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ON THE EXTENSIONS OF W, BY 4® OVER
A Z,-ALGEBRA

By

Yasuhiro NITSUMA

Abstract. We will give an explicit description of extensions of the
group scheme of Witt vectors of length »n (resp. the formal group
scheme of Witt vectotrs of length n) by the group scheme (resp. the
formal group scheme) which gives a deformation of the additive
group shceme to the multiplicative group scheme (resp. the additive
formal group scheme to the multiplicative formal group scheme) over
an algebra for which all prime numbers except a given prime p are
invertible.

Introduction

Throughout the paper, p denotes a prime number, Z(, the localization of Z
at the prime ideal (p).

Let W, (resp. W,) denote the group scheme (resp. the formal group scheme)
of Witt vectors of length n over Z, and W (resp. W) the group scheme (resp. the
formal group scheme) of Witt vectors over Z. Let G, (resp. G,) denote the
multiplicative group scheme (resp. the multiplicative formal group scheme) over Z.
Let F be the Frobenius endomorphism of W or of W (for the definition see 1.2).

An explicit description of the groups Ext}(W, 4, G, 4) and Ext} (W, 4, G a)
is given by Sekiguchi-Suwa when A4 is a Z(,-algebra. More precisely, iso-
morphisms

Ker[F" : W(A) — W(A4)] > Hom_g(Wy 4, Gm 4),

Coker[F" : W(A4) — W(A4)] = HEX(Wy 4, Gm 1),
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Ker[F" : W(4) — W(A)] = Hom_g:(Wy 4, Gm,4),
Coker[F" : W(A) — W (A)] = H(Wa,4, Gm,4)

are constructed, using deformations of the Artin-Hasse exponential series. Our
aim of this article is to generalize the isomorphisms to those for {?A(” ) instead of
G 4. Here ped and féA(”) = Spec A[T,1/(1 + uT)]; this is a group scheme
defined by Sekiguchi and Suwa, as a deformation between the additive group
scheme G, and G,, so that ¥© = G,, 4V 5 G,, (for the definition see 3.1).
Precisely, our result is as follows.

THEOREM. Let A be a Z y)-algebra and € A. Then there exist isomorphisms:
Ker[FW' : wW(4) » WH(4)] S Homy_ge( Wy 4, 97),
Coker[FW" : wW(4) - W (A)] S HEZ(Wn 4, 9").
Moreover, if u is nilpotent, then there exist isomorphisms:
Ker[FW" . WW(4) » WW(4)] S Homy_g(W 4,%™),

Coker[FW)" : WU (4) — W (A)] = Hi (W0, "),

(See Theorem 3.5 and Remark 3.6. For the definition of W) (A4) and F), see
Section 1.)

Putting # =1 in our theorem, we find again the main theorem of [6].
However, we prove the former, starting from the latter. It is crucial to use
variants of Witt vectors and to construct deformations of the Artin-Hasse ex-
ponential series for an explicit description of the isomorphisms as done in
Sekiguchi-Suwa [8].

Now we explain the contents of the article.

In Section 1, paraphrasing the classical theory of Witt vectors we recall the
variants of Witt vectors W) (4) for a Z[M]-algebra 4, which is presented in
[8]. W™ (4) is interpreted as the 4-valued points of a group scheme W ™) over
Z[M]. At the end of the section, we recall the exact sequence of groups over
Z[M]|

0— W(M)HHWB%W,}—AO,
B/A

where 4 = Z[M| and B = A[t]/(t* — M1), given in [8].



On the Extensions of W, by 4% over a Z (p)-Algebra 439

In Section 2, we recall necessary facts on the Artin-Hasse exponential series
and the main result of [6].

In Section 3, we prove the main result, after reviewing the Hochschild
cohomology in our case. The theorem can be reduced to the main result of [6]
thanks to an exact sequence of formal groups

0— ?A(M) - H Gm,B - ém,A - 0,
BjA

where 4 = Z[M] and B = A[t]/(t* — Mt), as done in [8] Furthermore, in order
to give an explicit description we define vaiants of the Artin-Hasse exponential
series

Ep(’j‘r{)(U, T) EZ(p)[U(), U], Uz, . ,M][[To, T],. cey Tn—l]]y
modifying the power series
Epy,,(U; T) € Z(p)[Uo, U], Uz, .. .][[To, Tl, ey Tn——l”

presented in [6]. The definition E\% (U; T) is parallel to that of W*) in a sense.

In the section 4, we establish some functorialities, recalling some results of [6].

The last section is devoted to a case over a discrete valuation ring. In general,
it is difficult to determine Ext}(W, A,gA(” )) if u is not nilpotent in 4. However,
Ext} (W, A,gA(” )) is isomorphic to the subgroup of H) (W, A,gA(” )) formed by
the primitive elements when A is a discrete valuation ring. This enables us to give
an explicit description of Ext} (W, A,@A(”)). Furthermore, we observe a behavior
of the canonical map Ext} (W, 4, gA(")) — Exti (W, A,?A(” )) when 4 is of mixed
characteristics 0 and p.
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Notation

Throughout the paper, p denotes a prime integer, Z(, the localization of Z
at the prime ideal (p), and 4 a Z,-algebra. All rings are commutative with a
unit element 1, unless otherwise stated.
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G, 4: the additive group scheme over A4

G,, 4: the multiplicative group scheme over A4

W, 4. the group scheme of Witt vectors of length n over 4
Wy: the group scheme of Witt vectors over A4

A

G, 4: the additive formal group scheme over A4

~

G, 4: the multiplicative formal group scheme over A4

W,,,A: the formal group scheme of Witt vectors of length n over 4

W,: the formal group scheme of Witt vectors over A

HZ(G, H) denotes the Hochschild cohomology group consisting of symmetric
2-cocycles of G with coefficients in H for group schemes or formal group schemes
G and H.

For a commutative ring B, B* denotes the multiplicative group G,,(B).

Contents

Recall: Witt Vectors

Recall: Hochschild Cohomology

Statement and Proof of the Theorem
Functoriality

Some Results over a Discrete Valuation Ring

“nhwb =

1. Recall: Witt Vectors
We start with reviewing necessary facts on Witt vectors. For details, see
Demazure-Gabriel [1, Chap. V] or Hazewinkel [3, Chap. III].
1.1. For each r > 0, we denote by ®,(T) = ®,(7y, T1,-..,T,) the so-called Witt
polynomial
O, (T) =T +pT?" +---+p'T,
in Z|[T)|=Z[T,, T),...,T,]. We define polynomials
S, (X,Y) =S,(Xo,...,Xr, Yo,..., Y}),
P.(X,Y) = P,(Xo,..., X}, Yo,..., 1})
in Z[X,Y]| = Z[Xo, X1,...,X:, Yo, Y1,...,Y,] inductively by
D, (Sp(X,Y),51(X,Y),...,S(X,Y)) =D.(X) + ®,(Y),
D, (Py(X,Y), P (X,Y),...,P(X,Y)) = D(X)D,(Y).
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The ring structure of the scheme of Witt vectors of length n (resp. of the
scheme of Witt vectors)

W,z =Spec Z[Ty,T1,...,Tn_1] (resp. Wz = Spec Z[Ty, Ty, T3,...])
is given by the addition
To—~So(TROLI®T), T1—~SI(TOLIR®RT), Tn— SH2(T®1L,1®T),...
and the multiplication
To—P(TRLIRT), 1 » PA(TRLI®RT), I —P(TR®RLIR®T),....

We denote by W, z (resp. Wz) the formal completion of W, z (resp. Wz)
along the zero section. W, z (resp. W) is considered as a subfunctor of W, z
(resp. Wgz). Indeed, if A is a ring, then

Wn(A) = {(ag,ay,as,...) € Wy(A); a; is nilpotent for all i},

. ; is nilpotent for all i and
W(A)={(ag,al,az,...)eW(A); a; is nilpotent for all i an }

a; =0 for all but a finite number of i

1.2. The restriction homomorphism R: W, z — W, z is defined by the ca-
nonical injection

Z[To,T],...,Tn,_l] ‘—>Z[T0,T1,...,Tn].
Note that

Wz =lim W, z.
R

The Verschiebung homomorphism V : W, z — W, z (tesp. V : Wz — Wz)
is defined by
To— 0Ty —Ty,..., T, — T,

(resp. Toi—>0,T1 l—>T0,T2l—->T1,...).

Note that V' is a homomorphism of group schemes.
Define now polynomials

Fr(T) :Fr(TO,---yTnTH—l) EZ[T())"'aTra TH—I]
inductively by

q)r(FO(T),. . ,Fr(T)) == (I)r+](T0,. .oy Tr, TH—I)
for r > 0.
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We denote by F: W,z — W,z (resp. F: Wz — Wz) the morphism
defined by
To — FO(T), T1 aned F](T),.. .y T,,..] s Fn_l(T)
(resp. To— Fo(T), Ty — Fi(T), T, — Fo(T),...).

Then it is verified without difficulty that F is a homomorphism of ring schemes.
It is readily seen that F,(T) = T? mod p for r > 0. Therefore, if 4 is an F)-
algebra, F: Wy 1 4 — Wy 4 (resp. F: Wy — Wj) is nothing but the usual Fro-
benius endomorphism.
We put
S(X,Y) = (So(X,Y),$1(X,Y),S$:(X,Y),...),

P(X,Y) = (PO(X’ Y), Pi(X, Y)7P2(X’ Y),...),
F(T) = (Fo(T), Fi(T), F2(T),...).

Next we recall the variants of Witt vectors defined in [8. Sect. 1].

1.3. For each r > 0, we define
OM(T) = M(Ty,...,T,) € ZIM)[To, ..., T)]
by

oM (T) = %d),(MTo, ..., MT,)

= MPITY 4 pMPTITP T e p M T 4 ' T
Furthermore, we define
SM(x,Y)=SM(X,,..., X, Yo,..., Y;) € ZIM][Xo,..., X, Yo,..., ¥y,
PM(X Y)=PM(Xy,...,X,, Yo,..., Y,) € ZIM][Xo,..., X,, Yo,..., ¥},

FM(T)y = FM(Ty,..., T, Tr1) € ZIM|[To, ..., Ty, Trs1]
by
1
SM(Xo,...,X,, Yo,..., Y,) = —HS,(MXO, e, MX, MYy, ..., MY,),
1
PM(Xy,.... X, Yo,..., Y,) = HP,(XO,...,X,,MYO,...,MY,),
1

FM(Ty, ..., Ty, Tr) = — F,(MT, ..., MT,, MT, )

M
respectively.
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We put
SM(X,¥) = (s (x, ¥), s (X, ), S5 (X, ¥),..),
PM(X,Y) = (P{M(X,Y),PM(X,Y), P (X,Y),..),

FO(T) = (F™(1), F*(T), F;*(T), ...).

1.4. Put W™ = Spec Z[M][T,, T1,T3,...]. Then a morphism
WM x g WM = Spec ZIM|[To®1,T1 ® 1,
Tl ., 1Q0Tn1®T,1Q7T,...]
— WM = Spec Z[M][To, Ty, T, .. ]

defined by
To— SM(T®1,10T), T » S (T®1,1® 1),

T, SM(T®1,10T),...

gives an addition on W®*) which induces a structure of a commutative group
scheme over Z[M] on W) (cf. [8, Sec. 1]).
Furthermore, a morphism

Wz %z W™ = Spec ZIM|[To® 1,T; ® 1,
nhel,..  1T,1®T),l®T),...]
— WM = Spec Z[M][To, Ty, T, - . ]
defined by
To— PM(T®1,10T), ) » PM(T®1,1®T),
T~ PM(T®1L,1IQT),...
gives an action of Wz, on W M) which induces a structure of Wza-module

on WM (cf. [8, Sec. 1]).

REMARK 1.5. Let 4 be a Z[M]-algebra. Let a,be W™M)(4) and ce W(A).
We will denote sometimes a + b, ¢-a by a+®) b, ¢-(M) g, respectively, to avoid
confusion.
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1.6. Let 4 be a Z[M]-algebra, and let x4 denote the image of M in 4. We
denote sometimes W) ®z,,) 4 by W¥. We define also

SU(X,Y)=S"(Xo,..., X, Yo,..., Y,) € A[Xo,..., X,, Yo,..., Y],
PM(X,Y) = PP (Xy,..., X, Yo,..., Y,) € A[Xo, ..., X, Yo, ..., V)],
F"(T) = FW(Ty,..., T, Trs1) € A[Ty, ..., Ty, Tyii]
by substituting M by u in S,(M)(X ,Y), P,(M)(X ,Y), F,(M)(T ), respectively.
ExaMpPLE 1.6.1. It is clear that
SH(X,Y)=S.(X,Y), PDX,Y)=P(X,Y), FI(T)=F/(T),
and therefore Wg) is nothing but the scheme of Witt vectors Wj.
ExampLE 1.6.2. It follows that
SOX,Y)=X,+7Y, POX,Y)=0,X)Y, FT)=pT,.,

(cf. [8, 1.4]). Hence the group scheme WZ(O) is isomorphic to the direct product
GY,.

1.7. We define homomorphisms V : WM) — M) apd FM) . M) _, py (M)

by
To'—-*O,T; — To,TzH Tl,...
and
To — FM(T), Ty — FM(T), Ty » FMN(T), ...
respectively.

By abbreviation we denote F) by F.

1.8. We define a morphism o™ : WM Wzim) by
T() — MTQ, T1 = MT],Tz — MT2,....
Then it is verified without difficulty that «a™) is a group homomorphism.
REMARK 1.9. Let 4 be a Z[M]-algebra, and let B = A[t]/(t* — Mt), in which

¢ denotes the image of 7. Then we have ¢2 = Me. Defining a ring homomorphism
B — 4 by ¢— 0, we have also a ring homomorphism W(B) — W(A4) and

Ker[W(B) — W(A4)] = {(eap,eay,eay,...);ap,ay,a,... € A}.
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In [8, Sec. 1], the following theorem is proved: Let A4 =Z[M], B=
Z[M, 1)/ (> — Mt). Then WM) is isomorphic to Kerl:H Wy — M], where []
B/A B/A
denotes the Weil restriction functor. More precisely,
(1) (ap,a1,as,...) — (eap,eay,eay,...) gives rise to a W(A)-isomorphism

w M (4) 5 Ker[W(B) — W(A)];
(2) F: W(B) — W(B) induces F on WM (4);
(3) V: W(B) — W(B) induces ¥V on WM (4).
2. Recall: Hochschild Cohomology

In this section, we recall the main result of Sekiguchi-Suwa [6].
We begin by recalling the necessary facts on the Artin-Hasse exponential
series. For details, see [1, Sec. 5] or [6, Sec. 2].

2.1. The Artin-Hasse exponential series E,(T) € Z(,)[[T]] is defined by

E,(T) = exp(z 7;: )
r>0

For U = (U,),-,, we put

E,(U;T) = [[ Eo(U,T”") = exp <Z M) :

r
r>0 r=0 p

It is readily seen that

E,(S(U,V);T) = E,(U; T)E,(V; T).

22. For U= (U),5, and T = (T}),5,, We define a formal power series
Ep(U; T) € Z(p)[U][[T]] by

E,(U;T) = exp (Z%@(U)@r(T)) — exp (Z;—,@rw(v, T))) .
r=0 r=0
It is verified that
E,(S(U,V);T)=E,(U;T)E,(V; T).

23. Let n be a positive integer.r We define a polynomial @, ,(T)=
(I)r,n(TOa T], ey Tn—l) in Z{T(), T1, ceny Tn—l] by
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&,(To, Th,..., T, if r<n—1,
®, (1) = { S L0 T 1) Hr<n-i
’ o,(To, Th,...,Tp-1,0,0,...) ifr>n.
In [6, 2.4], a formal power series
Ep,n(U; T) € Z(p)[U][[T()v Tla SREK} Tn—l”
is defined by

Epn(Us T) = Ey(Us T, ..., Ty-1,0,0, .. =exp(z;"—,®,(v>@,,,.<r>)-
r>0

It is readily seen that

Epn(S(U; V), T) = Ep o(U; T)E, o(V; T).

24. Let k, [ be integers with k£ >/ > 0. Define a polynomial
Si (X, Y) =S(Xo,...,Xi-1, Yo,..., Yi_1) € Z[Xo,..., Xi_1, Yo,..., Yi_|]
by
Sk (X, Y) = Sk(Xo,...,X121,0,...,0, Yp,..., Y1,0,...,0).
In [6, 2.7], a formal power series
Fpn(U; X, Y) € Z()[Us, Uy, Us, .. J[[Xoy -, Xn-1, Yo, -+, Yut]]
is defined by

Fp n(U; X, Y) = E,(U; Sp(X, Y))
= Ep(Ua Sn,n(Xa Y)a Sn+l,n(Xa Y)7 Sn+2,n(X7 Y)a .- )

It is readily seen that

(1) F, o(U; X, Y)F, o(U;S(X,Y), Z) = F, o(U; X, S(Y, Z))F, »(U; Y, Z),

(2) Fpn(U; X, Y) = F,0(U; Y, X).

Moreover, we have

(3) Fpou(S(U, VX, Y)=F, o(U; X, Y)F, n(V; X, Y).

Now we recall some results of [6] For generalities of the Hochschild
cohomology, see {1, Ch. IL.3 and Ch. IIL6].

2.5. Let 4 be a Z,[M]-algebra. We define a complex

0 - CI(Wn’A’ GAm1A) _a) C2(Wn,Aa ém,A) - O —> e
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by
C' (Wi 4 Gon ) = {F(T) € A[[To, ..., To s, F(T) = 1 moddeg 1},
C* (W, 4, G 4)
={F(X,Y)e A[[Xo0, X1,..., Xp-1, Yo, Y1,..., Yut]]; F(X,Y) = 1 moddeg 1}.
The boundary map 8 : CH(W, 4, Gp 4) — C2(Wy 4,Gm 4) is given by

F(Xo,...,Xo)F(Yo,..., Yu_1)
F(So(X,Y),....51(X,Y))

0: F(To,...,Tpoy) —

([6, 2.1]). A formal power series G(X,Y) = G(Xo, X1,.-., Xn-1, Yo, Y1,..., Yu_1)
€ C¥(Wy 4, Gy 4) is called a symmetric 2-cocycle if G(X, Y) satisfies the following
functional equations:

(1) G(X,Y)G(S(X,Y),Z) = G(X,S(Y,Z))G(Y, Z),

(2) G(X,Y) = G(Y,X).
Let Z Z(W,,, As GAm, 4) denote the subgroup of CZ(W,,, s Gm 4) which consists of the
symmetric 2-cocycles. Let BZ(W,,, 4, (;'m, 4) = Im 0, and define

HE(Wa, 4, G, a) = Z> (W 4, G, 4) | B (Wi 4, G 4).
We have two complexes concentrated in degrees 1 and 2,
C* (Wi, G a) : 0 = CY Wiy 4, G t) > Z2 (Wi, Ga) =0 — -+,
D*(Wyt,Ga): 0 WA D W) >0 ..
By [6, 2.8], a morphism of complexes
En i D*Wi sty Gop t) = C* (Wi t, G 4)
is defined by
&) W(A) = C (W4, Gma),  E3(a) = Epn(a; T),
& W) = Z (Wt G), EN@) = Fyal@s X, V).
It is proved by [6, Th. 2.8.1] that this induces isomorphisms,
£ Ker[F" : W(A4) — W(A4)] > Homy_g(Wn 4, G 4),

f,l, : Coker[F" : W(A) —» W(A4)] 5 H&(Wn,A, Gm,A)'
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REMARK 2.6. In [6, 2.1], a complex

A

0— Cl(Wn,A,Gm,A) —6> Cz(Wn’A,Gm‘A) —-0— ...
is defined by

C' (W g, Gm 4) = A[[To, Th, ..., Tn 1]
C (W 4, G ) = Al[X0, X1y .-, X1, Yo, Y1, ..., Yoo
The boundary map 0 : C (W 4, Gm 4) — C*(Wn 4,Gn ) is given by

F(Xo,...,Xu—1)F(Yo,..., Y1)
F(So(X,Y),...,S11(X,Y))

6:F(T0,...,T,,_1)r—»

This definition is different from that of 2.5. But as is pointed out in [8, 3.3.1], the
complex defined in 2.5 is quasi-isomorphic to the complex defined in [6, 2.1].

3. Statement and Proof of the Theorem

3.1. Let 4 be a Z[M]-algebra. We define a group scheme ?A(M) over A by

(M) _ 1
4,"’ = Spec A[T, T MT}
with
(1) the multiplication: T— T ® 1 +1 @ T+ MT Q® T;
(2) the unit: T +— 0;

(3) the inverse T +— — r

14+ MT’
Moreover, we define an 4-homomorphism ocf,M ). QA(M ) m,A DY

1
. -1
U1+ MT: AU, U ]—»A[T,——l MTJ.

If M is invertible in A, ocl(,iM) is an A-isomorphism. On the other hand, if M =0 in

A, 2™ is nothing but the additive group G 4.
We denote by ?A(M) the formal completion of ?}A(M) along the zero section.

REMARK 3.2. Let A be a Z[M]-algebra, and let B = A[t]/(t* — Mt), in which
¢ denotes the image of 7. Then we have ¢2 = Me. Defining a ring homomorphism
B — A by ¢— 0, we have

Ker[B* — A*] = {1l +¢ea;ae A, 1 + Ma is invertible in A4}.
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[1 Gn.p — Gm 4|, where [] denotes the
B/A B/4
Weil restriction functor. Furthermore, the inclusion 4 — B defines a section of

I[I G s — Gum 4, and therefore, the exact sequence
B/A4

Hence fﬁA(M) is isomorphic to Ker

0— 4™ =[] Gns— Gua—0
B/A

splits.

3.3. Let 4 be a Z(,[M]-algebra. We shall define a complex
0— C'(Wpa,4™) S C2Wp g, 9™) =0 — -
by
C (W4, 9™ = {F(T) € A[[To, Ty, ..., Toa); F(T) = 0 moddeg 1},
C (W 4,%™) = {F(X,Y) € A[[Xo, X1, ..., Xn_1, Yo, Y1, .., Yu_1]];
F(X,Y)=0 moddeg 1}.

The boundary map 8 : CH(W, 4, 4™) — C2(W, 4,%9™)) is given by

F(X)+F(Y)+ MF(X)F(Y) — F(S(X, Y)).

0:F(T)w— 1+ MF(S(X,Y))

A formal power series G(X,Y) = G(Xo, X1,..., Xn_1, Yo, Y1,..., Yn_1) € C2(Wy 4,
?A(M)) is called a symmetric 2-cocycle if G(X, Y) satisfies the following functional
equations:

(1) G(X,Y) + G(S(X,Y),Z) + MG(X,Y)G(S(X,Y),Z) = G(X,S(Y,Z))+
GY,Z)+ MG(X,S(Y,Z)G(Y,Z),

(2) G(X, Y) G(Y,X).
Let Z2 (W, 4, % ) denote the subgroup of C2(W, 4, ?( ) which consists of the
symmetric 2- cocycles. Let BZ(W,,, A,g(M)) = Im 0, and define

HZ (W, 4) = 22 (Wi 0, 9) | B (W, 4,5,

We have two complexes concentrated in the degree 1 and 2,

C* Wty ™M) :0 = C' (Wya, 8™ S Z2(Wy 0, 4™) 50— - -,

D*(Wut, %) 10— WM (4) 5 W (4) 50— -
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3.4. Let A be a Z[M]-algebra, and let B = A[t]/(t> — Mt), in which ¢ denotes
the image of t. Then we have €2 = Me. The splitting exact secquence of formal
groups

0— ?A(M) - (H Gm,B) - ém,A —0

B/A
induces a splitting exact sequence of complexes
0— é*(W,,,A,.‘%‘l(M)) — C*(Wp 3, (A;myg) — C'*(W,,,A,GA',,,’A) — 0.
More precisely,
C'(Wa,8,Gm,8) = C'(Wn, 4, G, 1),
Z*(Wn,5, Gin,5) = Z>(Wn, 4, G, 4)
are induced from the ring homomorphism B — A. Moreover
CI(W,,,A,?A(M)) — CY (W 5, G 5),
ZX (W 4,4M) = ZX (W, 8, G )
are defined by
F(T)— 1+ ¢F(T),
GX,Y)— 14+eG(X,Y),

respectively.
On the other hand, we have a commutative diagram with splitting exact
rows

0 — WM —— W(B) — W) —— 0
O
0 — WM4) —— W(B) — WA —— 0
by Remark 1.9. Obviously the diagram of complexes
D*(Wn, 8, G, 8) —— D* (W 4, G, 4)

J |

é*(Wn,By GAm,B) E— é*(Wn,Aa Gm,A)
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is commutative. Hence we obtain a morphism of complexes
Eu: D (W, 9M) — C* (Wi 4, 9™),

To sum up, we obtain a commutative diagram of cochain complexes with
splitting exact rows

0 — [)*(Wn,Aa?A(M)) _— E*(Wn,B,Gm,B) — ﬁ*(Wn,A7Gm,A) — 0
j'é" jén jén
0 — é*(Wn,AagA(M)) -_— CN”“(Vi/n,37 ém,B) — é*(Wn,A,GAm,A) i

The most left &, is a quasi-isomorphism since the other two are such, by [6, Th.
2.8.1]. We have thus proved:

THEOREM 3.5. Let A be a Zp|M]-algebra. Then there exist isomorphisms
Ker[F" : WM (4) — W™ (4)] 5 Homy—g (Wi 4, 9™),
Coker[F" : WM (4) — WM (4)] 5 HE Wy 4,4™M).
REMARK 3.6. We can describe explicitly the isomorphisms
& Ker[F" : WM (4) — WM (4)] 5 Homy_g(Wy 4, 4),
£} : Coker[F" : W (4) — WM(4)] 5 H (W, 4,9"),
induced from
&n: D" (Waa, ") = C* (W a, ).
Indeed, we define two formal power serieses
EM(U;T) € Z()[M, Uy, Uy, U, .. J([To, T, - -, Tni]s

FM(U; X, Y) € Z(,)[M, Us, Uy, Us,.. J[[Xo, - - -, Xno1, Yo, -+ s Yot]]

1
ESD(UT) = 32 [Ep (@™ U, T) = 1],

1
FM(U; X, Y) = H(F,,,,,(mW)U;X, Y) - 1],

respectively. Then,
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(1) a— E,Ef‘,f)(a; T) gives rise to the isomorphism
0 Ker[F": WM (4) — W™ (4)] 5 Homy_ g (W, 4, %™);
(2) a— Fﬁf )(a; X,Y) gives rise to the isomorphism
&+ Coker[F™ : WM (4) — WM (4)] 5 HE (W, 4, 9.

This 1s a consequence of the following Proposition 3.7, 3.8, 3.9 and Corollary
3.11.

ProrosITION 3.7. We have
EMNW+M v, 1) = EM(U; T) + EM(V; T) + MEM(U; T)E® (V; T).
Proor. It is sufficient to prove that
1+ MEM(U+M Vi T) = (1 + MESD(U; TH)[1L + MES)(V; T)],
that is to say,
E,(a™(U +M) v): T) = E,(«'"™U; T)E,(«™ V; T).

This is a consequence of the functional equation for E,,(U,T) since
MU +M) V) = oM(U) 4 oM (),

PropPoOsSITION 3.8. We have
FMO(U; X, Y) + FM(U; S(X, Y), Z) + MESD(U; X, Y)FM(U; S(X, Y), Z)
= F(U; X, 8(Y,Z)) + F¥(U; ¥, Z) + ME"(U; X, S(Y, Z)FM(U; Y, 2)

and
FM(U; X, Y) = FY(U; Y, X).
Proor. It is sufficient to prove that
[1+ MF(U; X, Y)|[1 + MESD(U; S(X, Y), Z)]
= [1 + MF(T; X, S(Y, Z))|[1 + MEY(U; Y, Z))]

that is to say,
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Fpn(e™U; X, Y)F, ,(«"U;S(X, Y),Z)
= Fpn(d™ U X, S(Y, 2))F n(«*U; ¥, Z).
This is a consequence of 2.4 (1). The second assersion follows immediately from

2.4 (2).

ProrosiTioN 3.9. We have
(M) (M .
FEO(Ss™(U,v); X, Y)

— FM(U; X, Y) + FM(V; X, Y) + MESO(U; X, Y)ESD(V; X, Y).

Proor. It is sufficient to prove that
[1+ MESD(SM(U, ¥); X, V)] = [L + ME) (U X, Y))[1 + MESD (V3 X, Y),
that is to say,
(M) ( (M) . — (M) (M7, (M) ( (M) .
FSO@™MsU, v); X, Y) = FAD (@™ U; X, Y)ESD (oM Y; X, Y).

This is a consequence of 2.4 (3).

LemMma 3.10 (cf. [8, Lemma 1.20]). Let A be a ring, and let B=
A[M,1)/(t* — Mt), in which ¢ denotes the image of t. Let f(Ty,T»,...,T,)€
AT\, Ts,...,T,] with £(0,0,...,0) =0, and put

1 |
fM(T Ty,..., T, = —Mf(MTl,MTz, o MTy).

Then fM)(T1,Ts,...,T,) € AIM)[T1, T,. .., T,] and
Sf(M)(Tl,TZ,---,Tn)=f(8T1,8T2,...,8T,,).

COROLLARY 3.11. Let A be a Z,|M]-algebra, and let B = A[t]/(* — M), in
which ¢ denotes the image of t. Let ae W ™) (A4), and put ea = (eao, eay, eay, . . .).
Then:

(1) 1+ eES(a; T) = E, p(ea; T);

Q) 1+eF (a; X, Y) = Fy (ea; X, Y).

Proor. We may assume that 4 = Z,\[M][Up, U, Us,...| and a=U =
(U(), Uy, Uy, .. ) Put

Epn(Us T) =1+ tigiyiy (D) TP T -+ Ti,
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where a;;,....,_,(U) € Z ,\[Uy, Uy, Uy, ...]. Put

1
M
all . (U)= 27 Gioivins (MU, MU, MUy, ...).

Then a{* (U) € Z(,)[M][Us, Uy, Us, .. ] since ajy,...,,_, (U) has no constant term.

ol -+in_1

Furthermore
Zazon “ip-1 U) T(;O Tlll e Tr:n—kll .

Now by Lemma 3.10 we have
ea™) (U) = ayyiy.i,_, (eUp, €Uy, U3, . . ).

ity -in-1

This implies that
E, (ea;T) = 1+8E )(a; T).

We can prove (2) similarly.
ExamPLE 3.12.1. E,S,l,),(U; T)=E,,(U;T)- 1.

EXAMPLE 3.12.2. E\WU;T) = Y U@, (T).
r=0

Indeed, by the definition we have
1+ MEM(U; T) = Ep (a™U; T)

and

1
log Ep,n(«*0U; T) = 3 @ (o™ U)®y(T).

r=0
Now note that, for r > 0,
®,(MUy, MUy, ..., MU,) = p" MU, mod M”.

Hence we have

log Ep (e U; T) = > MU,®, ,(T) mod M?,

r>0

and therefore

Epn(d™U;T) =14 MU®, ,(T) mod M.

r=0
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Thus we obtain
EM@™MU;T) =) U, ,(T) mod M.

r>0

ExampLE 3.123. E\\(U;T) =Y U@,1(T) = X U,TE .

r=0 r=0
ExampLE 3.13.1. F)N(U;X,Y) =F,,(U;X,Y) - 1.

ExaMmpPLE 3.132. FO(U;X,Y) = 3 U,d,(5,(X, Y)).

r=>0

Indeed, by the definition we have
1+ MFM(U,X,Y) = F, o(«™U; X, Y)
and

log F, ,(e™U; X,Y) = Z%d),(oc(M) U)D,(S,(X,Y)).

r>0

Now note that, for r > 0,
®,(MUy, MUy, ... ,MU,) = p" MU, mod M?.

Hence we have

log F, (™ U; X, Y) =Y MU®,(S,(X,Y)) mod M?,
b,

r=0

and therefore

Fpn(@™U; X, Y) =14 > MU®,(5,(X, Y)) mod M2,

r=0

Thus we obtain

FMeMU; X,¥) = 3 U,0,(5:(X, Y)) mod M.

r=0
In particular, putting U = [1] = (1,0,0,...) and M =0, we obtain
FOILEX, Y) = Spa(X,Y) = Sy(Xo, - . ., Xu1,0, Yo, ..., ¥»_1,0)

which is the 2-cocyle of Z 2(W,,, Ga) defining the extesion W, ;.



456 Yasuhiro NIITSUMA
EXAMPLE 3.14. Let A be a Z,)[M]-algebra. The homomorphism of formal
(M) . M) A : . :
groups o) : 49"’ — G, 4 induces a morphism of cochain complex
(X(M) : é*(Wn‘A,.(%i(M)) - é*(Wn’A, GAm’A).
We can verify the commutativity of the diagrams

won) 2, W(A)

«:Sl lcS

A A

C' (W, ™) —— C' (W 4, Gom )

a(M)
and

oM

wiM(4) W(A)

‘| |

ZZ(W,,,A,?A(M)) —— Zz(Wn,Aa GAm,A)-

alM)

Moreover, we obtain a commutative diagram of cochain complexes

D*(Wnt, %M —— D*(Wy 4,Gm 4)

o |

C* Wt GM) —— C*(Wa s, Goma),

and therefore commutative diagrams

Ker[F" : WD (4) — WM (4)] <L, Ker[F" : W(4) — W(A)]

é,?l J'éf

HomA_gr(Wn,A,?;M)) T HomA_gr( Wn,A,GAm,A)
o

and

Coker[F" : WD(4) — W (4)] L, Coker[F" : W(4) — W(A)]

‘| |

H()Z(Wn,Ay%(M)) E— Hg(Wn,AaGm,A)-
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Assume now the homothety by M is not bijective but injective on 4, and put
Ay = A/(M). Then we have a commutative diagram of cochain complexes with
exact rows

0 — ﬁ*(Wn,Aaa‘%fM)) —— D*(Wp t, Gpg) — D*(Wy 4y, G, ay) — 0
lfn lfn J{f..
0 — C*(Wya, ™M) — C*(Wyt, G t) — C*(Wa a9, G, 4,)-

By the snake lemma the exact sequence

A A A A

0— HomA—gr( Wn,A, ?A(M)) - HomA—gr(Wn,A, Gm,A) - HomAO'gr(Wn,Ao, Gm,Ao)
d - ~ R ~ a N
5 HY (Wo 4, 9™) = HY (W, G a) — H3 (Wo sty Gin, ) = 0
arises from the commutative diagram with exact rows

0 —— WHM(4) —— W(4) —— W(dy) — 0
[ N
0 —— WM(4) —— W) —— W(4y) — 0.

We conclude the section, by mentioning an analogue of Theorem 3.5 in the

case of group schemes.
First we recall two facts stated in [6] and [8].

REMARK 3.15 (cf. [6, Th. 2.8.1]). Let 4 be a Z(,-algebra. Then
(1) a— E, ,(a; T) gives rise to the isomorphism
EO Ker[F" : W(4) — W(4)] > Hom_gt(Wh, 4, G, 4);
(2) a— F,4(a; X, Y) gives rise to the isomorphism
EL: Coker[F" : W(A) — W(A)] = HZ(Wn 4, Gm 4)-

REMARK 3.16 (cf. [8]). Let 4 be a Z(,)[M]-algebra, and let W™ denote the
functor defined by

W(M)(A)

Ma; is nilpotent for all i and }

_ (M) ( 4.
{(ao,al,az,...) € WH(4); a; =0 for all but a finite number of i
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Then we have a splitting exact sequence
0— WM (4) - W(B) —» W(A) — 0,
where B = A[t]/(t* — M1).

Now, we note that if M is nilpotent in 4, then we have

ng‘,?(u; T)e A[Uy, Uy, Us,.. )[To, Ty, ..., Tu_tl,

FM(U; X, Y) € A[Us, Ur, Uy, .. (X0, -, Xa-t, Yo,y Yuot].
Therefore, combining Remark 3.15 and 3.16 similarly as in the proof of Theorem

3.5, We can prove:

PROPOSITION 3.17. Let A be a Z(,)[M]-algebra. Assume that M is nilpotent in
A. Then
(1) a— E,%) (a; T) gives rise to an isomorphism

£ Ker[F" : W) (4) — W™ (4)] 5 Homy_g (Wi, 4,%"");
(2) ar— Fp(ﬁ,l)(a; X, ¥Y) gives rise to an isomorphism

£l . Coker[F" : WM (4) » WM (4)] 5 HE (W, 4,9™).

4. Functoriality

We establish some functorialities among é,i, (i=0,1,n=1,2,...).

PROPOSITION 4.1. Let A be a Z,[M]-algebra. Then:

(1) The diagrams

Ker[F" : WM (4) - WM (4)] — Ker[F"!: wM(4) - wM)(4)]
531 léﬂﬂ

Hom g _ge( Wy 4, %™) — HomA—gr(WnH,A,@A(M))
and
Coker[F" : WM (4) - WM (4)] —F ., Coker[F™': WM (4) —» WM (4)]
é'}l lf.'m
HE(Wa,1,94*) — HE (W1, 4,9

are commutative. Here the first horizontal arrow denotes the canonical injection.
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(2) The diagrams

Ker[F" : W(M)(A) N W(M)(A)] _r. Ker[F"“ . W(M)(A) N W(M)(A)]

f'?l J{éﬁl

HomA~gr( Wn,/b ?A(M)) —_ HomA_gr( Wn+1,Aa ?A(M)')
and

Coker[F” : WM (4) — WM (4)] —2— Coker[F™' : WM (4) — wM)(4)]
i,tl &t

HA(W, 4, 4™ — HX(Wii1 4,9

are commutative.
(3) The diagrams

Ker[F™! : WD (4) — wM(4)] —Ls Ker[F" : WM (4) — w3 (4)]

&, l léﬂ

HomA—gr( Wn-}—l,A» ?A(M)) - HomA—gl'( Wn,A’ gA(M))

and

Coker[F"+! : WM (4) — WM (4)] —— Coker[F" : WM (4) — WM)(4)]

& l le‘n‘

A

HOZ(WnH,A,?A(M)) — HE (W 4,9

are commutative. Here the third horizontal arrow denotes the canonical

surjection.
(4) The diagrams

Ker[F" : WM (4) » w(4)] -9, Ker[F": WM (4) — W) (4)]

& 1 lff.’

HomA_g,( W,,,A, {;A(M)) —_— HomA—gr( I’i/n,.»‘i, ?A(M))

and
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Coker[F" : WM (4) — wM)(4)] LN Coker[F" : WM (4) — wM)(4))

‘| ¢
HA (W, 4,9™) — HX(W, 4,9™)

are commutative. Here the second and forth horizontal arrows denote the maps
induced by endomorphism of W,, defined by

(To, Tis- - Tuot) — (P (a, T), P (a, T), ..., PM(a, T)),

n—1

where a = (ag,ai,...,a,-1) € W,(A) and (a] = (ao,ai,...,a,-1,0,0,...) € W(A).

Proor. The assertions can be deduced from following proposition as in the
proof of the main theorem.

PROPOSITION 4.2. Let A be a Z,-algebra. Then:
(1) The diagrams

Ker[F": W(A) —» W(A)] —— Ker[F"!: W(A4) —» W(A))

«::’l léﬁh.

~

HomA—gr( W, 4, Gm,A) T HomA—gr( I/i/n+l,Aa ém,A)
and

Coker[F" : W(A) — W(A)] —— Coker[F"™! : W(A4) — W(A)]

& 1 lén'ﬂ

~

Hg(Wn,A’ém,A) T" H()z(Wn—H,AyG'm,A)

are commutative. Here the first horizontal arrow denotes the canonical in-
jection.
(2) The diagrams

Ker[F" : W(A) —» W(4)] —— Ker[F™! : W(4) — W(4))]

g l lf,?ﬁ

HomA—gr(Wn,A, Gm,A) T HomA—gr( Wn-H,Aa Gm,A)

and
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Coker[F" : W(4) — W(A4)] —2— Coker[F™+! : W(A) — W(4)]

e l lén‘ﬂ

Hoz(Wn,A,GAm,A) " H()z(Wn—H,As ém,A)

are commutative.
(3) The diagrams

Ker[F™! : W(A4) — W(A)] ——s Ker[F": W(A) — W(A)]

| |

HomA—gr( I’i/n-+—1,A, ém,A) _V‘;‘_’ HomA—gr( I/’I\/n,A, Gm,A)

and

Coker[F"t! : W(A) — W(A)] —— Coker[F": W(A) — W(A))

ér:+l l J,é;

H()z(Wn+l,A7 Gm,A) 7’ Hg(Wn,Avém,A)

are commutative. Here the third horizontal arrow denotes the canonical surjection.

(4) The diagrams

Ker[F" : W(A) — W(A4)] =2 Ker[F": W(A4) — W(A)]
cf,’l léf.’
HomA—gr( I’i/n,A, Gm,A) — HomA—gr( I/i/n,Aa Gm,A)
and

Coker[F" : W(A) — W(A)] —2 Coker[F" : W(A4) — W(A)]

cn‘l lcn‘
HOZ(W,,,A,GW,A) — H()Z(Wn,AaGAm,A)

are commutative. Here the second and forth horizontal arrows denote the maps
induced by the endomorphism of W,, defined by

(T(),T],...,Tn_l) —> (P()(a, T),Pl(a, T),...,P,,_l(a, T)),

where a = (ag,ay,...,an_1) € Wo(A4) and [a] = (a1,ay,...,an-1,0,0,...) € W(A).
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(1),(3) and the second diagram of (4) are proved in [6, Lemma 2.9 and
Remark 3.7]. Here we verify (2) and the first diagram of (4).

(2): Put Fn(T) = (Fn,n(T)aFn—i—l,n(T)’Fn+2,n(T)’ . )

The commutativity of the first diagram is a consequence of the the following
equality

Eput1(0, U, Uy,...;T) = E, o(U; F(T))E,(F"(U); F,(T)),
where F,i;in(T) = Fu1i(To, T1, ..., T0,0,0...). Indeed,

Ep ni1(0,Up, Uy, . ..; T)E, o(U; F(T)) ™!

= €Xp Z-p—l;q)r(U){q)r+l,n+l(T) - (Dr,n(F(T))}

| r=>0

— 1 n r-n " ren-
= ©Xp z;_rq)r(u){P Fon(T)” " + p" Fop1 n(T)?

| r=n

1

+ P + err’n(T)}}

1 r r—1 r
= €Xp Z;)_,(Dr+n(U){Fn,n(T)p +pFn+1,n(T)p +--+p Fr+n,n(T)}:|
r=0

= E,(F"(U); Fo(T)).

The commutativity of the second diagram is a consequence of the following
equality

Fpni1(FVU; X, Y)F, o(U; F(X), F(Y))™!
= Ey(U; Fy(X))Ep(U; Fu(Y) E, (U; Fa(S(X, Y))) ™.
Indeed, put F(T), = (Fo(T), Fi(T),...,F, 1(T),0,0,...). Then,
P @(S1(X, Y)) — p"D,(Sa(F(X), F(Y)))
= @pini1(S(Xns1, Y1) — Prins1,n1 (S(X, Y))
— ©10(S(F(X),, F(Y),)) + @rinn(S(F(X), F(Y)))

= p"(I)r(Fn(X)) + an)r(ﬁn(Y)) - p"(l),(ﬁ,,(S(X, Y))).

Therefore
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Fp,n+1(FVU; X, Y)FP,H(U; F(X)vF(Y))_l

-
= €Xxp Z%(Dr(v){pq)r(grwl(xa Y)) - @,(S’n(F(X),F(Y)))}:I

| r=0

—exp|3 p—l— ®,(U){p"®, (Fn(X)) + p"®,(Fx(¥)) — p"®,(Fo(S(X, Y)))}]

[ r>0
= E)(U; Fa(X)) Ep(U; Fu (V) Ep (U Fu(S(X, Y))) ™.
(4): The commutativity of the first diagram is a consequence of the following
equality
Epn(P(Xn, U); T)E, o(U; P(X; Y)) ™! = E,(F*(U), Py n(X,Y), Pui1n(X, Y),...),
where
Poyin(X,Y) = Ppi(Xo0, X1,. .., X,-1,0,0,..., Yo, Y1,..., Y,_1,0,0,...)
and
X, = (X0, X1,...,X,_1,0,0,...).
Indeed,

Epn(P(Xn, U); T)E, o(U; P(X; Y))™!

-
= €Xp Z%q)r(l]){cpr,n(x)q)r,n(y) - (Dr,n(X’ T)}

L r=0

1 ren
=exp| > — O (U){p"Pun(X,¥)""" + p"" ' Ppyy o(X, ¥)?

r
_an

r—n-1

i prPr,n(Xa Y)}}

1 ' ' -
= €Xp Z;’;(Dn+r(U){Pn,n(Xa Y)p + PPn-f-l,n(X’ Y)p l

r=0

+- prPn-}-r,n(X’ Y)}}

= Ep(F"(U); Pun(X, Y), P n(X, Y),...).
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ProPOSITION 4.3. The diagram

Ker[F" : WM (4) — WM (4)] —— Coker[F™: WM(4) — WM (4)]

531 lér‘n

> (M 5 (M
Hom y_gr( Wi, 4,%™) — HZ (W 4,9™)
is commutative. Here the first horizontal arrow denotes the map induced by a — a,
and 0 denotes the boundary map defined by the exact sequence of formal group
schemes

A ym o A R"
0— Wn,A — Wn+m,A N Wm,A — 0.

Proor. The assertion can be deduced from following remark as in the proof
of Theorem 3.5.

REMARK 4.4 (cf. [6, Lemma 2.10]). The diagram

Ker[F": W(A) —» W(A4)] —— Coker[F™ : W(A) - W(A)]

cﬁ’l lcr‘ﬂ

HomA—gr(Wn,AaGm,A) “‘_a‘_" Hoz(ﬁ/m,AaGm,A)
is commutative. Here the first horizontal arrow denotes the map induced by
a — a, and 0 denotes the boundary map defined by the exact sequence of formal
group schemes
. ymo . R -
0— Wn,A — Wn+m,A E— Wm,A — 0.

We can obtain the functorialities of the case of group schemes similarly as

above.

5. Some Results over a Discrete Valuation Ring

In this section, we treat a case of extensons over a discrete valuation ring as
done in Sekiguchi-Suwa [4] and [8].

Throughout the section, 4 denotes a discrete valuation ring and m (resp. K)
the maximal ideal (resp. the field of fraction) of 4. We denote by n a uni-
formizing parameter of 4 and by v the valuation of 4 normalizing by v(rn) = 1.

Furethermore, we fix g€ m — {0} and put Ao = 4/(u), mo = m/(u).
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5.1. Now we assume that G is an affine group scheme over 4 and F is an fppf-
sheaf. Let ##'(F) denote the presheaf on Sch,, defined by X — H'(X,F). Then
we have an exact sequence

0 — H(G,F) — Ext}(G,F) — H} (G, #'(F)) — H}(G, F) — Ext}(G, F)
(cf. [Ch. IIL6, 2.5]).

LEMMA 5.2. Hi(Wy 4,9") =0 for i> 1.

Proor. Since A4 is reduced, it is readily seen that Ci(Wn, A {@(")) ~
(14 pA4)™ for all i > 1. And the boundary map is written as follows: d'(a) = 1 if
i is even, and 0'(a) = a if i is odd. It follows immediately that Hi(W, 4,%9*) =0
for i > 1.

COROLLARY 5.3. Ext}l(W,,, A,gA(” )) is isomorphic to the subgroup of
HY (W, A,.@A(” )) formed by the primitive elements.

ProoF. Recall that ae H!(W,, A,{?A(" )) is primitive if u*(a) = pr{(a)+
pr;(a) in HY (W, 4 x W, 4,%")), where u is the multiplication and pr, : W, 4 x
Wna— W, 4 is the i-th projection.

Applying the exact sequence of 5.1. to G = W, 4 and F = gA(” ), we have the
exact sequence

0 — HZ(Wy 4,%9") — Exty (W, 4,9
= Hy (Wo, 4, #1(4)) — H (o1, 9").
But we have seen that
Hi (W 4,91") = Hy(Wy 0, %;") = 0
in 5.2. Hence we obtain an isomorphism
Exty(Wh,a,9") 5 Hy (Wo, 4, #'(4")).

By the definition, HJ (W, 4, # l(gA(” ))) is nothing but the subset of primitive
elements in H' (W, 4, GJ”A(”)).

LemMa 5.4. The group HY (W, 4,%") is isomorphic to

i n— .
{1 + Z Cig,eeeyln TOO T Tri—ll € AO[TO’ A Tn—l]’ Cigyoyipy € mO}'
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ProoF. Since W, 4 is flat over A4, the sequence
(1) oa(#) .
0_)%4 — Um,4 _)l*(quAo) _)0’

where i : Spec A9 — Spec A is the canonical immersion, is exact on the (small)
étale site of W, 4 (cf. [5]). Thus we obtain an exact sequence

T(Wots G a) = T(Wy a4y, G ty) = H' (Wa 1, 9H) = H (W, 4, G a).

Note that we may calculate the cohomology group H'!(W,, A,gA(” )) for the étale
topology since gA(") is smooth over A4 (cf. Grothendieck [2]). Since the affine ring
of W, 4 is a unique factorzation domain,

HY (W, 4, G 4) = Pic(W, 4) = 0.
Hence the assertion follows from the following calculations:
r( Wn,A’ Gm,A) = Ax,

r( Wn,on Gm,Ao) = {a(l + Z Cig,...,in-1 T(;o T T,f"_—f);a € A())< y Cigyeoryigy € m0}7

where the canonical map 4* — Af is surjective.

COROLLARY 5.5. Extj(W,,, A,?A(")) is isomorphic to

F(T)=1+ cip i To" - Ty} Ciy,..0ipy € Mo,
€ Ao[To, ..., Tn_i] ' F(X)F(Y)=F(S(X,Y)) |

Next we give an explicit description of the extensions of W, 4 by gA(” ), corre-
sponding to a primitive element.

5.6. Let F(Ty,...,T,_;) be a polynomial in A[Ty,...,T,_1], satisfying the
functional equation

1) F(0,0,...,0) =1 mod g;

2) F(Xo, e ,X,,-])F(Yo, ceey Y,,_l) = F(So(X, Y), ey S,,_](X, Y)) mod u.

Put T = (Ty, T),...,Tp—1) and we define a smooth affine commutative group
scheme &*#F) over A as follow:

1
(mF) — AT, oy ITn, T,
gn Spec 0 Tl’ » fn=1) mﬂTn + F(To, ey Tn—l)
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1) law of multiplication

T S(T®1L,I®T) 0<i<n-—1),

T~ T ® T+ T, F(T)+ F(T)® T,
+/%[F(T)®F(T) ~F(S(T®L1®T)));
2) unit
Ti—0(0<i<n-1), T,~ %[I—F(O,---,O)};

3) inverse

T,—L(T) (0<i<n-1),

1 1
T, — — —F(Iy(T), L (T),...,I,_1(T))|,
ﬂ[ﬂTn+F(TO)"'>Tn—1) (0( ) 1( ) l( ))
where Iy(T),I,(T),...,I,_1(T) are polynomials defining the inverse on W,. It is
well known that if p > 2, (I(T),L(T),...,L,_1(T))=(=To,—T1,...,—Tn-1).
Moreover, we define a homomorphism of group schemes

1 .

1
=Spec A|Ty,...,Th_1, Ty,
P [ 0 ! F(To,...,Tn_1)+,uT,,]

1
(To,...,Tn-l,Tn)l—) (0’,O,T+/_l.[l —F(O,,O)])

and a homomorphism

1
(i F) .. ¢
&, SpecA[To,- ’T"_I’T"’F(To,...,Tn—1)+#Tn} o

= Spec A[To, ..., Tn-1]

(To,. ‘e Tn——l) — (To, .euy Tn_1).
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Then the sequence of group schemes
O—»f{;”)—»é"n(";p)—» Wpa—0
is exact, and its class correspondents to [F(Ty,...,T,_1) mod ul € H' (W, 4,
gA(#))'
5.7. From 5.5 and 5.6, F — [£#%)] defines an isomorphism
0 : Hot gy —gr(Wn 40, G, 4) — EXts(Wy 4, 9").

Now note that F(Ty,...,T,_1) is invertible in A[[Ty,...,T,—1]]. Then

To )
To,.... Tp 1, T,) — | Ty,..., Ty,
(To 1, Ty) ( 0 lF(To,...,T,,_l)

defines an isomorphism of formal groups
EWE) = Spf A[[To, ..., Tn-1, Ty)] = & = Spf A[[To, ..., Tn_1, Ty)),

where & is the extension of W,,, 4 by ?;,(” ) defined by the 2-cocycle

(OF)(X,¥) =1 [F (X)F(Y)

2z _ 2013 2 (1)
i sy 1| AU )

Furthermore, defining a homomorphism
Exty (Wi 4,9") — HZ (W, 4, %)
by
(645 — (0F)(X, Y),

we obtain a commutative diagram with exact rows

a
0 — Homy—ge( Wi 49, Gm,4,) — Exth(Wn 1, 9*) — 0

l l

- A - N d - A
HomA—gr(Wn.A,Gm,A) — Hoon—gr(Wn,AoaGm,Ao) — H()Z(Wn,A,gA(#))a

where d is the homomorphism in Example 3.14.
Assume now that A4 is of mixed characteristics 0 and p. Let a € Ker[F":
W(K) — W(K)]. Then a, (r > n) is determined inductively by

®,(a) = O,_,(F"(a)) = 0.
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ExampLE 5.7.1. If v(u) > v(p)/(p — 1) + 1, then the canonical map
(a@ — (a(t) : EXt/}!(WnﬁA, gA(,u)) - Ethli(Wn’A, ?A(”))

is not injective.

Indeed, take (ag,a,...,a,—1) such that

(1) v(a;) > v(p)/(p —1) for any i

(2) v(a;) < v(u) for some i.
Define ae W(K) inductively by ®,(a) =0 for r >n. Then a is an element
of Ker[F": W(A4) — W(A)] and lim v(a;) = co. Therefore a is an element of
Ker[F" : W(d4y) — W(4y)]. On the other hand, a # (0,0,...) mod x since
v(a;) < v(u) for some i.

These imply that

(1) the class [£#%)] is not trivial in Ext!(W, 4,%4*),

(2) the image of [£#F)] is trivial in Extl(W, 4, 9").
Here F(T) = En,p(a; T) mod uHe Ao[To, ey Tn—l]-

ExampLE 5.7.2. If p yu(p) and o(u) < (2p — Do(p)/(p? — p?), then the
reduction map

HomA—gr( I/AVZ,Ay Gm,A) — Hoon—gr(WZ,Aoy ém,Ao)
1s zero, and therefore, the canonical map
& & : Extl(Wy 4, 9") — Bxty(Ws 4, 9")

is injective.

Indeed, take ag,a; € 4 and define a = (ao,a1,as,...) € Ker[F?: W(K) —

2 2

W (K)] inductively by ®(a) = 0. Especially a; = af /p*+ af/p. Then v(a} /p?)
# v(al/p) since p t v(p), which implies that v(a;) = min{u(agz/pz), v(al/p)}.
Furthermore it is verified that, if v(ap) > (2p — 1)v(p)/(p® — p*) and v(a;) >
v(p)/(p—1), then v(a;) >v(p)/(p—1) for any i, which implies that a =
(0,0,0,...) mod x On the other hand, it is verified that, if v(ag) < (2p — 1)v(p)/
(p? — p?) or v(a;) < v(p)/(p — 1), then lim v(a,) = —oo, which implies that a ¢
Ker[F? : W(A4) — W(A4)]. Hence the result.
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