PARALLEL CURVED SURFACES

By

Naoya Ando

Abstract

A surface S in \boldsymbol{R}^{3} is called parallel curved if there exists a plane such that at each point of S, there exists a principal direction parallel to this plane. In [2], we studied real-analytic, parallel curved surfaces and in particular, we showed that a connected, complete, real-analytic, embedded, parallel curved surface is homeomorphic to a sphere, a plane, a cylinder, or a torus. In the present paper, we shall show that a connected, complete, embedded, parallel curved surface such that any umbilical point is isolated is also homeomorphic to a sphere, a plane, a cylinder or a torus. However, we shall also show that for each non-negative integer $g \in N \cup\{0\}$, there exists a connected, compact, orientable, embedded, parallel curved surface of genus g.

1. Introduction

A surface S in \boldsymbol{R}^{3} is called parallel curved if there exists a plane P such that at each point of S, there exists a principal direction parallel to P; if S is parallel curved, then such a plane as P is called a base plane of S. For example, a surface of revolution is a parallel curved surface such that a plane normal to an axis of rotation is its base plane.

Let F be a smooth function defined on a connected neighborhood of $(0,0)$ in \boldsymbol{R}^{2} satisfying

$$
F(0,0)=\frac{\partial F}{\partial x}(0,0)=\frac{\partial F}{\partial y}(0,0)=0
$$

and the condition that the graph G_{F} of F is a parallel curved surface such that the $x y$-plane is its base plane. In [2], we studied real-analytic, parallel curved

[^0]surfaces. If F is real-analytic, then we proved the following: if the origin o of \boldsymbol{R}^{3} is an isolated umbilical point of G_{F}, then G_{F} is part of a surface of revolution such that o lies on the axis of rotation; if o is not any isolated umbilical point of G_{F}, then one of the following (a) and (b) happens:
(a) G_{F} is part of a plane or a round sphere;
(b) There exist a neighborhood U_{o} of $(0,0)$ in \boldsymbol{R}^{2} and a real-analytic curve C_{0} in U_{o} satisfying
(i) C_{0} is the set of the zero points of F in U_{o},
(ii) The set of the umbilical points of the graph of $\left.F\right|_{U_{o}}$ is empty or given by C_{0},
(iii) For any point $q \in C_{0}$ and the plane P_{q}^{\perp} in R^{3} normal to C_{0} at q, the intersection C_{q}^{\perp} of P_{q}^{\perp} with the graph of $\left.F\right|_{U_{o}}$ is a curve such that at any point of C_{q}^{\perp}, the tangent line to C_{q}^{\perp} is a principal direction of G_{F}.

In addition, we proved that a connected, complete, real-analytic, embedded and parallel curved surface is homeomorphic to a sphere, a plane, a cylinder or a torus.

The purpose of the present paper is to study parallel curved surfaces which are not always real-analytic. Suppose that F is not always real-analytic. We shall prove the following:

Theorem 1.1. If o is an isolated umbilical point of G_{F}, then G_{F} is part of a surface of revolution such that o lies on the axis of rotation.

Theorem 1.2. Suppose the following: o is not any isolated umbilical point of G_{F}; not all the partial derivatives of F at $(0,0)$ are equal to zero. Then G_{F} is part of a surface of revolution such that o lies on the axis of rotation, or there exist a neighborhood U_{o} of $(0,0)$ in \boldsymbol{R}^{2} and a curve C_{0} in U_{o} satisfying such conditions as the above-mentioned (i)~(iii).

Theorem 1.3. If all the partial derivatives of F at $(0,0)$ are equal to zero, then it is possible that F satisfies the following conditions: G_{F} is not part of any surface of revolution; there does not exist any curve in \boldsymbol{R}^{2} through $(0,0)$ on which $F \equiv 0$.

In addition, we shall prove the following:

Theorem 1.4. A connected, complete, embedded, parallel curved surface such that any umbilical point is isolated is homeomorphic to a sphere, a plane, a cylinder or a torus.

Theorem 1.5. For each non-negative integer $g \in N \cup\{0\}$, there exists a connected, compact, orientable, embedded, parallel curved surface of genus g.

Remark 1.6. We easily see that there exists a principal direction parallel to the $x y$-plane at a point of the graph of a smooth function of two variables if and only if its gradient vector field is in a principal direction at the same point. Therefore we see in particular that the gradient vector field of F is in a principal direction at each point of G_{F}. We found the class of parallel curved surfaces in studying the graph of a real-analytic function such that its gradient vector field is in a principal direction at each point. We often studied relations between the behavior of the principal distributions and the behavior of the gradient vector field. The gradient vector field of a nonzero homogeneous polynomial g of degree $k \geqq 2$ in two variables is in a principal direction of its graph at a point if and only if at the same point, one of the following happens: the gradient vector field is represented by the "position vector field" $x \partial / \partial x+y \partial / \partial y$ up to a constant; the Gaussian curvature of the graph is equal to zero ([1]). In particular, we see that if the gradient vector field of g is in a principal direction at each point of its graph, then g is represented as $g=\lambda_{1}\left(x^{2}+y^{2}\right)^{l}$ or $g=\lambda_{2}(\alpha x+\beta y)^{k}$, where $\lambda_{i} \in \boldsymbol{R} \backslash\{0\}$, $(\alpha, \beta) \in \boldsymbol{R}^{2} \backslash\{(0,0)\}$ and $l \in \boldsymbol{N}$. The former (respectively, latter) type is the simplest one which appears in Theorem 1.1 (respectively, Theorem 1.2). In [1], we studied relations between the behavior of the principal distributions and the behavior of the gradient vector field of a homogeneous polynomial g on its graph in the case where g is of none of the above-mentioned two types. As we saw in [2], if F is real-analytic and nonzero, then the behavior of its gradient vector field around o is given by either the position vector field or the set of curves $\left\{C_{q}^{\perp}\right\}_{q \in C_{0}}$ as in the above-mentioned (iii). Theorem 1.1 says that if o is an isolated umbilical point of G_{F}, then the assumption that F is real-analytic is removable; Theorem 1. 2 says that even if o is not any isolated umbilical point, if not all the partial derivatives of F at $(0,0)$ are equal to zero, then the assumption that F is real-analytic is also removable; on the other hand, Theorem 1.3 says that if all the partial derivatives of F at $(0,0)$ are equal to zero, then there exists a type which does not appear in the real-analytic case. In [3], we studied the behavior of the principal distributions around an isolated umbilical point on a real-analytic surface. We may grasp the behavior of the principal distributions in most cases in the way of
studying the limit of each principal distribution toward the isolated umbilical point along the intersection of the surface with each normal plane at this point. However, there exist cases in which we may not grasp the behavior in only such a way. Then adding the way of studying the behavior of the principal distributions in relation to the behavior of the gradient vector field of a function the graph of which is a neighborhood of the isolated umbilical point in the surface, we were able to grasp the behavior of the principal distributions in some case (see [3]). In [4], we described a similar discussion on the graph of a smooth function with such coefficients as nonzero real-analytic functions have in Taylor's formula. Let f be a smooth function on a neighborhood of $(0,0)$ in \boldsymbol{R}^{2} satisfying $f(0,0)=0$ and $f>0$ on a punctured neighborhood of $(0,0)$. Then $\exp (-1 / f)$ is a smooth function defined on a punctured neighborhood of $(0,0)$ and smoothly extended to $(0,0)$ so that all the partial derivatives of $\exp (-1 / f)$ at $(0,0)$ are equal to zero. If for each positive number $c>0$, there exists a punctured neighborhood of $(0,0)$ on which the norm of the gradient vector field of $\log f$ is bounded from below by the number c, then we showed in [5] that o is an isolated umbilical point on the graph of $\exp (-1 / f)$ and that around o, a principal distribution is approximated by (the distribution defined by) the gradient vector field of $\exp (-1 / f)$ on its graph. For example, if there exists a homogeneous polynomial g of degree k in two variables satisfying $g>0$ on $\boldsymbol{R}^{2} \backslash\{(0,0)\}$ and

$$
f=g+o\left(\left(x^{2}+y^{2}\right)^{k / 2}\right)
$$

then f satisfies the assumption. If the graph of f is locally strictly convex at any point, then f also satisfies the assumption. Hence in the set of the smooth functions such that the values and all the partial derivatives at $(0,0)$ are equal to zero, we may find many examples for each of which, o is an isolated umbilical point on its graph such that there exists a principal distribution approximated by the gradient vector field around o. On the other hand, it is exceptional that around an isolated umbilical point on the graph of a real-analytic function, a principal distribution is approximated by the gradient vector field.

Remark 1.7. Let C_{b}, C_{g} be simple curves in \boldsymbol{R}^{3} with a unique intersection $p_{\left(C_{b}, C_{g}\right)}$ and contained in planes P_{b}, P_{g}, respectively. Then a pair $\left(C_{b}, C_{g}\right)$ is called generating if we may choose as P_{g} the plane normal to C_{b} at $p_{\left(C_{b}, C_{g}\right)}$; if $\left(C_{b}, C_{g}\right)$ is generating, then C_{b} and C_{g} are called the base curve and the generating curve of (C_{b}, C_{g}), respectively. For a generating pair $\left(C_{b}, C_{g}\right)$, let $\Sigma_{\left(C_{b}, C_{g}\right)}$ be the set of the embedded, parallel curved surfaces such that each $S \in \Sigma_{\left(C_{b}, C_{g}\right)}$ satisfies the following:
(a) P_{b} is a base plane of S;
(b) A surface S contains a neighborhood O_{b} (respectively, O_{g}) of $p_{\left(C_{b}, C_{g}\right)}$ in C_{b} (respectively, C_{g}) so that the tangent line at each point is a principal direction of S.

In [2], we proved $\Sigma_{\left(C_{b}, C_{g}\right)} \neq \varnothing$ if $\left(C_{b}, C_{g}\right)$ is a generating pair such that C_{b} and C_{g} are real-analytic. If for an embedded, parallel curved surface S and a point $p \in S$, there exists a generating pair $\left(C_{b}, C_{g}\right)$ satisfying $p=p_{\left(C_{b}, C_{g}\right)}$ and $S \in \Sigma_{\left(C_{b}, C_{g}\right)}$, then S is called generated at p (by $\left(C_{b}, C_{g}\right)$). If S is an embedded surface of revolution which has the only one axis of rotation, then S is generated at a point which does not lie on the axis and S is not generated at any point on the axis. In [2], we showed that if S is a real-analytic, embedded and parallel curved surface and if S is not part of any surface of revolution, then S is generated at any point. In the present paper, we shall see that $\Sigma_{\left(C_{b}, C_{g}\right)} \neq \varnothing$ holds, even if $\left(C_{b}, C_{g}\right)$ is a generating pair such that C_{b} and C_{g} are not always real-analytic and that if for a function F as in Theorem 1.2, G_{F} is not part of any surface of revolution, then G_{F} is generated at any point of a neighborhood of o in G_{F}. However, we shall also see that there exists an embedded, parallel curved surface which is neither part of any surface of revolution nor generated at some point (we shall see that the example we shall give implies Theorem 1.3).

Remark 1.8. Such results as Theorems 1.3 and 1.5 do not hold in the realanalytic case. We shall see that not only the proof of Theorem 1.3 but also the proof of Theorem 1.5 depends on the existence of non-constant smooth functions such that all the partial derivatives at some point are equal to zero.

Acknowledgement

The author would like to express his cordial gratitude to the referee for his comments and suggestions. This work was supported by the Japan Society for the Promotion of Science.

2. Preliminaries

Let f be a smooth function of two variables x, y and G_{f} the graph of f. We set $p_{f}:=\partial f / \partial x, q_{f}:=\partial f / \partial y$ and

$$
E_{f}:=1+p_{f}^{2}, \quad F_{f}:=p_{f} q_{f}, \quad G_{f}:=1+q_{f}^{2} .
$$

The first fundamental form of G_{f} is a symmetric tensor field I_{f} on G_{f} of type $(0,2)$ represented in terms of the coordinates (x, y) as

$$
\mathrm{I}_{f}:=E_{f} d x^{2}+2 F_{f} d x d y+G_{f} d y^{2}
$$

where

$$
d x^{2}:=d x \otimes d x, \quad d x d y:=\frac{1}{2}(d x \otimes d y+d y \otimes d x), \quad d y^{2}:=d y \otimes d y
$$

We set $r_{f}:=\partial^{2} f / \partial x^{2}, s_{f}:=\partial^{2} f / \partial x \partial y, t_{f}:=\partial^{2} f / \partial y^{2}$ and

$$
L_{f}:=\frac{r_{f}}{\sqrt{\operatorname{det}\left(\mathbf{I}_{f}\right)}}, \quad M_{f}:=\frac{s_{f}}{\sqrt{\operatorname{det}\left(\mathbf{I}_{f}\right)}}, \quad N_{f}:=\frac{t_{f}}{\sqrt{\operatorname{det}\left(\mathbf{I}_{f}\right)}},
$$

where $\operatorname{det}\left(\mathrm{I}_{f}\right):=E_{f} G_{f}-F_{f}^{2}$. The Weingarten map of G_{f} is a tensor field W_{f} on G_{f} of type $(1,1)$ satisfying

$$
\left[\mathrm{W}_{f}\left(\frac{\partial}{\partial x}\right), \mathrm{W}_{f}\left(\frac{\partial}{\partial y}\right)\right]=\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right] W_{f}
$$

where

$$
W_{f}:=\left(\begin{array}{cc}
E_{f} & F_{f} \\
F_{f} & G_{f}
\end{array}\right)^{-1}\left(\begin{array}{cc}
L_{f} & M_{f} \\
M_{f} & N_{f}
\end{array}\right)
$$

A principal direction of G_{f} is a one-dimensional eigenspace of W_{f}. By the symmetry of W_{f} with respect to I_{f}, we see that at a point of G_{f}, a one-dimensional subspace of the tangent plane which is perpendicular to a principal direction with respect to I_{f} is also a principal direction.

Let PD_{f} be a symmetric tensor field on G_{f} of type $(0,2)$ represented in terms of the coordinates (x, y) as

$$
\mathrm{PD}_{f}:=\frac{1}{\sqrt{\operatorname{det}\left(\mathbf{I}_{f}\right)}}\left\{A_{f} d x^{2}+2 B_{f} d x d y+C_{f} d y^{2}\right\}
$$

where

$$
A_{f}:=E_{f} M_{f}-F_{f} L_{f}, \quad 2 B_{f}:=E_{f} N_{f}-G_{f} L_{f}, \quad C_{f}:=F_{f} N_{f}-G_{f} M_{f}
$$

For vector fields $\boldsymbol{V}_{1}, \boldsymbol{V}_{2}$ on G_{f},

$$
\frac{1}{2} \sum_{\{i, j\}=\{1,2\}} \boldsymbol{V}_{i} \wedge \mathrm{~W}_{f}\left(\boldsymbol{V}_{j}\right)=\frac{\mathbf{P D}_{f}\left(\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right)}{\sqrt{\operatorname{det}\left(\mathrm{I}_{f}\right)}}\left(\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)
$$

Therefore we see that at a point of G_{f}, a tangent vector \boldsymbol{v}_{0} is in a principal direction if and only if $\operatorname{PD}_{f}\left(\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right)=0$. In particular, if we set

$$
\begin{aligned}
\varpi_{f} & :=s_{f}\left(p_{f}^{2}-q_{f}^{2}\right)-\left(r_{f}-t_{f}\right) p_{f} q_{f} \\
\varpi_{f}^{\perp} & :=s_{f}\left(1+p_{f}^{2}\right)-p_{f} q_{f} r_{f}
\end{aligned}
$$

then we obtain the following:

Proposition 2.1 ([2]). At a point of G_{f}, there exists a principal direction parallel to the xy-plane if and only if $\varpi_{f}=0$.

Proposition 2.2. At a point of G_{f}, there exists a principal direction parallel to the xz-plane if and only if $\varpi_{f}^{\perp}=0$.

3. Parallel Curved Surfaces

Let S be an embedded, parallel curved surface and for a base plane P of S, let $\Xi_{S, P}$ be the subset of S such that for any $q \in \Xi_{S, P}$, the tangent plane $T_{q}(S)$ to S at q is not parallel to P. We see that $\Xi_{S, P}$ is an open set of S. A point of $S \backslash \Xi_{S, P}$ is called a parallel point of S with respect to a base plane P. If there exists a base plane P_{0} of S satisfying $\Xi_{S, P_{0}}=\varnothing$, then each connected component of S is part of a plane in \boldsymbol{R}^{3}. In the following, suppose $\Xi_{S, P} \neq \varnothing$ for any base plane P.

For a base plane P_{0} of S and a point $q \in \Xi_{S, P_{0}}$, let $P_{P_{0}, q}^{\perp}$ be the plane in \boldsymbol{R}^{3} through q perpendicular to each of P_{0} and $T_{q}(S)$, and $C_{P_{0}, q}^{\perp}$ the connected component of $P_{P_{0}, q}^{\perp} \cap \Xi_{S, P_{0}}$ containing q. We shall prove

Proposition 3.1. The plane $P_{P_{0}, q}^{\perp}$ is perpendicular to $T_{p}(S)$ for any $p \in C_{P_{0}, q}^{\perp}$.
Proof. For each $q \in \Xi_{S, P_{0}}$, let (x, y, z) be orthogonal coordinates on \boldsymbol{R}^{3} satisfying the following:
(a) the point q corresponds to $(0,0,0)$;
(b) the $x z$-plane $P_{x z}$ is parallel to P_{0};
(c) the $y z$-plane $P_{y z}$ is equal to $P_{P_{0}, q}^{\perp}$.

Then the $x y$-plane $P_{x y}$ is not perpendicular to $T_{q}\left(\Xi_{S, P_{0}}\right)$. Let f be a smooth function on a neighborhood of q in $P_{x y}$ such that G_{f} is a neighborhood of q in $\Xi_{S, P_{0}}$. The function f satisfies $f(0,0)=p_{f}(0,0)=0$. Noticing that $\partial / \partial x$ is in a principal direction at each point of G_{f}, we see that a vector field

$$
V_{f}:=-F_{f} \frac{\partial}{\partial x}+E_{f} \frac{\partial}{\partial y},
$$

which is perpendicular to $\partial / \partial x$ with respect to the first fundamental form I_{f}, is also in a principal direction at each point of G_{f}. In addition, by Proposition 2.2, we see that p_{f} is constant on each integral curve of \boldsymbol{V}_{f}. Then by $p_{f}(0,0)=0$ together with the definition of \boldsymbol{V}_{f}, we see that the integral curve of \boldsymbol{V}_{f} through q is contained in $P_{y z}$ and that at any point p of this integral curve, $P_{y z}$ is perpendicular to $T_{p}(S)$. Hence we obtain Proposition 3.1.

Remark 3.2. In [2], we presented another proof of Proposition 3.1 on condition that S is real-analytic.

Corollary 3.3. The following hold:

(a) $C_{P_{0}, q}^{\perp}$ is a simple curve;
(b) A principal direction of S at each point of $C_{P_{0}, q}^{\perp}$ which is parallel to P_{0} is perpendicular to $P_{P_{0}, q}^{\perp}$;
(c) The tangent line to $C_{P_{0}, q}^{\perp}$ at each point of $C_{P_{0}, q}^{\perp}$ is a principal direction of S and not parallel to P_{0}.

For a base plane P_{0} of S and a point $q \in \Xi_{S, P_{0}}$, let $P_{P_{0}, q}$ be the plane in \boldsymbol{R}^{3} through q parallel to P_{0} and $C_{P_{0}, q}$ the connected component of $P_{P_{0}, q} \cap S$ containing q. We shall prove

Proposition 3.4. The angle between $T_{p}(S)$ and $P_{P_{0}, q}$ does not depend on the choice of $p \in C_{P_{0}, q}$.

Proof. For each $q \in \Xi_{S, P_{0}}$, let (x, y, z) and f be as in the proof of Proposition 3.1. Let $\alpha_{f}(x, y)$ be the angle between $T_{(x, y)}\left(\mathrm{G}_{f}\right)$ and $P_{P_{0},(x, y)}$. Then we see that $\alpha_{f}(x, y)$ is equal to the angle between $V_{f}(x, y)$ and $P_{P_{0},(x, y)}$. Therefore we obtain

$$
\cos ^{2} \alpha_{f}=\frac{q_{f}^{2}}{1+p_{f}^{2}+q_{f}^{2}}
$$

By Proposition 2.2, we obtain $\partial\left(\cos ^{2} \alpha_{f}\right) / \partial x \equiv 0$. This implies Proposition 3.4.

Corollary 3.5. The set $C_{P_{0}, q}$ is a simple curve in $\Xi_{S, P_{0}}$ such that the tangent line to $C_{P_{0}, q}$ at each point of $C_{P_{0}, q}$ is a principal direction of S.

4. Generating Pairs

Let S be an embedded, parallel curved surface and P_{0} a base plane of S. Then from Corollary 3.3 and Corollary 3.5, we see that for any $q \in \Xi_{S, P_{0}}$, ($C_{P_{0}, q}, C_{P_{0}, q}^{\perp}$) is a generating pair such that $C_{P_{0}, q}$ and $C_{P_{0}, q}^{\perp}$ are the base curve and the generating curve of ($C_{P_{0}, q}, C_{P_{0}, q}^{\perp}$), respectively and that ($C_{P_{0}, q}, C_{P_{0}, q}^{\perp}$) satisfies $q=p_{\left(C_{P_{0}, q}, C_{P_{0}, q}^{\perp}\right)}$ and $S \in \Sigma_{\left(C_{P_{0}, q}, C_{P_{0}, q}^{\perp}\right.}$. Therefore we obtain

Proposition 4.1. Let S be an embedded, parallel curved surface and $P_{0} a$ base plane of S. Then S is generated at any point of $\Xi_{S, P_{0}}$.

We shall prove
Proposition 4.2. Let $\left(C_{b}, C_{g}\right)$ be a generating pair such that C_{b} and C_{g} are the base curve and the generating curve of $\left(C_{b}, C_{g}\right)$, respectively. Then $\Sigma_{\left(C_{b}, C_{g}\right)} \neq \varnothing$.

Proof. For each $p \in C_{b}$, there exists an isometry Φ_{p} of \boldsymbol{R}^{3} satisfying
(a) $\Phi_{p}\left(p_{\left(C_{b}, C_{g}\right)}\right)=p$;
(b) $\Phi_{p}\left(P_{g}\right)$ is normal to C_{b} at p;
(c) the angle between P_{b} and the tangent line to $\Phi_{p}\left(C_{g}\right)$ at p is equal to the angle between P_{b} and the tangent line to C_{g} at $p_{\left(C_{b}, C_{g}\right)}$;
(d) the map $\Phi: C_{b} \times \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}$ defined by $\Phi(p, X):=\Phi_{p}(X)$ is smooth;
(e) $\Phi_{p_{\left(C_{b}, C_{g}\right)}}$ is the identity map.

In addition, there exist neighborhoods O_{b}, O_{g} of $p_{\left(C_{b}, C_{g}\right)}$ in C_{b}, C_{g}, respectively such that

$$
\begin{equation*}
S_{O_{b}, O_{g}}:=\bigcup_{p \in O_{b}} \Phi_{p}\left(O_{g}\right) \tag{1}
\end{equation*}
$$

is an embedded surface. Let q be a point of $S_{O_{b}, O_{g}}$ such that $T_{q}\left(S_{O_{b}, O_{g}}\right)$ is not parallel to P_{b} and (x, y, z) orthogonal coordinates on \boldsymbol{R}^{3} satisfying the following:
(a) the point q corresponds to $(0,0,0)$;
(b) $P_{x z}$ is parallel to P_{b};
(c) $P_{y z}$ is perpendicular to each of P_{b} and $T_{q}\left(S_{O_{b}, O_{q}}\right)$.

Let f be a smooth function defined on a neighborhood U of q in $P_{x y}$ such that G_{f} is a neighborhood of q in $S_{O_{b}, O_{q}}$. Then we obtain $p_{f}(0, y)=s_{f}(0, y)=0$ for any $y \in \boldsymbol{R}$ satisfying $(0, y) \in U$. Therefore we obtain

$$
\operatorname{PD}_{f}\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right)=\operatorname{PD}_{f}\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right)=0
$$

at $(0, y)$, i.e., we see that each of $\partial / \partial x$ and $\partial / \partial y$ is in a principal direction at $(0, y)$. In particular, we see that at q, there exists a principal direction parallel to P_{b}. If q is a point of $S_{O_{b}, O_{g}}$ such that $T_{q}\left(S_{O_{b}, O_{g}}\right)$ is parallel to P_{b}, then any principal direction at q is parallel to P_{b}. Therefore we see that $S_{O_{b}, O_{g}}$ is a parallel curved surface such that P_{b} is a base plane of $S_{O_{b}, O_{q}}$. If q is a point of $O_{b} \cap$
$\Xi_{S_{o_{b}, o_{g}, P_{b}}}$ or $O_{g} \cap \Xi_{S_{o_{b}, o_{q}, P_{b}}}$, then we see from Corollary 3.3 that the tangent line at q is a principal direction of $S_{O_{b}, O_{q}}$. If q is a point of O_{b} or O_{g} and if q is an umbilical point of $S_{O_{b}, O_{g}}$, then the tangent line at q is a principal direction of $S_{O_{b}, O_{q}}$. Suppose that q is a point of O_{b} and that q is a non-umbilical point and a parallel point with respect to P_{b}. Then there exists a point of $\Xi_{S_{O_{b}, O_{g}, P_{b}}}$ in any neighborhood of q in $\Phi_{q}\left(C_{g}\right)$. Therefore by the continuity of a principal distribution, we see that the tangent line to O_{b} at q is a principal direction of $S_{O_{b}, O_{g}}$. If q is a point of O_{g} and if q is a non-umbilical point and a parallel point with respect to P_{b}, then we similarly obtain the same result. Hence we obtain Proposition 4.2.

Remark 4.3. In the following, such a surface as $S_{O_{b}, O_{g}}$ constructed in (1) is called a canonical parallel curved surface generated by a generating pair $\left(C_{b}, C_{g}\right)$. We see that a canonical parallel curved surface is generated at any point.

Remark 4.4. In Proposition 4.1 and Proposition 4.2, we may find relations between parallel curved surfaces and generating pairs. We take notice of the following question:

For a given generating pair $\left(C_{b}, C_{g}\right)$, does the non-empty set $\Sigma_{\left(C_{b}, C_{g}\right)}$ determine the only one germ of parallel curved surface? In other words, does any element S of $\Sigma_{\left(C_{b}, C_{g}\right)}$ contain a canonical parallel curved surface generated by $\left(C_{b}, C_{g}\right)$?

By Proposition 3.1 together with Proposition 3.4, we see that if for a generating pair $\left(C_{b}, C_{g}\right), C_{g}$ is not tangent to P_{b} at $p_{\left(C_{b}, C_{g}\right)}$, then the set $\Sigma_{\left(C_{b}, C_{g}\right)}$ determines the only one germ. Suppose that C_{g} is tangent to P_{b} at $p_{\left(C_{b}, C_{g}\right)}$ and let a_{0} be a smooth function on a neighborhood of $p_{\left(C_{b}, C_{g}\right)}$ in $P_{b} \cap P_{g}$ such that the graph of a_{0} in P_{g} is a neighborhood of $p_{\left(C_{b}, C_{g}\right)}$ in C_{g}. In Section 6, we shall show that if not all the derivatives of a_{0} at $p_{\left(C_{b}, C_{g}\right)}$ are equal to zero, then the set $\Sigma_{\left(C_{b}, C_{g}\right)}$ determines the only one germ (Remark 6.5). However, we shall also show in the present section that if all the derivatives of a_{0} at $p_{\left(C_{b}, C_{g}\right)}$ are equal to zero, then $\Sigma_{\left(C_{b}, C_{g}\right)}$ always gives plural germs (Example 4.5). We also take notice of the following question:

Let S be a parallel curved surface and P_{0} a base plane of S. Then is S generated at a parallel point with respect to P_{0} ? In addition, if S is generated at some parallel point p_{0} with respect to P_{0}, then is S uniquely generated at p_{0} ? In other words, for two generating pairs $\left(C_{b}^{(1)}, C_{g}^{(1)}\right)$,
$\left(C_{b}^{(2)}, C_{g}^{(2)}\right)$ such that S is generated at p_{0} by each of these two pairs, does there exist a neighborhood V of p_{0} in S satisfying

$$
\left(C_{b}^{(1)} \cup C_{g}^{(1)}\right) \cap V=\left(C_{b}^{(2)} \cup C_{g}^{(2)}\right) \cap V ?
$$

By Corollary 3.3 together with Corollary 3.5 , we see that a parallel curved surface S is uniquely generated at any non-parallel point q with respect to a base plane if there exists no totally umbilical neighborhood of q in S. In addition, Theorem 1.2, which we shall prove in Section 6, implies that if for a smooth function F as in Theorem 1.2, G_{F} is not part of any surface of revolution, then G_{F} is uniquely generated at o. Even if all the partial derivatives of a smooth function F as in the beginning of the second paragraph in Section 1 are equal to zero at $(0,0)$, it is possible that G_{F} is uniquely generated at o : if we set

$$
F(x, y):= \begin{cases}0, & \text { if } x=0 \\ \exp \left(-1 / x^{2}\right), & \text { if } x \neq 0\end{cases}
$$

then the graph of F is a suitable example. However, in the present section, we shall construct an example of a parallel curved surface which is generated but not uniquely generated at some parallel point p with respect to a base plane and in which there exists no totally umbilical neighborhood of p (Example 4.5). We already know Theorem 1.1 in the real-analytic case. Therefore we already have an example of a parallel curved surface which is not generated at some point. In Section 5, we shall prove Theorem 1.1 in the general case. In addition, in the present section, we shall construct an example of a parallel curved surface which is neither part of any surface of revolution nor generated at some parallel point with respect to a base plane (Example 4.6).

We shall present types of parallel curved surface which never appear in the real-analytic case.

Example 4.5. For a positive number $\delta_{0}>0$, let a_{0} be a smooth function on an open interval $I_{0}:=\left(-\delta_{0}, \delta_{0}\right)$ satisfying $a_{0}(0)=0$ and the condition that all the derivatives of a_{0} at 0 are equal to zero, and C_{b}, C_{g} two curves in $P_{x y}$ and $P_{x z}$, respectively defined by

$$
\begin{aligned}
C_{b} & :=\{(0, y, 0) ; y \in \boldsymbol{R}\}, \\
C_{g} & :=\left\{\left(x, 0, a_{0}(x)\right) ; x \in I_{0}\right\} .
\end{aligned}
$$

Then we see that $\left(C_{b}, C_{g}\right)$ is a generating pair. We shall prove that there exists an element S_{0} of $\Sigma_{\left(C_{b}, C_{g}\right)}$ satisfying the following:
(a) S_{0} contains no canonical parallel curved surface generated by $\left(C_{b}, C_{g}\right)$;
(b) S_{0} is generated but not uniquely generated at o.

From (a), we see that $\Sigma_{\left(C_{b}, C_{g}\right)}$ gives plural germs and that there exists no totally umbilical neighborhood of o in S_{0}. Suppose that a_{0} is not constant on any neighborhood of 0 in I_{0}. Let n be a positive integer and for $\delta \in\left(0, \delta_{0}\right)$, let $C_{b,+}^{(n)}, C_{b,-}^{(n)}$ be simple curves in the planes $\left\{z=a_{0}(\delta)\right\},\left\{z=a_{0}(-\delta)\right\}$, respectively defined by

$$
\begin{aligned}
C_{b,+}^{(n)} & :=\left\{\left(\delta+y^{2 n}, y, a_{0}(\delta)\right) ; y \in \boldsymbol{R}\right\} \\
C_{b,-}^{(n)} & :=\left\{\left(-\delta-y^{2 n}, y, a_{0}(-\delta)\right) ; y \in \boldsymbol{R}\right\} .
\end{aligned}
$$

We set

$$
C_{g,+}:=C_{g} \cap\{x>0\}, \quad C_{g,-}:=C_{g} \cap\{x<0\}
$$

Then we may choose $\delta \in\left(0, \delta_{0}\right)$ so that for any $\varepsilon \in\{+,-\},\left(C_{b, \varepsilon}^{(n)}, C_{g, \varepsilon}\right)$ is a generating pair such that

$$
S_{C_{b, \varepsilon}^{(n)}, C_{g, c}}:=\bigcup_{p \in C_{b, \varepsilon}^{(n)}} \Phi_{p}\left(C_{g, \varepsilon}\right)
$$

is a canonical parallel curved surface generated by $\left(C_{b, \varepsilon}^{(n)}, C_{g, \varepsilon}\right)$. We set

$$
X:=P_{x y} \cap\left(\overline{S_{C_{b,+}^{(n)}, C_{y,+}}} \cup \overline{S_{C_{b,-}^{(n)}, C_{y,-}}}\right),
$$

where $\overline{S_{C_{b, e}^{(n)}, C_{y, \varepsilon}}}$ is the closure of $S_{C_{b, e}^{(n)}, C_{g, \varepsilon}}$ in \boldsymbol{R}^{3}. Let A_{+}, A_{-}be two connected components of $P_{x y} \backslash X$ which contain points ($0,1,0$), ($0,-1,0$), respectively. Then

$$
S_{0}^{(n)}:=S_{C_{b,+}^{(n)}, C_{y,+}} \cup \overline{A_{+}} \cup S_{C_{b--}^{(n)}, C_{y,-}} \cup \overline{A_{-}}
$$

is an element of $\Sigma_{\left(C_{b}, C_{g}\right)}$. We see that $S_{0}^{(n)}$ contains no canonical parallel curved surface generated by $\left(C_{b}, C_{g}\right)$ and that $S_{0}^{(n)}$ is generated but not uniquely generated at o. Suppose that a_{0} is constant on I_{0}. Let n be a positive integer and D_{n} an open disc in $P_{x y}$ defined by

$$
D_{n}:=\left\{\left(x-\frac{1}{2^{n}}\right)^{2}+\left(y-\frac{1}{2^{n}}\right)^{2}<\frac{1}{2^{2 n+3}}\right\} .
$$

Then for arbitrary distinct two positive integers $n_{1}, n_{2} \in N, D_{n_{1}} \cap D_{n_{2}}=\varnothing$. We set

$$
Y:=P_{x y} \backslash \bigcup_{n \in N} D_{n} .
$$

For each $n \in N$, let F_{n} be a smooth function on D_{n} defined by

$$
F_{n}(x, y):=\exp \left(-2^{n}-\frac{1}{1-2^{2 n+3}\left\{\left(x-1 / 2^{n}\right)^{2}+\left(y-1 / 2^{n}\right)^{2}\right\}}\right)
$$

Then

$$
S_{0}:=Y \cup \bigcup_{n \in \boldsymbol{N}} \mathrm{G}_{F_{n}}
$$

is an element of $\Sigma_{\left(C_{b}, C_{g}\right)}$. We see that S_{0} contains no canonical parallel curved surface generated by $\left(C_{b}, C_{g}\right)$ and that S_{0} is generated but not uniquely generated at o. We may prove that $\Sigma_{\left(C_{b}, C_{g}\right)}$ gives plural germs as long as C_{b} is a curve in $P_{x y}$ through o tangent to the y-axis at o.

Example 4.6. Let k be a smooth, positive-valued function on an open interval ($-2 \pi / 3,2 \pi / 3$) satisfying the following:
(a) $k^{\prime}>0$ on $(-2 \pi / 3,-\pi / 3)$;
(b) $k \equiv 1$ on $[-\pi / 3, \pi / 3]$;
(c) $k^{\prime}<0$ on $(\pi / 3,2 \pi / 3)$.

Let $\lambda:(-2 \pi / 3,2 \pi / 3) \rightarrow\{z=1\}$ be a smooth map from $(-2 \pi / 3,2 \pi / 3)$ into the plane $\{z=1\}$ in \boldsymbol{R}^{3} satisfying $\left|\lambda^{\prime}\right| \equiv 1,\left|\lambda^{\prime \prime}\right| \equiv k$ and

$$
\lambda([-\pi / 3, \pi / 3])=\{(\cos \theta, \sin \theta, 1) ; \theta \in[-\pi / 3, \pi / 3]\} .
$$

We set $C_{b}:=\lambda((-2 \pi / 3,2 \pi / 3))$. In addition, we set

$$
C_{g}:=\left\{(r, 0, z) \in \boldsymbol{R}^{3} ; z=e \cdot e^{-1 / r}, r>0\right\}
$$

Then $\left(C_{b}, C_{g}\right)$ is a generating pair. We see that

$$
S_{C_{b}, C_{g}}:=\bigcup_{p \in C_{b}} \Phi_{p}\left(C_{g}\right)
$$

is a canonical parallel curved surface generated by $\left(C_{b}, C_{g}\right)$ and that $P_{x y}$ is a base plane of $S_{C_{b}, C_{g}}$. Let $\overline{C_{0}}$ be the intersection of the plane $P_{x y}$ with the closure $\overline{S_{C_{b}, C_{g}}}$ of $S_{C_{b}, C_{g}}$ in \boldsymbol{R}^{3} and C_{0} the interior of $\overline{C_{0}}$. Then we see that each connected component of $C_{0} \backslash\{o\}$ is an embedded curve but that C_{0} is not immersed at o. Let e_{1}, e_{2} be the two ends of $\overline{C_{0}}$ and D_{0} the domain bounded by $\overline{C_{0}}$ and the line segment determined by e_{1}, e_{2}. Then we see that the set

$$
S_{0}:=S_{C_{b}, C_{g}} \cup C_{0} \cup D_{0}
$$

is a parallel curved surface such that $P_{x y}$ is a base plane of S_{0}. In addition, we see that S_{0} is not part of any surface of revolution and that S_{0} is generated at any point of $S_{0} \backslash\{o\}$ but not generated at o.

Example 4.6 implies Theorem 1.3.
In order to prove Theorem 1.4, we shall use the following:
Proposition 4.7. Let S be a connected, complete, embedded, parallel curved surface which is uniquely generated at any parallel point of S with respect to a base plane. Then S is a canonical parallel curved surface generated by a generating pair $\left(C_{b}, C_{g}\right)$ such that each of C_{b} and C_{g} is isometric to \boldsymbol{R} or a simple closed curve. In particular, S is homeomorphic to a plane, a cylinder or a torus.

5. Parallel Points of a Parallel Curved Surface

A parallel point p of S with respect to a base plane P_{0} of S is called isolated if there exists a neighborhood of p in S in which p is the only one parallel point of S with respect to $P_{0} ; p$ is called isolated in the weak sense if the following hold:
(a) S is not generated at p by any generating pair such that its base curve is contained in the tangent plane at p;
(b) there exists a neighborhood U of p in S such that at each parallel point q of $U \backslash\{p\}$ with respect to P_{0}, S is uniquely generated by a generating pair such that its base curve is contained in the tangent plane at q.
By Proposition 3.4, we see that if p is isolated, then p is isolated in the weak sense.

Example 5.1. Let S be part of an embedded surface of revolution such that a point p of S lies on its axis of rotation. Then p is a parallel point with respect to a plane normal to the axis. We see that if S is real-analytic and if S is not part of any plane, then p is isolated and that if S is not real-analytic, then p is not always isolated. We also see that even if p is not isolated, it is possible that p is isolated in the weak sense.

Example 5.2. Let S_{0} be as in Example 4.6. Then o is a parallel point with respect to a base plane $P_{x y}$. In addition, S_{0} is not generated at o. However, since in any neighborhood of o, there exists another parallel point p with respect to P_{0} than o such that S_{0} is not uniquely generated at p, we see that o is not isolated in the weak sense.

We shall prove

Proposition 5.3. Let S be a connected, embedded, parallel curved surface and P_{0} a base plane of S.
(a) If there exists a parallel point p of S with respect to P_{0} which is isolated in the weak sense, then S is part of a surface of revolution such that p lies on its axis of rotation.
(b) In addition, if S is complete, then S is a surface of revolution which crosses its axis of rotation at just one point or just two points; correspondingly, S is homeomorphic to a plane or a sphere.

We shall also prove
Proposition 5.4. Let S be an embedded, parallel curved surface and $P_{0} a$ base plane of S. Then for a parallel point p of S with respect to P_{0},
(a) if p is a non-umbilical point, then S is uniquely generated at p by a generating pair such that its base curve is contained in the tangent plane at p;
(b) if p is an isolated umbilical point, then p is isolated in the weak sense.

By (a) of Proposition 5.3 together with (b) of Proposition 5.4, we obtain Theorem 1.1. In addition, by Proposition 4.7, Proposition 5.3 and Proposition 5.4, we obtain Theorem 1.4.

Proof of Proposition 5.3. Suppose that there exists a parallel point p with respect to P_{0} which is isolated in the weak sense. Then let (x, y, z) be orthogonal coordinates on \boldsymbol{R}^{3} satisfying the following:
(a) p corresponds to $(0,0,0)$;
(b) $P_{x y}$ is tangent to S at p.

Let f be a smooth function defined on $\left\{x^{2}+y^{2}<r_{0}^{2}\right\}$ for some $r_{0}>0$ satisfying the following:
(a) G_{f} is a neighborhood of p in S;
(b) at each parallel point q of $\mathrm{G}_{f} \backslash\{p\}$ with respect to P_{0}, S is uniquely generated by a generating pair such that its base curve is contained in the tangent plane at q.

Suppose that there exists a point q_{0} of $\Xi_{\mathrm{G}_{f}, P_{0}}$ such that $P_{P_{0}, q_{0}}^{\perp}$ does not contain p. Then we see that there exists a point q_{1} of $C_{P_{0}, q_{0}} \cap \mathrm{G}_{f}$ such that $P_{P_{0}, q_{1}}^{\perp}$ contains p. Since at any parallel point of $\mathrm{G}_{f} \backslash\{p\}, S$ is uniquely generated, we see that there exists a simple curve C_{b} through p contained in $P_{x y} \cap \mathrm{G}_{f}$. The curve C_{b} is normal
to $P_{P_{0}, q_{1}}^{\perp}$ at p. We set $C_{g}:=P_{P_{0}, q_{1}}^{\perp} \cap \mathrm{G}_{f}$. Then we see that S is generated at p by a generating pair $\left(C_{b}, C_{g}\right)$, which causes a contradiction. Therefore we see that for any $q_{0} \in \Xi_{\mathrm{G}_{f}, P_{0}}, P_{P_{0}, q_{0}}^{\perp}$ contains p. Then we see that S is part of a surface of revolution such that p lies on its axis of rotation. Hence we obtain (a) of Proposition 5.3. In addition, by (a) of Proposition 5.3, we obtain (b) of Proposition 5.3.

Proof of (a) of Proposition 5.4. Let (x, y, z) be as in the proof of Proposition 5.3 and f a smooth function defined on a neighborhood of p in $P_{x y}$ such that any point of G_{f} is a non-umbilical point of S. Then not all the partial derivatives of f of order two at $(0,0)$ are equal to zero. In addition, since f satisfies $\varpi_{f} \equiv 0$, we may suppose that all the partial derivatives of $f-x^{2}$ of order two at $(0,0)$ are equal to zero. Then there exists a positive number $x_{0}>0$ satisfying $X_{f}(x):=(x, 0, f(x, 0)) \in \Xi_{\mathrm{G}_{f}, P_{0}}$ for any $x \in\left(-x_{0}, x_{0}\right) \backslash\{0\}$. Let C_{b} be an integral curve of a principal distribution on G_{f} tangent to the y-axis at $(0,0,0)$. Then noticing Corollary 3.3 and Corollary 3.5, we obtain $C_{b} \cap C_{P_{0}, X_{f}(x)}=\varnothing$ for any $x \in\left(-x_{0}, x_{0}\right) \backslash\{0\}$ and we may suppose

$$
\mathrm{G}_{f}=C_{b} \cup \bigcup_{x \in\left(-x_{0}, x_{0}\right) \backslash\{0\}}^{\bigcup} C_{P_{0}, X_{f}(x)} .
$$

Therefore we obtain $C_{b} \subset P_{x y}$. We set $C_{g}:=P_{x z} \cap \mathrm{G}_{f}$. Then by Corollary 3.3, we see that $\left(C_{b}, C_{g}\right)$ is a generating pair such that G_{f} is generated at p by $\left(C_{b}, C_{g}\right)$. We easily see that G_{f} is uniquely generated at p. Hence we obtain (a) of Proposition 5.4.

Proof of (b) of Proposition 5.4. By Proposition 4.1 together with (a) of Proposition 5.4, we see that there exists a neighborhood U of p in S such that at each point of $U \backslash\{p\}, S$ is uniquely generated by a generating pair the base curve of which is contained in a plane parallel to P_{0}. Suppose that S is generated at p by a generating pair $\left(C_{b}, C_{g}\right)$ such that P_{b} is the tangent plane at p. We may suppose that any point of $C_{b} \backslash\{p\}$ is a non-umbilical point of S. Then by Proposition 3.4, we see that p is a non-umbilical point or a non-parallel point with respect to P_{0}, which causes a contradiction. Hence we obtain (b) of Proposition 5.4.
6. Partial Differential Equations $\varpi=0$ and $\varpi^{\perp}=0$

Let f be a smooth function of two variables. From Proposition 2.2, we see that G_{f} is a parallel curved surface such that the $x z$-plane is its base plane if and
only if f satisfies $\varpi_{f}^{\perp} \equiv 0$. From Proposition 4.2, we obtain the following proposition in relation to the existence of a solution for the partial differential equation $\varpi^{\perp}=0$:

Proposition 6.1. Let I_{1}, I_{2} be open intervals which contain 0 and a_{1}, a_{2} smooth functions on I_{1}, I_{2}, respectively. Suppose $a_{1}(0)=a_{2}(0)$ and $a_{1}^{\prime}(0)=0$. Then there exist a neighborhood V of $(0,0)$ in \boldsymbol{R}^{2} and a smooth function f defined on V satisfying the following:
(a) $\varpi_{f}^{\perp} \equiv 0$ on V;
(b) $f(x, 0)=a_{1}(x)$ for any $x \in I_{1}$ satisfying $(x, 0) \in V$;
(c) $f(0, y)=a_{2}(y)$ for any $y \in I_{2}$ satisfying $(0, y) \in V$.

In addition, by Proposition 3.1 together with Proposition 3.4, we obtain the following proposition in relation to the uniqueness of a solution for $\varpi^{\perp}=0$:

Proposition 6.2. Let f_{1}, f_{2} be smooth functions defined on a neighborhood V of $(0,0)$ in \boldsymbol{R}^{2} satisfying the following:
(a) $p_{f_{i}}(0,0)=0$ for $i=1,2$;
(b) $\varpi_{f_{i}}^{\perp} \equiv 0$ on V for $i=1,2$;
(c) $f_{1}(x, 0)=f_{2}(x, 0)$ for any $x \in \boldsymbol{R}$ satisfying $(x, 0) \in V$;
(d) $f_{1}(0, y)=f_{2}(0, y)$ for any $y \in \boldsymbol{R}$ satisfying $(0, y) \in V$.

Then there exists a neighborhood V^{\prime} of $(0,0)$ in V satisfying $f_{1} \equiv f_{2}$ on V^{\prime}.

From Proposition 2.1, we see that G_{f} is a parallel curved surface such that the $x y$-plane is its base plane if and only if f satisfies $\varpi_{f} \equiv 0$. From Proposition 4.2, we obtain the following proposition in relation to the existence of a solution for the partial differential equation $\varpi=0$:

Proposition 6.3. Let C_{0} be a simple curve in $P_{x y}$ through $(0,0)$ tangent to the y-axis at $(0,0)$. Let I_{0} be an open interval which contains 0 and a_{0} a smooth function on I_{0} satisfying $a_{0}(0)=0$. Then there exist a neighborhood U of $(0,0)$ in \boldsymbol{R}^{2} and a smooth function f defined on U satisfying the following:
(a) $\varpi_{f} \equiv 0$ on U;
(b) $\left.f\right|_{C_{0} \cap U} \equiv 0$;
(c) $f(x, 0)=a_{0}(x)$ for any $x \in I_{0}$ satisfying $(x, 0) \in U$.

We shall prove Theorem 1.2 in the present section. By Theorem 1.2, Corollary 3.5 and Proposition 6.2, we obtain the following proposition in relation to the uniqueness of a solution for $\varpi=0$:

Proposition 6.4. Let f_{1}, f_{2} be smooth functions defined on a neighborhood U of $(0,0)$ in \boldsymbol{R}^{2} satisfying the following:
(a) $\varpi_{f_{i}} \equiv 0$ on U for $i=1,2$;
(b) there exists a simple curve in $P_{x y}$ through $(0,0)$ tangent to the y-axis at $(0,0)$ on which $f_{i} \equiv 0$ for $i=1,2$;
(c) $f_{1}(x, 0)=f_{2}(x, 0)$ for any $x \in \boldsymbol{R}$ satisfying $(x, 0) \in U$;
(d) not all the partial derivatives of f_{i} at $(0,0)$ are equal to zero for $i=1,2$. Then there exists a neighborhood U^{\prime} of $(0,0)$ in U satisfying $f_{1} \equiv f_{2}$ on U^{\prime}.

Remark 6.5. Let C_{0} and a_{0} be as in Proposition 6.3 and set

$$
C_{b}:=C_{0}, \quad C_{g}:=\left\{\left(x, 0, a_{0}(x)\right) ; x \in I_{0}\right\} .
$$

Suppose that not all the derivatives of a_{0} at 0 are equal to zero. Then from Proposition 6.4, we see that $\left(C_{b}, C_{g}\right)$ is a generating pair such that the set $\Sigma_{\left(C_{b}, C_{4}\right)}$ determines the only one germ.

Remark 6.6. Let C_{0} and a_{0} be as in Proposition 6.3. As we have seen in Example 4.5, if all the derivatives of a_{0} at 0 are equal to zero, then $\Sigma_{\left(C_{b}, C_{4}\right)}$ always gives plural germs. This means that we may not remove condition (d) in Proposition 6.4.

Remark 6.7. By Theorem 1.2, Proposition 4.7, Proposition 5.3 and Proposition 5.4, we see that a connected, complete, real-analytic, embedded and parallel curved surface is homeomorphic to a sphere, a plane, a cylinder or a torus, which was already obtained in [2].

Proof of Theorem 1.2. Let F be a smooth function as in the beginning of the second paragraph in Section 1 such that not all the partial derivatives of F at $(0,0)$ are equal to zero. Then there exists a homogeneous polynomial g of degree $k \geqq 2$ such that all the partial derivatives of $F-g$ of order less than $k+1$ are equal to zero. By $\varpi_{F} \equiv 0$, we obtain $\varpi_{g} \equiv 0$. Then noticing Remark 1.6, we may suppose one of the following:
(a) k is even and g is equal to $\left(x^{2}+y^{2}\right)^{k / 2}$;
(b) g is equal to x^{k}.

If $g=\left(x^{2}+y^{2}\right)^{k / 2}$, then o is an isolated parallel point of G_{F} with respect to a base plane $P_{x y}$. Therefore from (a) of Proposition 5.3, we see that G_{F} is part of a surface of revolution such that o lies on its axis of rotation. Suppose $g=x^{k}$. Then there exists a positive number $x_{0}>0$ satisfying $X_{F}(x):=(x, 0, F(x, 0)) \in$ $\Xi_{G_{F}, P_{x y}}$ for any $x \in\left(-x_{0}, x_{0}\right) \backslash\{0\}$. Suppose that for each positive integer $n \in N$, there exists a number $x_{n} \in\left(0, \min \left\{x_{0}, 1 / n\right\}\right)$ satisfying $q_{F}\left(x_{n}, 0\right) \neq 0$. Then noticing $\lim _{x \rightarrow 0} q_{F}(x, 0) / x^{k-1}=0$, we see that there exists a positive integer $n_{0} \in N$ such that for each integer $n \geqq n_{0}, P_{P_{x y}, X_{F}\left(x_{n}\right)}^{\perp}$ is not normal to $C_{P_{x y}, X_{F}\left(x_{1}\right)}$ at an intersection, which causes a contradiction. Therefore we obtain $q_{F}(x, 0)=0$ for any $x \in\left(-x_{0}, x_{0}\right)$. In particular, we see that $P_{x z}$ is normal to G_{F} at any point of a neighborhood of o in $P_{x z} \cap \mathrm{G}_{F}$. Let $C_{b,+}$ (respectively, $C_{b,-}$) be the interior of the intersection of $P_{x y}$ with the closure of

$$
\bigcup_{x \in\left(0, x_{0}\right)} C_{P_{x y}, X_{F}(x)}\left(\text { respectively }, \underset{x \in\left(-x_{0}, 0\right)}{\bigcup} C_{P_{x y}, X_{F}(x)}\right)
$$

in \boldsymbol{R}^{3}. Then $C_{b,+}$ and $C_{b,-}$ are smooth curves in $P_{x y}$ tangent to the y-axis at o. We see by Proposition 3.4 that at any point of $C_{b,+}$ and $C_{b,-}$, not all the partial derivatives of F of order k are equal to zero. Suppose that for each neighborhood U_{+}of o in $C_{b,+}$, there exists a point of $U_{+} \backslash\{o\}$ which is not contained in $C_{b,-}$. Then we may find a point p_{+}of $U_{+} \backslash\{o\}$ such that the plane normal to U_{+}at p_{+} is not normal to $C_{b,-}$ at an intersection, which causes a contradiction. Therefore we see that there exists a neighborhood U of o in $C_{b,+}$ contained in $C_{b,-}$. We set $C_{b}:=U$ and let C_{g} be a connected neighborhood of o in $P_{x z} \cap \mathrm{G}_{F}$ satisfying $C_{g} \backslash\{o\} \subset \Xi_{\mathrm{G}_{F}, P_{x y}}$. We see that $\left(C_{b}, C_{g}\right)$ is a generating pair such that there exists a neighborhood of o in G_{F} which is a canonical parallel curved surface generated by $\left(C_{b}, C_{g}\right)$. Noticing $C_{g} \backslash\{o\} \subset \Xi_{\mathrm{G}_{F}, P_{\mathrm{xy}}}$, we obtain Theorem 1.2.

7. Construction of a Compact, Orientable, Parallel Curved Surface of Genus $g \geqq 2$

Let g be an integer not less than two, and let $C_{1}, C_{2}, \ldots, C_{g}$ be circles in $P_{x y}$ with radius two and D_{i} the open disc bounded by $C_{i}(i \in\{1,2, \ldots, g\})$. We set $\overline{D_{i}}:=D_{i} \cup C_{i}$ for $i \in\{1,2, \ldots, g\}$ and suppose $\overline{D_{i}} \cap \overline{D_{j}}=\varnothing$ for arbitrary distinct two $i, j \in\{1,2, \ldots, g\}$. Let C_{0} be a circle such that the open disc D_{0} bounded by C_{0} contains $\overline{D_{1}}, \overline{D_{2}}, \ldots, \overline{D_{g}}$. We set $S_{g}^{(0)}:=C_{0} \cup D_{0} \backslash \bigcup_{i=1}^{g} D_{i}$. Let Proj ${ }^{(2)}$ be a map from \boldsymbol{R}^{3} onto $\{z=2\}$ defined by $\operatorname{Proj}^{(2)}(x, y, z):=(x, y, 2)$ for each $(x, y, z) \in \boldsymbol{R}^{3}$. We set $S_{g}^{(2)}:=\operatorname{Proj}^{(2)}\left(S_{g}^{(0)}\right)$.

Let k be a smooth function on $(-2,2)$ defined by

$$
k(t):=a_{0} \exp \left(\frac{1}{t^{2}-4}\right)
$$

where

$$
a_{0}:=\frac{\pi}{\int_{-2}^{2} \exp \left(\frac{1}{t^{2}-4}\right) d t}
$$

Then k satisfies

$$
\begin{equation*}
\int_{-2}^{2} k(t) d t=\pi \tag{2}
\end{equation*}
$$

For a sufficiently small positive number $\varepsilon_{0}>0$, let γ be a map from ($-2-\varepsilon_{0}$, $2+\varepsilon_{0}$) into $P_{x z}$ satisfying $\left|\gamma^{\prime}\right| \equiv 1$ on $\left(-2-\varepsilon_{0}, 2+\varepsilon_{0}\right),\left|\gamma^{\prime \prime}\right|=k$ on $(-2,2)$ and

$$
\gamma(t)= \begin{cases}(2+t, 0,0) & \text { for } t \in\left(-2-\varepsilon_{0},-2\right] \tag{3}\\ (2-t, 0, c) & \text { for } t \in\left[2,2+\varepsilon_{0}\right),\end{cases}
$$

where $c>0$. Noticing (2), we see that such a map as γ exists. We represent γ as $\gamma=\left(\gamma_{1}, 0, \gamma_{3}\right)$ and we set

$$
\Gamma:=\left(\gamma_{1}, 0, \frac{2}{c} \gamma_{3}\right)
$$

Then from (3), we see that for $t \in\left[2,2+\varepsilon_{0}\right), \Gamma(t)$ is contained in the plane $\{z=2\}$. We set $C^{\perp}:=\Gamma((-2,2))$.

For each $i \in\{0,1, \ldots, g\}$ and each $p \in C_{i}$, let Ψ_{p} be an isometry of \boldsymbol{R}^{3} satisfying the following:
(a) $\Psi_{p}(0,0,0)=p$,
(b) for a sufficiently small $\varepsilon_{0}>0, \Psi_{p}(t, 0,0)$ is contained in $S_{g}^{(0)}$ for any $t \in\left(-\varepsilon_{0}, 0\right]$,
(c) $\left(d \Psi_{p}\right)_{(0,0,0)}\left((\partial / \partial x)_{(0,0,0)}\right)$ is normal to C_{i},
(d) $\left(d \Psi_{p}\right)_{(0,0,0)}\left((\partial / \partial z)_{(0,0,0)}\right)=(\partial / \partial z)_{p}$.

We set

$$
S_{i}^{\perp}:=\bigcup_{p \in C_{i}} \Psi_{p}\left(C^{\perp}\right), \quad S_{g}^{(\perp)}:=\bigcup_{i=0}^{g} S_{i}^{\perp}, \quad S_{g}:=S_{g}^{(0)} \cup S_{g}^{(\perp)} \cup S_{g}^{(2)}
$$

Then we see that S_{g} is a connected, compact, orientable, embedded, parallel curved surface of genus g. Since there exist embedded, parallel curved surfaces homeomorphic to a sphere and a torus, respectively, we obtain Theorem 1.5.

References

[1] Ando, N., The behavior of the principal distributions around an isolated umbilical point, J. Math. Soc. Japan 53 (2001), 237-260.
[2] Ando, N., A class of real-analytic surfaces in the 3-Euclidean space, Tsukuba J. Math. 26 (2002), 251-267.
[3] Ando, N., The behavior of the principal distributions on a real-analytic surface, J. Math. Soc. Japan 56 (2004), 201-214.
[4] Ando, N., The index of an isolated umbilical point on a surface, (a survey), Contemporary Mathematics 308 "Differential Geometry and Integrable Systems" by American Mathematical Society, 1-11.
[5] Ando, N., An umbilical point on a non-real-analytic surface, Hiroshima Math. J. 33 (2003), 1-14.

Faculty of Science
Kumamoto University
2-39-1 Kurokami
Kumamoto 860-8555
Japan
E-mail: ando@math.sci.kumamoto-u.ac.jp

[^0]: Key Words and Phrases. parallel curved surface, base plane, surface of revolution, generating pair. 2000 Mathematics Subject Classification. Primary 53A05; Secondary 53A99, 53B25.
 Received January 10, 2003.
 Revised September 12, 2003.

