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ON NON-COMMUTATIVE EXTENSIONS OF G, BY G,
OVER AN F,-ALGEBRA

By

Yuki HARAGUCHI™®

Abstract. We will give an explicit description of non-commutative
extensions of the additive group scheme (resp. the additive formal
group scheme) by the multiplicative group scheme (resp. the mul-
tiplicative formal group scheme) over an Fj,-algebra.

Introduction

It is an interesting problem to determine the extensions of G by H, where
G and H are elementary group schemes over a ring A. For example, when
G=G,4 and H = Gy, 4, it is well known that Ext/li(GavA,Gm,A) =0if 4is a
field (cf. [T]) and Ext}(G, 4, Gy ) =0 if A is a perfect field.

Sekiguchi and Suwa [3] gave an explicit description on the commutative
extensions of Ga, 4 by Gm, 4 or of G, 4 by G, 4 when A is a ring of characteristic
p > 0. More precisely, they have constructed isomorphisms

Coker[F : W(A) — W(A)] > HX(G, 4, G a)

and
Coker[F : W(A) — W(A)] = HZ(Gu 4, Gm, 4),

using the Artin-Hasse exponential series. Here H&(Ga, A,Gm, 4) stands for the
second symmetric Hochschild cohomology group of Ga, 4 with coefficients in
Gm, 4, which describes commutative extensions of Ga, 4 by G,,,, 4- However, there
may exist a non-trivial extension of G, 4 by G, 4 if A has a nilpotent element.
gave also an example of non-commutative extensions of G, 4 by Gy, 4 (cf. [3,
Remark 3.10]).
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In this article, we determine the non-commutative extensions of G}Y 4 by ém, A
and of G, 4 by G, 4 when A4 is of characteristic p > 0. More precisely, we can
state the main theorem as follows:

THEOREM. Let p be a prime number and A an F,-algebra. Then the cor-
respondence (a,),5, — [],-; Ep(a,; XY?") induces bijective homomorphisms

(Ker[F : W(A4) — WA 5 H*(Go 4, G, a)/HE(Ga,t, G, )
and

(Ker[F : W(A) —» W(A)))™ 5 HX Gy, Gma)/HE(Ga g, G 4).

Here H 2(@,, A, Gm, 4) stands for the second Hochschild cohomology group of Ga, A
with coefficients in G,,,, 4, which describes central extensions of Ga, 4 by (Aim, 4. See
Sect. 2 for further details concerning notations.

After a short review on Witt vectors and the Artin-Hasse exponential series,
we state and prove the main theorem.
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Notation

Throughout the article, p denotes a prime number.

G, z: the additive group scheme over Z

G, z: the multiplicative group scheme over Z

Wz: the group scheme of Witt vectors over Z

Ga,z: the additive formal group scheme over Z

Gm,z: the multiplicative formal group scheme over Z

Wz: the formal group scheme of Witt vectors over Z

HZ(G, H) denotes the Hochschild cohomology group consisting of symmetric
2-cocycles of G with coefficients in H for group schemes or formal group schemes
G and H.

For a commutative ring B, B* denotes the multiplicative group G,, z(B).
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For a commutative group M, MY (resp. M™) stands for [];,.ny M: (resp.
@,y Mi) where M; = M.
Contents
1. Recall: Witt Vectors and the Artin-Hasse Exponential Series
2. Statement of the Theorem
3. Proof of the Theorem
1. Recall: Witt Vectors and the Artin-Hasse Exponential Series
We start with reviewing necessary facts on Witt vectors. For details, see [1,
Chap. V] or [2, Chap. III].
1.1. For each r > 0, we denote by ®,(T) = ®,(7y, T1,..., T,) the so-called Witt
polynomial
O(T) =T +pT" +---+p'T,
in Z[T| = Z[Ty,T1,...]. We define polynomials
S,(X,Y) = S,(Xo,..., X, Yo,..., Y})
and
P(X,Y)=P(Xo,..., X, Yy,..., Y})
in Z[X,Y] = Z[Xy, Xy,..., Yo, Y1,...] inductively by
®,(So(X, ¥), S1(X, Y),...,S(X, ¥)) = D,(X) + D,(Y)
and
D, (Py(X,Y),P(X,Y),...,P(X,Y)) = ©,(X)D,(Y).
Then as is well-known, the ring structure of the scheme of Witt vectors
Wz = Spec Z[Ty, Ty, 1>, .. .|
is given by the addition
To— So(X,Y), T1—~ Si(X,)Y), T, $(X,Y),...
and the multiplication

To— Po(X,Y), T'— P(X,Y), T P)X,Y),....
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We denote by Wz the formal completion of Wz along the zero section. Wy
is considered as a subfunctor of Wz. Indeed, if 4 is a ring,

~

= A);
W(4) {(ao,al,az, ) € W(A); a; = 0 for all but a finite number of i

a; is nilpotent for all i and }
1.2. Let A be an F,-algebra. The Verschiebung homomorphism V : W(4) —
W(A) is defined by

((10, a,a,.. ) — (O,a()’alaaZ’ . ')a

and the Frobenius homomorphism F : W(A4) — W(A) is defined by
(ao,a1,az,...) — (a5,ab,ab,...).

Then it is verified without difficulty that F is a ring homomorphism. It is obvious
that W(A) is stable under F.

1.3. Let 4 be an Fj-algebra. Then we can verify without difficulty that:

(1) FV = VF = p;

(2) V(F(a)b) = aV(b) for a,be W(A).

Let A be a ring and a € 4. We denote the Witt vector (a,0,0,...) by [4]. [d]
is called the Teichmiiller lifting of a. It is readily seen:

(1) [al(b] = [ab];

(2) Fla] = [a”];

(3) (ao,al,az, - ) = EI(:;O V"[ak].

1.4. Let Z(, denotes the localization of Z at the prime ideal (p). Recall now
the definition of the Artin-Hasse exponential series

r

E,(T) =exp (Z 7;: ) e Z,[[T]].

r=0

For U = (U;),5,, we put

E(U; T) = [[ E,(UT?) = exp (Z &?1"—) e Z,[UNIT]).

r=0 r>0

It is readily seen that

E,(S(U,V);T) = E,(U; T)E,(V; T).
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1.5. Let A4 be an F,-algebra and a = (a,),.( € W(A4). Then the correspondence
a— E,(a;T) gives rise to isomorphisms

Ker[F : W(A4) — W(A4)] > Homy_g (G, 4, G 4)
and
Ker[F : W(A) — W(A4)] = Homy_g(Gy 4, Gm, 4)-

(cf. [1, Chap. II})
It should be remarked that if a = (a,),., € Ker[F : W(4) — W(4)], then

p—1 i
E@T) =[] E@T?) H(z“’r?’)).

r=0 r=>0 \ i=0

2. Statement of the Theorem
First we recall Hochschild cohomology groups. For details, see [1, Chap. II.5
and Chap. IIL6].
2.1. Let 4 be a ring. We define the multiplicative groups Z2(G, 4,Gm 4),
Zg(Ga’A, Gm,A) and Bz(Ga’A, Gm,A) by
Z*(Gy4,Gm 4) = {F(X,Y) e AlX, Y]*;
F(X,Y)F(X+Y,Z)=F(X,Y + Z)F(Y,Z)},

Z3(Gut, G g) = {F(X, Y)e A[X, Y];

b

FX,Y)F(X+Y,Z)=F(X,Y + Z)F(Y, Z),
F(X,Y)=F(Y,X)

BX(Gat, G a) = {%;F(T) eA[T]X}.

Then we have

B*(Gut,Gm 4)  Z2(Go s, Gm 4) = Z*(Goyu, G, 4).
We put

H*(Gy 4, Gm 4) = Z*(Go 4, G 4)/B* (G4 4, G 1),

Hoz(Ga,Aa Gm,A) = Zoz(Ga,A, Gm,A)/BZ(Ga,Aa Gm,A)-

We define also the additive groups Z?(G, 4,G,4), Z3(Gau,Ga4) and
B*(Ga 4, Gy 4) by
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Z*(Gau,Ga ) = {F(X,Y) e A[X, Y];

FX,Y)+FX+Y,Z)=F(X,Y+2Z)+ F(Y,2)},

Zg(Ga,A, Ga,A) = {F(X7 Y) € A[Xa Y]a

F(X,Y)+F(X+Y,Z)=F(X,Y +Z)+F(Y,2),
F(X,Y)=F(Y,X) ’

B*(Ga 4, G q) = {F(X)+ F(Y) = F(X + Y); F(T) € A[T]}.
Then we have

BX(Go ,Ga,n)  Z2(Gort, Ga ) = Z2(Gu, Ga,a)-
We put

H*(G44,Ga4) = Z*(Gau, Ga 4)/B*(Ga 4, Ga a),

H2(Gat,Gau) =Z2(Go4,Ga4)/B*(Gsu,Ga 4).

It is well known that:

1) HX(Gy 4, Gm 4) (resp. H{(Gaa,Gm 4)) is isomorphic to the group of
classes of central (resp. commutative) extensions of G, 4 by G,, 4, which split as
extensions of A-schemes.

2) H*(G, 4,G, 4) (resp. Hg(Ga,A,Ga, 4)) is isomorphic to the group of
classes of central (resp. commutative) extensions of G, 4 by G, 4.

2.2. Let 4 be a ring. We define the multiplicative formal groups Zz(GAa, 4> Gm, A)s
Z3(Gy 4, G 4) and B2(G, 4, Gy 4) by

Z%(Gy g, G 4) = {F(X, Y)e A[[X, Y]);

F(X,Y)=1 moddeg 1,
FX,Y)FX+Y,Z)=F(X,Y+Z)F(Y,2) [’

Z2(Go 4, G 4) = F(X,Y) e A[[X, Y]];

F(X,Y)=1 moddeg 1,
FX,Y)F(X+Y,Z)=F(X,Y + Z)F(Y,Z), §,
F(X,Y)=F(Y,X)
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F(X)F(Y)

FOp (D) AT F(T) = 1 moddeg 1.

B(Gi g, G 4) = {

Then we have

BX(Gy 4, G 4) © Z2(Gy n, G 4) = Z2(Gy 4, G 4).
We put

H*(Gy 4, G 4) = ZX( Gy 4, G, 4) /B Gy, 4, G 4),

Hg(éa,Aa Gm,A) - Zg(éa,Aa ém,A)/BZ((A;a,Aa ém,A)-

We define also the additive formal groups ZZ(GAa, 4 G”a, 4), Zg(Ga, 4> Ga, 4) and
BZ(Ga,A9Ga,A) by

Z%(G, 4,Go4) = {F(X, Y) e A[[X, Y]|;

F(X,Y)=0 moddeg 1,
FIX,Y)+F(X+Y,Z)=F(X,Y+2Z)+F(Y,2)

Z(:)Z(Ga,A’ GG,A) = F(Xa Y) EA[[X’ Y]],

F(X,Y)=0 moddegl,
FX,Y)+F(X+Y,Z)=FX,Y+2Z)+F(Y,2), ;,
F(X,Y)=F(Y,X)

B*(Go 4, Goa) = {F(X)+ F(Y) - F(X + Y);
F(T)e A[[T)], F(T) =0 moddeg 1}.

Then we have

A

Bz(éa,A’ Ga,A) < Zg(éa,Aa Ga,A) < Zz(éa,A, éa,A)'
We put

A

H*(Gy 4,Go 4) = Z*(Gy 4, Gy 1)/ B*(Go 4, Ga 4),
, Gg

H()Z(Ga,A, Ga,A) = Zg(éa,Aa Ga,A)/Bz(Ga,A ; ,A)*

It is well known that:

1) H (G, 4,Gp 4) (resp. HZ(G, 4,Gpn 4)) is isomorphic to the group of
classes of central (resp. commutative) extensions of Ga, 4 by GA,,,, 4, wWhich split as
extensions of formal A-schemes.
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2) H*(G, 4, G, 4) (resp. H(,Z(G'a, 4, G, 4)) is isomorphic to the group of classes
of central (resp. commutative) extensions of Ga, 4 by Ga‘ 4.

PROPOSITION 2.3. Let A be an F,-algebra. If P(X,Y) € Z*(G4 4, Ga, 1), then
P(X,Y) is cohomologous to a cycle of the form:

X+ Y)Y —xr—yr o
3o XY + 5 byx?'YP) abyed.
r>1 p 0<i<j

Proor. The statement is proved in [1, Chap. II.3] when A is a field of
characteristic p. However the argument works well for an arbitrary ring of
characteristic p. We reproduce the proof presented in [loc.cit.] with a slight
modification for the reader’s convenience. For simplicity, we put

p-l . P_yp_yp
1(117)Xp_,y,=(X+Y) Xr—yr

W(X,Y)= ;E >

Let P(X,Y) e Z*(Gy 4,G,4) = A[X,Y]. We may assume that P(X,Y) is
homogeneous. Put

P(X,Y)=) aX"'Y', n>0. (1)
=0

By the assumption, we have
PX,Y)+PX+Y,Z)=PX,Y+2Z)+P(Y,Z). (2)
Derivating (2) by X and substituting 0 for X, we obtain

oP oP oP
6_)(_(0’ Y)+5)7(Y,Z) _H(O’ Y+27),

and therefore

oP e .
ﬁ()(,Y):a,,_l{()m y)" ' — x 1y

Derivating (2) by Z and substituting 0 for Z, we obtain

oP

oP
6_Z(X+ Y,0) =37

oP
(Xa Y) +5§(Y,O),

and therefore
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@;(X, Y)=a{(X+ V)" -y}

By Euler’s formula, we obtain

oP oP
nP(X,Y) =X 75 (X, Y) + Y 5= (X, Y)

=a{(X+Y)" = X" Y"} + (ap_1 —a)){X(X + V)" ' — X"}

Now we distinguish several cases.

Case 1: a, | #a;. Put ¢ =a,_; —a; and Q(X Y)=c{X(X + Y)" ! - x"}.

Then
nP(X,Y)— Q(X,Y) € BX (G, 4,Gu4), QX,Y)eZ*(Gyu,G, 4).
Replacing X by —Y in |
OX, )+ 00X +Y,2)=Q0X, Y+ 2)+ Q(Y,2),
we obtain
cY{(Y+2)" ' -yl -z} =0.

Therefore

(n;1)50 mod p for each k£ with O <k <n-—1

since ¢ # 0. Hence we can conclude that n — 1 is a power of p. Put n=1+ p".
Then

Q(X,Y) =cXY”

and therefore P(X,Y) is cohomologous to Q(X,Y).
Case 2: a,_1 =a; #0. If n%# 0 mod p, then

a{(X+7Y)" - - Y"}

P(X,Y) = .

€ Bz(Ga,A, Ga,A)-

On the other hand, assume that » = 0 mod p. Then we have a congruence

(n—l):(n—l)(n——2)---(n—p+l)
p-1 2 -1

=1 mod p.

If n # p, it follows that a;{(X + Y)"' — Y"1} contains the term a; X" ?Y?"!,

which is a contradiction to a; # 0 since
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—(?%(X, ¥)=a{(X + ¥)"" — ¥™1}.

Therefore n = p, we obtain

ow X,Y)

oP _ pl_ opet
=X Y) =a{(X+ Y =¥} = a o (

and

0 0

P(X Y)=a{(X+ Y1 —yr1} =g W(X Y).

Derivating P(X,Y) —aW(X,Y) by X and by Y respectively, we obtain

ow oP ow

) @ T, ¥) = 22 (X, V)~ G (X, ¥) =0,

Hence we obtain
PX,Y)=aW(X,Y)+aX?+a,Y?,

and ap = a, = 0 since aoX? + a,Y? € Z*(Gy 4,Ga 4)-
Case 3: a,-1 =a; = 0. Then we have

oP

(X Y)= 37

(X,Y) =
Hence we obtain P(X,Y) = P(X?, Y?), where P|(X,Y) is a 2-cocycle of degree
n/p<nif P(X,Y) #0.

Replacing P(X, Y) by P;(X,Y) and repeating the same argument as above,
we can obtain the required result.

Now we define symmetric 2-cocycles of Ga, 4 with coefficients in Gm’ 4, using
the Artin-Hasse exponential series. For details, see [3, 2.2].

2.4. A formal power series

Fy(U; X, Y) = exp (Z yr- x? + Yp";i(X + Y)p‘) e Zu[UIIX, Y]
i>1

is defined in [3, 2.2].
For U = (U;),¢, We put

FU;x,Y) =[] F(Us X7, Y7") € Z()[U)[[X, Y.
r=0
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It is readily seen that

F(S(U,V); X,Y) = F,(U; X, Y)F,(V; X, Y).

2.5. Assume now that A4 is an F,-algebra. Let a = (a,),,, € W(A). Define a
formal power series by

Fy(a;X,Y) = H Fy(ar; XP', Y?P') € A[[X, Y]].
r>0

The following assertion was proved in [3, 3.4]:
Let 4 be an F,-algebra. Then the correspondence a — F,(a; X, Y) gives rise

to isomorphisms
Coker[F : W(A4) — W(A)] = HZ (G, 4, G 4)
and
Coker[F : W(A) — W(A)] = H(Go 4, Gm 4)-
REMARK 2.6. Let 4 be an F,-algebra. If G(X,Y)e Z3(G, 4,G,4) and

G(X,Y) is a homogeneous polynomial of degree /, then there exists F(X,Y) €
Z2(Gy 4, G 4) such that

F(X,Y)=1+4+G(X,Y) moddeg(/+1).
(cf. [3, Proof of Lemma 3.1])
2.7. Now we observe the following facts:
If F(T) e Homy_g (G, 4,Gn 4) and G(X, Y) e Z2(G, 4, G, 4), then
F(G(X,Y)) e Z¥Gyu, G ).

For example, E,(a; T) € Homy_g (G, 4, Gy 4) for a = (ar),50 € Ker[F : W(A4) —
W(A)] (see 1.5) and

XY? € ZHGop,Go4) © Z%(Gun, G n) (r>0).
Then
E,(a; XY?") € Z*(Gy, 4, Gim, 4)-

A

Any non-symmetric 2-cocycle of G, 4 with coefficients in G,, 4 is obtained
in the above way. In fact, we have the following:
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THEOREM 2.8. Let A be an Fy-algebra. Then the correspondence (a;), ., —
[1,51 Ep(ar; XYP") gives rise to isomorphisms
(Ker[F : W(4) —» W(ADY 5 H*(Gy 4, G 1)/ HE (G 4, G, a)

and

(Ker[F : W(A) » W)™ 5 HY G, u,Gon 4)/HH(Gaa, G 4).

COROLLARY 2.9. Let A be an Fy-algebra. If P(X,Y) € Zz(éa, 1, G a) (resp.
Z%(Gy4,Gm 4)), then P(X,Y) is cohomologous to a 2-cocycle of the form:

Fy(b; X, Y) [] Eplas XY7"),

r>1

where be W(A) and (a,),., € (Ker[F : W(4) — W)Y (resp. be W(A) and
(a,),51 € (Ker[F : W(4) — W(4)H™).

3. Proof of the
Now we start proving necessary lemmas for our proof of Mheorem 2.8

LemMA 3.1. Let A be an F,-algebra and F(X,Y) eZz((AFa,A,(A;m,A). If
F(X,Y)=1 moddeg(p"+1) (r>0),

then there exists F(X, Y)e Zg(@a,,;, Gm,A) and a,,8,-1,1,...,a1,,-1 € A such that
p—1
~ -1 1 r r r-1 ry k
F(X,Y)F(X,Y)!' = Zic—'{a,,oXY" + a1 XPYP + . a1 XP Y}
k=0 "

mod deg(p™' +1).

ProOF. We shall prove that there exist F(X,Y) eZ&(Ga, A,GA,,L 4) and
a,0,ar-1,1,---,4a1,r-1 € A such that

1+1
o 1 r r r— r
F(X,Y)F(x,7)"' =) :E{ar‘oXY” +a  XPY? 4 tay, XPT YR
k=0""
moddeg(/+2)(p" + 1)

by the induction on / (0 <!/ < p—3).
Step 1. Assume that
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F(X,Y)=1+H(X,Y) moddeg2(p" + 1),
where
2(p"+1)—-1
HX,Y)= Y H(X,Y),

i=p"+1

here H;(X,Y) is the homogeneous part of degree i. It is readily seen that
H;(X,Y) satisfies the functional equation

Hi(X,Y)+H(X + Y,Z) = H(X,Y + Z) + H{(Y, Z).
Hence we obtain that H(X,Y) satisfies the functional equation

HX,Y)+HX+Y,Z)=HX,Y+Z)+ H(Y,Z).

By [Proposition 2.3, there exists H(X,Y) € Z2(Gs 4,Ga4) and aro,ar 11, .,
a1 r—1 € A such that

HX,Y)=HX,Y) +{aoXY? +a, 1\ XPY?" + .- +a, 1 X" Y?'}.

Note that H(X,Y) is the sum of homogeneous polynomials. By Remark 2.6,
there exists F(X,Y) e Z2(G, 4, G 4) such that

F(X,Y)=1+H(X,Y) moddeg 2(p" +1).
Hence, we obtain
FIX,V)F(X,Y) " =14 {a,0XY?" +a,.1, X?Y” + - +a;,1 X7 Y7}
moddeg 2(p" + 1).

Step 2. By the assumption of the induction, we can put
L1
F(X,Y) = ZEG(X, Y)¥ + H(X,Y) moddeg(/ +2)(p" + 1) (4)
k=0 """

for some / < p — 3, where

(+2)(p"+1)—1
HX,Y)= Y 6  H(X7Y),
i=(l+1)(pr+1)
here H;(X,Y) is homogeneous part of degree i and

G(X,Y) = aroXY” +a, 1 | XPY? + -4 a;,, XP" YP.
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Since
1 ) 1 f I
(Zk— )(ZEY) Z (X + Y)k
k=0 k=0 k=0
T 11),{(X+ Y)* X Y1y mod deg(l + 2), ()
we have

l ! ;
{ZLQG(X, Y)k}{zi!c;(x+ v,2) } - Z X, V)4 GLX + V. 2))"
+ﬁ{(G(X, Y)+GX+Y,Z)" - Gx, V)" - G(x +¥,2)"")

moddeg(/ + 2)(p" + 1)

k=0 =

I / ;
{Z%G(X’ Y*”‘}{Z%G(Y’Z)k} = Z%(G(X, Y + Z) + G(Y, Z))*
' ' k=0 %

+f1—+1T)!{(G(X’ Y+2)+G(Y,2)* -Gx, Y + )" - G(y,2)""}

moddeg(/ + 2)(p" + 1).
On the other hand, since

F(X,Y)F(X+Y,Z)=F(X,Y + Z)F(Y, Z),

we have

k=0

l /
{Z%G(X, Y)* + H(X, Y’}{;EG(X“L Y,Z)* + H(X + Y,Z)}

/

/
= {Z%G(X, Y +2)+ H(X, Y+Z)}{Z%G(Y,Z)k +H(Y,Z)}

moddeg(/+2)(p" +1).

Comparing the terms of degree i with (/+1)(p"+1)<i<(I+2)(p"+1) -1,
we have
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HX,Y)+HX+7Y,2)

1
I+ 1)

=H(X,Y--Z)+H(Y,Z)

+ {(GX, )+ GX +Y,2)" —G6x, )" - G(x + ¥, z)")

1
Since we see that G(X,Y) ezz(Ga,A,Ga,A), and so

1 1

HX,Y)+H(X+7Y,2) -mG(X, )+ - 0T 1)!G(X+ Y, Z)"!
=H(X,Y+2Z)+H(Y,Z L6, vy +2)™ G(v,z)™
- ) (7)_m(a +) _(1+1),(,) ’
it follows that
N 1
H(X,Y) = HX,Y) = 7 6(X, Y)"*! € Z%(Gy 4, Ga,a)- (6)

Noting that H(X,Y) has only terms of degree i with (/+1)(p"+1)<i<
(I+2)(p"+1)—1, we can conclude by [Proposition 2.3 that

H(X,Y) e ZXGu4,Ga4).
By Remark 2.6, there exist F (X,Y) eZ&(G}y A,Gm, 4) such that
F(X,Y)=1+H(X,Y) moddeg(l +2)(p" + 1).

Hence we have

F(X,)F(X,Y)'= {ZI%G(X, Y)*+ H(X, Y)}{l —H(X,Y)}
k=0"""

I
1 k 1 -y I
=) —GX,V)"+——GX,7Y)
;k! I+ 1)
moddeg(/+ 2)(p" + 1)
by (4) and (6).
Step 3. Assume that
p—2 1
F(X,Y)= ZFG(X, Y)* + H(X,Y) moddeg(p"! +1), (7)
k=0 "
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where

pr+l
HX,Y)= >  H(X,Y),
i=(p—1)(p7+1)

here H;(X,Y) is homogeneous part of degree i and
G(X,Y) = a,oXY” +ay  ( XPYP 4 ay,, XP YP

By (5), we obtain that

-2 2
{;%G(X, Y)k}{:;%G(X-I— Y,Z)k} = —!(G(X, Y)+GX + Y,2)*

+ﬁ{(G(X, Y)+GX +Y,Z) ' —G(X,Y)"' - G(X + Y,Z2)""}

moddeg p(p" + 1)

and

p-2 1
{ZEG(X, Y+Z)k}{

k=0

N

~2

S
=

1

=(G(X,Y + Z) + G(Y, Z))*
< k!

1
HG(Y,Z)"}E

il~]

>~
Il

+ ﬁ{(G(X, Y +2Z)+G(Y,Z))" - GX, Y+ Z)P - G(Y,Z)"'}

moddeg p(p" + 1).
On the other hand, since
F(X,Y)F(X+Y,Z)=F(X,Y + Z)F(Y, Z),

we have

{

]

_21

0

=~

p-2
146¢ Y)* + H(X, Y)}{&%G(X +Y,2)+HX+ 7Y, Z)}

k-
1l

-2

]

22 1
{;HG(X, Y +2Z)*+ H(X, Y+Z)}{ HG(Y,Z)" +H(Y,Z)}

i

mod deg(p™! + 1).

Comparing the terms of degree i with (p — 1)(p" +1) <i < p™*!, we have
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HX,Y)+ H(X + Y,Z)

1
(p—1)!

—H(X,Y+2Z)+H(Y,Z)

+ {(GX, )+ GX +Y,Z2) "' —GX,Y)\ ' —GXx +Y,Z2) 1}

+(;—_1—1—)|{(G(X, Y+2Z)+ G(Y,Z))P—l ~G(x, Y+Z)p_1 6 Y7Z)P—1}.
Since we see that G(X,Y) ezz(Ga,A,Ga,A), and so

1

1
HX,Y)+HX+Y,Z ——Gz\’,Y‘D_l—————GX—}-Y,ZP_1
(X, Y) ( ) =1 (X, Y) =1 ( )
1 : -1 1 -1
=HX,Y+Z)+H(Y,Z)— ——GX,Y+Z)\7 — G(Y,Z)~,
( ) (Y,Z2) =) ( ) =) (Y, 2)
it follows that
H(X,Y):=H(X,Y) ~(?%1—)'G(X’ Y)"™ € Z*(Gu 4, G, 4)- (8)

Noting that H(X, Y) has only terms of degree i with (p — 1)(p" + 1) <i < p"*l,
we can conclude by [Proposition 2.3 that

H(X,Y) e Z2(Gy 4,Ga 4)-
By Remark 2.6, there exist F(X,Y) € Z2(Gy 4,Gn 4) such that

F(X,Y)=1+H(X,Y) moddeg(p™ +1).

Hence we have

F(X,Y)F(X,Y)™!

{p_zlG(X, Y)*+H(X, Y)}{l —HX,Y)}
< k!

]

-2
1 k 1 -1 1
= — ———G(X,Y)’”” modd + 1
7 GX, V)" + = 1)!G( , Y) oddeg(p™ +1)

X

by (7) and (8).

LemMA 3.2. Let A be an F,-algebra and F(X,Y) eZz(Ga,A,Gm,A). If

| -
FX,Y)= Zk—'—{ar,oXYpr + a1 XPY?P + -+ a1 XP Ly }k
k=0""

mod deg(p™*! + 1)
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with r >0 and a, 9,a,-1,1,...,a1,,-1 € A, then
P o_ P .. —aP
a0=% 11~ =a), ;=0

Proor. We shall prove af_I’ ; =0 by the induction on / (0 </ <r-1).

Step 1. Assume that

-1

P
F(X,Y) = kl—G(X Y)* + H(X,Y) moddeg(p(p” +1) +1),
k=0
where
p(p'+1)
HX,Y)= Y H(X,Y),
i=p’+l+l

here H;(X,Y) is homogeneous part of degree i and
G(X, Y) = a,,oXYp' +a,_1,1X” Yp’ + -+ al,,_lX”'-] Ypr.

Now put

p—1 P_vp_ Vvp
XY) Z';‘( )Xp'Yl—(X+Y)pX Y

1=

as in the proof of [Proposition 2.3. By (5), we obtain that

p—1 p—1
{Z%G(X, Y)k}{Z%G(X +7, Z)k}

k=0 k=0

-1
- Z%{G(X, Y)+ G(X + ¥, Z)}* — W(G(X, ¥),G(X + Y, Z))

]

moddeg(p + 1)(p" +

and
r-1y P

{ZFG(X Y +2) }{Z G(Y,Z) }
k=0 k=

p—1
= kl{c;(x, Y +2)+G(Y,Z)} - W(G(X,Y +Z),G(Y,Z))
k=0

moddeg(p+ 1)(p" +

1)

1)
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since (p —1)!'=—1 mod p. On the other hand, since
FX,Y)F(X+7Y,Z)=F(X, Y+ 2Z)F(Y,Z2),

we have

{

-1

S

x
Il
x| -

GOX,Y)F + H(X, Y)}{ZV:I%G()H Y,Z)* + H(X + Y,Z)}
0 k=0"""

{pglkLG(X,Y—i-Z) +H(X, Y+Z)}{pz G(Y,2) +H(Y,Z)}
k= k=0

moddeg(p(p” +1) +1).

Hence we obtain

-1
S (G, ¥) + G + ¥, 2)} — W(G(X, Y),G(X +Y,2))

]

x~

+H(X,Y)+H(X+7Y,Z)

]

-1
= Zki{G(X, Y +2)+G(Y,2)} - W(GX,Y +2),G(Y,Z))

X

+H(X,Y+Z)+ H(Y,Z) moddeg(p(p"+ 1)+ 1).
Since we see that G(X,Y) € Z2(G, 4,G, 4), we obtain
—W(G(X,Y),G(X +Y,Z))+ H(X,Y) + HX + Y,Z)
= _W(GX,Y+2),G(Y,Z)) + HX,Y + Z) + H(Y, Z)
moddeg(p(p" + 1) +1).

Now noting that

W(GX,Y),GX+Y,2)

= W(a, 0XY? ,a,0(X + Y)Z"") moddeg(p(p” +1)+1)

and

W(GX,Y+2Z2),G(Y,2))

= W(a,0X(Y +2Z)” ,a,0YZ?") moddeg(p(p” + 1) + 1),
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we obtain
Hyprsy(X, Y) + Hp(pr oy (X + Y, Z) —af JW(XYP', XZP" 4+ YZP')

= Hypri)(X, Y + Z) + Hypr 1) (Y, 2Z) — a2 JW(XYP' + XZP', YZP").  (9)
Put now

Hypry(X,Y) = Y~ X'y

i+j=p(p'+1)

It is easily varified that
W(XY?P ,XZP + YZP') = (*;’ )(XYP’)P" (XZ"" + vz?')'

(p— 1)!Xi+j y i +k Z(i+kp"
ijlk!

(]

i+j+k=p
izl,j+k=>1

and

]

-1
W(XY? +XZP', YZ"') = % (5’ ) (XY? + xzP" P~ (yzr')!
1

[

(1?' :kl')! X+ yip +k Z (ke
ijlk!

(]

i+j+k=p
k>1,i+j>1

r+1

Equating coefficients of XY?~'z?™  xyr™ zr-1 xr™' yzr-! on (9) gives

_ p
0 = c1,p(pr+1)-1 — @y,
Cpr+i4l,p—1 = Clp(pr+1)-1»
Cpr+l+17p_1 = O

Hence we obtain

Step 2. Let r > 2. Assume that
ag=al =-=al ;=0 (I<r-1)

Then

A

Ep(aroXY?") - Ep(ar_1 1 X" Y?") € Z2(Go 4, Gm,4) < Z*(Gi, 4, Gim, 4)
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and then

F(X,Y)Ey(aroXY? ) 'Ep(a, 1 1 XPYP) ' Ep(a, 1 XP YP') ' € ZX( Gy, G ).
We have also

F(X,Y)E,(ayoXY? ) Ey(a,_1 1 XPY?) ' - Ep(a,_p XP Y™

-1

1 + r r— r
= Zﬁ{ar—(m),m)ﬂ’l 'YP a0 X7 VP moddeg(p™t! +1).

3

Replacing F(X, Y)E,(a,oXY? ) 'E,(a,.1,X?Y?') " - Ey(a,_1, X?' Y?)™ by
F(X,Y), we may assume that

-1
F(X,Y) = Z;;{ar (141), 1+1X” "YP 4 bay, X YPE
k_.

"3

mod deg(p™! + 1).

Assume that

p-1 1
F(X,Y) =3 =G(X,Y)" + H(X,Y) moddeg(p(p’ +p') +1),
k=0
where
p(p"+p")
H(X, Y)—_- Z Hi(X, Y)a
izp'+1+1

here H;(X,Y) is homogeneous part of degree i and

GX,Y)= ar—(1+1),1+1X”[+1 Y? 4 day, X7 Y

Now put W(X,Y) as in the proof of [Proposition 2.3. By (5), we obtain that

p—1 1 x p—1 1 «
{ZEG(X, Y) }{;EG(X—F Y,Z) }

—

= $H{G00 )+ G+ 7, 2) - WG, 7). G(X + ¥.2)

)

x>~

moddeg(p + 1)(p"+ 1)
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{:)kic;(X v+2) }{Z }

=

1
kl{G(X, Y +2)+G(Y,Z)}* - W(G(X, Y + 2),G(Y, 2))
0

moddeg(p + 1)(p" +1).

On the other hand, since
F(X,Y)F(X+Y,Z)=F(X,Y + Z)F(Y,Z),

we have

{

—1

3

x| —

[ G(X, Y)*+ H(X,Y) }{pzk— (X+Y,2)"+H(X + Y,Z)}

Hence we obtain

w‘
Il

0

)

_11

x|

k=0

x~
Il

0

moddeg(p(p” + p') +

-1
Z%{G(X, Y)+ G(X + Y,Z)}" - W(G(X,Y),G(X +Y,Z))

k]

X~

+H(X,Y)+H(X +Y,2)

—1

Al

{G(X Y +2Z)+G(Y,2)} - W(G(X, Y + Z),G(Y, Z))

i
k
Il

ol

0
+ H(X,Y +2Z)+ H(Y,Z) moddeg(p(p” + p') + 1).
Since we see that G(X,Y) € Z%(G, 4, G, 4), We obtain
~W(G(X,Y),GX+Y,Z)+H(X,Y)+H(X + Y,Z)
=-W(GX,Y+2Z),G(Y,2))+HX,Y+2Z)+ H(Y,Z)

mod deg(p(p” + p')

-1
[ G(X, Y +2)" + H(X, Y+Z)}{pZ%G(Y,Z)k+H(Y,Z)}

1).

+1).
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Now noting that
W(G(X,Y),G(X + Y,2)) = W(arqsnynX” Y7 arquninn (X + Y)" 27

mod deg(p(p” + p') + 1)
and

W(GX,Y+2Z),G(Y,2Z2)) = W(ar—(1+1),1+1Xp1H(Y +2) a4y, YP ZP)

moddeg(p(p” + p') + 1),

we obtain
Hp(pripion) (X, Y) + Hy(priproy (X + Y, Z)
o af—(l+1),1+1 W(Xpm Y?, xr" ze' + Ypmzpr)
= Hy(pripo) (X, Y + Z) + Hy(pripie (Y, Z)
—al o WP Y XPT 2 Pz,
Note that X?"'Y?" = (x¥?"™")*""'. Replacing X?"'Y?" by XY?™""', we see

Hp(pr—l—]+1)(X, Y)+ Hp(pr—1—1+1)(X +Y,2)

r—I1-1

r=1-1 r=I1-1
—al gy WXYPT XZPT 4+ YZPTT)

= Hp(pr—l—l+1)(X, Y+ Z) + Hp(pr—l-l+1)(Y, Z)

r—i-1 r—i-1

— &1, 141 w(xy?r™" + xzr" ¥z, (10)

Put now

Hyproy(X, V)= > gX'Y/
i+j=p(p"~'"'+1)

It is easily varified that

r—i— r—I— r—I1— 1 p‘_l r—i- —_ r—I- r—i—
wxy?r™" xzr™ 4 yzr ")=;Z(5>(XY” yruxze Ty yze

u=1

_ Z (p— 1)!Xi+j yir "k z (k)pr!
171
= i'jlk!
izl j+k=1
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and

r—I— r—i— r—I- 1 p—l r—I- r—I— _
w(xyr ™" +xzr  yze ")z;Z(i)(XY" Ty xzrT Ty yze

u=1

r~{-1

)u

_ Z (p— 1)!Xi+j Yip""'+kZ(j+k)P"'_‘_

1 itk!
i itjlk!
k=1,i+j21

Equating coefficients of XY?~1Zr"" xyr~zr-! XxP~'yZP-! on gives

_ _ P
0= CLp~+p-1 = G (141),I+1
Cpr-l+1,p—-1 = Clprt4p-15
cp’*’+l,p—l =0.

Hence we obtain
af—(l+1),l+1 =0.
CoROLLARY 3.3. Under the assumption of Lemma 3.2, we have
F(X,Y)Epy(aroXY? ) - Ey(ar,.1 X7 Y?) ' € ZX(Got, G a)

and

F(X,Y)E,(a,0XY?) .. Ey(a1,.1 X7 Y?')™" = 1 moddeg(p™! +1).
3.4. Now we prove the first result of for formal group schemes,
that is, the bijectivity of the homomorphism

(Ker[F : W(4) — W(A))" — H*(Ga.4, G, 4)/ H3 (G 4, G, 1)

which was explicitly given in the theorem. It is enough to prove the surjectivity

since the injectivity is obvious.
Let F(X,Y) e Z*(G, 4,Gn 4)- By 2.2, F(X,Y) =1 moddeg 1. Assume that

F(X,Y)=1+H(X,Y) moddeg 2,
where
H(X,Y)=c10X +co1Y.
Since

FX,Y)F(X+Y,Z)=F(X,Y + Z)F(Y, Z),
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we have

C1,0 = Co,1 = 0.

Moreover, we obtain the following fact by the same argument as in [Lemma 3.1.
If F(X,Y)=1 moddeg 2, then there exists F(X,Y) eZ&(GAa,A,(A;m,A) such
that

F(X,Y)F(X,Y)™" =1 moddeg(p+ 1).
Replacing F(X,Y)F(X,Y)™' by F(X, Y), we may assume that
F(X,Y)=1 moddeg(p+1).
By [Cemma 3.1, there exists F(X,Y) e Z2(G, 4,Gn 4) and aj o€ A such that

p—1

FX,V)F(X,Y)'= %{al,oX Y?}* mod deg(p? + 1).
k=0"""
By [Lemma 3.2,
a{”o =0
Hence

F(X,Y)F(X,Y) " = E,(a1,0XY?) moddeg(p? + 1),
and therefore
F(X,Y)F(X,Y) "Ey(a;0XY?)"' =1 moddeg(p? + 1).
Note that

F(X,Y)F(X,Y) "Ey(a10XY?) ' € Z%(Gy u, G 4)

by [Corollary 3.3. Replacing F(X, Y)F(X, Y)_IEI,(al,OXY”)_1 by F(X,Y), we
may assume that

F(X,Y) =1 moddeg(p?+1).

Continuing this process, we find F(X,Y) e Z&(GL As Gm, 4) such that

o0 r—l1 ) ) ) )
FxX,V)F(X,Y)" = [[T]E(ar-ssX?' ¥?") = [ || Er(arsX” Y*™)
r=1 j=0 r=1 j=0

0
= [[ E;(ar; XY7").
r=1
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This proves the desired surjectivity. The second result of for
group schemes follows by the next:

LEMMA 3.5. Let A be an F,-algebra and F(X,Y)€ Z*(Gu4,Gm 4)
A[X,Y)*. Then there exists F(X,Y)e Zg(Ga,A, Gn4) and (a),5, €
(Ker[F : W(4) —» W(A))™ such that

F(X,)F(X,Y)™" =[] Ep(a; XY7).

r=>1

Proor. Let P = {p";r >0}. Dividing F(X,Y) by its constant term, we
may assume that F(X,Y)=1 moddegl. By 3.4, there exists F(X,Y)e
Z2(Gon,Gn 4) < A[[X, Y]))* and a, ;€4 (0 < j <r) such that

F(X,Y)F(X,Y)" =[] Ep(ar; XY?').
rz1

By a result of [3, 3.4], there exist ax € 4 (k ¢ P), b= (b;);5o € W(A) such that

F(X,Y) = [[{E,(aX*)Ey(ac Y*)Ey(ai(X + Y)*)T'}F,(b; X, Y).
k¢P

Hence we obtain a factorization:

= [[{E(aX*)Ey(ar Y*)E,p(ar(X + ¥)*)7'}

k¢P
, , oo r—1 .
< [T x7, Y?) T[] Ep(ary X7 YP").
1>0 r=1 j=0

Now we prove that ai is nilpotent for all k¥ (k ¢ P) and is zero for all but
finite number of k, b= (b;),50 € W(A) and (a,),, € (Ker[F : W(4) — W)™,

We now observe that:

(1) Putting

]
Ey (XM E(YHE,((X + ¥)) ™' = Z XYY e Z )X, Y)),
I=1 i+j=I
we have, for ae A4,

E,(aX¥)E (aY¥)E,(a(X + V)Y ' =1+ Za (Z ci X Y"f) e A[[X, Y]]

I=1 i+j=I
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and
E (aX")E (aYM)E,(a(X + Y)*) ' =1+ a{X*+ Y* — (X + Y)*} moddeg(k+1).

(2) Putting

F(LXP, Y7 ) =1+ > ;X'Y/ e Z,) X, Y]],
>0 i+j=I
pr+l|l

we have, for ae A4,

p1510|, i+j=I

and

r+1

Xpr+l + Ypr-H _ (X+ Y)p
p

Fy(a; XP',Y?)=14a mod deg(p™™! + 1).

(3) Putting

- w : r
E,(XPYP) =1+ a(X?'Y?7) e Z,[X, Y],
=1

we have, for a € A,

Ey(aX?' YP') =14 ca' (X7 Y") € A[[X, Y]]
I=1

and
Ep(aX"j Y?”)=1+aX? Y? moddeg(p’ + p" + 1).
Let N be the degree of F(X,Y) and let a denote the ideal of 4 generated by
the coefficients of terms of degree > 1 in F(X, Y). Since the polynomial F(X,Y)

is invertible, a is nilpotent.
For the simplicity, we put @, = b, and

(Fy(aym; X7, YP') if k=pH! (1>0)
Ep(aka)Ep(ak Yk) j r . i .
Ey(a,_; j XP°Y?) ifk=p/4+p" (0<j<r
Fk(X, Y)Zé Ep(ak(X+ Y)k) P( J»J ) p ( J )
Ey(aX*)Ey(ax Y¥)

otherwise.

Ep(ar(X + Y)*)

\
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Then we have
[0
F(x,Y)=[]FR(X,7Y)
k=2

and, up to deg(k + 1),

( I+1 141 I+1
X? YPT —(X+Y)? .
1+a,u ks 5 (A + ) if k= p*! (1>0)
FX,Y)={l+a{X*+ Y -~ (X + Y)Y +a_; ;XP'YP ifk=p/+pr
0<j<r)
1 +a{X*+ Y- (X + )5} otherwise.

Furthermore, let
Fe(X,Y)=1+>_ Y byX'Y/, bjeA.
1>k i+j=I

Then we can conclude that if b; € a® for all (i,j) with i+ j=k, then b; e
asHEHN/K=1 for all (i, j) with i+j > k.
Step 1. We shall prove that

area iIf k<N
and
a,_jjea if p/+p <N

by the induction on k and (r,j) with 0 < j <r.
Let k be an integer < N. Assume that

aea if i<k
and
a,_jjea if p/+p" <k,
Then we obtain
F(X,Y) = F,(X,Y) mod(a,deg(k + 1)).
Case 1: When k = p'*! (I >0),

1 I+1
_(p )apmea for 1l <h<l

p\ p"
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1 pl+1
Since —( ) # 0 mod p, we obtain a,.: € a.

p\ p" ?
Case 2: When k=p/+p" (0<j<r),
p+rp
( pj )ak+a,_j,jea.

. pl+p .
Since j # 0 mod p, we obtain g; €a and a,_;; € a.
4
Case 3: Otherwise,
kay € a.

Since (k,p) =1, we obtain a; € a.
Step 2. We shall prove that

area’ if (s—1)N <k <sN
and
ar_jjea’ if (s—1)N<p/+p" <sN

by the induction on k and (r,j) with 0 < j < r.
Let k& be an integer < sN. Assume that

giea® if (s—1)N<i<k

and
ar—j;ea* if (s—1)N < p/+p" <k

Then we obtain

i<k

433

-1
F(X, Y){HF,-(X, Y)} =F((X,Y)=1+ Z c;X'Y’ mod(a®,deg(k + 1)).

i+j=k
Now we put

F(X,Y)=1+) ayX'Y/,

-1
{HF,(X, Y)} =1+ BX'Y/

i<k
and

-1
F(X, Y){H Fi(X, Y)} =1+ 7, XY

i<k
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By the assumption,
aj,Byea’ if (s—1)N <i+ j<sN.
Hence, we obtain
yjea’ if (s—1)N <i+j<sN.
Since (s — 1)N < k < sN, we obtain c; € a°.

Hence, ax and a,_; ; are nilpotent for all k£ and (r, j) with 0 < j <r, and are
zero for all but a finite number of k and (r,j) with 0 < j <r.

REMARK 3.6. We establish some functorialities. For example,

(1) The diagrams

(KerF: W(4) — W)Y L  (Ker[F: W(4) » W)Y

| |

Hz(éa,A, Gm,A)/H()Z(Ga,Ay G 4) — HZ(Ga,Aa Gm,A)/Hg(Ga,A, Gm,A)

and

(Ker[F : W(4) — W)Y L8 (Ker[F: W(4) —» W)™

| |

Hz(Ga,Aa Gm,A)/Hg(Ga,A, Gm,A) T" Hz(Ga,A> Gm,A)/H(%(Ga,A, Gm,A)

are commutative.
(2) Let ae A. Then the diagrams

[ap’+l}

(Ker[F : W(4) » W)Y ZT—  (Ker[F: W(4) — W)V

| |
HZ(Ga,Aa Gm,A)/Hoz(Ga,A, Gm,A) E— Hz(éa,Aa Gm,A)/Hg(Ga,Aa Gm,A)

[a]”

and

[ap’+l}

(Ket[F : W(A4) — W(4))™ (Ker[F : W(A) — W(4))™

| |

Hz(Ga,A, Gm,A)/Hg(Ga,Aa Gm,A) - HZ(Ga,Aa Gm,A)/Hoz(Ga,A, Gm,A)

(a]
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are commutative. Here [a?'*!] = (a?’*1,0,0,...) and [a]* denotes the maps
induced by the endomorphism of Ga, 4 or of G, 4, defined by T — aT.

REMARK 3.7. Let A4 be a (Q-algebra. It is well known that
H*G, 4,G, 4) =0 and H*(G, 4,G, 4) =0 (cf. [1, Chap. II]), from which we
can deduce that HZ(GA'Q,A,Gm,A) =0 and H*(G,4,Gm 4) =0 by the same ar-
gument as from [Proposition 2.3
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