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ON A NEW ALGORITHM FOR INHOMOGENEOUS
DIOPHANTINE APPROXIMATION

By

Shin-ichi YAsutomi

Abstract. The inhomogeneous Diophantine approximation algo-
rithm of Nishioka et al., (X,73,c(x),d(x,y)), was shown by
Komatsu to be efficient for inhomogeneous Diophantine approxi-
mation, but lacks a properly founded natural extension and not all
periodic points about the approximation are determined. A new
algorithm, (X, T,a(x),b(x,y)), is proposed in this paper as a
modification of (X, T3,c(x),d(x,y)), and is shown to be efficient
for inhomogeneous Diophantine approximation similar to
(X, T3,c(x),d(x,y)) but also to have a natural extension, which
allows all periodic points about (X, T, a(x),b(x, y)) to be determined
and gives lim inf,_ . g||go — f — p| for the periodic points (a,f).

1. Introduction

It is well known that connections exist between the continued fractions
algorithm and the minimization of |[gx — p|, where ¢ is an natural number, p is an
integer, and « is an irrational number. The problem of minimizing |ga — f — p|,
where f is a real number, is called the inhomogeneous Diophantine approxi-
mation. This problem has been considered by many authors (e.g., [12, 18, 13, 6,
7, 1, 2, 3, 4, 8, 21, 10, 11, 5, 14, 16, 17], and detailed information can be
obtained by a review of the literature. Many algorithms related to the problem
have been used. For example, Ito and Kasahara defined the following
algorithm, which was implicitly introduced by Morimoto [18]. Let Z = {(x, y) |
0sy<l1l,-y<x<-—y+1}, as shown in Fig. 1.
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Figure 1.1 Figure of Z
Then for (x,y) e Z:
' _|l=y| | / =_|=Z
a(x,y)—[ x x ’ b(xvy)— x :

The algorithm 7 is then defined by the following transformation on Z for
(x,y)eZ.

Ti0) = (3 e (e - 2).

This algorithm (Z, Ty,d'(x, y),b'(x, y)) gives the best solution to the inhomo-
geneous Diophantine approximation. Constructing the natural extension of the
algorithm, they determined all the periodic points about the algorithm. Ito [9] was
the first to subsequently find that a certain natural extension of the Diophantine
algorithm is useful for investigating the algorithm. Komatsu studied the following
algorithm, which was introduced by Nishioka et al. [I9]. With X = [0,1]* T is
defined as the following transformation on X for (x,y) e X.

Ta(x,) = (5 = o). ) - 2),

where c(x) = [1| and d(x, y) = [£]. Using this algorithm, (X, T3, c(x),d(x, y)),
Komatsu obtained lim inf,_,, glgx — f — p| in some cases.

In this paper, an algorithm (X, T, a(x),b(x, y)) is introduces as a modifi-
cation of (X, T3, c(x),d(x, y)). The new algorithm also gives the best solution for
the inhomogeneous Diophantine approximation as does (X, T3,c(x),d(x,y)).
However, a natural extension is constructed for (X, T,a(x),b(x,y)), which
has not been done for (X, T3,c(x),d(x,y)). Using the natural extension of
(X, T,a(x),b(x,y)), all purely periodic points about the algorithm are deter-
mined, and for the purely periodic point («,f), a relation between
Iim inf, . ¢||qx — B — p| and the natural extension of (X, T,a(x),b(x,y)) is
obtained. Although all eventually periodic points have been determined by
Komatsu [I5], all purely periodic points have not.
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2. Definition and Some Properties of Algorithm

We denote R, Q and Z the set of all real numbers, the set of all rational
numbers and the set of all integers respectively. For (x,y) € X with x #0 we
define a(x) by |1| and we define b(x, y) by

1 if y=0,
b(x,y) = [5] if y>0and [1]>[F] or [3]=3,
0 if [4 =2 and [4] % 2.

We define a transformation 7 as follows; for (x, y) € X if x > 0, then

(i —a(x),b(x,y) — %) if b(x,y) >0,
T(X, y) = 4

1 1 y . _
(Ga5-3)  rewn=o

and if x =0, then T(x,y) = (x, y).

We define a,(x) = a(T" '(x,¥)), bn(x,y) =b(T" Y x,y)) and (xn,yn) =
T""!(x, y). It is not difficult to see that if x ¢ Q, then for any integer n > 0 a,(x)
and b,(x, y) are defined.

follows from the continued fraction theory.

LemMmA 2.1. Let (x,y) € X and x ¢ Q. Then, for each integer n > 0

1"
g; qn(X)x — pa(x) = (—1)"x1 T Xntl = qn+1(xg+xzx+zqn(x) ’

|gn-1(X)X = pu-1(X)| = @ns1(x, )| (X)X — pu(X, Y)| + |gns+1(X, ¥)X — Pnr1(x, y)|,

3) 1gn(x)x = pu(x, Y)| > |gns1(x, )X — puy1(x, y)|,

@) for any integer j, k with q,(x) < j < gus1(x,¥), |gn(x)x — pu(x, y)| <
|jx — K,

where {pn(X)}_<n» {qn(x)}_,<, are defined by
p-1(x) =1, po(x) =0,
q-1(x) =0, qo(x)=1,
for n>1
Pn(x) = an(X) pp-1(x) + pn-2(x),
gn(X) = an(X)gn—1(x) + gn—2(x).
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LEMMA 2.2. Let (x,y) € X. Then,
1) an(x) >0 and a,(x) = bu(x,y) =0,
) if by(x,y) =0, then b, i(x,y) = 1.

Proor. The proof of (1) is easy. Let us prove (2). We suppose that

bn(x,y) =0. Then, we see that va(x,) = || and a(x,) <. Since X,y =
% —a(x,) and yuu = xl —2, we have X,11 > yny1. Thus, we obtain
b(xn-l»l,,)’n-i-l) = 1. O

Let (x,y) € X and x ¢ Q. Let us define integers 4,(x, y), B,(x, y) as follows:

0 if b(x,y) >0, bi(x,y) if b(x,y) >0,
A = =
1(x,7) {—1 if b(x,y) =0, 1% {0 if b(x, y) = 0,
For n> 1

Ay(x, y) = An_1(x,y) + bu(x, y) pn-1(x) if b(x,y) >0,

"I Z di (%, 9) = Pma(x) if b(x, y) =0,

B (x ) — {Bﬂ—l(x, y) + b"(xa y)qN—l(x) lf b(x, y) > O>

"I Bucr (%, ) = gna(x) if b(x, y) = 0.

We remark that {By(x,»)},-1. and {4.(x,y)},-;, . are not increasing
sequences generally as n — oo.

LemMmA 2.3. Let (x,y)e X and x ¢ Q. Then, for any n >0
Y = Ba(x, p)x — Au(x, ) + (=1)" pus1x1 - - - Xp. (1)

PrOOF. We prove the lemma by the induction on n. Let n= 1. First,
let bi(x,y) >0. Then, we see y; =b(x,y) —;’—;. Therefore, we have y; =
bi(x, y)x1 — y2x1 = Bi(x, y)x — A1(x, y) — y2x1. Next, let b;(x, y) = 0. Then, we
see y2 =3 — 5. Therefore, we have y1 = 1 — y2x1 = Bi(x, y)x — A1(x, ) — yax1.
Hence, (1) holds for n = 1. Secondly, we suppose that (1) holds for n = k, that is,
¥y = Bi(x, y)x — Ax(x, y) + (—l)k+1yk+1x1 ---xg. Let bgyi(x,y) >0. Then, we
have yii2 = bry1(x, y) — %:f:’ which implies yii1 = bir1(X, ¥)Xk+1 — X1 Vis2-
Therefore, using x; - - - xk41 = (—1)*(gex — pr), we see

y = Bi(x, )x — Ar(x, ¥) + (=) ¥ prpixy - - xx,
= Bi(x, )x — Ak(%, p) + (= 1) b1 (6, p)x1 - - Xaer1 (= 1) yesrxr -+ - xp41,

= Bict1(x, )X — A1 (%, ¥) + (=)  yrraxs - X
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Let bgii(x,y) =0. Then, we have y; =—— —2  which implies yi 1 =

Xk+1 X1

1 — X1 Yks2. Using x1--xx = (= 1) ! (gx_1x — pr_1), we have
¥ = Be(x, y)x — Ak(%, ) + (= 1) * 11 - - - X%,
= Bic(x, p)x — Ax(x,¥) + (=1)*x1 - x + (=) ypqaxs - xep,

= Brr1(%, ¥)x — Ar1 (%, ¥) + (=D yrqaxs - xpq1.

Therefore, (1) holds for n = k + 1. Thus, we have Lemma. O
LEMMA 2.4. Let (x,y) € X and x ¢ Q. Then, nlirg(B,,(x, y)x — An(x, y)) = y.

Proor. By |y = Bu(x, y)x + An(x, ¥)| = Yns1X1 - - - Xn. By Lemmal
2.1 we have x;-- X, = |qu_1X — pu_1| < ql—”. Thus, we have Lemma. ]

We define ¥ = {(x,y) eR?|x¢ Q and y # mx+n for any m,ne Z}.

Lemma 2.5. Let (x,y),(z,w)eX and x,z¢Q. If a,(x)=a,(z) and
bu(x,y) = bu(z,w), for any integer n >0, then (x,y) = (z,w).

Proor. By continued fraction theory we obtain x = z. From [Lemma 2.4 we
have y = w. O

LEMMA 2.6. Let (x,y) € XNY. Then, if b,(x,y) = 0 for some integer n > 0,
then there exists an integer k > 0 such that by (x,y) > 0.

PrOOF. We suppose that there exists an integer m such that for any k > 0
bmi2k(x,y) = 0. Then, from we have b, 2k41(x,y) = 1 for any k > 0.
Let (u,v) = T™ !(x, y). Then, by (u,v) = 0 and by (u,v) = 1 for any k > 0. We
see easily that b,(u, 1) = b,(u,v) for any integer n > 1. From we have
v=1. Then, we see (x,y)¢¥. But it is a contradiction. Therefore, we have
Lemma. O

LEMMA 2.7. Let (x,y) e XNWY. Then, if a,(x) = b,(x,y) for some integer
n >0, then there exists an integer k > n such that ay(x) # bi(x, y).

Proor. We suppose that there exists an integer m such that for any
k>=m ap(x) = br(x, y). Let (u,v) =T™" (x,y). It is not difficult to see that
bj(u,1 — u) = bj(u,v) for any integer j > 1. From we have v =1 —u.
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Then, by using the equation (u,v) = T™ !(x, y) we see easily (x, y) ¢ ¥. But it is
a contradiction. Therefore, we have Lemma. O

LemmA 2.8. Let (x,y) € X and x ¢ Q. We suppose that there exist integers e,
f such that y=ex+ f. If e >0, then there exists an integer n >0 such that
ya=0. If e <0, then there exists an integer n > 0 such that y, =1 — x,.

PrOOF. Let e >0. Since 0 <ex+ f <1, we see that —e< f <0 for e >0
and f =0,1 for e =0 respectively. If b)(x, y) > 0, then we have

y=bix) -2 =~/ (1- @) — )+ bi(x2) e

= —fx2 — far(x) + bi(x, y) —e.
y

If by(x,y) =0, then we have y, =1—-2=(1-f)(1-a;(x)) + (1 - fai(x) —e.
Therefore, by the induction for each integer n > 0 there exists integers r, and s,
such that y, =r,x, + Sy, r» =0 and r, > r,.; for r, >0. We see also that if
r, > 0 and b;(x,y) > 0, then r, > r,y. Since from we see by(x,y) >0
for infinitely many », there exists a integer m > 0 such that r, = 0. Therefore,
Ym=0or y,=1.1If y, =1, then we have y,; =0. Thus, we have Lemma.

Let e < 0. Since 0 <ex+ f <1, we see that 0 < f < |e|. We suppose that
by(x, y) > 0. Then, we have y, = —fx; — fa\(x) + bi(x, y) — e. We see easily that
if f=—e=1, then we have —fa;(x) + bi(x,y) —e=1 and if f = —e > 1, then
we have —fa;(x) + bi(x,y) —e < f. Next, we suppose that b;(x,y) =0. Since
the fact that f =1 implies b;(x,y) >0, we see f>1. Then, y,=(1-f)-
(1 —ai(x)) + (1 - f)ai(x) — e. Therefore, by the induction we see that for each
integer n > 0 there exists integers r, and s, such that y, = r,x, +s,, r» <0 and
|fn| = |ras1]|- We see also that if |r,| = |rs+1| and |r, > | > 1, then |r1] > |ray2].
Therefore, there exists an integer m > 0 such that r,, = —1 and s, = 1. O

LEMMA 2.9. Let (x,y)e X, x¢ Q and (x,y) ¢ Y. Then, following (1) or (2)
holds:

(1) there exists integer m > 0 such that for any integer k > 0 by, 12k (x, y) =0,

(2) there exists integer m > 0 such that for any integer n > m a,(x) = bn(x, y).

ProorF. From there exists an integer m such that y, =0 or
Ym =1 —x,,. We suppose y,, =0. Then, we see that for each integer k >0
bmi142k(x, ¥y) = 0. Next, we suppose y, =1 — x,,. Then, we see that for each
integer n > m a,(x) = by(x, y). O
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be integral sequences such that

LemMMA 2.10.  Let {an},_ ,  and {bn},_; .

for any integer n > 0
1. a,>0 and a,>b6,>0

2. if b, =0, then b, =1,
3. if b, =0, then there exists an integer k > 0 such that b,,y >0

4. if a, = b,, then there exists an integer k > 0 such that a,.; # bpix
Then, there exists (x,y) € X NY such that a, = a,(x) and b, = b,(x, y).

Proor. We define A,, , for integers m and n with m >0 and m>n >0 as
follows:

{(62) €015

P

e {(x,y [0,1

(n—l)xSySnx} ifn>1
if m>n and n=0.

1
<x< prl
<x< #,y?_mx}

7r2, /
1,0 .
v ’
5. rm _l(unu'vni)
‘o -
B .
2,2 3
/ 1,1 \(am’aﬁm )
2,1 _’/J>—‘\ Qs byt
1 1 R
3 2 aml
Figure 2.2

Figure 2.1
We define transformation T, ; on R? for integers a, b with a >0 and

a>b>0 as follows:
4
(l—mb—l) if >0,
x

—-——a,——=
X X

Ta,5)(x,y) = ¢ |
C y) ifb=0.

\

Similarly, we define transformation F, on R? for integers a, b with a > 0 and

a>b>0 as follows:
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( l,b_y) if 5> 0,
xXxX+a x+a

( L -2 ) if b=0.
\ x+a x+a

We can easily check Fg ) 0 T(gp) = T(g,) © F4 p) = identity map.

We define Y = {(x,y) e X|y < x}. Then, we see that if b > 0, then 7, =
Fa,)(X) and F(, ) : X — 7, is bijective and if b = 0, then n, , = Fu5(Y) and
Fap) : Y — map is bijective. Noting that F, ;)(X) = Y, we see that if b, > 0,
then Fi, ) Fla,_,,b1)F(an,b,)X is included in X and it become a quadrangle
with inner points. Similarly, we get that if b, = 0, then Fa b1y Flayy,60)Flann) Y
is included in X and it become a triangle with inner points. If b, > 0, let (ttn, vp)
be an inner point in Fi,, 3, - ~ Fla,_y bp1)Flan,6,) X . If by = 0, let (u,,v,) be an inner
point in F,, 4,y - Fa,_, b, ,)Fa, 5, Y- It is not difficult to see that ax(u,) = a; and
b (un,vn) = by for k =1,2,...,n. Since X is compact, there exist an increasing
integral sequence {n;} and («,f) € X such that (u,,v,) — (a,8) as i — oco. Let
(¢n, B,) = T" !(a, ). By continued fraction theory ay(a)=ax for any integer
k > 0. We suppose that there exists an integer m > 0 such that b,,(a, f) # b,,. Let
m’ > 0 be an integer such that b, (a,f) # b,,. And for any 0 < k < m’ b(a,f) =
bi. Then, we have T™'~!(up,, vn,) — (o, B,y) as i — 00. On the other hand, we
see that for large i T™~!(u,,v,)em,, s ,. Therefore, (om:,B,) is in the
boundary set of 7, ,. Therefore, we see easily that b(cm, B, )tm = B, and
b(otm', B,r) # 0 (see Figure 2.2). Further more, if b(ams,B,,) < @(tm,B,,), then
we have b(am,f,,)+1=0>b, and if b(tw,B, ) = a(dm,B, ), then we have
bm = 0. First, we suppose that b(cm:,B,,) + 1= bp. Since T™(u,, v,) —
(tm’ b0, B )0 ), WeE Obtain T™ (uy,, vp,) — (Gmr41,1) as i — co. Then, we have
bm+1 =0. By the induction we see bn414;=0 for any even j>0 and
bmiy14j =1 for any odd j > 0. But it contradicts the condition of {bn}nz 2,
Secondly, we suppose that b,,y = 0. Since T™ ~!(uy,, vp,) — (O, @ Gm) @S § — 00,
we see that T (uy,,v,) — (0mi41,%mr+1) and b,y1 = 1. Then, we see easily that
T™ Y (tn,, vn,) — (0tmr42,0) as i — oo. By the induction we see that by sy =1
for any even j >0 and b,424+; =0 for any odd j > 0. But it contradicts the
condition of {b,},_, , . Therefore, b,(a,B) = b, for any integer n > 0. From
we see (a,f) € ¥. Thus, we have Lemma. O

f

Fap)(x,5) = <

LemMmA 2.11. Let (x,y)e X and x ¢ Q. Then,
(1) Bu(x,y) =0 for any n >0 and A,(x,y) >0 for any n > 1,
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(2) lim sup B,(x,y) = o0 and lim sup A4,(x,y) = oo,
€)] ifn(xofy) €Y, then lim Bn(x?yio: oo and lingO An(x,y) = 0.
n—oo n—

PRrOOF OF (1). We suppose that B,(x, y) < 0 for some integer n > 0. Without
loss of generality we suppose that Bj(x,y) =0 for any integer 0 < j < n.
B;(x, y) = 0 implies n > 1. From the fact that B,_;(x, y) = 0 and B,(x, y) < 0 we
see b,(x,y) = 0. Then, we have B,(x,y) = By—1(x, ¥) — gn-2(x). By Lemma 2.2
we have b,_i(x,y)>0. If n—1>1, then we have B, ;(x,y)—gn2(x) =
By_2(x,y) + (bn-1(x,y) — 1)gn-2(x) = 0. But it is a contradiction. If n—1=1,
then we have B,_1(x,y) — gu—2(x) = b1(x,y) —1 > 0. But it is a contradiction.
Similarly, we see A4,(x,y) >0 for any n > 1.

ProoF oF (2). First, we are proving that B,,»(x, y) = B,(x,y) for any n > 1
and equation holds iff b,i(x,y) =1 and bui2(x,y) =0. If bpii(x,y) >0
and b,i2(x, y) > 0, then the proof is easy. We suppose that b,.;(x, y) =0 and
bui2(x,y) = 1. Then, we have B,.1(x,y) = Bu(x,y) — gun—1(x) and Bpis(x,y) =
Bui1(%,y) + bpia(x, ¥)gn+1(x, ). Therefore, we have B,.>(x, y) > B,(x, y). Next,
we suppose that b,.i(x, y) >0 and bpi2(x, y) = 0. Then, we have B,.i(x,y) =
B, (x, ¥) + but1(x, ¥)qn(x) and B,i2(x, y) = But+1(x, ¥) — qu(x). Therefore, we see
Bui2(x,y) — Bu(x, ¥) = (bus1(x, ¥) — 1)gu(x), which implies that B,.>(x,y) >
B,(x,y) and the equation holds iff b,.1(x,y) =1. Therefore, we see that
lim,_,« Ban(x, y) < oo iff there exists some integer m > 0 such that for any n > m
bon(x,y) =0 and by,_1(x,y) = 1. We suppose that for some integer m > 0 for
any n > m by,(x, y) =0 and by,—1(x, y) = 1. Then, we obtain lim,—,. Ban+1(X, y)
= co. Thus we have the proof of (2). |

PROOF OF (3). From the proof of (2) we see that lim,_,« B2.(x,y) < oo iff
there exists some integer m > 0 such that for any n>m by,(x,y) =1 and
ban—1(x,y) = 0. By Lemma 2.6 we see that lim,_ . Bz (x, y) = co. Similarly, we
have lim,_ o Ba,+1(x,y) = co. Thus, we have lim,_,, Bn(x, y) = co. Similarly,
we have lim,_,, 4,(x, y) = oo. U

LEMMA 2.12. Let (x,y)e XNW. For any integer n=>1, |B,(x,y)x—
An(x,y) — y| = |Bns2(x, )X — Ani2(x, y) — y|. The equation holds if and only if
bni2(x,y) =0 and byi1(x,y) =1 (Bu(x, y) = Bus2(x, y)).

PrOOF. First, we suppose that b,,;(x,y) > 1. We also suppose that » is odd.
From [Lemma 2.1 and Lemma 2.3, we have

Bn+l(xa y)x — An+1(X, ¥) <y < Bupi(x, y)x - An+1(xa y) - (qn(x)x - p,,(x))
SB,,(X, y)x_An(x’ y)' (2)
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We suppose b,,2(x, y) =0. Then, since B, >(x, y)x — Ani2(x, ) = Bnr1(x, y)x —
Ani1(X, ) — (gn(x)x — pu(x)), by (2) we get y < Bua(x,y)x — 4nya(x, y) <
Bu(x, y)x — An(x, y), which follows the lemma. We remark that B,.(x,y)x—
Ans1(x, ) = (gn(x)x — pu(x)) = Bu(x, y)x — An(x, y) if and only if b,y (x, y) = 1.
We suppose b,2(x,y) > 0. Then, from Lemma 2.1 and Lemma 2.3, we have
0 < bui2(%, ) (Gns1(0)% = Pas1 (%)) < —(qn(x)x — pa(x)). Therefore, we get

Bui2(%, )% = Anr2(%, ) < Bur1 (%, )X = Anr1 (%, 9) = (@a(x)x = pa(x)
< B,,(x, y)x - An(x’ y)a

which implies Lemma. We can prove similarly in the case of even n. Next, we
suppose that b,1(x, y) = 0. Then, from and [Lemma 2.3, we have

Bri1(x, p)x — Au1(X, ¥) < ¥ < Buy1 (%, )X — Any1(xX, ¥) + (gn-1(X)Xx — pn_i1(x))
= n(xa y)x_An(x7 y)' (3)

Using bpi2(x,y) =1, we get Bnia(X, y)X — Ani2(x, ¥) = Bu1 (X, y)x — Ans1(x, y)
+ (gn+1(X)x — put1(x)) < Bu(x, y)x — An(x, y), which implies Lemma. We can
prove similarly in the case of even n. O

LeEMMA 2.13. Let (x,y)e XNY. If n > 0 is odd, then B,(x,y)x — An(x,y) —
y >0 and for any integers m, j with 0 <m < B,(x, ), if mx— j— y >0, then

B,(x, y)x — An(x,y) —y <mx— j— y.

If n> 0 is even, then B,(x, y)x — An(x,y) — y < 0 and for any integers m, j with
0<m< By(x,y), if mx—y—j<O0, then

B,(x, y)x — Ap(x,y) —y >mx—y— j.

PrROOF. We are proving the lemma by using the induction on n. Let n = 1.
From we have Bj(x, y)x — A1(x, y) — y = x1y2 > 0. We suppose that
there exist integers m, k with 0 < m < Bj(x, y) such that mx — j— y >0 and
Bi(x,y)x — Ai(x,y) —y=>=mx—j—y. Let bj(x,y) =0. Then, from the fact
B (x, y) =0 we have a contradiction. Let b;(x, y) > 0. Then, we have B;(x, y) =
bi(x,y) and 4;(x, y) = 0. We see that mx — y = Bi(x, y)x — y + (m — Bi(x, y))x
= x1y2 + (m — Bi(x, y))x < 0. Therefore, mx — j — y > 0 implies j < 0. On the
other hand, we have B;(x, y)x —mx = y+ x1y, — mx < 1. By the assumption,
we see 0 < Bi(x,y)x —y— (mx— j— y)=Bi(x,y)x—mx+ j. On the other
hand, Bi(x,y)x —mx <1 and j <0 implies Bj(x, y)x —mx+ j < 0. This is a
contradiction. Thus we have the proof for n = 1. We suppose that the lemma
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holds for any n with 1 <n <k. Let n=k + 1. We suppose that k + 1 is odd.
From we have By,i(x,y)x — Ars1(x,y) — y > 0. We suppose that
there exist integers m, j with 0 <m < Bgyi1(x,y) such that By (x, y)x—
Ag1(x,y) —y>mx— j— y > 0. We suppose bi.1(x,y) > 0. First, we suppose
m > By(x,y). Since Biii(x,y) —m < Bii1(x,y) — Be(x, ) = brs1(x, y)qr(x) <
qrv1(x), from Lemma 2.1 we obtain |(Brii(x,y) —m)x — Agy1(x, y) + j| =
|gk(x)x — pr(x)]. On the other hand, by using we have

|(Br+1(x, y) — m)x — Ag11(x, ) + j
= Brt1(x, y)x — Ais1(x, y) — y — (mx — j — y)
< Bie1 (X, ¥)X — A1 (%, ) — ¥ < |qe(x)x — pe(x)].
But it is a contradiction. Secondly, we suppose m < Bi(x,y). If m < Br_1(x, y),
using we have a contradiction from the assumption of the in-
duction. Therefore, we have m > Bi_;(x,y). We suppose bi(x,y) > 0. Since
Bi(x,y) —m < Bi(x, y) — Br-1(x, y) = bi(x, y)qr-1(x) < gi(x), from
we have |(Br(x,y) —m)x — Ar(x, y) + j| = |qe-1(x)x — px—1(x)|. On the other
hand, we obtain
|(Bi(x, y) — m)x — Ai(x, y) + J|
=mx — j— y— (Bi(x, y)x — Ac(x,y) — »)
< Bk—H(x, y)x- Ak+l(x) y) - V= (Bk(x7 y)x__ Ak(xa y) - y)

= bis1(x, y)|q(x)x — pr(x)|.

From we have b 1(x, ¥)|qx(x)x — pr(x)| < |gr-1(x)x — px—1(x)|. But
it is a contradiction. Next, we suppose bi(x,y) =0. Then, since Bx_i(x, y) >
Bi(x,y), the fact m > By_i(x,y) contradicts the assumption m < Bi(x, y).
Secondly, we suppose biii(x,y) =0. If m < Bx_1(x, y), then it contradicts the
assumption of the induction. Therefore, we have m > By_;(x, y) by using
2.12. Since Bii1(x,y) —m < Brii(x, y) — Be—1(x, ) = (be(x, y) — Dgr-1(x) <
qr(x), by using we have |(Bii1(x,y) —m)x — Ar(x, ) + j| =
|gk—1(x)x — pk—1(x)|. On the other hand, we see

|(B+1(x, y) — m)x — Ax(x, y) + Jj|
= Biy1(x, ¥)x — Ap1(x, ) — y — (mx — j — )
< Br1(x, p)x — Ak1(x, ) — ¥ — (Be(x, p)x — Ax(x, y) — )

= |qr-1(x)x — pr—1(x)|.



184 Shin-ichi YAsuToMmi

But it is a contradiction. For even k& + 1 we have a proof similarly. Therefore, we
have the proof for n = k + 1. Thus, we obtain the lemma. O

LEMMA 2.14. Let (x,y) € XNY. Let n> 0 be an integer. Then, B,(x,y) <
an(X) + qn-1(x). If bn(x,y) >0, then Bu(x,p) = gn-1(x). If bu(x,y) =0, then
B,(x,y) < gn-1(x). Furthermore,

Jim  (By(x,y) — gn-1(x)) = 0.
by (x,y)>0

PrOOF. Let n > 0 be an integer. Using the induction on 7 it is not difficult
to see that B,(x, y) < gn(x) + gn—1(x). We suppose b,(x, y) > 0. Then, we have
By (x, y) = gn-1(x) = Bu-1(x, y) + (bn(x, ) = 1)gn-1(x) = Bs-1(x, y).  Therefore,
using Lemma 2.11, we have B,(x,y) — gs—1(x) >0 and

Tim  (Ba(x, %) — gn1(x)) = o0.
ba(x,y)>0

Let n > 0 be an integer with b,(x, y) =0. If n = 1, then we see easily B,(x, y) <
gn-1(x). Let n>1. Then, we have B,(x,y) = Bs_1(X, ) — gn-2(X) < gn_1(x).
O

Following Theorem is a analogous to the result by Komatsu [14].
THEOREM 2.15. Let (x,y) e XNV.
lim inf gflgx — ||

= lim inf min{B,(x, y)|Ba(x, )x — An(x, y) = ¥,
n—

©(Bu(x, ¥) = qn-1(xX))|(Bn(X, ¥) — gn-1(x))x — (An(x, y) — pu-1(x)) — |},

where q € Z and for z€R |z|| = min{|z — m||m e Z} and t(u) = u for u >0 and
(u) = oo for u <0.

Proor. We are proving that for each n > 1 with b, > 0 if for an integer ¢
Bn—l(x) y) <g< Bn(xa y), then
qllgx — ¥l
z min {B;(x, y)|B;(x, y)x — 4;(x, y) -y,

©(Bj(x, ¥) = ¢-1(DI(B;(x, ¥) — ¢j-1(x))x = (4;=1(x, ¥) — p;(x)) — yI}. (4)
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It follows [Theorem 2.13. Let n>1 and b,(x,y)>0. Let B,_i(x,y) <
g < B,(x,y). We suppose that n is odd. If gx —q' < By_1(x, y)x — Ap_1(x, y)
for an integer g’, then from we have |q(gx —q' — y)| >
1Buot (%, ) (But (%, 2)% — Ay1(%,7) — ). We  suppose  that  B,i(x, y)x—
A, 1(x, ) < gx — q' < B,(x,y)x — An(x, y) for an integer ¢’. From [Lemma 2.13,
we have gx — g’ < y. Since By(x,y)x — An(x,¥) — (Bu=1(x, ¥)x — Ay_1(x, y)) =
bn(x, ¥)(gn_1(x)x — pp_1(x)), there exists an integer j such that 0 < j < b,(x, y)
and

J(@n-1(x)x = pr_1(x)) < gx — q' = (Ba-1(x, )X — An-1(x, y))
< (j+ 1)(gn-1(x)x = pn-1(x)). |

Then, we have |(g— Bu-1(x,») = jgn-1(x))x — ¢’ + An_1(X, y) + jpn-1(x)| <
|gn—1(x)x — pn-1(x)|. On the other hand, we have |g — By_1(x, y) — jgn-1(x)| <
bn(x, ¥)gn-1(x) < gn(x). Using we have ¢ — B,—1(x, ¥) — jgn-1(x) = 0.
We see easily that ¢’ — 4,-1(x, y) — jps-1(x) = 0. Then, we have
qlgx — q" — y| = (Bu-1(x, ») + jan-1(x))|(Bn-1(%, ¥) + jgn-1(x))x
~ (An-1(x, ¥) + jpn-1(x)) — ¥|

> min 1{(Bn—l (%, ¥) + Ign-1(x))|(Bn-1(x, ) + Ign-1(x))x

0<i<bu(x,y)—
- (An—l(x7 y) + lpn—l(x)) - y|}
On the other hand, implies

l(Bn—l(x’ y) + lqn—l(-x))x - (A,,__](X, y) + lpn—l(x)) - yl

=y = Bu1(x, y)x + An1(x, ¥) = {gn-1(x)X — pn_1(x))
for each integer / with 0 </ < b,(x, y) — 1. Since

OSISI};},I(I.;C],y)—l{(Bn_I (%, ¥) + Ign-1(x))(y — Bp—1(x, )X + An-1(x, )

= H(gn-1(x)x = pn-1(x)))}

= min {(Bn—l(xa y) +lqn—1(x))(y - Bn—l(x, y)x+An—1(x’ y)
1=0,by(x,y)-1

— 1(gn-1(x)x — pn-1(x)))},

we have
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glgx — q' — y|
> min{B,_(x, y)|Bu-1(x, y)x — An_1(x, y) — yl,

(Bu(%, ¥) = qn-1(x))|(Bu(x, ) = gn-1(x))x — (An(x, ) — Pn-1(x)) — y|}.

We suppose that B,(x, y)x — An(x, y) < gx — q' for an integer q’. We consider the
case of b,-1(x,y) > 0. We suppose B,(x, y)x — An(x, y) — (gn-2(x)X — pn—2(x)) <
gx —q'. Then, we have y < B,_i(x,y)x — An-1(x, ) — (gn-2(x)x — pp—2(x)) <
gx — q'. Therefore, noting B,_;(x, y) — gn—2(x) = 0 from we have

glgx — ¢’ — y| = (Ba-1(x, ) — gn-2(x))

X |(Bn-1(x, ¥) = qn-2(x))x — (An-1(x, ) — pn-2(x)) — y|.

Next, we suppose B,(x,y)x — Ap — (qn-2(X)x — pn—2(x)) > gx — q’. Then, we
have 0 < gx —q' — (Bu(x, y)x — An(x, y)) < —(gn-2(x)Xx — pa—2(x)). Noting 0 <
B,(x, y) — q < by(x, y)qn-1(x), similarly to the previous argument, we see that
there exists an integer j' such that 0 < j' < b,(x, y) and (B,(x, y)x — Aa(x, y)) —
(gx — q") = qn-2(x)x — pn—2(x) + j'(gn-1(x)x — pn—1(x)). Therefore, we have

gx — q' = Bu(x, y)x — An(X, ) — (qn-2(X)x = pn-2(x)) — j'(qn-1(%)X = pn_1(x)
= Bn-1(x, y)X — An-1(%, ¥) — (qn-2(x)x — pn-2(x))
+ (bn(x) = j")(gn-1(x)x = pa-1(x)). (5)

Using (5) and B,_(x, y)x — Au_1(X, ¥) — gn-2(x)x — pu_2(x) > y, we see 0<
By 1(x, y)x = An_1(x, ¥) = (gn-2(x)x — pn-2(x)) — y < gx — q¢' — y. Therefore,

qlgx — q' — y| > (Ba-1(x, ) — gn-2(x))
X |Bp_1(x, ¥)x — An-1(%, ¥) — (gn-2(x)Xx — pn—2(x)) — y|.

We consider the case of b,_j(x, y) = 0. We suppose that B,(x, y)x — An(x, y) —
(gn-2(x)x — pn-2(x)) < gx—¢'.  Since  By(x,y)x — An(x, y) — (Ba-1(x, y)x —
An—l(xa y)) = qn—l(x)x - pn—l(x)’ we have 0 < Y= (Bn—l(x> y)x - An—l(xa y)) <
gn-1(X)x — pp—1(x). On the other hand, we obtain gx—¢q' —y>gx—q'—
(Ba(x, p)x — Au(x, ¥)) 2 —(gn-2(x)x — pa—2(x)).  Therefore, glgx—q'— y| >
B,_i(x, y)|Bn-1(x, y)x — An—1(x, y) — y|. Secondly, we suppose B,(x,y)x—
An(x,y) = (qn-2(x)x — pn-2(x)) > gx —¢q'.  Then, 0 <gx—gq'— (Ba(x,y)x—
An(x, ¥)) < =(gn-2(x)x — pn—2(x)). Using 0 < B,(x, y) — g < gn—1(x) and Lemma
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2.1, we have a contradiction. Therefore, we have the inequality (4). Thus, we
have Lemma. 0l

LEMMA 2.16. Let (x,y)e X NY. For any integer n > 0,
lim inf gllgx — y|| = lim inf qllgx, — yall,
where (xn, yn) = T" 1(x, ).

ProoF. We are proving that liminf, . g|/gx — y|| =lim inf ., -
qllgx2 — y2||. It follows the lemma. Let e=Iliminf, ., gl/gx—y| and
S =liminf, ., q||gx; — y2||]. Then, there exist an increasing positive integral
sequences {p;};_; . and {gi};;,. . such that f =liminfx o gzlgzx2—
y2 — pi|- We suppose that bi(x, y) > 0. Then, for k > 0 we have

i(£-a) - (0 -2) - i

ql
= ;’f |(gra1(x) + py + b1(x, ¥))x1 — y1 — g1

i\ ax2 — y2 —pil = 4

= (qra1(x) + p + bi(x, ) (qra1(x) + pr + b1(x, y))x1

i
x1(qpa1(x) + p; + b1(x,»))

!
— V1 — qk|
. A . %
ince =% — — -
S g ~ X2 as k— oo, we see that limg_ e PNCICETETIER)

limy_, o L = 1. Thus, e < f. If by(x,y) =0, we have e < f by the

rl b (x, )
X (al(x)+q7’"+—'—lq )
k k

same manner. Similarly, we have e > f. Thus, we have the lemma. O

3. Natural Extension

Z. denotes the the set of all positive integers. We define Q;, , Q] and Q;
as follows:

Q= {(x,») €[0,1)%| (x,y) € ¥, y < x},
Q = {(x,y) €[0,11*| (x, ) € ¥, y > x},
Q ={(xy)|(xy)e¥,y>1l,x<-1,y<—x+1},

Q) ={(x,»)|(x,»)e¥,0<y<l,x<-1}.
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m

=

1 _

Figure 3.1

Let Q= {Q] X (Q{ UQS)} U (Qz X Qi)
We define a transformation T on Q as follows: for (x, y,z,w) e Q

T _ (%“a(x)»b(an’)_g,%“a(x),b(zaw)—%’) if b(x,y)>0,
(7, 2,w) = (L—a(x),L—2,1— a(x),1 —») if b(x, y) = 0.

We see easily that T is well defined.
TueoreM 3.1. T is bijective.

Proor. We define A,, , for me Z, and ne Z, U {0} with m > n as follows;

{(x,y)eXﬂ‘PI—”ﬁ<x<#,(n—1)x<y<nx} if n>1,
Apn=
" {(x,y)eXﬂ‘I’lm#H<x<#,y>mx} if m>n and n=0.

Then, we see easily that 7: A, , - X N'Y is bijective for n >0 and T : A,y 0 —
Q, is bijective. We define A, , for meZ, and neZ,U{0} with m=>n
as follows; if n=1, then we see A, , ={(x,»)eQ|-(m+1)<x<-m,
l1<y<-x—m+2} and if n> 1, then we see A, , = {(x,») e Q]| -(m+1) <
x<-m—x—m+n<y<-x—m+n+1} and if =0, then we see A, =
{(x, ) e | —(m+1) < x < —m}.

We see that for meZ, and neZ,U{0} with m>n and n#1
(Tom,m)q: ¥ — Ay, , is bijective and (Tim,1))arua R UQ; — A, is bijective,

where T, » is defined in Section 2. On the other hand, we have
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Figure 3.2
Q = U Am,n X Qi U U Am’l
(m,n)eZ, xZ, m=nn#1 meZ,

X (QUQHU () ApmoxQ (disjoint)

mGZ+

= U XN¥)xA, U U (XN¥)

(mn)eZ, xZ, m=nn#1 meZ,

x A, U | QixA,, (disjoint).

mEZ+
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We see that Ta, «oiBmnx Q) — (XNW¥)xA,  is bijective for (m,n)e
Z, xZ, with n#1 and T,, x@uapBm1 x (QUQ) — (XNP) xA) | for
me Z, is bijective and TAmyonl'Am,() x Qp — Qi x A, , is bijective for me Z,.

Therefore, T is bijective.

Following is easily proved.

O

LemMA 3.2. Let K be a real quadratic field over Q. Let (x,y) e K2 NXNP.
Then, if (x,y,%,7) € Q, then (T(x,y),T(x,y)) = T(x, y,x,7), where for ze K % is

the algebraic conjugate of z related to K/Q.

Komatsu determine the all eventually periodic points in (X, T3). Fol-

lowing Lemma is the similar result.
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LEMMA 3.3. Let (x,y)e XNY, x be a quadratic irrational number and
y € Q(x). Then, (x, y,X,y) is a eventually periodic point related to T, where for
z€ Q(x) zZ is an algebraic conjugate of z related to Q(x)/Q.

ProoF. Since y € Q(x), there exist r,,s, € Q such that y, = r, + s,x,. Let d,
be the denominator of r,, s,. By using induction, we see dy = d, for all n. From
the well known fact about continued fraction of quadratic irrational numbers,
there exists an integer m such that {x,;, Xu+1,...} is purely periodic. It is known
that X;; < —1 for each n > m. We define a constant ¢; by ¢; = min{|X,||n > m}.
Let ¢; = max{a,(x)|n=1,...}. Let r =C‘—£lczj—‘). Then, if n > m and |y;| > r, we
have '

v —

In Pul(er — 1)
Xn

C1

|Pni1| < 2+ <Cz+'cf=|?;|— +c < |yl — 1.

Therefore, there exists n; such that ny > m and |y, | <r. On the other hand, if
n>m and |y,| <r, then we have

Vn

[Prr1] < 2+ |=| < 2r.
Xn

We suppose that lim sup,_,,|Vs| = . Let n; = min{k |k > ny, |yx| > 3r}. We
assume |yn,—1| > r. Then, we have |y,,| < |Vn,—1| — 1. Therefore, we have |y,,-1| >
3r. But it is a contradiction. Next, we assume |y,,_1| < r. Then, by using previous
argument, we have |y,;| < 3r. But it is a contradiction. Thus, there exists ¢ > 0
such that |y,| < ¢ for all n. From the facts that |y,| < ¢ and |y,| < 1 for all n, we
see that there exits ¢3 such that |r,|, |s,| < c¢3 for all n. Using the fact dy = d, for
all n, we see that {y,|n =0,1,...} has finitely many numbers. Thus, (x, y, X, ¥) is
a eventually periodic point related to 7. O

LemMa 34. Let (x,y)e XNY, x be a quadratic irrational number and
y € Q(x), where for z € Q(x) Z is an algebraic conjugate of z related to Q(x)/Q.
Then, there exists an integer n > 0 such that (xn, Yn,Xn,¥n) € Q.

ProOF. By {(xns ¥n)}n=o,1,. is eventually periodic. Therefore,
there exist integers m;,m; > 0 such that for any n > m; (Xutmys Ynimy) = (Xn, Yn)-
We define ms as follows. If b, > 0 for any n > m,, then we set m3 = m,. If there
exists m’ > m; such that b, (x, y) = 0, then we set m3 = m’. If for integers a, b
b>0 and a>b, then it is not difficult to see that T, (c/(Q)) = {(x,¥) €
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cd(Q))|—a—1<x < —a}, where c/(Q]) is the closure of Qj. Therefore, if
bu(x,y) > 0 for any n > m;, then we have

Ty smy1 )by my1 (5:)) " T (@omy (), by (53T S 15
where 7 = {(x, y) € cl(Q)) | —amy+m-1(X) = 1 < X < —@pyym,—1(x)}. It is not
difficult to see that for integers a,a’ > 1 T, 1)T(a,0) cl(Q) = {(x, ) € cl(Q1) |
—a—1<x < —a}. By lemma 2.2 m; > 1 and by 4m,—1(x, y) # 0. Thus, we have

TGy my=1 (x), By my—1 (6,9)) " T (amy (5), by G,y < -
By Bronwell’s fixed point theorem there exists (x/,y’) € {(x,y) e cl(Q])]
— Ay tmy—1(X) — 1 < x < —am3+m2_1(x)} such that T(am3+m2-1(x),bm3+m2_1(x,y)) K
T Gy (x), by (o) (X5 ¥') = (X7, 7). We see easily that (x', ¥") = (Xmz, Yms)- Therefore,
we have (Xm,, Ymss Xy V) € Q. O

LEMMA 3.5. Let (x,y)e XNY, x be a quadratic irrational number and
y € Q(x). Let (x,y,%,7) € Q, where for z € Q(x) Z is an algebraic conjugate of z
related to Q(x)/Q. Then, (x,y,%,7) is a purely periodic point related to T.

PrOOF. By there exist integers m,m; > 1 such that for any
integer n > m (Xn, Yn) = (Xnsmys Ynim, ). Since (x1, y1,X1,71) € Q, by
we have (X, yn, X5, ¥,) € Q for any integer n > 0. Since T is bijective on Q, for
each integer n > m we have (Xp—1, Yn—1,Xn—1,Vn-1) = (Xntmi—1, Yntmi—1 Xntm—1
Yn+m—1). By using the induction we have (x1, ¥1,X1,71) = (X14m; > Y1+m; > Xi4m s
Y1+m;)- Thus, (x,y,X,y) is a purely periodic point related to 7. O

THEOREM 3.6. Let (x,y)e XNWYW. x is a quadratic irrational number,
y € Q(x) and (x, y,%,7) € Q if and only if (x,y) is a purely periodic point related
to T, where for ze€ Q(x) Z is an algebraic conjugate of z related to Q(x)/Q.

PrROOF. The necessary condition of the theorem is proved in Lemma 3.5 Let
us prove the sufficient condition. We assume that (x,y) e XN'¥ and (x,y) is a
purely periodic point related to 7. Then, it is not difficult to see that x is a
quadratic irrational number and y € Q(x). Using [Theorem 3.1 and Lemma 3.4,
we see that (x, y,x,7) e Q. O

Following is a well known result.

LemMa 3.7 (E. Galois). Let 0 <x <1 be a quadratic irrational number
and let x have purely periodic continued fraction expansion. Then,
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lim (% + x,,+1) = 0, where for z € Q(x) Z is an algebraic conjugate of z related
n— oo n—

to Q(x)/Q.
ProoF. Let W =[0,1] x (—oo,—1]. We define a transformation p on W as
follows: for (x,y)e W

(% - a(x),% - a(x)) if x # 0,
(x,») if x=0.

p(x,y) =

We see easily that p is well defined. Since x is reduced, X < —1 (see [20]).
Therefore, (x,%) e W. We see easily that p"(x,X) = (X441, Xp+1). On the other

hand, for each integer n > 0 (x,,+1, - quf’(‘i)) € W. We see for each integer n > 0
gn(x) ) ( qn-1(x) )
Xpil, ————— | = | Xny2, — ———— — @n+1(x
p( n+1 qn_](x) n+2 qn(x) n+l( )
_ (xn+2’_qn+1(x)).
gn(x)
Therefore, we have p”~! (xz, ——Z—(‘)g—g) = (x,,+1, —quf’(‘))‘)). We denote u, = q""f’(‘i)
for each integer n > 0. Then, we have
—_— |xn+1 - un| Ixn+1 - unl
X — Up+1| = — = )
l 2 m l Ixn+lun| c
where C =min{|%;||j=1,2,...}. Therefore, we have |X,77 — u,| < "‘_2:_“,” for
j v C
each n > 0. Since C > 1, we obtain the lemma. O

LEMMA 3.8. Let (x,y)e XNV and let (x,y) be a purely periodic point

related to T. Then, lim (—i—) y,,+1) =0.

n—oo \9n (x)

PrROOF. We see easily that T is naturally extended to Q, = {Q; x
c(QUQ)IU(Q, x cl(R2))). We also denote it T. For each integer k > 1 u

denotes — "’:((3‘) and v, denotes _((y)) First, we show that (xz, y2,u;,01) € Q4

and for n>1 T"" ‘(xz,yz,un,vl) (Xn+15 Yn+1,Un, vn). We suppose bi(x, y) > 0.

Then, we see that qlgg —aj(x) and B'(x) = by(x,y). Since 0 < bi(x,y) <

ay(x, y), we have (xz, o, — 22) B‘—(’(‘x{l) € Q#. We suppose by (x, y) = 0. Then, we

9(x)’ g0
B'(Z‘x;’) 0 and y, =3} —%. From the fact that a = ||, we have

X
1 1 _ qi(x) Bi(xy)
a2 5 xl. Therefore, we have (xz, Y2~ 2000 dol

suppose that for an integer k > 0 T*=1(x2, y2,u1,01) = (Xk+1, Yk+1, Uk, Vk). Then,

see that
)e Q4. Secondly, we
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we have l — apy1(x) = qf]ké)(c’)‘) ar41(x) = ugy1. We suppose that by, (x, y) > 0.
Then, we have bgy(x, y) — = = bry1(x, y) + B"I‘ fxf ) = vk+1. Therefore, we have

T(xk+1 Vier1s Uk, Vk) = (xk+2, J/k+2,uk+1, Uk+1) We suppose that bg,i(x,y) =0.
Then, we have 1o _ Bi(x,9)=qe-1(x) _ Biri(x,y) _ = vgy1. Therefore, we have
- Ui qr(x) qr(x) '

T (Xk+1, Vie+1, Ui, Vk) = (X2, Vk+2, Uk+1, Vk+1). Thus, we have the proof of that for
n>1 T (xp, y2,u1,01) = (Xnt1, Yns1, U, Un). Since for n > 1 T" 1 (x3, y2, %2, 72)

= (xn—i-]a yn+l,xn+]’yn+l)- If bn+l(x’ y) > 0> then we obtain

|U 1 =7 2|= v_n_yn+1 — ﬁl__ Un Un _yn+l
" n Un  Xn+1 Up Xp+l  Xp+l  Xntd
< |on| | Bt = ] o —yn+1|, 6)
Up Xn+1 lxn+1|

and if b, (x,y) =0, then we obtain

v — Vg2l =———- +
| m J’n+2l Up Upn  Xptl  Xn4d
< (1 Yn ) Xn+1 — Up + |Un "yn+1| . (7)
Uy Xn+1 |xn+1|

Since (u,,,v,,) e c(QUQ)), I i < 2 for each integer n > 0. From the proof of
[Lemma 3.7, (6) and (7) we see that

- b v — "2
|Un+1 — Vni2| < 3(n— )I ch 1 l I lcn—;;)zl’
where C =min{|¥;]|j=1,2,...}. Thus, we have the lemma. O

THEOREM 3.9. Let (x,y) € [0, 1]2 be a periodic point of T. Then,

nfi W),
x -—xn xn_xn

lim gllgx — || = min{
g—

where ||x|| = min{|m — x| |m € Z} and ©(u) = u for u > 0 and t(u) = oo for u < 0.

ProorF. From [Theorem 2.15 we have

lim inf q|lgx — y||
q— 0
= lif,‘li;}f min{B,(x, y)|Bn(x, y)x — An(x,¥) — y|,7(Bu(x, ¥) — gn-1(x))

X |(Bn(x, ¥) = qn-1(x))x — (4n(x, ) — Pn1(x, ¥)) — ¥I}-
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Using and

Bu(x, y)|Bu(x, y)x — An(x, ¥) — ¥| = Bu(X, ¥) Yny1X1 - - Xn
= By(x, y)y,,+1|q,,_1(x)x - Pn—l(x)l
Bu(x, ) Yns1

qn-1 (X) (qzzf)&) + xn+l)

If b,(x,y) >0, we have similarly

(Bn(%, ¥) = gn-1())|(Bu(x, ¥) — gn-1(x))x = (An(x, y) — pn-1(x)) — |
= (Bu(x, ¥) = qn-10NI(=1)" yur11 -+ Xn = (gn-1()x = pn_1(x))|
= (Bu(x, ¥) — gn-1(2))|gn-1(x)% = pn_1(x)[ |1 = yns1l
_ (Bn(x,) = gn1(x))[1 = yns1 1

qn—l (x) qufxi.) + Xn+l .

From Lemma 2.14 we note that if b,(x,y) >0, Bu(x,y)~gn_1(x) <0 and
0 < yn71 < 1. Using Lemma 3.7 and [Lemma 3.8, we have Theorem 3.9 [
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