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ON INVARIANT SUBMANIFOLDS OF
CONTACT METRIC MANIFOLDS

By

Mukut Mani TripATHI, Tooru SASAHARA and Jeong-Sik KM

Abstract. Invariant submanifolds of («, 4)-manifolds and («, x)-space
forms are studied.

1 Introduction

A differentiable 1-form # on a differentiable manifold M?"*! is called a
contact form if # A (dn)™ # 0 everywhere on M?"+! and M?"*! equipped with
a contact form is a contact manifold. It is well-known that there exist a unique
global vector field &, called the characteristic vector field, a (1,1)-tensor field
¢ and a Riemannian metric <,) satisfying certain relations. The structure
(7,&,0,<,>) is called a contact metric structure and the manifold M?"*! endowed
with such a structure is said to be a contact metric manifold. A contact metric
manifold is called a K-contact manifold if the structure vector filed ¢ is Killing.
A normal contact metric manifold is a Sasakian manifold. A Sasakian manifold
is always a K-contact manifold and in dimension three a K-contact manifold
is Sasakian. In [3], Blair, Koufogiorgos and Papantoniou introduced the class of
contact metric manifolds, in which the structure vector field belongs to the (x, u)-
nullity distribution. A contact metric manifold belonging to this class is called a
(rc, u)-manifold. Characteristic examples of non-Sasakian (x, u)-manifolds are the
tangent sphere bundles of Riemannian manifolds of constant sectional curvature
not equal to one and certain Lie groups [5] Recently, T. Koufogiorgos intro-
duced the notion of (x, u)-space form [11], which contains the well known class of
Sasakian space forms for x = 1. For more details about contact geometry we

refer to [2].
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In this paper we study invariant submanifolds of (x, x«)-manifolds. The paper
1s organized as follows. In the section 2 we give a brief account of contact metric
manifolds, (x,u)-manifolds and (k,u)-space forms. Essential details for sub-
manifolds are also given. In the section 3, first we prove that each totally
umbilical submanifold of a contact metric manifold tangent to the structure
vector field of the ambient manifold is minimal and consequently totally geodesic.
Then, we give some basic equations for invariant submanifolds in a (x,u)-
manifold. As a consequence, every invariant submanifold of a (k,u)-manifold
becomes a (x,u)-manifold. Next, we classify invariant submanifolds in a (x, u)-
manifold with parallel second fundamental form. Then, using a theorem of D.
Blair, we give a classification of invariant submanifolds with parallel second
fundamental form in a contact metric manifold whose structure vector field
belongs to the x-nullity distribution. A corollary for invariant submanifolds in a
Sasakian manifold is also given. Ricci tensor and scalar curvature for invariant
submanifolds in a (x,u)-space form are given in the section 4. Using these ex-
pressions, we find necessary and sufficient conditions for invariant submanifolds
in a (kx,u)-space form to be totally umbilical and totally geodesic. Then a
corollary for invariant submanifold of a Sasakian space form is given. In section
5, we study invariant submanifolds in a (x,u)-space form such that the normal
connection is trivial. Among other results, it is proved that for an invariant
submanifold in a (x, u)-space form M(c) with codimension greater than two, the
normal connection of the submanifold is trivial provided the submanifold is
totally geodesic and ¢=1. As a consequence, we have some corollaries for
invariant submanifolds of Sasakian space forms. In the last section, a Simons’
type formula for a compact invariant submanifold of a (k, u)-space form M(c) is
established.

2 (x, p)-Contact Manifolds

A (2m + 1)-dimensional differentiable manifold M is called an almost contact
manifold if either its structural group can be reduced to U(m) x 1 or equiv-
alently, there is an almost contact structure (@, ¢&,7) consisting of a (1,1) tensor
field @, a vector field &, and a 1-form n satisfying

P =-I+7®¢ #& =1, =0, fop=0. (2.1)

First and one of the remaining three relations of imply the other two re-
lations of [2.1). An almost contact structure (@, &,7) on M is said to be normal if
the induced almost complex structure P on the product manifold M x R defined
by
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P()?,/l%) = (@X — 2&,7(X) —%) (2.2)

is integrable, where X is tangent to M, t the coordinate of R and A a smooth
function on M x R. The condition for being normal is equivalent to vanishing of
the torsion tensor [, @]+ 2d7 @ &, where [, @] is the Nijenhuis tensor of . Let
{, ) be a compatible Riemannian metric with (g, é, 7), that is,

(X, Yy ={gX,pY) +7(X)7(Y) (2.3)
or equivalently,
D(X,Y)=(X,6Y>=—(6X,¥) and (X, & =7X) (2.4)

for all X, Y € TM. Then, M becomes an almost contact metric manifold equipped
with an almost contact metric structure (@, f, 7, ).

A differentiable 1-form 7 on a (2m + 1)-dimensional differentiable manifold
M is called a contact form if 7 A (dif)” # 0 everywhere on M, and M equipped
with a contact form is a contact manifold. An almost contact metric structure
becomes a contact metric structure if ® = d7j. A normal contact metric manifold
is a Sasakian manifold. An almost contact metric manifold is Sasakian if and only
if

(V@)Y =<(X, YYE—(V)X, X,YeTM, (2.5)

where V is Levi-Civita connection, while a contact metric manifold M is Sasakian
if and only if the curvature tensor R satisfies

R(¥, V)E=i(P)X —#(X)F, X VeTH. (2.6)
In a contact metric manifold M, the (1,1)-tensor field / defined by 2k = L:¢
is symmetric and satisfies
hE=0, hp+¢h=0, Vy&=—GpX —ghX, trace(h) = trace(ph)=0. (2.7)
The (k, u)-nullity distribution of a contact metric manifold M is a distribution
N(x, ) : p— Np(, ) = {Z e T,M | R(X,Y)Z = k({Y,Z)X — {X,Z)Y)
+ u({Y,ZYhX — (X, ZYhY)},
where x and u are constants. If =0, Ehe (r, p)-nullity distribution N (x,u) is
called the x-nullity distribution N (k). If £ € N(x,u), that is

R(X, )¢ =w(i((Y)X —=#H(2)Y) + u(i(Y)hX — H(Z)hY), (2.8)
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then M is called a (k,u)-manifold. If & e N(x), then
R(X, V)¢ =k(i(Y)X —(2)Y), (2.9)

and M will be called an N(k)-contact metric manifold. In a (x,u)-manifold the
covariant derivatives of ¢ and & satisfy

(Vi)Y = (X + hX, YYE - H(Y)(X + hX), (2.10)
(Vi)Y = {(1 — k)X, $¥) — <X, phV)}E
— ({1 — k)X + phX} — pii(X)phY . (2.11)

Moreover, we have
OF =2mié, h* = (k- 1)@,

where O is Ricci operator. Obviously, x < 1, equality holds if and only if the
manifold is Sasakian. Characteristic examples of non-Sasakian (x,u)-manifolds
are the tangent sphere bundles of Riemannian manifolds of constant sectional
curvature not equal to one and certain Lie groups [5]. For more details we refer
to [2], [3] and [11].

The sectional curvature K(X,@X) of a plane section spanned by a unit
vector X orthogonal to & is called a @-sectional curvature. If the (x,u)-manifold
M has constant @-sectional curvature c then it is called a (x, u)-space form and is
denoted by M(c). The curvature tensor of M(c) is given by

c+3

R(X,Y)Z = {KY,ZYX —(X,Z)Y}
-1 Y e - P e
+ X, T2 + (X, 620 - (¥, 025K}

c+3 -4k
+—__—

T UXA2)Y —a(V)i(Z2)X

+ X, Zo0(V)E — KV, ZYi(X)E}

4 (GhX, Z5PhY — (Gh¥,ZYhX}
+<(GY,GZ X — {pX,pZYhY

+ ChX, ZYG*Y — (hY,Z)¢°X
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+ 1{Ji(NAZ)hX — §(X)i(Z)hY
+<hY, Z)i(X)E — <hX, Z)i(Y)E}

for all X,Y,ZeTM, where c+2xk=—1=x—pu if x < 1.

499

(2.12)

Let M be a submanifold in a manifold M equipped with a Riemannian metric

{,>. The Gauss and Weingarten formulae are given respectively by

VY =VyY +0(X,Y) and VyN = —AxX + VN

for all X,Y e TM and N € T+ M, where V, V and V* are Riemannian, induced
Riemannian and induced normal connections in M, M and the normal bundle
T+M of M respectively, and o is the second fundamental form related to the
shape operator Ay in the direction of N by <o(X,Y),N) = {AnyX,Y). More-

over, if J is any (1,1)-tensor field on M, then we have
(Vx )Y = ((Vx))Y — Ar,v X — 1j0(X, Y))
+ ((VxF;)Y +6(X,JY) — J*o(X, Y)),
(VxJ)N = ((Vx1;)N — Ay X — JAy X))
+ ((VxJ*)N + o(X,t;N) — F;An X)),
where
JX=JX+FjX, X,JXeTM,F;XeT M,
JN =t;N+J'*N, t;jNeTM,N,J*NeT" M,

(VxJ)Y = VxJY —JVxY, (VxF;)Y =V5F;Y —F;VxY,

(Vxtj)N = Vyt;N — t;VEN, (VxJY)N = VEJIN — J1VEN.

From Gauss and Weingarten formulas, we obtain
(RX,V)Z)" = R(X,Y)Z + Ay, Y — Aoy, 20X,
consequently, the Gauss equation is
RX,Y,Z,W)=R(X,Y,Z,W)—<ao(X,W),a(Y,Z)>
+<(o(X,2),0(Y,W)).
The covariant derivative of o is wdeﬁned by

(Vxo)(Y,Z) = Vyo(Y,Z) — a(VxY,Z) — a(Y,VxZ).

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Finally for normal vector fields N and V the equation of Ricci-Kiihn is
R(X,Y,N,V)=R*(X,Y,N,V) - AN, Ay]X, Y. (2.18)

The mean curvature vector H is expressed by H = trace(o)/dim(M). The sub-
manifold M is totally geodesic in M if ¢ =0, and minimal if H=0. If
o(X,Y)=<(X,Y)H for all X,Y e TM, then M is totally umbilical.

3 Invariant Submanifolds

Let M be an almost contact metric manifold with the structure (o, &, 7,<, ).
For a submanifold M of M tangent to &, we write the orthogonal direct de-
composition TM = 2 @ {£}, where £ is restriction of &. Moreover, if the ambient
manifold is contact also, then

Vi =0 and o(¢,¢&) = 0. (3.1)

Thus, every totally umbilical submanifold M of a contact metric manifold such
that & e TM is minimal and consequently totally geodesic. For H = (&, E>H =

a(& &) =0.

If in a submanifold M of an almost contact metric manifold the structure
vector field & is tangent to M and ¢T,M — T,M, then M is called an invariant
submanifold and inherits an almost contact metric structure (¢,&,7,<{,>) by re-

striction. Moreover, in view of and (2.14), we have
(Vx@)Y = (Vxp)Y +a(X,9Y) - 9*a(X, Y), (3.2)
(Vx@)N = —A,inX — pANX + (Vxob)N. (3.3)

For a submanifold M of a contact metric manifold to be invariant, the
condition ¢T,M < T, M is sufficient. In this case, & becomes tangent to M and the
induced structure (g,¢&,7,<,») becomes contact. Moreover, & = h|,,, o(X,&) =0
and M is minimal [2]. We also have

(Vxh)Y = (Vxh)Y +o(X,hY) — hro(X,Y), (3.4)
(Vxh)N = —AjinX — hAxyX + (VxhM)N. (3.5)

Now, we prove the following
PROPOSITION 3.1. Let M be a (2n + 1)-dimensional invariant submanifold of a

(r, u)-manifold. Then, we have
(Vxg) Y = <X + hX, Y& ~ n(Y)(X + hX), (3.6)
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pra(X,Y)=0a(X,pY) =0(pX,Y), (3.7)
A,y = pAy = —Ang, (3.8)
(Vx@)N =0, (3.9)
(Vxh)Y = {(1 — k)X, 9Y) — X, phY >}
—n(Y){(1 — x)pX + phX} — un(X)phY, (3.10)
pth(X,Y) =o(X,hY) =0(hX,Y), (3.11)
Apiy = hAy = Anh, (3.12)
(Vyh)N =0, (3.13)

Q¢ =2nké, h? = (x — 1)¢p?,

where Q is Ricci operator on the invariant submanifold.

ProOF. From (2.10), we have
(Vx@) Y =X +hX,YD¢ —n(Y)(X + hX). (3.14)

Equating tangential and normal parts of right hand sides of and (3.14), we

get and [3.7). Equation is equivalent to [3.7). From we have
(3.9). Similarly, we can prove (3.10)—(3.13). Using a(X,¢) =0 in (2.15), we get

R(X,Y)¢=R(X, Y)E,
which in view of [2.8), gives
R(X,Y),=xm(Y)X —n(Z2)Y) + u(n(Y)hX —n(Z)hY).

This completes the proof. O

In view of the previous discussion in this section, we can state the following

THEOREM 3.2. An invariant submanifold of a (k,u)-manifold is a (x,u)-
manifold.

We recall the following Lemma for later uses.

LemMma 3.3 [7]. Let M be an invariant submanifold of a contact metric
manifold. Then, we have
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AN = —Angp, AnE =0, (3.15)
AN = ANh (f and only lf (VxAN)é =0. (316)

Now, we prove the following

THEOREM 3.4. Let M be an invariant submanifold in a (x,u)-manifold. If
Vo =0, then either k =0 or M is totally geodesic.
PrOOF. For any submanifold in a Riemannian manifold, first we note that
{(Vxo)(Y,Z), N> = {(VxAN)Y — Agiy Y, Z).
Thus taking in to account Vo =0 and Ay¢ = 0, the above equation gives
(VxAn)¢ =0,
which in view of (3.16) implies that Ayh = 0. Thus we have
(1 —K)AnX = (k — 1) ANp*X = Ayh*X = AN X,

which provides
KA N = 0.

Hence, either k = 0 or the invariant submanifold is totally geodesic. O
The above theorem provides the following

COROLLARY 3.5 [9]. An invariant submanifold of a Sasakian manifold is
totally geodesic, provided the second fundamental form of immersion is covariantly
constant.

Now, we recall the following

THEOREM 3.6 [1]. Let M be a (2n + 1)-dimensional manifold endowed with a
contact metric structure (¢,&,n,{,>) such that

RX,Y)E=0, X,YeTM,

where R is the Riemann curvature tensor. Then, M is locally isometric to
E™1(0) x S*(4) for n> 1 and flat for n=1.

In view of and [Theorem 3.6, we have the following
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THEOREM 3.7. Let M be a contact metric manifold with its structure vector
field belonging to the k-nullity distribution. Let M be a (2n+ 1)-dimensional
invariant submanifold in M, whose second fundamental form is covariantly con-
stant, then either M is totally geodesic or M is locally isometric to E"1(0) x S"(4)
for n>1 and flat for n = 1.

We close this section by proving the following

PROPOSITION 3.8. Let M be a (2n + 1)-dimensional invariant submanifold in a
(xc, )-manifold M. Then
trace(hA4?) = 0, (3.17)

(trace(hd4))* < 2n(1 — k) trace(4?). (3.18)

ProOF. Since h? = (k — 1)¢?, therefore h may be represented by

al, 0
h= —al, ,
0 0

where a = (1 — k)'/2. Since (3.12) holds true, we may take the same orthogonal
matrix to orthogonalize 4. Therefore, from [3.15), 4 can be represented as

/al . 0 o --- 0 0\
0 - a 0 . 0 0
A= 0 0 —ay 0 0
0 0 0 —-a, 0
\ 0 0 0 0 0)

Thus, we have

trace(hA) = 2(1 —x)"/*(ay +--- +a,) and trace(hd?) = 0.
Hence,
(trace(hA))? = 4(1 — k)(a; + - - - + ay)*
<4n(l —x)(@*+---+a?)

= 2n(1 — k) trace(4?), (3.19)

which completes the proof. O
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4 Ricci Tensor and Scalar Curvature
In a (x,u)-space form M(c), from (2.12), we obtain
R(X,&)E = —k@?*X + phX .

Consequently, if x =0 # u, then A is determined completely in terms of the

Riemann curvature.
In view of (2.12) and we are able to state the following

PROPOSITION 4.1. In a (2n + 1)-dimensional invariant submanifold in a (x, u)-
space form M(c), the Ricci tensor and the scalar curvature are given respectively by

SX,Y)=z((n+1)c+3(n—1)+2k){X,Y)

| —

_ %{(n + De+3(n—1)—22n - Dr}n(X)n(Y)

2n+1

+(u+2n—2)<hX, Yy = > (o(ei X),0(Y,e)), (4.1
i=1

r=n((n+1)c+3n—1)) +4nx — |||, (4.2)

where
2n+1

”6”2 = Z <G(ei7ej)aa(ei’ej)>'

i,j=1
The equations (4.1) and give the following

THEOREM 4.2. For a (2n + 1)-dimensional invariant submanifold in a (x,p)-
space form M(c), the following statements are equivalent:

1. M is totally umbilical,

2. M is totally geodesic,

3. Ricci tensor is given by

S(X,Y) = (u+2n-2)hX, Y)+%{(n+l)c+3(n—1)+2K}<X, YD

_é{(n +De+3(n—1) —2(2n — Drkn(X)n(Y), (4.3)

4. Scalar curvature is given by

r=n((n+1)c+3(n—1)) + 4nk. (4.4)

As an immediate consequence, we have the following
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COROLLARY 4.3. For a (2n+ 1)-dimensional invariant submanifold in a
Sasakian space form M(c), the following statements are equivalent:

1. M is totally umbilical,

2. M is totally geodesic,

3. Ricci tensor is given by

S(X, Y):%((n+1)c+3n— IXX,Y)

— 304 (e = D(X)n(¥), (43)

4. Scalar curvature is given by
r=n((n+1)c+3n+1). (4.6)

In particular, a 3-dimensional totally geodesic invariant submanifold M in a
Sasakian space form M(c) has Ricci tensor S = (c+ g+ (1 —c)n® .

REMARK 4.4. A Sasakian manifold M is n-Einstein if its Ricci tensor
satisfies

S(X,Y)=alX, Yy +by(X)n(Y), X,YeTM,

where a and b are some constants [10]. A 3-dimensional Sasakian manifold is
known to be n-Einstein [4] and its Ricci curvature is given by S = (5—1)g+
(3—4)n®n. Thus from (4.5), we see that M is n-Einstein.

5 Invariant Submanifolds with Trivial Normal Connection

In this section, we assume that for an invariant submanifold M in a (k, u)-
space form M(c), the normal connection is trivial. Then, for a unit vector
NeT+M and X,Y € TM, from (2.12) we get

2R(X,pY,N,pN) = (1 — c)<pX,9Y ). - (5.1)

On the other hand, from the equation of Ricci-Kiihn, we also have

R(X,9Y,N,pN) = (o(ANX,9Y),pN> — (o(X,An9Y),pN>

= CANX, AjnoY ) — {Aspn X, ANoY )

= ANX, pAN@Y > + {pANX,9ANY )

= 2{QANX ,pANY > = 2{ANX, AN Y, (5.2)
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where and are used. Thus, we obtain
(1 -c)pX,0Y) =4CANX, AN Y ). (5.3)

Moreover, if U,V e T*M are mutually perpendicular unit vectors, then
(U + V)/V2 is another unit vector. Thus, in view of (5.3), we obtain

<AUAVX7 Y> + <AVAUX’ Y> = 07
which gives
AuAV = —AVAU. (54)

Now, in view of (5.3), we are able to state the following

THEOREM 5.1. For an invariant submanifold M in a (i, u)-space form M(c)
with trivial normal connection, we have ¢ < 1 with equality condition if and only if
M is totally geodesic.

When the codimension of the invariant submanifold is greater than two, we
have a stronger result in the form of following

THEOREM 5.2. Let M be a (2n + 1)-dimensional invariant submanifold in a
(k, u)-space form M(c) with codimension greater than two. Then the following
statements are equivalent:

(i) the normal connection of M is trivial,

(ii) M is totally geodesic and c = 1.

PrOOF. In view of (2.12) and [2.18), it is easy to see that (i) implies (i). Let
the normal connection be trivial and M be not totally geodesic. Consider a ¢-
basis {e1,e2,...,€2,,¢} for T,M with e, =ge;, i=1,...,n. If Aye;=0 for
some unit vector U € Tt M, then from (5.3), M is totally geodesic. So Aye; # 0
for any N and e;. From (5.3), it follows that Aye;,..., Ayes, are linearly in-
dependent. Using in Ricci-Kithn equation, for mutually orthogonal unit
vectors U,V e T*M we obtain

R(X,Y,U,V)=2{AyX,AvY),
while in view of (2.12), we get
2R(X,Y,U,V) = (1 - c)<X,pY o U, V>.

From the above two equations, we have

(1 — o)X, pY Yo U, V) =4{AyX, Ay Y).
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If codimension is greater then two, we may take ¥ orthogonal to U and ¢t U,
thus the above equation gives

{AyX,AyY> =0, X,YeTM.
By assumption, Aype; #0, i =1,...,2n. Therefore, Aye; are orthogonal to Aye;,
i,j=1,...,2n. Thus, Ayei,...,Ayer,, Ayey,...,Aypey, are linearly indepen-
dent, which is a contradiction. Therefore, M must be totally geodesic and hence
c=1. O

and provides the following two Corollaries.

CorOLLARY 5.3 [10]. For an invariant submanifold M in a Sasakian space
form M(c) with trivial normal connection, we have c < 1 with equality condition if
and only if M is totally geodesic.

COROLLARY 5.4 [10]. Let M be an invariant submanifold in a Sasakian space
form M(c) with codimension greater than two. Then the following statements are
equivalent:

(i) the normal connection of M is trivial,

(i) M is totally geodesic and c = 1.

6 Simons’ Type Formula

Let M be a (2n+ 1)-dimensional invariant submanifold of a (2m+ 1)-
dimensional (x, u)-space form M(c). We choose a local field of orthonormal
frames ey, ..., e,11 such that, restricted to M, ey,...,e,, €,01 = @ey1,...,€m = @ey
are tangent to 2 and ey, = £. We use the following convention on range of
indices:

1 <i,jk,...<2n+1,
2n+2<o,B,y---<2m+1.
We put

o(ei, e) E O ji€a,

(Ve 0)(eir€5) Z O'Ukea,

lekl = <R(ek; €[)ej, ei>7

where R is the curvature tensor of M.
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Let A be the Laplace operator acting on C*(M). Then we have the following
(see, (3.12) in [6]).

%AHJH =3 (62)? + 3 oAt (6.1)

The equation of Codazzi implies that
Oijk = Oikj- (6.2)

Since M is minimal, from (2.21) in [6] and we obtain

ZJ“AJ = Z 0i0kmRik + 00, Ry — a;afiRE‘jk. (6.3)

Moreover by using the Ricci-Kiihn equation, we see that the right side of (6.3)
is equal to the following;

m a B pa
Z ayakayk + th mlejk GijakiR,Bjk

+ ; trace(Ae, Ae, — Ae,Ae,)’ — ;(trace A, A4,,)%, (6.4)
1”

where R is the curvature tensor of M(c).

In view of and [(3.8), we observe that the shape operator of invariant
submanifolds in contact metric manifolds has similar properties as that of Kaehler
submanifolds in [12]. Hence by applying [Proposition 3.1, Lemma 3.4 and (6.10)
in [12], we have

Z trace(A., e, — AeﬂAq) - Z(trace Ae;'Ael,)
Au

1 3
4 _ Ly w4 _ Oy 4
> —|lall* = S loll* = =S llall*. (6:5)
Also by a straightforward computation, we get
> _ 050k Ri = cloll?, (6.6)
(c+3)2n—-1) 3(c-1)
Zay mtRk/k { )4 + 4 tK ||0|12, (67)

-1
ZO' aklRﬂjk 2 ”0.”2, (68)
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and hence
oo pm o_o pm o B pa
E :(O-ijokaijk + 030, R — 050, Rex)

_ {c(n+2) +3n

5 + K~ 1}||a||2. (6.9)

Combining [(6.1), [6.4), (6.5) and [6.9), we obtain

c(n+2)+3n

5 + K — 1}”0”2. (6.10)

1
38l > 1V + { = el +
Now, we assume that M is compact. Then by applying Green’s theorem, we
have

I{;HJHHW—H1}||a||2dusz Vol dow.  (6.11)
M M

and (6.11) yield us the following.

THEOREM 6.1. Let M be a compact (2n + 1)-dimensional invariant sub-
manifold in a (k,p)-space form M(c). Then either k =0 and ||o||* = w— Z,

or M is totally geodesic, or at some point p e M, we have

2 cn+2)+3n 2x 2

ProOF. If [|g||*> < €237 2 _ 2 a¢ every point of M?**!, from (6.11) we
obtain that ||o||* = ﬂﬁg—)ﬂ%—%—"—% and Vo =0, or 6 =0 on M. By applying
MTheorem 3.4, we can prove the statement. O

REMARK 6.2. We have the following remarks. (a) x4 does not appear in
(6.10). (b) In case of x = 1, our becomes Theorem 4.1 of Endo
or Theorem 2.1 of Kon [10]. But in case of x # 1 and n # 1, does
not coincide with Theorem 4.1 of Endo [8].
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