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SIMILARITIES BETWEEN THE TRIGONOMETRIC
FUNCTION AND THE LEMNISCATE FUNCTION

FROM ARITHEMETIC VIEW POINT

By

Takuma OGAWA

Abstract. We show that the rational functions associated with the
lemniscate functions and primary numbers of Gaussian integers, de-
fined by Eisenstein, has a symmetrical relation with respect to the
zeros and the poles. We also consider some polynomials associated
with the trigonometric functions and odd integers, and point out a
similar symmetry of the polynomials.

1. Introduction

Throughout the present paper, $s1(u)$ denotes the lemniscate sine. The lem-
niscate functions play important roles in various branches of number theory.
Here we focus on the following three aspects:

(1) A proof of the law of biquadratic reciprocity (by F. G. M. Eisenstein [1],
[2], [4], [5], [10]).

Let $B=\{r_{\beta}\in Z[i]|1\leq\beta\leq\frac{Nr-1}{4},\beta\in Z\}$ be a quarter-system modulo
a primary prime $r$ in $Z[i]$ , where $r_{\beta}$ are suitably chosen. Then we have

$(\frac{s}{r})_{4}=\prod_{r_{\beta}\in B}\frac{s1(s(\frac{2\omega r_{\beta}}{r}))}{s1(\frac{2\omega r_{\beta}}{r})}$ , $\omega=2\int_{0^{1}}\frac{dx}{\sqrt{1-x^{4}}}$ ,

where $r$ and $s$ are coprime.
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(2) Abelian equation over $Z[i]$ (by Abel [6], [7], [8]).
For a primary $m$ in $Z[l]$ , the numerator of the rational function

$R_{m}(x)$ defined by the equality

$R_{m}(s1(u))=\frac{s1(mu)}{s1(u)}$

is an abelian equation over $Z[i]$ . The above rational function was used
in (1).

(3) Abelian extension of $Q(i)$ (by T. Takagi [9]).
Every abelian extension of $Q(i)$ is obtained by adjoing $s1(\alpha)$ , where $\alpha$

is a root of the equation $sl(mu)=0,$ $m$ being a Gaussian integer.
The above relationship among the reciprocity law, the abelian equation and

the abelian extension suggests that these three may be viewed as an appearance
of the same object. This view is explicitly stated by M. Takase [11], [12]. Similar
phenomena have been known for the trigonometric functions:

(1’) A proof of the law of quardratic reciprocity (by Eisenstein [1], [3], [10]).
Let $A=\{a\in Z|1\leq a\leq(p-1)/2\}$ be a half-system modulo an odd

prime $p$ in $Z$ , then

$(\frac{q}{p})_{2}=\prod_{a\in A}\frac{\sin q(\frac{2\pi a}{p})}{\sin\frac{2\pi a}{p}}$ , $\pi=2\int_{0^{1}}\frac{dx}{\sqrt{1-x^{2}}}$ ,

where $p$ and $q$ are coprime.
(2’) Abelian equation over $Z$ (by Abel [7]).

For an odd $q$ in $Z$ , the polynomial $P_{q}(x)$ defined by the equality

$P_{q}(\sin z)=\frac{\sin qz}{\sin z}$

is an abelian equation over Z. Eisenstein also used the above polynomial
in (1).

(3‘) Abelian extension of $Q$ (Kronecker-Weber Theorem).
Every abelian extension of $Q$ is contained in a field generated by

$\exp(\frac{2\pi\iota}{n}),$ $n$ being an integer.
In the present paper, we examine the similarity between the lemniscate

function and the trigonometric function in more detail, with the above phe-
nomena being regarded as a guiding principle.

First we recall the following well-known fact. A Gaussian integer $m=$

$a+ib\in Z[i](a, b\in Z)$ is said to be primary, if $m\equiv 1(mod (1+i)^{3})$ . $1fa+ib$ is
a primary integer, then $a^{2}+b^{2}\equiv 1(mod 4)$ (see Lemma 3.1).
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PROPOSITION 1.1 ([10, Proposition 8.2], cf. [1], [2]). Let $m=a+ib$ be a
primary Gaussian integer and let $N:=a^{2}+b^{2}$ . Then there exist polynomials
$V_{m}(X),$ $W_{m}(X)\in Z[i][X]$ of degree $(N-1)/4$ such that

$\frac{s1(mu)}{s1(u)}=\frac{W_{m}(x^{4})}{V_{m}(x^{4})}$ , where $x=s1(u)$ .

Moreover, these polynomials satisfy the following two equalities:

$W_{m}(x^{4})=x^{N-1}V_{m}(x^{-4})$ , and

$W_{m}(0)=the$ coefficient of the top degree of $V_{m}(x)=m$ .

The last equality of the above proposition shows that the rational function
defined by

$\frac{W_{m}(x^{4})}{V_{m}(x^{4})}$

is symmetric with respect to the zeros and poles. This leads us to study the
function $c1(mu)/c1(u)$ ($c1(u)$ denotes the lemniscate cosine). It has been shown to
be a rational function of $s1^{2}(u)$ with coefficients in $Q(i)$ [ $15$ , Corollary 3.2.3]. We
study the symmetry of the rational function, similar to the one of the function
$W_{m}(s1^{4}(u))/V_{m}(s1^{4}(u))$ .

2. Notation and Statement of the Result

Throughout the present paper, $P$ denotes the set of primary numbers and let

$M:=\{m=a+ib\in Z[l]|a, b\in Za-b\equiv 1(mod 2)\}$ .

It is easy to see that $M=P+iP+i^{2}P+i^{3}P$ . Eisenstein [5, Theorem 3.3] proved
that

$\frac{s1(mu)}{s1(u)}\in Q(i)(s1^{4}(u))$ , for each $m\in M$ .

DEFINITION 2.1. For $m\in M$ , let $R_{s,m}(x)$ and $R_{c,m}(x)$ be functions satisfying
the following equalities:

$R_{s,m}(s1(u))$ $:=\frac{s1(mu)}{s1(u)}$ , $R_{c,m}(s1(u))$ $:=\frac{c1(mu)}{c1(u)}$ .
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It follows from [5, Theorem 3.3] and [15, Corollary 3.2.3] that both of
$R_{s,m}(x)$ and $R_{c,m}(x)$ are rational functions. Note that for a primary $m,$ $R_{s,m}(x)=$

$W_{m}(x^{4})/V_{m}(x^{4})$ , where $V_{m}(x),$ $W_{m}(x)$ are the polynomials in Proposition 1.1.
As the following result shows, the rational function $R_{c,m}(x)$ has a strong

symmetry with respect to zeros and poles.

PROPOSITION 2.2. For each $m\in M$ , there exists a polynomial $K_{m}(X)\in Z[i][X]$

such that

$R_{c,m}(x)=\frac{K_{m}(x^{2})}{K_{m}(-x^{2})}$ .

Also $R_{c,m}(x)$ and $R_{s,m}(x)$ satisfy the following equality.

THEOREM 2.3. Let $m\in P$ be a primary number. Then

$R_{s,m}(\sqrt{\frac{1-x^{2}}{1+x^{2}}})=R_{c,m}(x)$ .

From these results, we can derive a relationship on $V_{m}(X),$ $W_{m}(X)$ and
$K_{m}(X)$ for a primary $m$ .

COROLLARY 2.4. Let $m=a+ib\in P(a, b\in Z)$ be a primary number. $We$

have the following statements:
(1) $W_{m}(x^{4})=x^{N-1}V_{m}(x^{-4})$ , where $N=a^{2}+b^{2}$ (Proposition 1.1).
(2) Let $y^{2}=(1-x^{2})/(1+x^{2})$ . Then, we have

$\left\{\begin{array}{l}W_{m}(y^{4})K_{m}(-x^{2})=V_{m}(y^{4})K_{m}(x^{2}),\\W_{m}(x^{4})K_{m}(-y^{2})=V_{m}(x^{4})K_{m}(y^{2}).\end{array}\right.$

(3) $K_{m}(X)$ can be chosen as a reciprocal polynomial.

EXAMPLE 2.5 (see [15]). For $m=3-2i\in P$ , the functions $R_{c,m}(x)$ and
$R_{s,m}(x)$ are written as follows:

$R_{s,m}(x)=\frac{(3-2i)+(7+4i)x^{4}+(-11-10i)x^{8}+x^{12}}{1+(-11-10i)x^{4}+(7+4i)x^{8}+(3-2i)x^{12}}$ ,

$R_{c,m}(x)$

$=\frac{1-(2-6i)x^{2}+(3+8i)x^{4}+(12-4i)x^{6}+(3+8i)x^{8}-(2-6i)x^{10}+x^{12}}{1+(2-6i)x^{2}+(3+8i)x^{4}-(12-4i)x^{6}+(3+8i)x^{8}+(2-6i)x^{10}+x^{12}}$ .
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For these polynomials, $V_{m}(X),$ $W_{m}(X)$ and $K_{m}(X)$ in Proposition 1.1 and Prop-
osition 2.2 have the following form:

$V_{m}(X)=1+(-11-10i)X+(7+4i)X^{2}+(3-2i)X^{3}$ ,

$W_{m}(X)=(3-2l)+(7+4i)X+(-11-10i)X^{2}+X^{3}$ ,

$K_{m}(X)=1-(2-6i)X+(3+8i)X^{2}+(12-4i)X^{3}$

$+(3+8i)X^{4}-(2-6i)X^{5}+X^{6}$ .

3. Preliminaries

3.1. Lemniscate functions (see [13]). The lemniscate sine $s1(u)$ is the func-
tion defined by the meromorphic continuation to the whole complex plane of the
inverse function of the following equation

$u=\int_{0^{X}}\frac{dx}{\sqrt{1-x^{4}}}$ ( $\Leftrightarrow x:=$ sl $(u)$ ).

We define the constant $\omega$ by

$\frac{\omega}{2}$
$:=\int_{0^{1}}\frac{dx}{\sqrt{1-x^{4}}}$

and define the lemniscate cosine $c1(u)$ as follows:

$c1(u)$ $:=s1(\frac{\omega}{2}-u)$ .

The functions $s1(u)$ and $c1(u)$ are elliptic functions. The fundamental periods of
$s1(u)$ and $c1(u)$ are $ 2\omega$ and $2\omega i$ respectively.

The addition formulas of $s1(u)$ and $c1(u)$ take the following form:

$s1(u+v)=\frac{s1(u)c1(v)+c1(u)s1(v)}{1-s1(u)s1(v)c1(u)c1(v)}$ , $c1(u+v)=\frac{c1(u)c1(v)-s1(u)s1(v)}{1+s1(u)s1(v)c1(u)c1(v)}$ .

Also the functions $s1(u)$ and $c1(u)$ satisfy the following equalities:

$c1^{2}(u)=\frac{1-s1^{2}(u)}{1+s1^{2}(u)}$ , $s1(iu)=is1(u)$ , $c1(iu)=\frac{1}{c1(u)}$ .

In this paper, the addition formulas of the lemniscate functions play an important
role.
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3.2. Primary numbers of $Z[l]$ (see [14]). Recall that a non-unit Gaussian
integer $\alpha=a+ib(a, b\in Z)$ is said to be primary if $\alpha\equiv 1(mod (1+i)^{3})$ . In terms
of $a$ and $b$ , the above congmenoe is replaced with the following form.

LEMMA 3.1. $\alpha=a+ib\in Z[i]\backslash \{1\}(a, b\in Z)$ is primary if and only if
$a\equiv 1,$ $b\equiv 0$ (mod4), or $a\equiv 3,$ $b\equiv 2$ (mod4).

We denote by $P$ the set of primary numbers.

3.3. Preparation for the proof of the results. The following result corre-
sponds to Theorem 3.3 of [5], in which it is shown that $sl(mu)/s1(u)\in C(s1^{4}(u))$ .
It is used in the proof of Proposition 2.2 and Corollary 2.4 in the next section.

LEMMA 3.2 ([15, Corollary 3.2.3]). If $m=a+ib(a,$ $b\in Z;a-b\equiv 1$

$(mod 2))$ , then

$\frac{c1(mu)}{c1(u)}\in Q(i)(s1^{2}(u))$ ,

where $Q(i)(s1^{2}(u))$ is the field of rational functions of $s1^{2}(u)$ over $Q(i)$ .

For a proof of Theorem 2.3, we prepare the following.

LEMMA 3.3. For $p\in P$ , the functions $s1(u)$ and $c1(u)$ satisfy the following
equalities:

$\frac{s1(pu)}{s1(u)}=\frac{c1(p(\frac{\omega}{2}-u))}{c1(\frac{\omega}{2}-u)}$ , $\frac{c1(pu)}{c1(u)}=\frac{s1(p(\frac{\omega}{2}-u))}{s1(\frac{\omega}{2}-u)}$ .

PROOF. These equalities immediately follow from addition formulas and
Lemma 3.1. $\square $

4. Proofs of the Results

We prove the main results by using Lemma 3.2 and Lemma 3.3.

PROOF OF PROPOSITION 2.2. By Lemma 3.2, there exist polynomials $F_{m}(X)$ ,
$G_{m}(X)\in Z[i][X]$ such that
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$R_{c,m}(x)=\frac{F_{m}(x^{2})}{G_{m}(x^{2})}$ , where $R_{c,m}(s1(u))=\frac{c1(mu)}{c1(u)}$ .

Let $x=s1(u)$ . By the definition of $R_{c,m}(x)$ , we have

$R_{c,m}(ix)=R_{c,m}(is1(u))=R_{c,m}(s1(iu))=\frac{c1(imu)}{c1(iu)}=\frac{c1(u)}{c1(mu)}=\frac{1}{R_{c,m}(x)}$ .

From the above, we obtain the following equality

$\frac{F_{m}(-x^{2})}{G_{m}(-x^{2})}=\frac{G_{m}(x^{2})}{F_{m}(x^{2})}$ ,

which implies

$F_{m}(-x^{2})F_{m}(x^{2})=G_{m}(x^{2})G_{m}(-x^{2})$ .

Hence, we have

$F_{m}(x^{2})(F_{m}(-x^{2})+G_{m}(x^{2}))=G_{m}(x^{2})(F_{m}(x^{2})+G_{m}(-x^{2}))$ .

From Lemma 3.2 and the definition of $G_{m}(x^{2})$ , we have $G_{m}(x^{2})\not\equiv 0$ . And it is
easy to see $F_{m}(-x^{2})+G_{m}(x^{2})\not\equiv 0$ . Hence, we obtain

$R_{c,m}(x)=\frac{F_{m}(x^{2})}{G_{m}(x^{2})}=\frac{F_{m}(x^{2})+G_{m}(-x^{2})}{F_{m}(-x^{2})+G_{m}(x^{2})}=\frac{K_{m}(x^{2})}{K_{m}(-x^{2})}$ ,

where $K_{m}(X);=F_{m}(X)+G_{m}(-X)$ . It is easy to see $K_{m}(X)\in Z[i][X]$ . $\square $

PROOF OF THEOREM 2.3. For $x=s1(u)$ , we have

$y=c1(u)=\sqrt{\frac{1-x^{2}}{1+x^{2}}}$ .

Thus, for $m\in P$ , we obtain the following equality by using Definition 2.1 and
Lemma 3.3:

$R_{s,m}(\sqrt{\frac{1-x^{2}}{1+x^{2}}})=R_{s,m}(y)=R_{s,m}(c1(u))=R_{s,m}(s1(\frac{\omega}{2}-u))$

$=\frac{s1(m(\frac{\omega}{2}-u))}{s1(\frac{\omega}{2}-u)}=\frac{c1(mu)}{c1(u)}=R_{c,m}(x)$ .
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Similarly, we have

$R_{c,m}(\sqrt{\frac{1-x^{2}}{1+x^{2}}})=R_{c,m}(y)=R_{c,m}(c1(u))=R_{c,m}(s1(\frac{\omega}{2}-u))$

$=\frac{c1(m(\frac{\omega}{2}-u))}{c1(\frac{\omega}{2}-u)}=\frac{s1(mu)}{s1(u)}=R_{s,m}(x)$ . $\square $

$PR\infty F$ OF COROLLARY 2.4. The equality (1) has been stated in Proposition
1.1. The equality (2) follows immediately from Proposition 1.1, Definition 2.1,
Proposition 2.2, and Theorem 2.3. It remains to show (3).

From Proposition 2.2, for $m\in P$ , we have

$R_{c,m}(x)=\frac{K_{m}(x^{2})}{K_{m}(-x^{2})}$ $(*)$

and by Theorem 2.3,

$R_{c,m}(x)=R_{s,m}(\sqrt{\frac{1-x^{2}}{1+x^{2}}})=\frac{W_{m}((\frac{1-x^{2}}{1+x^{2}})^{2})}{V_{m}((\frac{1-x^{2}}{1+x^{2}})^{2})}$ .

Let $W_{m}(X)=a_{0}+a_{1}X+a_{2}X^{2}+\cdots+a_{(N-1)/4}X^{(N-1)/4}$ . Then by Proposition 1.1,
we obtain

$R_{c,m}(x)$

$=\frac{a_{0}+a_{1}(\frac{1-x^{2}}{1+x^{2}})^{2}+a_{2}(\frac{1-x^{2}}{1+x^{2}})^{4}+\cdots+a_{(N-1)/4}.(\frac{1-x^{2}}{1+x^{2}})^{(N-1)/2}}{a_{(N-1)/4}+a_{(N-5)/4}(\frac{1-x^{2}}{1+x^{2}})^{2}+a_{(N-9)/4}(\frac{1-x^{2}}{1+x^{2}})^{4}+\cdot\cdot+a_{0}(\frac{1-x^{2}}{1+x^{2}})^{(N-1)/2}}$

$=\frac{a_{0}(1+x^{2})^{(N-1)/2}+a_{1}(1-x^{2})^{2}(1+x^{2})^{(N-5)/2}+\cdot.\cdot.\cdot.+a_{(N-1)/4}(1-x^{2})^{(N-1)/2}}{a_{0}(1-x^{2})^{(N-1)/2}+a_{1}(1+x^{2})^{2}(1-x^{2})^{(N-5)/2}++a_{(N-1)/4}(1+x^{2})^{(N-1)/2}}$ .

Comparing the above equality with $(*)$ , we see that $K_{m}(X)$ may be chosen as a
reciprocal polynomial. $\square $
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5. The Trigonometric Function Case

5.1. Existence for some polynomials. The perspective of M. Takase men-
tioned in Section 1 ([11], [12]) and the close connection between lemniscate sine
and lemniscate cosine functions proved in Section 4 naturally lead to the si-
multaneous study of the polynomials given by $P_{s,q}(\sin z)=\sin qz/\sin z$, and
$P_{c,q}(\sin z)=\cos qz/\cos z$ . It is easy to see that $P_{s,q}$ and $P_{c,q}$ are indeed poly-
nomials by using the following lemma.

LEMMA 5.1. For an odd integer $q\geq 1$ , we define $f_{q}(z)$ and $g_{q}(z)$ as follows:

$f_{q}=f_{q}(z)$ $:=\frac{\sin qz}{\sin z}$ , $g_{q}=g_{q}(z)$ $;=\frac{\cos qz}{\cos z}$ .

Then, for each odd integer $q\geq 5,$ $f_{q}$ and $g_{q}$ satisfy the following recurrence
formulas:

$f_{q}=f_{3}f_{q-2}-f_{q-2}-f_{q-4}$ , $g_{q}=g3g_{q-2}+g_{q-2}-g_{q-4}$ .

COROLLARY 5.2. If $q$ is an odd integer, then we have

$\frac{\sin qz}{\sin z}\frac{\cos qz}{\cos z}\in Z[\sin^{2}z]$ ,

where $Z[\sin^{2}z]$ is the ring of the polynomial of $\sin^{2}z$ over Z.

PROOF. By using an induction, we prove Lemma 5.1 and Corollary 5.2
simultaneously. Direct calculations for $f_{1},$ $f_{3}$ , and $f_{5}$ give the following equalities:

$f_{1}=1$ , $f_{3}=3-4\sin^{2}z$ , $f_{5}=5-20\sin^{2}z+16\sin^{4}z$ .

Eliminating $\sin^{2}z$ from these equalities, we obtain

$f_{5}=f_{3}f_{3}-f_{3}-f_{1}$ .

For an inductive argument, we assume

$f_{k}=f_{3}f_{k-2}-f_{k-2}-f_{k-4}$ .

Now we compute $f_{k+2}$ . By using the addition formulas of the trigonometric
functions, we have
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$f_{k+2}=\frac{\sin(k+2)z}{\sin z}=\frac{\sin kz\cos 2z+\cos kz\sin 2z}{\sin z}$

$=\frac{\sin kz}{\sin z}(1-2\sin^{2}z)+\frac{\cos kz\sin 2z}{\sin z}$

$=\frac{\sin kz}{\sin z}((3-4\sin^{2}z)-2+2\sin^{2}z)+\frac{\cos kz\sin 2z}{\sin z}$

$=\frac{\sin kz}{\sin z}(3-4\sin^{2}z)-2\frac{\sin kz}{\sin z}+\frac{2\sin kz\sin^{2}z}{\sin z}+\frac{\cos kz\sin 2z}{\sin z}$

$=\frac{\sin kz}{\sin z}(3-4\sin^{2}z)-\frac{\sin kz}{\sin z}-(\frac{\sin kz(1-2\sin^{2}z)}{\sin z}-\frac{\cos kz\sin 2z}{\sin z}I$

$=\frac{\sin kz}{\sin z}(3-4\sin^{2}z)-\frac{\sin kz}{\sin z}-\frac{\sin(k-2)z}{\sin z}$

$=f_{3}f_{k}-f_{k}-f_{k-2}$ .

This completes the induction and thus we obtain the first recurrence formula.
The functions $g1$ and $g3$ are easily computed as follows:

$g1=1$ , $g3=1-4\sin^{2}z$ .

The recurrence formula $g_{q}=g3g_{q-2}+g_{q-2}-g_{q-4}$ is proved by the same inductive
argument starting with the above. This completes the proof of Lemma 5.1.

By induction and Lemma 5.1, we obtain Corollary 5.2. $\square $

5.2. A similar symmetry of the polynomials.

DEFINITION 5.3. For an odd integer $q$, let $P_{s,q}(x)$ and $P_{c,q}(x)$ be functions
satisfying the following equalities:

$P_{s,q}(\sin z)$ $:=\frac{\sin qz}{\sin z}$ , $P_{c,q}(\sin z)$ $:=\frac{\cos qz}{\cos z}$ .

It follows from Corollary 5.2 that both of $P_{s,q}(x)$ and $P_{c,q}(x)$ are poly-
nomials. Applying the same method in the proof of Theorem 2.3 in Section 4,
we can get the following symmetrical equality. Comparing with Theorem 2.3,
we can again recognize a similarity between the trigonometric function and the
lemniscate function.

THEOREM 5.4. For any odd integer $q$ , we have

$P_{s,q}(\sqrt{1-x^{2}})=(-1)^{(q-1)/2}P_{c,q}(x)$ .
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EXAMPLE 5.5. For $q=13$ , the polynomials $P_{s,q}(x)$ and $P_{c,q}(x)$ have the
following form:

$P_{s,q}(x)=13-364x^{2}+2912x^{4}-9984x^{6}+16640x^{8}-13312x^{10}+4096x^{12}$ ,

$P_{c,q}(x)=1-84x^{2}+1120x^{4}-5376x^{6}+11520x^{8}-11264x^{10}+4096x^{12}$ .

5.3. Remark. A simultaneous study of the polynomials $P_{s,q}(x)$ and $P_{c,q}(x)$

led us to obtain Theorem 5.4. Here we demonstrate another example of the
advantage of this approach. From Corollary 5.2 and Definition 5.3, we easily see
that $P_{s,q}(x)$ and $P_{c,q}(x)$ are polynomials of $Z[x^{2}]$ . So, we study the polynomials
in view of the mentioned above again.

DEFINITION 5.6. For an odd integer $q$ , let $F_{q}(w).and$ . $G_{q}(w)$ be functions
satisfying the following equalities:

$F_{q}(w):=\frac{\sin qz}{\sin z}$ , $G_{q}(w):=\frac{\cos qz}{\cos z}$ , where $w:=\sin^{2}z$ .

Note that $f_{q}(z)=F_{q}(\sin^{2}z)$ and $g_{q}(z)=G_{q}(\sin^{2}z)$ .

THEOREM 5.7. For an odd integer $q$ , the polynomials $F_{q}(w)$ and $G_{q}(w)$ have
the following properties:

(1) $\deg F_{q}=\deg G_{q}=(q-1)/2$ , and the coefficients of $F_{q}$ and $G_{q}$ of the
highest degree are equal to $(-4)^{(q-1)/2}$ .

(2) $F_{q}(1-w)=(-1)^{(q-1)/2}G_{q}(w)$ .
(3) Let $q$ be an odd prime and $F_{q}(w)=A_{0}+A_{1}w+A_{2}w^{2}+\cdots+$

$A_{(q-3)/2}w^{(q-3)/2}+(-4)^{(q-1)/2}w^{(q-1)/2},$ $A_{0},$ $A_{1},$
$\ldots,$ $A_{(q-3)/2}\in Z$ . Then,

$A_{0}=q$ , $\frac{A_{1}}{q}\frac{A_{2}}{q}$ $\frac{A_{(q-3)/2}}{q}\in$ Z.

PROOF. It is easy to obtain (1) by using the recurrence formulas of Lemma
5.1. Moreover (2) is a rewriting of Theorem 5.4. We prove (3) below.

From Definition 5.6, we have

$\sin qz=F_{q}(w)\sin z$ , where $w=\sin^{2}z$ .

Differentiating the equality above, we obtain the following:

$q\cos qz=\cos zF_{q}(w)+2(\cos z)wF_{q}^{\prime}(w)$ .
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Dividing the above by $\cos z$ , it follows from Definition 5.6 that

$G_{q}(w)=\frac{1}{q}(F_{q}(w)+2wF_{q}^{\prime}(w))$

$=\frac{1}{q}(A_{0}+3A_{1}w+5A_{2}w^{2}+7A_{3}w^{3}$

$+\cdots+(q-2)A_{(q-3)/2}w^{(q-3)/2}+(-4)^{(q-1)/2}qw^{(q-1)/2})$ .

Since $G_{q}(w)$ is a polynomial in $Z[w]$ and $q$ is an odd prime in $Z$ , so we get the
following:

$\frac{A_{0}}{q}\frac{A_{1}}{q}\frac{A_{2}}{q}$ $\frac{A_{(q-3)/2}}{q}\in Z$ .

By using the recurrence formula for $f_{q}$ of Lemma 5.1, we get $A_{0}=q$ . $\square $
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