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REAL HYPERSURFACES OF A NONFLAT COMPLEX
SPACE FORM IN TERMS OF THE RICCI TENSOR

By

U-Hang KI and Setsuo NAGAI

Abstract. We know the fact that there are no real hypersurfaces
with parallel Ricci tensors in a nonflat complex space form (cf. [5]).
In this paper we investigate real hypersurfaces in a nonflat complex
space form using some conditions of the Ricci tensor $S$ which are
weaker than $\nabla S=0$ . We characterize Hopf hypersurfaces of a non-
flat complex space form.

$0$ Introduction

A K\"ahler manifold of constant holomorphic sectional curvature $c$ is called
a complex space form, which is denoted by $M_{n}(c)$ . A complete and simply
connected complex space forms are isometric to a complex projective space $CP_{n}$ ,
a complex Euclidean space $C^{n}$ or a complex hyperbolic space $CH_{n}$ as $c>0$ ,
$c=0$ or $c<0$ .

Let $M$ be a real hypersurface of $M_{n}(c)$ . Then $M$ has an almost contact
metric structure $(\phi, \xi, \eta, g)$ induced from the complex structure $J$ and the K\"ahler

metric of $M_{n}(c)$ (for details see \S 1). The structure vector $\xi$ is said to be principal
if $ A\xi=\alpha\xi$ is satisfied, where $A$ is the shape operator of $M$ and $\alpha=\eta(A\xi)$ . A real
hypersurface is said to be a Hopf hypersurface if the structure vector $\xi$ of $M$ is
principal.

Typical examples of real hypersurfaces in $CP_{n}$ are homogeneous ones which
are orbits under subgroups of PU$(n+1)$ . The complete classification of them was
obtained by Takagi [10] as follows:

THEOREM $T[10]$ . Let $M$ be a homogeneous real hypersurface of $CP_{n}$ . Then
$M$ is a tube of radius $r$ over one of the following Kahler submanifolds:
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$(A_{1})$ a hyperplane $CP_{n-1}$ , where $0<r<\frac{\pi}{2}$ ,
$(A_{2})$ a totally geodesic $CP_{k}(1\leq k\leq n-2)$ , where $0<r<\frac{\pi}{2}$ ,
$(B)$ a complex quadric $Q_{n-1}$ , where $0<r<\frac{\pi}{4}$ ,
$(C)$ $CP_{1}\times CP_{(n-1)/2}$ , where $0<r<\frac{\pi}{4}$ and $n\geq 5$ is odd,
$(D)$ a complex Grassmann $G_{2},{}_{5}C$ , where $0<r<\frac{\pi}{4}$ and $n=9$ ,
$(E)$ a Hermitian symmetric space $SO(10)/U(5)$ , where $0<r<\frac{\pi}{4}$ and $n=15$ .

Also Bemdt [1] classified all Hopf real hypersurfaces in $CH_{n}$ with constant
principal curvatures as follows:

THEOREM $B[1]$ . Let $M$ be a real hypersurface of $CH_{n}$ . Then $M$ has constant
principal curvatures and $\xi$ is principal if and only if $M$ is locally congruent to one
of the following:

$(A_{0})$ a self-tube, that is, a horosphere,
$(A_{1})$ a geodesic hypersphere, or a tube over a hyperplane $CH_{n-1}$ ,
$(A_{2})$ a tube over a totally geodesic $CH_{k}(1\leq k\leq n-2)$ ,
$(B)$ a tube over $a$ totally real hyperbolic space $RH_{n}$ .

Let V and $S$ be the Levi-Civita connection and the Ricci tensor of $M$ , re-
spectively. There are many studies about Ricci tensors of real hypersurfaces (cf.
[2], [3], [4], [5], [6], [7], [8], [9]). Very important fact is that there are no real
hypersurfaces with parallel Ricci tensors $S$ (that is, $\nabla_{X}S=0$ for each vector field
$X$ tangent to $M$) in $M_{n}(c),$ $c\neq 0,$ $n\geq 3$ (cf. [5]). Especially, there exist no
Einstein real hypersurfaces $M$ in $M_{n}(c),$ $c\neq 0,$ $n\geq 3$ . So, it is natural to in-
vestigate real hypersurfaces $M$ by using some conditions (on the derivatives of $S$)
which are weaker than $\nabla S=0$ .

Recently, the first author, Hwang and Kim proved the following theorem:

THEOREM 0.1. Let $M$ be a real hypersurface in a nonflat complex space form.
If the Ricci tensor $S$ of $M$ satisfies $\nabla_{\xi}S=0,$ $\nabla_{\phi\nabla_{\xi}\xi}S=0$ and $ S\xi=g(S\xi, \xi)\xi$ , then
$M$ is locally congruent to one of the homogeneous real hypersurfaces of Theorem $T$

and Theorem $B$ .

In this paper we pay particular attention to the fact that for each Hopf hyper-
surface $M$ in $M_{n}(c),$ $c\neq 0$ the characteristic vector $\xi$ of $M$ is an eigenvector of
the Ricci tensor $S$ of $M$ . So it is natural to consider a problem that if the vector $\xi$
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is an eigenvector of the Ricci tensor $S$ of a real hypersurface $M$ in $M_{n}(c),$ $c\neq 0$ ,
is $M$ a Hopf hypersurface?

The purpose of this paper is to eatablish the following theorem which gives a
partial answer to this problem:

THEOREM 4.1. Let $M$ be a real hypersurface in $M_{n}(c),$ $c>0$ . If it satisfies
$\nabla_{\phi\nabla_{\xi}\xi}S=0$ and at the same time satisfies $ S\xi=\sigma\xi$ for some constant $\sigma$, then $M$ is a
Hopf hypersurface.

The authors would like to express their sincere gratitude to the referee for his
valuable comments.

1 Preliminaries

Let $M$ be a real hypersurfaoe immersed in a complex space form $(M_{n}(c), G)$

with almost complex structure $J$ and the K\"ahler metric $G$ of constant holomorphic
sectional curvature $c$ , and let $C$ be a unit normal vector field on $M$ . The
Riemannian connection $\tilde{\nabla}$ in $M_{n}(c)$ and $\nabla$ in $M$ are related by the following
formulas for any vector fields $X$ and $Y$ on $M$ :

$\tilde{\nabla}_{Y}X=\nabla_{Y}X+g(AY, X)C$ , (1.1)

$\tilde{\nabla}_{X}C=-AX$ , (1.2)

where $g$ denotes the Riemannian metric on $M$ induced from that $G$ of $M_{n}(c)$ and
$A$ is the shape operator of $M$ in $M_{n}(c)$ . An eigenvector $X$ of the shape operator
$A$ is called a principal curvature vector. Also an eigenvalue $\lambda$ of $A$ is called a
principal curvature. It is known that $M$ has an almost contact metric structure
induced from the almost complex structure $J$ on $M_{n}(c)$ , that is, we define a tensor
field $\phi$ of type $(1, 1)$ , a vector field $\xi$ , an l-form $\eta$ on $M$ by $g(\phi X, Y)=G(JX, Y)$

and $g(\xi, X)=\eta(X)=G(JX, C)$ . Then we have

$\phi^{2}X=-X+\eta(X)\xi$ , $g(\xi, \xi)=1$ , $\phi\xi=0$ . (1.3)

From (1.1) we see that

$(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ , (1.4)

$\nabla_{X}\xi=\phi AX$ . (1.5)

Since the ambient space is of constant holomorphic sectional curvature $c$ ,
equations of the Gauss and Codazzi are respectively given by
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$R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z\}+g(AY, Z)AX-g(AX, Z)AY$ , (1.6)

$(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{c}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ (1.7)

for any vector fields $X,$ $Y$ and $Z$ on $M$ , where $R$ denotes the Riemannian
curvature tensor of $M$ . We shall denote the Ricci tensor of type $(1, 1)$ by $S$ . Then
it follows from (1.6) that

$SX=\frac{c}{4}\{(2n+1)X-3\eta(X)\xi\}+hAX-A^{2}X$ , (1.8)

where $h=traceA$ . Further, using (1.5), we obtain

$(\nabla_{X}S)Y=-\frac{3}{4}c\{g(\phi AX, Y)\xi+\eta(Y)\phi AX\}+(Xh)AY$

$+(hI-A)(\nabla_{X}A)Y-(\nabla_{X}A)AY$ , (1.9)

where $I$ is the identity map.
To write our formulas in convention forms, we denote $\alpha=\eta(A\xi),$ $\beta=\eta(A^{2}\xi)$ ,

$\mu^{2}=\beta-\alpha^{2}$ and $\nabla f$ by the gradient vector field of a function $f$ on $M$ . In the
following, we use the same terminology and notation as above unless otherwise
stated.

If we put $ U=\nabla_{\xi}\xi$ , then $U$ is orthogonal to the stmcture vector field $\xi$ . Then
it is, using (1.3) and (1.5), seen that

$\phi U=-A\xi+\alpha\xi$ , (1.10)

which shows that $g(U, U)=\beta-\alpha^{2}$ . By the definition of $U,$ $(1.3)$ and (1.5) it is
verified that

$g(\nabla_{X}\xi, U)=g(A^{2}\xi, X)-\alpha g(A\xi, X)$ . (1.11)

Now, differentiating (1.10) covariantly along $M$ and using (1.4) and (1.5), we
find

$\eta(X)g(AU+\nabla\alpha, Y)+g(\phi X, \nabla_{Y}U)$

$=g((\nabla_{Y}A)X, \xi)-g(A\phi AX, Y)+\alpha g(A\phi X, Y)$ , (1.12)

which enables us to obtain

$(\nabla_{\xi}A)\xi=2AU+\nabla\alpha$ (1.13)
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because of (1.7). From (1.12) we also have

$\nabla_{\xi}U=3\phi AU+\alpha A\xi-\beta\xi+\phi\nabla\alpha$ , (1.14)

where we have used (1.3), (1.5) and (1.11).
If $A\xi-g(A\xi, \xi)\xi\neq 0$ , then we can put

$A\xi=\alpha\xi+\mu W$ , (1.15)

where $W$ is a unit vector field orthogonal to $\xi$ . Then from (1.10) it is seen that
$U=\mu\phi W$ and hence $g(U, U)=\mu^{2}$ , and $W$ is also orthogonal to $U$ . Thus, we
see, making use of (1.5), that

$\mu g(\nabla_{X}W, \xi)=g(AU, X)$ . (1.16)

2 Real Hypersurfaces Satisfying $ S\xi=g(S\xi, \xi)\xi$

Let $M$ be a real hypersurface of a nonflat complex space form $M_{n}(c)$ . If it
satisfies

$ S\xi=g(S\xi, \xi)\xi$ , (2.1)

then we have by (1.8)

$ A^{2}\xi=hA\xi+(\beta-h\alpha)\xi$ , (2.2)

where we have put $ g(S\xi, \xi)=\sigma$,

$\beta-h\alpha=\frac{c}{2}(n-1)-\sigma$ . (2.3)

In what follows we assume that $\mu\neq 0$ on $M$ , that is, $\xi$ is not a principal
curvature vector field and we put $\Omega=\{p\in M|\mu(p)\neq 0\}$ . Then $\Omega$ is an open
subset of $M$ , and from now on we discuss our arguments on $\Omega$ .

From (1.15) and (2.2), we see that

A $W=\mu\xi+(h-\alpha)W$ (2.4)

and hence

A $W=hAW+(\beta-h\alpha)W$ (2.5)

because of $\mu\neq 0$ .
Now, differentiating (2.4) covariantly along $\Omega$ , we find

$(\nabla_{X}A)W+A\nabla_{X}W=(X\mu)\xi+\mu\nabla_{X}\xi+X(h-\alpha)W+(h-\alpha)\nabla_{X}$ W. (2.6)

By taking the inner product with $W$ in the last equation, we obtain
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$ g((\nabla_{X}A)W, W)=-2g(AX, U)+Xh-X\alpha$ (2.7)

since $W$ is a unit vector field orthogonal to $\xi$ . We also have by applying $\xi$ to
(2.6)

$\mu g((\nabla_{X}A)W, \xi)=(h-2\alpha)g(AU, X)+\mu(X\mu)$ , (2.8)

where we have used (1.16), which together with the Codazzi equation (1.7) gives

$\mu(\nabla_{W}A)\xi=(h-2\alpha)AU-\frac{c}{2}U+\mu\nabla\mu$ , (2.9)

$\mu(\nabla_{\xi}A)W=(h-2\alpha)AU-\frac{c}{4}U+\mu\nabla\mu$ . (2.10)

Replacing $X$ by $\xi$ in (2.6) and taking account of (2.10), we find

$(h-2\alpha)AU-\frac{c}{4}U+\mu\nabla\mu+\mu\{A\nabla_{\xi}W-(h-\alpha)\nabla_{\xi}W\}$

$=\mu(\xi\mu)\xi+\mu^{2}U+\mu(\xi h-\xi\alpha)$ W. (2.11)

By the way, from $\phi U=-\mu W$ we have

$g(AU, X)\xi-\phi\nabla_{X}U=(X\mu)W+\mu\nabla_{X}$ W.

Replacing $X$ by $\xi$ in this and using (1.10) and (1.14), we get

$\mu\nabla_{\xi}W=3A$ U-ct $U+\nabla\alpha-(\xi\alpha)\xi-(\xi\mu)W$ , (2.12)

which implies

$ W\alpha=\xi\mu$ . (2.13)

From the last equations, it follows that

$3A^{2}U-2hAU+A\nabla\alpha+\frac{1}{2}\nabla\beta-h\nabla\alpha+(\alpha h-\beta-\frac{c}{4})U$

$=2\mu(W\alpha)\xi+\mu(\xi h)W-(h-2\alpha)(\xi\alpha)\xi$ , (2.14)

which enables us to obtain

$\xi\beta=2\alpha(\xi\alpha)+2\mu(W\alpha)$ . (2.15)

Differentiating (2.2) covariantly and making use of (1.5), we get

$(\nabla_{X}A)A\xi+A(\nabla_{X}A)\xi+A^{2}\phi AX-hA\phi AX$

$=(Xh)A\xi+h(\nabla_{X}A)\xi+X(\beta-h\alpha)\xi+(\beta-h\alpha)\phi AX$ , (2.16)
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which together with (1.7) implies that

$\frac{c}{4}\{u(Y)\eta(X)-u(X)\eta(Y)\}+\frac{c}{2}(h-\alpha)g(\phi Y, X)-g(A^{2}\phi AX, Y)$

$+g(A^{2}\phi AY, X)+2hg$ ( $\phi AX,$ A $Y$ ) $-(\beta-h\alpha)\{g(\phi AY, X)-g(\phi AX, Y)\}$

$=g(AY, (\nabla_{X}A)\xi)-g(AX, (\nabla_{Y}A)\xi)+(Yh)g(A\xi, X)-(Xh)g(A\xi, Y)$

$+Y(\beta-h\alpha)\eta(X)-X(\beta-h\alpha)\eta(Y)$ , (2.17)

where we have defined an l-form $u$ by $u(X)=g(U, X)$ for any vector field $X$ . If
we replace $X$ by $\mu W$ to the both sides of (2.17) and take account of (1.13), (2.4),
(2.5), (2.8) and (2.9), then we obtain

$(3\alpha-2h)A^{2}U+2(h^{2}+\beta-2h\alpha+\frac{c}{4})$ A $U+(h-\alpha)(\beta-h\alpha-\frac{c}{2})U$

$=\mu A\nabla\mu+(\alpha h-\beta)\nabla\alpha-\frac{1}{2}(h-\alpha)\nabla\beta+\mu^{2}\nabla h$

$-\mu(Wh)A\xi-\mu W(\beta-h\alpha)\xi$ . (2.18)

Using (1.15), the equation (2.16) can be written as

$A(\nabla_{X}A)\xi+(\alpha-h)(\nabla_{X}A)\xi+\mu(\nabla_{X}A)W$

$=(Xh)A\xi+X(\beta-h\alpha)\xi+(\beta-h\alpha)\phi AX+hA\phi AX-A^{2}\phi AX$ .

Thus, replacing $X$ by $\alpha\xi+\mu W$ in this and making use of (1.5), (1.13), (1.15) and
$(2.7)-(2.9)$ , we find

$2hA^{2}U+2(\alpha h-\beta-h^{2}-\frac{c}{4})$ A $U+(h^{2}\alpha-h\beta+\frac{c}{2}h-\frac{3}{4}c\alpha)U$

$=g(A\xi, \nabla h)A\xi-\frac{1}{2}A\nabla\beta+\frac{1}{2}(h-2\alpha)\nabla\beta+\beta\nabla\alpha$

$-\mu^{2}\nabla h+g(A\xi, \nabla(\beta-h\alpha))\xi$ . (2.19)

3 Real Hypersurfaces Satisfying $\nabla_{\phi\nabla_{\xi}\xi}S=0$ and $ S\xi=g(S\xi, \xi)\xi$

We continue now, our arguments under the same hypothesis $ S\xi=g(S\xi, \xi)\xi$

as in section 2. Furthermore, suppose that $\nabla_{\phi\nabla_{\xi}\xi}S=0$ , that is, $\nabla_{W}S=0$ since we
now suppose that $\mu\neq 0$ .

Then, by replacing $X$ by $W$ , we have from (1.9)
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$-\frac{3}{4}c(h-\alpha)(u(Y)\xi+\eta(Y)U)+\mu(Wh)AY+\mu h(\nabla_{W}A)Y$

$=\mu A(\nabla_{W}A)Y-\mu(\nabla_{W}A)AY$ , (3.1)

where we have used (1.5) and (2.4). If we replace $Y$ by $W$ and make use of (2.7)
and (2.9), then we find

$(Wh)AW=hAU-\frac{c}{2}U-2A^{2}U+\frac{1}{2}\nabla\beta-\alpha\nabla h+A\nabla h-A\nabla\alpha$ (3.2)

because of $\mu\neq 0$ .
In the following we assume that $\sigma$ is constant on $M$ and then $\beta-h\alpha=$

constant. In this case we notice here that the following fact:

REMARK 3.1. $h- ct\neq 0$ on $\Omega$ .

In fact, if not, then we have $ h=\alpha$ and hence $\beta-\alpha^{2}=constant$ , because
$\sigma=constant$ . Thus (3.2) implies $Wh=W\alpha=0$ and hence

$2A^{2}U=\alpha AU-\frac{c}{2}$ U. (3.3)

Further, (2.14) and (2.18) tums out respectively to

$ 2A^{2}U-2\alpha AU+(\alpha^{2}-\beta-\frac{c}{4})U=-A\nabla\alpha+(\xi\alpha)A\xi$ , (3.4)

$\alpha A^{2}U+2(\beta-\alpha^{2}+\frac{c}{4})$ A $U=0$ . (3.5)

It is, using $(3.3)-(3.5)$ , verified that $\alpha\neq 0$ on this set.
Combining (3.3) with (3.5), we see that

$\alpha AU=2(\alpha^{2}-\beta-\frac{c}{4})U$ (3.6)

and thus $A$ $U=vU$ because of $\alpha\neq 0$ , where we have put

$\alpha v=2(\alpha^{2}-\beta-\frac{c}{4})$ . (3.7)

From this and (3.3), we obtain
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$v^{2}+\beta-\alpha^{2}+\frac{c}{2}=0$ . (3.8)

Therefore $v=constant\neq 0$ because of (3.3). Hence it is, using (3.7), seen that
$\alpha=constant$ and thus

$3v^{2}-2\alpha v+\alpha^{2}-\beta-\frac{c}{4}=0$ ,

which together with (3.7) and (3.8), produces a contradiction. Consequently
$h-\alpha\neq 0$ on $\Omega$ is proved. In what follows we assume that $h-\alpha\neq 0$ is satisfied
everywhere.

Differentiating (2.1) covariantly, we find

$(\nabla_{X}S)\xi+S\nabla_{X}\xi=\sigma\nabla_{X}\xi$

because $\sigma=constant$ is assumed, which together with hypothesis $\nabla_{W}S=0$ yields

$ S\nabla_{W}\xi=\sigma\nabla_{W}\xi$ . (3.9)

By the way we have $\mu\nabla_{W}\xi=(h-\alpha)U$ with the aid of (1.5) and (2.4), (3.9)
implies $SU=\sigma U$ because of Remark 3.1. Hence (1.8) leads to

$A^{2}U=hAU+(\beta-h\alpha+\frac{3}{4}c)$ U. (3.10)

From (2.3) we have

$\nabla\beta=\alpha\nabla h+h\nabla\alpha$ . (3.11)

Thus (2.15) is reduced to

$2\mu(W\alpha)=(h-2\alpha)(\xi\alpha)+\alpha(\xi h)$ . (3.12)

Using (1.15), (3.10) and (3.12), the equation (2.14) tums out to be

$ hAU+2(\beta-h\alpha+c)U=(\xi h)A\xi-A\nabla\alpha+h\nabla\alpha-\frac{1}{2}\nabla\beta$ . (3.13)

From (2.19) and (2.10), we also find

$(2\beta-2h\alpha+\frac{c}{2})$ A $ U+\{h(h\alpha-\beta)+\frac{c}{4}(3\alpha-8h)\}U+g(A\xi, \nabla h)A\xi$

$=\frac{1}{2}A\nabla\beta-\beta\nabla\alpha+(\alpha-\frac{1}{2}h)\nabla\beta+\mu^{2}\nabla h$ . (3.14)
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Because of (3.2) and (3.10), we see that

$(Wh)AW=-hAU-2(\beta-h\alpha+c)U+A\nabla h-A\nabla\alpha+\frac{1}{2}\nabla\beta-\alpha\nabla h$ ,

which together with (3.10) and (3.11) gives

$ A\nabla h=(Wh)AW+(\xi h)A\xi$ . (3.15)

Making use of (3.13) and (3.15), we have from (3.14)

$(4\beta-4h\alpha+h^{2}+c)AU+(\frac{3}{2}c\alpha-2ch)U$

$=\alpha(Wh)AW-\{(\alpha-h)(\xi h)+2\mu(Wh)\}A\xi$

$+(2\alpha h-2\beta-\frac{1}{2}h^{2})\nabla\alpha+(2\beta-\frac{3}{2}h\alpha)\nabla h$ . (3.16)

If we use (2.2), (2.5) and (3.10), then above equation implies

$\frac{3}{4}c\{(4\beta-4h\alpha+h^{2}+c)AU+(\frac{3}{2}$ cct–2$ch)U\}$

$=(2\alpha h-2\beta-\frac{1}{2}h^{2})\{A^{2}\nabla\alpha-hA\nabla\alpha-(\beta-h\alpha)\nabla\alpha\}$

$+(2\beta-\frac{3}{2}h\alpha)\{A^{2}\nabla h-hA\nabla h-(\beta-h\alpha)\nabla h\}$ ,

which together with (3.15) yields

$\frac{3}{4}c\{(4\beta-4h\alpha+h^{2}+c)AU+\frac{c}{2}(3\alpha-4h)U\}$

$=(2\alpha h-2\beta-\frac{1}{2}h^{2})\{A^{2}\nabla\alpha-hA\nabla\alpha-(\beta-h\alpha)\nabla\alpha\}$

$+(2\beta-\frac{3}{2}h\alpha)(\beta-h\alpha)\{(Wh)W+(\xi h)\xi-\nabla h\}$ . (3.17)

On the other hand, we have from (3.13)

$A^{2}\nabla\alpha-hA\nabla\alpha+(h^{2}+2\beta-2h\alpha+2c)AU+h(\beta-h\alpha+\frac{3}{4}c)U$

$=(\xi h)A^{2}\xi-\frac{1}{2}A\nabla\beta$ ,
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where we have used (3.10), or using (3.11) and (3.14),

A $\nabla\alpha-hA\nabla\alpha+(\beta-h\alpha)\nabla\alpha$

$=(4h\alpha-4\beta-h^{2}-\frac{5}{2}c)$ A $U+\frac{c}{4}(5h-3\alpha)U$

$-\frac{1}{2}h^{2}\nabla\alpha+(\beta-\frac{1}{2}h\alpha)\nabla h+(\xi h)A^{2}\xi-g(A\xi, \nabla h)A\xi$ . (3. I8)

If we take the inner product $\xi$ with this and make use of (1.15) and (2.2), then we
obtain

$\mu\alpha(Wh)=(2h\alpha-2\beta-\frac{1}{2}h^{2})(\xi\alpha)+(2\beta-\frac{1}{2}h\alpha-\alpha^{2})(\xi h)$ . (3.19)

Substituting (3.18) into (3.17) and taking account of (3.16), we find

$\frac{3}{2}c\{cAU+\frac{c}{2}(3\alpha-4h)U+(h-\alpha)(2\alpha h-2\beta-\frac{1}{2}h^{2})U\}$

$=h(h-\alpha)(\beta-h\alpha)\{\nabla h-(\xi h)\xi-(Wh)W\}$ . (3.20)

Applying $A$ to both sides of this and using (3.10) and (3.15), we have

$\{\frac{c}{2}(3\alpha-2h)+(h-\alpha)(2\alpha h-2\beta-\frac{1}{2}h^{2})\}AU+c(\beta-h\alpha+\frac{3}{4}c)U=0$ . (3.21)

LEMMA 3.1. Let $M$ be a real hypersurface of $M_{n}(c)(c\neq 0)$ . If it satisfies
$\nabla_{W}S=0$ and $ S\xi=\sigma\xi$ for some constant $\sigma$, then we have

A $U=\lambda U$ (3.22)

on $\Omega$ , where $\mu^{2}\lambda=g(AU, U)$ .

PROOF. Let $\Omega_{0}$ be a set of points in $M$ such that $\Vert AU-\lambda U\Vert\neq 0$ on $\Omega$ and
suppose that $\Omega_{0}$ be nonempty. If $\beta-h\alpha+\frac{3}{4}c\neq 0$ , then we have from (3.21)

$\frac{c}{2}(3\alpha-2h)+(h-\alpha)(2\alpha h-2\beta-\frac{1}{2}h^{2})\neq 0$

and hence (3.22) is valid. Thus it is, using (3.21), seen that

$\beta-h\alpha+\frac{3}{4}c=0$ (3.23)

and therefore $h(h^{2}-\alpha h-c)=0$ on $\Omega_{0}$ . So we have
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$h^{2}-\alpha h-c=0$ (3.24)

on $\Omega_{0}$ . In fact, if not, then we have $h=0$ . Thus (3.10) and (3.23) are respectively
to

A $U=0$ , $\beta+\frac{3}{4}c=0$ .

Hence (3.13) becomes $2(\beta+c)U+A\nabla\alpha=0$ . But, by (3.14) we have $\nabla\alpha=\alpha U$ .
Combining the last two equations, we obtain $\beta+c=0$ , a contradiction. Thus
(3.24) is accomplished.

Differentiating (3.24), and using (3.23), we find

$ 2h\nabla h=\alpha\nabla h+h\nabla\alpha=\nabla\beta$ . (3.25)

From this and (3.15) we obtain

$A\nabla\beta=2h\{(Wh)AW+(\xi h)A\xi\}$ . (3.26)

If we take account of $(3.23)-(3.26)$ , then (3.14) tums out to be

$-cAU+\frac{c}{4}(3\alpha-5h)U=(h-\alpha)(\xi h)A\xi-\mu(Wh)A\xi+h(Wh)AW$

$+(\mu^{2}+\alpha h-c)\nabla h-\beta\nabla\alpha$ . (3.27)

On the other hand, we have from (3.13)

$h^{2}AU+\frac{c}{2}hU=(\alpha-h)(\xi h)A\xi+(\alpha-2h)(Wh)AW+c\nabla h$

because of $(3.24)-(3.26)$ . Comparing with the last two equations, it follows that

$(h^{2}-c)AU+\frac{3}{4}c(\alpha-h)U$

$=(\alpha-h)(Wh)AW-\mu(Wh)A\xi+(\beta-\alpha^{2}+\alpha h)\nabla h-\beta\nabla\alpha$ .

Applying this by $hA$ and making use of (2.2), (2.5) and (3.23), we find

$\{h^{2}(h^{2}-c)+\frac{3}{4}ch(\alpha-h)\}AU$

$=h(\alpha-h)(Wh)\{hAW-\frac{3}{4}cW\}-\mu h(Wh)(hA\xi-\frac{3}{4}c\xi)$

$+h(\beta-\alpha^{2}+\alpha h)A\nabla h-\beta hA\nabla\alpha$ ,
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which together with (3.15) and $(3.23)-(3.25)$ implies that

$\{(\alpha h+c)\alpha h-\frac{3}{4}c^{2}\}AU$

$=h(\alpha-h)(Wh)(hAW-\frac{3}{4}cW)-\mu h(Wh)(hA\xi-\frac{3}{4}c\xi)$

$+\frac{3}{4}c(h-\alpha)\{(Wh)AW+(\xi h)A\xi\}$ . (3.28)

Furthermore, using (2.2) and (2.5), we have from (3.28)

$\{(\alpha h+c)\alpha h-\frac{3}{4}c^{2}\}AU=0$

because $U$ is orthogonal to $\xi$ and $W$ . Hence we have

$(\alpha^{3}+c\alpha)h+c\alpha^{2}-\frac{3}{4}c^{2}=0$

on $\Omega_{0}$ . Since $c\neq 0$ , it follows that

$h=\frac{\frac{3}{4}c^{2}-c\alpha^{2}}{\alpha(\alpha^{2}+c)}$ . (3.29)

From this and (3.24) we have $12\alpha^{4}+52c\alpha^{2}-9c^{2}=0$ on $\Omega_{0}$ . So we see that
$\nabla\alpha=0$ and hence $\nabla h=0$ because of (3.29). Thus (3.27) becomes $AU=$
$\frac{1}{4}(3\alpha-5h)U$ on $\Omega_{0}$ . Therefore $\Omega_{0}$ is void. This completes the proof. $\blacksquare$

LEMMA 3.2. Under the same assumptions as those stated in Lemma 3.1, $we$

have $\xi\alpha=0,$ $W\alpha=0,$ $\xi h=0$ and $Wh=0$ on $\Omega$ .

PROOF. As in the proof of Lemma 3.1, it $\cdot is$ sufficient to show that the
following two cases:

Case 1. $\beta-h\alpha+\frac{3}{4}c=0$ and $h^{2}-h\alpha-c=0$ ,
Case 2. $\frac{c}{2}(3\alpha-2h)+(h-\alpha)(2\alpha h-2\beta-\frac{1}{2}h^{2})\neq 0$ .
Case 1: By taking the inner product with $\xi$ in (3.14), we obtain

$\mu(h-\alpha)(Wh)=(2\alpha^{2}-3h\alpha+\frac{7}{4}c)(\xi h)+(h\alpha-\frac{3}{4}c)(\xi\alpha)$ . (3.30)

From (3.19) we have



524 U-Hang KI and Setsuo NAGAI

$\mu\alpha(Wh)=-\frac{1}{2}(h\alpha-2c)(\xi\alpha)+\frac{1}{2}(3h\alpha-2\alpha^{2}-3c)(\xi h)$ . (3.31)

Using (3.24), (3.30) and (3.31), we are led to

$\{(\xi h)^{2}+(\xi\alpha)^{2}\}(25h\alpha+14c-3\alpha^{2})=0$ . (3.32)

So, on the set of points satisfying $25h\alpha+14c-3\alpha^{2}\neq 0$ ,

$\xi h=\xi\alpha=0$ .

On account of Remark 3.1 and (3.30), we deduce that

$Wh=0$ .

Further, from (3.12), we get $W\alpha=0$ since $\mu\neq 0$ .
If $2h\alpha+14c-3\alpha^{2}\equiv 0$ , then $\alpha\neq 0$ since $c\neq 0$ . So, we have

$h=\frac{3\alpha^{2}-14c}{25\alpha}$ . (3.33)

Combining this with (3.24), we see that

$(3\alpha^{2}-14c)^{2}-25\alpha^{2}(3\alpha^{2}-14c)-625c\alpha^{2}\equiv 0$ .

Therefore we have $\nabla\alpha=0$ . So we have $\nabla h=0$ by (3.33).
Case 2: Putting $\beta-h\alpha+\frac{3}{4}c=c^{\prime},$ $(3.21)$ is reduced to

$\{\frac{c}{2}(3\alpha-2h)+(h-\alpha)(\frac{3}{2}c-2c^{\prime}-\frac{1}{2}h^{2})\}AU+cc^{\prime}U=0$ .

From this we have

A $U=\lambda U$ , $\lambda=\frac{-2cc^{\prime}}{c(3\alpha-2h)+(h-\alpha)(3c-4c^{\prime}-h^{2})}$ .

Therefore we are led to the following equation by (3.10):

$(4c^{\prime}+h^{2})\{(4c^{\prime}+h^{2})\alpha^{2}-2h(4c^{\prime}+h^{2})\alpha+h^{2}(4c^{\prime}+h^{2})-c^{2}\}=0$ . (3.34)

If $4c^{\prime}+h^{2}\equiv 0$ , then $h=constant$ . So, using (3.19), we are led to $\xi\alpha=0$ since
$c\neq 0$ . Furthermore, from (3.12), we have $W\alpha=0$ .
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If $4c^{\prime}+h^{2}\neq 0$ , then from (3.34) we have

$(4c^{\prime}+h^{2})\alpha^{2}-2h(4c^{\prime}+h^{2})\alpha+h^{2}(4c^{\prime}+h^{2})-c^{2}=0$ . (3.35)

Differentiating both sides of (3.35), we obtain

$(\alpha-h)(4c^{\prime}+h^{2})\nabla\alpha+\{h\alpha^{2}-(4c^{\prime}+h^{2})\alpha+2h(2c^{\prime}+h^{2})\}\nabla h=0$ . (3.36)

By taking the inner products with $\xi$ in (3.14), we obtain

$\mu\alpha(Wh)-\mu h(W\alpha)=(-\alpha^{2}+h\alpha+2c^{\prime}-\frac{3}{2}c)(\xi h)$

$+(h\alpha-2c^{\prime}+\frac{3}{2}c-h^{2})(\xi\alpha)$ . (3.37)

By our assumption (3.19) is reduced to

$\mu\alpha(Wh)=(\frac{3}{2}h\alpha-\alpha^{2}+2c^{\prime}-\frac{3}{2}c)(\xi h)-(\frac{1}{2}h^{2}+2c^{\prime}-\frac{3}{2}c)(\xi\alpha)$ . (3.38)

Using (3.36) and (3.37), we obtain

$2\mu(h^{2}+2c^{\prime})(\alpha-h)(Wh)$

$=\{-2h(h^{2}+4c^{\prime})\alpha+(h^{2}+4c^{\prime})(h^{2}+h\alpha+2c^{\prime}-\frac{3}{2}c)-c^{2}\}(\xi h)$

$+(h^{2}+4c^{\prime})(h\alpha-2c^{\prime}+\frac{3}{2}c-h^{2})(\xi\alpha)$ . (3.39)

Making use of (3.35), we have from (3.38) and (3.39)

$[-2(h^{2}+2c^{\prime})\alpha^{3}+2h(3h^{2}+7c^{\prime})\alpha^{2}+\{-4h^{4}-(8c^{\prime}+\frac{3}{2}c)h^{2}+c^{2}\}\alpha$

$+(3c-4c^{\prime})h(h^{2}+2c^{\prime})(\xi h)-\{h^{2}(2h^{2}-\frac{3}{2}c+8c^{\prime})\alpha$

$+h(c^{2}-10c^{\prime}h^{2}-2h^{4}+3ch^{2}-8c^{\prime 2}+6cc^{\prime})\}(\xi\alpha)=0$ . (3.40)

From (3.36) we have

$(\alpha-h)(h^{2}+4c^{\prime})(\xi\alpha)+\{h\alpha^{2}-(4c^{\prime}+3h^{2})\alpha+2h(2c^{\prime}+h^{2})\}(\xi h)=0$ . (3.41)

From (3.40) and (3.41) we obtain
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$\{(\xi h)^{2}+(\xi\alpha)^{2}\}$

$\times[(\alpha-h)(h^{2}+4c^{\prime})\{-2(h^{2}+2c^{\prime})\alpha^{3}+2h(3h^{2}+7c^{\prime})\alpha^{2}$

$-4h^{4}\alpha-(8c^{\prime}+\frac{3}{2}c)h^{2}\alpha+c^{2}\alpha+(3c-4c^{\prime})h(h^{2}+2c^{\prime})\}$

$+\{h\alpha^{2}-(4c^{\prime}+3h^{2})\alpha+2h(2c^{\prime}+h^{2})\}\{h^{2}(2h^{2}-\frac{3}{2}c+8c^{\prime})\alpha$

$+h(c^{2}-10c^{\prime}h^{2}-2h^{4}+3ch^{2}-8c^{\prime 2}+6c^{\prime}c)$ $=0$ . (3.42)

If $(\xi h)^{2}+(\xi\alpha)^{2}\neq 0$ , then from (3.42) we have

$(-12h^{2}c^{\prime}-2h^{4}-16c^{\prime 2})\alpha^{4}$

$+(-\frac{3}{2}h^{3}c+72hc^{\prime 2}+58h^{3}c^{\prime}+10h^{5})\alpha^{3}$

$+(2h^{2}c^{2}+3h^{4}c+\frac{9}{2}h^{2}c+4c^{\prime}c^{2}-88c^{\prime}h^{4}$

$-6h^{4}-14h^{6}-24c^{\prime}h^{2}-128c^{\prime 2}h^{2}+6c^{\prime}ch^{2}\alpha^{2}$

$+(-18c^{\prime}ch-8c^{\prime}c^{2}h+6h^{5}+62c^{\prime}h^{5}-3c^{2}h-2h^{3}c^{2}$

$+24c^{\prime 2}h+10h^{7}+88c^{\prime}h^{3}-9ch^{3}-\frac{3}{2}ch^{5}+30c^{\prime}h^{3}\alpha$

$+6c^{\prime}ch^{4}+4c^{\prime}c^{2}h^{2}-4h^{8}-24c^{\prime}h^{6}-32c^{\prime}h^{4}+2c^{2}h^{4}+3ch^{6}=0$ . (3.43)

Using Sylvester’s elimination method to (3.35) and (3.43), we deduce that

$(-24cc^{\prime}-7c^{2}+16c^{\prime 2})h^{20}+(-576c^{\prime 2}c+72c^{\prime}c+384c^{\prime 3}-48c^{\prime 2}$

$+21c^{2}+36c^{3}-120c^{\prime}c^{2})h^{18}+f(h)=0$ , (3.44)

where $f(h)$ is the polynomial of $h$ of degree $\leq 16$ . (We use a computer to
calculate this.)

We can check that the coefficients of $h^{20}$ and $h^{18}$ does not vanish simul-
teneously since $c\neq 0$ . (We use a computer to check this.)

By the above argument, we know that (3.44) is a non-trivial algebraic
equation of $h$ . So, we arrive at $h=constant$ . From (3.41), we have $\xi\alpha=0$ . These
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are contradictions. So, we have $\xi\alpha=\xi h=0$ . Furthermore, using (3.12) and
(3.39), we arrive at $W\alpha=Wh=0$ . We have thus proved the lemma. $\blacksquare$

4 Proof of the Theorem

We continue our discussion under the same assumption of \S 3. First, we prove
the following two lemmas:

LEMMA 4.1. Let $\lambda$ be a principal curvature corresponding to U. Then $\lambda$ does
not vanish identically on $\Omega=\{p\in M|\mu(p)\neq 0\}$ .

PROOF. From Lemma 3.1 and (3.10) the following equation holds on $\Omega$ :

$\lambda^{2}=\lambda h+\beta-h\alpha+\frac{3}{4}c$ . (4.1)

By Lemma 3.2, (3.15) becomes

$A\nabla h=0$ , $\lambda(Uh)=0$ . (4.2)

Because of Lemma 3.1 and Lemma 3.2, (3.13) and (3.16) are reduced respectively
to

$\{h\lambda+2(\beta-h\alpha+c)\}U=-A\nabla\alpha+\frac{1}{2}(h\nabla\alpha-\alpha\nabla h)$ , (4.3)

$\theta U=(2\alpha h-2\beta-\frac{1}{2}h^{2})\nabla\alpha+(2\beta-\frac{3}{2}h\alpha)\nabla h$ , (4.4)

where we define $\theta$ by $\theta=(4\beta-4h\alpha+h^{2}+c)\lambda+\frac{3}{2}c\alpha-2ch$ .
From (3.11) and Lemma 3.2, we have $\xi\beta=0$ . Therefore it is seen, using

Lemma 3.2, that

$\xi\theta=0$ .

From this and Lemma 3.1, we see, making use of (4.4), that

$\theta du(\xi, X)=0$ (4.5)

for any vector fields $X$ on $\Omega$ , where $u$ is defined by $u(X)=g(U, X)$ , and exterior
derivation $du$ of $u$ is given by

$du(\xi, X)=\frac{1}{2}\{\xi u(X)-Xu(\xi)-u([\xi, X])\}$ .
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On the other hand, using (1.15) and A $U=\lambda U$ , the equation (1.14) tums out
to be

$\nabla_{\xi}U=\mu(\alpha-3\lambda)W-\mu^{2}\xi+\phi\nabla\alpha$ ,

which together with (1.11) and (2.2) implies that

$du(\xi, X)=(h-3\lambda)\mu w(X)+g(\phi\nabla\alpha, X)$ , (4.6)

where $w(X)=g(W, X)$ .
If $\lambda=0$ , then by (3.1) we have

$\beta-h\alpha=-\frac{3}{4}c$ . (4.7)

Thus (4.3) and (4.4) becomes respectively

$cU=-2A\nabla\alpha+h\nabla\alpha-\alpha\nabla h$ , (4.8)

$(3c\alpha-4ch)U=(3c-h^{2})\nabla\alpha-(3c-h\alpha)\nabla h$ . (4.9)

Because of Lemma 3.1 and (4.2), we see, using (4.9), that

$(3c-h^{2})A\nabla\alpha=0$ . (4.10)

If the set of points satisfying $A\nabla\alpha\neq 0$ is not empty, then on that set we have

$h=constant$

because of (4.10). So, from (4.9), we are led to

$\nabla\alpha=0$ .

This is a contradiction. So, we obtain

$A\nabla\alpha=0$ on $\Omega$ . (4.11)

Thus (4.7) becomes

$cU=h\nabla\alpha-\alpha\nabla h$ .

So, we have

$du(\xi, X)=0$

because of Lemma 3.2. Therefore (4.6) means that

$\phi\nabla\alpha=\mu(h-3\lambda)W$ .

Since $\xi\alpha=0$ , it follows that
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$\nabla\alpha=hU$ . (4.12)

So, from (4.8), we have

$\alpha\nabla h=(h^{2}-c)$ U. (4.13)

Combining last two equations with (3.2) and (3.11), we obtain

$A\nabla\beta=0$ , $A\nabla\mu=0$ .

Thus (2. 18) with $A$ $U=0$ and (4.7) implies

$-\frac{5}{4}c(h-\alpha)U=\frac{3}{4}c\nabla\alpha-\frac{1}{2}(h-\alpha)\{\alpha\nabla h+h\nabla\alpha\}$

$+(h\alpha-\frac{3}{4}c-\alpha^{2})\nabla h$ . (4.14)

Substituting (4.12) and (4.13) in the right-hand side of (4.14), we are led to

$(h-\alpha)^{2}=c$ . (4.15)

Combining this with (4.12) and (4.13), we have

$\alpha(h-\alpha)=0$ .

Since $h-\alpha\neq 0$ , we have

$\alpha=0$ . (4.16)

So, (4.12) implies that $h=0$ . These are contradictions. We have thus proved the
lemma. $\blacksquare$

LEMMA 4.2. $\theta=0$ on $\Omega$ .

PROOF. If not, then from (4.5) we have

$du(\xi, X)=0$ .

By (4.6), we obtain

$\nabla\alpha=(h-3\lambda)$ U. (4.17)

Hence (4.3) is reduced to

$\alpha\nabla h=\{h^{2}-7\lambda h+6\lambda^{2}-4(\beta-h\alpha+c)\}$ U. (4.18)

Applying $A$ to both sides of (4.18), we have



530 U-Hang KI and Setsuo NAGAI

$4(\beta-h\alpha)=h^{2}-7h\lambda+6\lambda^{2}-4c$ (4.19)

since $A\nabla h=0$ and $\lambda\neq 0$ on $\Omega$ .
Combining (4.19) with (4.1), we are led to

$2\lambda^{2}-3\lambda h+h^{2}-c=0$ . (4.20)

Differentiating both sides of (4.20), we obtain

$(4\lambda-3h)\nabla\lambda+(2h-3\lambda)\nabla h=0$ . (4.21)

On the other hand, from (4.1) we have

$(2\lambda-h)\nabla\lambda=\lambda\nabla h$ . (4.22)

Combining (4.22) with (4.21), we are led to

$(h-\lambda)^{2}\nabla\lambda=0$ .

Furthermore, we have
$\nabla\lambda=0$

since $ h\neq\lambda$ by (4.20) and $c\neq 0$ . So, from (4.22) we obtain

$\nabla h=0$ (4.23)

since $\lambda\neq 0$ by Lemma 4.1. Thus (4.4) becomes

$(4\beta-4h\alpha+h^{2}+c)\lambda+\frac{3}{2}c\alpha-2ch=(h-3\lambda)(2\alpha h-2\beta-\frac{1}{2}h^{2})$ . (4.24)

Differentiating both sides of (4.24), we have

$\nabla\alpha=0$ (4.25)

since $c\neq 0$ .
From (4.4), (4.23) and (4.25), we are led to

$\theta=0$ .

This is a contradiction. We have thus proved the lemma. $\blacksquare$

Finally, we prove

THEOREM 4.1. Let $M$ be a real hypersurface in $M_{n}(c),$ $c>0$ . If it satisfies
$\nabla_{\phi\nabla_{\xi}\xi}S=0$ and at the same time satisfies $ S\xi=\sigma\xi$ for some constant $\sigma$ , then $M$ is a
Hopf hypersurface.
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PROOF. By Lemma 4.2 and (4.1), we have

$\lambda(4\lambda^{2}-4h\lambda+h^{2}-2c)=\frac{c}{2}(4h-3\alpha)$ , (4.26)

$(2\alpha h-2\beta-\frac{1}{2}h^{2})\nabla\alpha+(2\beta-\frac{3}{2}h\alpha)\nabla h=0$ . (4.27)

Applying $A$ to both sides of (4.27) and using (4.2), we obtain

$(2\alpha h-2\beta-\frac{1}{2}h^{2})A\nabla\alpha=0$ .

Now, suppose that $A\nabla\alpha\neq 0$ , then we have

$2\alpha h-2\beta-\frac{1}{2}h^{2}=0$ .

From this and our auumption $\sigma=constant$ , we have

$\nabla h=0$ . (4.28)

Differentiating both sides of (4.1), we obtain

$(h-2\lambda)\nabla\lambda=0$ . (4.29)

From (4.28) and (4.29), we are led to

$\nabla\lambda=0$ . (4.30)

Thus from (4.26) we see that
$\nabla\alpha=0$ .

This contradicts to $A\nabla\alpha=0$ . So, we have

$A\nabla\alpha=0$ , $U\alpha=0$ (431)

since $\lambda\neq 0$ .
Using (4.2) and (4.31) and applying $U$ to both sides of (4.3), we have

$h\lambda+2(\beta-h\alpha+c)=0$ . (4.32)

From (4.1) and (4.32), we obtain

$\lambda^{2}=\frac{1}{2}h\lambda-\frac{1}{4}c$ . (4.33)

Substituting (4.33) to both sides of (4.26), we are led to
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$\alpha=h+2\lambda$ (4.34)

since $c\neq 0$ .
Combining (4.34) with (4.32), we have

$g(U, U)=\beta-\alpha^{2}=-7\lambda^{2}-\frac{9}{4}c<0$ .

This is a contradiction. The theorem is now proved by all the above arguments.
$\blacksquare$
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