B — ha){Vh — (Zh)E — (WRYW'). (3.20)

Applying A to both sides of this and using and (3.15), we have

{%(3& —2h) + (h— a) (2ah — 28 —%hz)}AU + c(ﬂ - hoc+f—1c> U=0. (321)

LEMMA 3.1. Let M be a real hypersurface of My(c) (¢ #0). If it satisfies
VwS =0 and S& = o6& for some constant o, then we have

AU = U (3.22)
on Q, where u*A = g(AU, U).

PrROOF. Let Qq be a set of points in M such that || AU — AU|| # 0 on Q and
suppose that o be nonempty. If f — hot—i—%c # 0, then we have from (3.21)

(3o — 2h) + (h —oz)<2cxh —2/3—%;12) #0

NI o

and hence is valid. Thus it is, using (3.21), seen that

[)’—hoH—%c:O (3.23)

and therefore h(h?> —ah —c) =0 on Qy. So we have
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h* —oh—c=0 (3.24)

on Q. In fact, if not, then we have A = 0. Thus [3.10) and [3.23) are respectively
to

AU =0, /)’+%c=0.

Hence becomes 2(f + c¢)U + AVa = 0. But, by we have Va = aU.
Combining the last two equations, we obtain f+ ¢ =0, a contradiction. Thus

3.24) is accomplished.
Differentiating (3.24), and using [3.23), we find

2hVh = aVh + hVa = VB. (3.25)
From this and we obtain
AV = 2h{(Wh)AW + (Eh)AE}. (3.26)
If we take account of (3.23)—(3.26), then turns out to be
—cAU + 2 (o — ShYU = (h — o)(Eh)AE — pu(Wh) AE + h(Wh) AW
+ (p? + ah — ¢)Vh — BVa. (3.27)

On the other hand, we have from

R2AU + %hU = (o — h)(ER)AE + (o — 2h)(Wh)AW + cVh

because of (3.24)—(3.26). Comparing with the last two equations, it follows that
(h* — c)AU + %c(a -hU
= (o0 — h)(Wh)AW — u(Wh)AE + (B — «* + ah)Vh — BV
Applying this by A4 and making use of [(2.2), and ((3.23), we find

{hz(hz -c)+ %ch(a - h)}AU

= h(a — h)(Wh){hAW - %CW} — ph(Wh) (hAf - %cé)

+ h(B — a* + ah)AVh — BhAVa,
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which together with [(3.15) and (3.23)-(3.25) implies that

{(och + c)oh —Z—cz}AU

— h(o — h)(Wh) (hAW - %cw) — uh(Wh) (hAf - %cé)

3 lh — ) {(Wh)AW + (Eh)AE}. (3.28)

T2

Furthermore, using and [2.5), we have from
3
(och—}-c)ah—zc AU =0
because U is orthogonal to ¢ and W. Hence we have
3 2 3,
(a” + cou)h + ca —4¢ =0

on Q. Since ¢ # 0, it follows that

3.2 2
N ZC — Cca
h—m- (3-29)

From this and we have 12a* + 52ca? —9¢> =0 on Q. So we see that
Va=0 and hence VA =0 because of [3.29). Thus becomes AU =
1(3x = 5h)U on Q. Therefore Qq is void. This completes the proof. - n

LemMMA 3.2. Under the same assumptions as those stated in Lemma 3.1, we
have (o =0, Wa =0, ¢h=0 and Wh=0 on Q.

PROOF. As in the proof of Lemma 3.1, it -is sufficient to show that the
following two cases:

Case 1. B—ha+3c=0 and h? — ha — c =0,

Case 2. §(30 — 2h) + (h— o) (20h — 28 — 1 h?) #0.

Case 1: By taking the inner product with ¢ in [3.14), we obtain

u(h — o) (Wh) = (20:2 — 3ho + %c) (Eh) + (hoz — %c) (éa). (3.30)

From (3.19) we have
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po( Wh) = — % (ha — 2¢)(Ea) + % (3ha — 2% — 3¢)(Eh). (3.31)

Using [3.24), (3.30) and [3.31), we are led to

{(¢h)? + (£2)?}(25ha + 14c — 30%) = 0. (3.32)
So, on the set of points satisfying 25ha + 14c — 3a? # 0,
¢h=C%la=0.
On account of Remark 3.1 and , we deduce that
Wh = 0.

Further, from [3.12), we get Wa =0 since u # 0.
If 2ho + 14¢ — 30?2 = 0, then a # 0 since ¢ # 0. So, we have

_ 302 — 14c¢

h 25a

(3.33)

Combining this with [(3.24), we see that
(3a® — 14¢)? — 2542 (30 — 14c) — 625ca® = 0.

Therefore we have Va =0. So we have VA =0 by (3.33).
Case 2: Putting f— ha+3c =¢', (3.21) is reduced to

{%(30( —2h) + (h— o) (%c -2 — %hz) }AU+ cc'U=0.

From this we have

. —2cc’
(3 —2h) + (h — a)(3¢c — 4c’ — h?)’

AU =AU, A

Therefore we are led to the following equation by [3.10);
(4’ + h*){(4c' + hP)oa® — 2h(4c" + hP)a + h*(4c’ + h?) — ?} = 0. (3.34)

If 4c' + h? = 0, then & = constant. So, using [(3.19), we are led to ¢a = 0 since
¢ # 0. Furthermore, from (3.12), we have Wa = 0.
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If 4¢’ + h* # 0, then from (3.34) we have
(4c" + h®)a? — 2h(4c’ + h¥)o + h2(4c’ + h?) — 2 = 0. (3.35)

Differentiating both sides of [3.35), we obtain
(o — h)(4c" + h*)Vo + {ha® — (4c’ + h®)o + 2h(2¢' + hH)}VA =0.  (3.36)

By taking the inner products with ¢ in (3.14), we obtain

uo(Wh) — uh(Wa) = (—cxz + hot + 2¢" — %c) (&h)

+ (hoc -2+ ;c — hz) (&at). (3.37)

By our assumption is reduced to

uo(Wh) = (%hcx —a? +2¢ — %c) (&h) — (%hz +2¢" — %c) (o).  (3.38)

Using (3.36) and [3.37), we obtain
2u(h? + 2¢") (o — h)(Wh)

= {—2h(h2 + 4c N+ (h* + 4c') (h2 + ho+2¢' — %c) — cz}(fh)

+ (h* 4+ 4¢") (hoc -2+ %c — hz) (Ear). (3.39)

Making use of (3.35), we have from (3.38) and

[~2(h2 +2¢")a? 4 2h(3h% + 7c’)a® + {—4/14 — (8c’ + %c) h? + cz}ot

+ (3¢ — 4ch(h? + 20’)] (¢h) — {h2 (2h2 — %c + 8c’) o
+ h(c* — 10¢'h? — 2h* + 3ch? — 8¢ + 6cc’)}(§<x) =0. (3.40)
From (3.36) we have
(o = B)(h? + 4c¢’)(Ex) + {ho® — (4c’ + 3h)o+ 2h(2¢" + h*)}(Eh) = 0. (3.41)

From and (3.41) we obtain
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{(&h)? + (&)

X [(a — h)(h? + 4c'){ —2(h?* + 2¢")o® + 2h(3h* + Tc")o?
— 4hta — <8c' + %c)hzoz + c2a+ (3¢ — 4c)h(h? + 2c’)}
+ {ho® — (4c’ + 3h%)a + 2h(2¢" + hz)}{hz (2h2 ~ %c + 8c’) o

+ h(c® — 10c’h? — 2h* + 3ch? — 8¢ + 6c'c)H = 0. (3.42)

If (£h)? + (£0)? # 0, then from (3.42) we have
(—12h%c" — 2h* — 16¢%)a*

+ (—%h% + 72hc™* + 58h3¢" + 10h5) o’

+ (2h2c2 +3h%c+ %hzc +4c'c? — 88¢'h?

— 6h* — 14h° — 24c'h* — 128¢*h? + 6c’ch2>a2
+ (—180'ch —8c'cth + 6h° + 62¢'h® — 3¢2h — 2h3c?

+24¢”h + 10h7 + 88¢'h® — 9ch® — %chS + 30c’h3) o

+ 6¢'ch* + 4c’c?h® — 4h8 — 24¢'hS — 32¢'h* + 2c%h* +3ch® = 0. (3.43)
Using Sylvester’s elimination method to and (3.43), we deduce that
(=24cc’ — 7c? + 16¢?)h*® 4 (=576¢"*c + 72c'c + 384c” — 48¢”

+ 21¢% + 36¢% — 120¢'¢?)h'® + f(h) =0, (3.44)

where f(h) is the polynomial of h of degree < 16. (We use a computer to
calculate this.)

We can check that the coefficients of 4#*° and h!® does not vanish simul-
teneously since ¢ # 0. (We use a computer to check this.)

By the above argument, we know that (3.44) is a non-trivial algebraic
equation of h. So, we arrive at & = constant. From (3.41), we have £ = 0. These
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are contradictions. So, we have o = ¢h = 0. Furthermore, using and
(3.39), we arrive at Wa = Wh =0. We have thus proved the lemma. |

4 Proof of the Theoreml

We continue our discussion under the same assumption of §3. First, we prove
the following two lemmas:

LEMMA 4.1. Let A be a principal curvature corresponding to U. Then A does
not vanish identically on Q = {p e M |u(p) # 0}.

ProorF. From [Lemma 3.1 and the following equation holds on Q:

/12=/1h+ﬁ—hoc+%c. (4.1)

By Lemma 3.2, (3.15) becomes

AVh =0, A(Uh)=0. (4.2)

Because of [Lemma 3.1 and Lemma 3.2, |(3.13) and [(3.16) are reduced respectively
to

{hi+2(B—ha+c)}U = ——AVoH—%(hVac— aVh), (4.3)

U = (Zcxh —2p - %hz) Va + (2/9 — %hoc) Vh, (4.4)

where we define 6 by 6 = (48 — dha + h? + ¢)A + 3 ca — 2ch.
From and [Lemma 3.2, we have ¢B = 0. Therefore it is seen, using
Lemma 3.2, that

£0=0.
From this and [Lemma 3.1, we see, making use of [4.4), that
Odu(l,X) =0 (4.5)

for any vector fields X on Q, where u is defined by u(X) = g(U, X), and exterior
derivation du of u is given by

du(, X) = 3 {&u(X) — Xu(&) — u([&, XD).
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On the other hand, using and AU = AU, the equation turns out
to be

VeU = p(a — 3A) W — @*E + ¢Va,
which together with (I.I11) and implies that
du(&, X) = (h = 3)uw(X) + g(¢Va, X), (4.6)

where w(X) =g(W, X).
If A=0, then by we have

B — ho = —gc. (4.7)
Thus (4.3) and [(4.4) becomes respectively
cU = —2A4Va + hVa — aVh, (4.8)
(3co. — 4ch)U = (3¢ — h*)Va — (3¢ — ha)Vh. (4.9)
Because of [Lemma 3.1 and [4.2), we see, using [4.9), that
(3¢ — h?)AVa = 0. (4.10)

If the set of points satisfying AVa # 0 1s not empty, then on that set we have
h = constant
because of [4.10). So, from [4.9), we are led to
Va = 0.

This is a contradiction. So, we obtain

AVa =0 on Q. (4.11)
Thus becomes
cU = hVo — aVh.
So, we have
du(é,X)=0

because of [Lemma 3.2 Therefore means that
¢Va = u(h —3A)W.

Since ¢a = 0, it follows that
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Vo= hU. (4.12)
So, from [4.8), we have
aVh = (h* —c)U. (4.13)

Combining last two equations with (3.2) and (3.11), we obtain
AVB =0, AVu=0.

Thus (2.18) with AU =0 and implies

—gc(h —a)U =§cVoc—%(h—oz){th+hVoc}

4

+ (hcx — Zc - cxz)Vh. (4.14)
Substituting [4.12) and [4.13) in the right-hand side of [4.14), we are led to

(h—a)* =c. (4.15)
Combining this with (4.12) and (4.13), we have

a(h—oa) =0.
Since & — o # 0, we have

a=0. (4.16)

So, implies that 2 = 0. These are contradictions. We have thus proved the
lemma. [

LEmMMA 4.2. 6 =0 on Q.

Proor. If not, then from we have

du(&,X) = 0.
By [4.6), we obtain
Va = (h—3A)U. (4.17)
Hence is reduced to
aVh = {h* — TAh + 61> — 4( — ha + ¢)} U. (4.18)

Applying 4 to both sides of (4.18), we have
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4(B — hot) = h? — ThA + 6% — 4c

since AVh=0 and A#0 on Q.
Combining with [4.1), we are led to

20 =3+ h* —c=0.
Differentiating both sides of [4.20), we obtain
(44 —3h)VA+ (2h —32)Vh = 0.
On the other hand, from (4.1) we have
(24 — h)Vi = AVh.
Combining with (4.21), we are led to

(h—A)2Vi=0.
Furthermore, we have
Vi=0
since h # A by and ¢ # 0. So, from we obtain
Vh=0

since A # 0 by Lemma 4.1. Thus becomes
(4B — 4ho + h* + ¢)A +%co¢ —2ch = (h—34) (Zah — 28— %hz).

Differentiating both sides of (4.24), we have

Va=0

since ¢ # 0.
From [4.4), (4.23) and (4.25), we are led to

6=0.

This is a contradiction. We have thus proved the lemma.

Finally, we prove

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

THEOREM 4.1. Let M be a real hypersurface in My,(c), ¢ > 0. If it satisfies
V4v.eS = 0 and at the same time satisfies SC = a for some constant o, then M is a

Hopf hypersurface.
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PrOOF. By and [4.1), we have

A(42% — &hi+ B2 — 2¢) = :;—(4h - 3a),

(Zah —28— %hz) Va + (23 — %ha) Vh =0.
Applying 4 to both sides of [4.27) and using (4.2), we obtain
(2cxh -2 - %h2> AVa = 0.
Now, suppose that AVa # 0, then we have
1.5
2ah—2,B—§h =0.

From this and our auumption ¢ = constant, we have
Vh = 0.
Differentiating both sides of [4.1), we obtain

(h —24)VA = 0.
From and [4.29), we are led to
Vi=0.
Thus from we see that
Va = 0.

This contradicts to AVa = 0. So, we have

AVa =0, Ua=0
since A # 0.

531

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Using and (4.31) and applying U to both sides of [4.3], we have

hA+2(p —ho+c) =0.
From and (4.32), we obtain
1 1

2—'__ —_—
A ——211/1 ria

Substituting to both sides of (4.26), we are led to

(4.32)

(4.33)
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o=h+22 (4.34)

since ¢ # 0.

Combining with (4.32), we have
9
g(U,U)=p—-a* = —7/12—Zc< 0.

This is a contradiction. The theorem is now proved by all the above arguments.
n
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