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PARALLEL CURVED SURFACES

By

Naoya ANDO

Abstract. A surface $S$ in $R^{3}$ is called parallel curved if there exists a
plane such that at each point of $S$ , there exists a principal direction
parallel to this plane. In [2], we studied real-analytic, parallel curved
surfaces and in particular, we showed that a connected, complete,
real-analytic, embedded, parallel curved surface is homeomorphic to a
sphere, a plane, a cylinder, or a torus. In the present paper, we shall
show that a connected, complete, embedded, parallel curved surface
such that any umbilical point is isolated is also homeomorphic to a
sphere, a plane, a cylinder or a torus. However, we shall also show
that for each non-negative integer $g\in N\cup\{0\}$ , there exists a con-
nected, compact, orientable, embedded, parallel curved surface of
genus $g$ .

1. Introduction

A surface $S$ in $R^{3}$ is called parallel curved if there exists a plane $P$ such that
at each point of $S$ , there exists a principal direction parallel to $P$; if $S$ is parallel
curved, then such a plane as $P$ is called a base plane of $S$ . For example, a surface
of revolution is a parallel curved surface such that a plane normal to an axis of
rotation is its base plane.

Let $F$ be a smooth function defined on a connected neighborhood of $(0,0)$ in
$R^{2}$ satisfying

$F(O, 0)=\frac{\partial F}{\partial x}(0,0)=\frac{\partial F}{\partial y}(0,0)=0$

and the condition that the graph $G_{F}$ of $F$ is a parallel curved surface such that
the xy-plane is its base plane. In [2], we studied real-analytic, parallel curved
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surfaces. If $F$ is real-analytic, then we proved the following: if the origin $0$ of $R^{3}$

is an isolated umbilical point of $G_{F}$ , then $G_{F}$ is part of a surface of revolution
such that $0$ lies on the axis of rotation; if $0$ is not any isolated umbilical point of
$G_{F}$ , then one of the following (a) and (b) happens:

(a) $G_{F}$ is part of a plane or a round sphere;
(b) There exist a neighborhood $U_{0}$ of $(0,0)$ in $R^{2}$ and a real-analytic curve

$C_{0}$ in $U_{0}$ satisfying
(i) $C_{0}$ is the set of the zero points of $F$ in $U_{0}$ ,
(ii) The set of the umbilical points of the graph of $F|_{U_{o}}$ is empty or given

by $C_{0}$ ,
(iii) For any point $q\in C_{0}$ and the plane $P_{q}^{\perp}$ in $R^{3}$ normal to $C_{0}$ at $q$ , the

intersection $C_{q}^{\perp}$ of $P_{q}^{\perp}$ with the graph of $F|_{U_{o}}$ is a curve such that at
any point of $C_{q}^{\perp}$ , the tangent line to $C_{q}^{\perp}$ is a principal direction of
$G_{F}$ .

In addition, we proved that a connected, complete, real-analytic, embedded and
parallel curved surface is homeomorphic to a sphere, a plane, a cylinder or a
toms.

The purpose of the present paper is to study parallel curved surfaces which
are not always real-analytic. Suppose that $F$ is not always real-analytic. We shall
prove the following:

THEOREM 1.1. If $0$ is an isolated umbilical point of $G_{F}$ , then $G_{F}$ is part of
a surface of revolution such that $0$ lies on the axis of rotation.

THEOREM 1.2. Suppose the following: $0$ is not any isolated umbilical point of
$G_{F}$ ; not all the partial derivatives of $F$ at $(0,0)$ are equal to zero. Then $G_{F}$ is part

of a surface of revolution such that $0$ lies on the axis of rotation, or there exist a
neighborhood $U_{o}$ of $(0,0)$ in $R^{2}$ and a curve $C_{0}$ in $U_{0}$ satisfying such conditions as
the above-mentioned $(i)\sim(iii)$ .

THEOREM 1.3. If all the partial derivatives of $F$ at $(0,0)$ are equal to zero,
then it is possible that $F$ satisfies the following conditions: $G_{F}$ is not part of any
surface of revolution; there does not exist any curve in $R^{2}$ through $(0,0)$ on which
$F\equiv 0$ .

In addition, we shall prove the following:
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THEOREM 1.4. A connected, complete, embedded, parallel curved surface such
that any umbilical point is $iso$ la fed is homeomorphic to a sphere, a plane, a $cy$linder
or a torus.

THEOREM 1.5. For each non-negative integer $g\in N\cup\{0\}$ , there exis $ts$ a
connected, compact, orientable, embedded, parallel curved surface of genus $g$ .

REMARK 1.6. We easily see that there exists a principal direction parallel
to the xy-plane at a point of the graph of a smooth function of two variables if
and only if its gradient vector field is in a principal direction at the same point.
Therefore we see in particular that the gradient vector field of $F$ is in a principal
direction at each point of $G_{F}$ . We found the class of parallel curved surfaces in
studying the graph of a real-analytic function such that its gradient vector field
is in a principal direction at each point. We often studied relations between the
behavior of the principal distributions and the behavior of the gradient vector
field. The gradient vector field of a nonzero homogeneous polynomial $g$ of degree
$k\geqq 2$ in two variables is in a principal direction of its graph at a point if and
only if at the same point, one of the following happens: the gradient vector field
is represented by the “position vector field” $x\partial/\partial x+y\partial/\partial y$ up to a constant; the
Gaussian curvature of the graph is equal to zero ([1]). In particular, we see that if
the gradient vector field of $g$ is in a principal direction at each point of its graph,
then $g$ is represented as $g=\lambda_{1}(x^{2}+y^{2})^{l}$ or $g=\lambda_{2}(\alpha x+\beta y)^{k}$ , where $\lambda_{i}\in R\backslash \{0\}$ ,
$(\alpha,\beta)\in R^{2}\backslash \{(0,0)\}$ and $l\in N$ . The former (respectively, latter) type is the simplest
one which appears in Theorem 1.1 (respectively, Theorem 1.2). In [1], we studied
relations between the behavior of the principal distributions and the behavior of
the gradient vector field of a homogeneous polynomial $g$ on its graph in the case
where $g$ is of none of the above-mentioned two types. As we saw in [2], if $F$ is
real-analytic and nonzero, then the behavior of its gradient vector field around $0$

is given by either the position vector field or the set of curves $\{C_{q}^{\perp}\}_{q\in C_{0}}$ as in the
above-mentioned (iii). Theorem 1.1 says that if $0$ is an isolated umbilical point of
$G_{F}$ , then the assumption that $F$ is real-analytic is removable; Theorem 1.2 says
that even if $0$ is not any isolated umbilical point, if not all the partial derivatives
of $F$ at $(0,0)$ are equal to zero, then the assumption that $F$ is real-analytic is also
removable; on the other hand, Theorem 1.3 says that if all the partial derivatives
of $F$ at $(0,0)$ are equal to zero, then there exists a type which does not appear
in the real-analytic case. In [3], we studied the behavior of the principal dis-
tributions around an isolated umbilical point on a real-analytic surface. We may
grasp the behavior of the principal distributions in most cases in the way of
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studying the limit of each principal distribution toward the isolated umbilical
point along the intersection of the surface with each normal plane at this point.
However, there exist cases in which we may not grasp the behavior in only such a
way. Then adding the way of studying the behavior of the principal distributions
in relation to the behavior of the gradient vector field of a function the graph of
which is a neighborhood of the isolated umbilical point in the surface, we were
able to grasp the behavior of the principal distributions in some case (see [3]). In
[4], we described a similar discussion on the graph of a smooth function with such
coefficients as nonzero real-analytic functions have in Taylor’s formula. Let $f$

be a smooth function on a neighborhood of $(0,0)$ in $R^{2}$ satisfying $f(O, 0)=0$

and $f>0$ on a punctured neighborhood of $(0,0)$ . Then $\exp(-1/f)$ is a smooth
function defined on a punctured neighborhood of $(0,0)$ and smoothly extended to
$(0,0)$ so that all the partial derivatives of $\exp(-1/f)$ at $(0,0)$ are equal to zero. If
for each positive number $c>0$ , there exists a punctured neighborhood of $(0,0)$

on which the norm of the gradient vector field of $\log f$ is bounded from below by
the number $c$ , then we showed in [5] that $0$ is an isolated umbilical point on the
graph of $\exp(-1/f)$ and that around $0$ , a principal distribution is approximated
by (the distribution defined by) the gradient vector field of $\exp(-1/f)$ on its
graph. For example, if there exists a homogeneous polynomial $g$ of degree $k$ in
two variables satisfying $g>0$ on $R^{2}\backslash \{(0,0)\}$ and

$f=g+o((x^{2}+y^{2})^{k/2})$ ,

then $f$ satisfies the assumption. If the graph of $f$ is locally strictly convex at
any point, then $f$ also satisfies the assumption. Hence in the set of the smooth
functions such that the values and all the partial derivatives at $(0,0)$ are equal to
zero, we may find many examples for each of which, $0$ is an isolated umbilical
point on its graph such that there exists a principal distribution approximated
by the gradient vector field around $0$ . On the other hand, it is exceptional that
around an isolated umbilical point on the graph of a real-analytic function, a
principal distribution is approximated by the gradient vector field.

REMARK 1.7. Let $C_{b},$ $C_{g}$ be simple curves in $R^{3}$ with a unique intersection
$p(c_{b},c_{g})$ and contained in planes $P_{b},$ $P_{g}$ , respectively. Then a pair $(C_{b}, C_{g})$ is called
generating if we may choose as $P_{g}$ the plane normal to $C_{b}$ at $p_{(C_{b},C_{g})}$ ; if $(C_{b}, C_{g})$

is generating, then $C_{b}$ and $C_{g}$ are called the base curve and the generating curve
of $(C_{b}, C_{g})$ , respectively. For a generating pair $(C_{b}, C_{g})$ , let $\Sigma_{(C_{b},C_{g})}$ be the set of
the embedded, parallel curved surfaces such that each $S\in\Sigma_{(C_{b},C_{g})}$ satisfies the
following:
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(a) $P_{b}$ is a base plane of $S$ ;
(b) A surface $S$ contains a neighborhood $O_{b}$ (respectively, $O_{g}$ ) of $p_{(C_{b},C_{g})}$ in

$C_{b}$ (respectively, $C_{g}$ ) so that the tangent line at each point is a principal
direction of $S$ .

In [2], we proved $\Sigma_{(C_{b},C_{g})}\neq\emptyset$ if $(C_{b}, C_{g})$ is a generating pair such that $C_{b}$ and $C_{g}$

are real-analytic. If for an embedded, parallel curved surface $S$ and a point $p\in S$ ,
there exists a generating pair $(C_{b}, C_{g})$ satisfying $p=p(c_{b},c_{g})$ and $S\in\Sigma_{(C_{b},C_{g})}$ ,
then $S$ is called generated at $p$ (by $(C_{b},$ $C_{g})$ ). If $S$ is an embedded surface of
revolution which has the only one axis of rotation, then $S$ is generated at a point
which does not lie on the axis and $S$ is not generated at any point on the axis. In
[2], we showed that if $S$ is a real-analytic, embedded and parallel curved surface
and if $S$ is not part of any surface of revolution, then $S$ is generated at any point.
In the present paper, we shall see that $\Sigma_{(C_{b},C_{g})}\neq\emptyset$ holds, even if $(C_{b}, C_{g})$ is a
generating pair such that $C_{b}$ and $C_{g}$ are not always real-analytic and that if for
a function $F$ as in Theorem 1.2, $G_{F}$ is not part of any surface of revolution, then
$G_{F}$ is generated at any point of a neighborhood of $0$ in $G_{F}$ . However, we shall
also see that there exists an embedded, parallel curved surface which is neither
part of any surface of revolution nor generated at some point (we shall see that
the example we shall give implies Theorem 1.3).

REMARK 1.8. Such results as Theorems 1.3 and 1.5 do not hold in the real-
analytic case. We shall see that not only the proof of Theorem 1.3 but also the
proof of Theorem 1.5 depends on the existence of non-constant smooth functions
such that all the partial derivatives at some point are equal to zero.
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2. Preliminaries

Let $f$ be a smooth function of two variables $x,$ $y$ and $G_{f}$ the graph of $f$ . We
set $pf^{;=}\partial f/\partial x,$ $qf^{;=}\partial f/\partial y$ and

$E_{f}$ $:=1+p_{f^{2}}$ , $F_{f}$ $:=pfqf$ , $G_{f}$ $:=1+q_{f^{2}}$ .

The first fundamental form of $G_{f}$ is a symmetric tensor field $I_{f}$ on $G_{f}$ of type
$(0,2)$ represented in terms of the coordinates $(x, y)$ as

$I_{f}$ $:=E_{f}dx^{2}+2F_{f}dxdy+G_{f}dy^{2}$ ,
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where

$dx^{2}$ $:=dx\otimes dx$ , $dxdy$ $:=\frac{1}{2}(dx\otimes dy+dy\otimes dx)$ , $dy^{2}$ $:=dy\otimes dy$ .

We set $r_{f}:=\partial^{2}f/\partial x^{2},$ $s_{f}:=\partial^{2}f/\partial x\partial y,$ $t_{f}:=\partial^{2}f/\partial y^{2}$ and

$L_{f}$
$:=\frac{r_{f}}{\sqrt{\det(I_{f})}}$ , $M_{f}$ $:=\frac{s_{f}}{\sqrt{\det(I_{f})}}$ , $N_{f}$ $:=\frac{t_{f}}{\sqrt{\det(I_{f})}}$ ,

where $\det(I_{f}):=E_{f}G_{f}-F_{f}^{2}$ . The Weingarten map of $G_{f}$ is a tensor field $W_{f}$ on
$G_{f}$ of type $(1, 1)$ satisfying

$[W_{f}(\frac{\partial}{\partial x}),$ $W_{f}(\frac{\partial}{\partial y})]=[\frac{\partial}{\partial x},\frac{\partial}{\partial y}]W_{f}$ ,

where

$W_{f}$
$:=\left(\begin{array}{ll}E_{f} & F_{f}-\\F_{f} & G_{f}\end{array}\right)\left(\begin{array}{ll}L_{f} & M_{f}\\M_{f} & N_{f}\end{array}\right)$ .

A principal direction of $G_{f}$ is a one-dimensional eigenspace of $W_{f}$ . By the sym-
metry of $W_{f}$ with respect to $I_{f}$ , we see that at a point of $G_{f}$ , a one-dimensional
subspace of the tangent plane which is perpendicular to a principal direction with
respect to $I_{f}$ is also a principal direction.

Let $PD_{f}$ be a symmetric tensor field on $G_{f}$ of type $(0,2)$ represented in terms
of the coordinates $(x, y)$ as

$PD_{f}$ $:=\frac{1}{\sqrt{\det(I_{f})}}\{A_{f}dx^{2}+2B_{f}dxdy+C_{f}dy^{2}\}$ ,

where

$A_{f}$ $:=E_{f}M_{f}-F_{f}L_{f}$ , $2B_{f}$ $:=E_{f}N_{f}-G_{f}L_{f}$ , $C_{J}$ $:=F_{f}N_{f}-G_{f}M_{f}$ .

For vector fields $\nabla_{1},$ $\nabla_{2}$ on $G_{f}$ ,

$\frac{1}{2}\sum_{\{i,j\}=\{1,2\}}V_{i}\wedge W_{f}(V_{j})=\frac{PD_{f}(V_{1},V_{2})}{\sqrt{\det(I_{f})}}(\frac{\partial}{\partial x}\wedge\frac{\partial}{\partial y})$ .

Therefore we see that at a point of $G_{f}$ , a tangent vector $v_{0}$ is in a principal
direction if and only if $PD_{f}(v_{0}, v_{0})=0$ . In particular, if we set

$\varpi_{f}$ $:=s_{f}(p_{f^{2}}-q_{f}^{2})-(r_{f}-t_{f})pfqf$ ,

$\varpi_{f^{\perp}}:=s_{f}(1+p_{f^{2}})-pfqf^{\gamma}f$ ,

then we obtain the following:
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PROPOSITION 2.1 ([2]). At a point of $G_{f}$ , there exists a principal direction
parallel to the xy-plane if and on $ly\iota f\varpi_{f}=0$ .

PROPOSITION 2.2. A $t$ a point of $G_{f}$ , there exists a principal direction parallel
to the xz-plane $lf$ and only $lf\varpi_{f}^{\perp}=0$ .

3. Parallel Curved Surfaces

Let $S$ be an embedded, parallel curved surface and for a base plane $P$ of $S$ ,
let $\Xi_{S,P}$ be the subset of $S$ such that for any $q\in\Xi_{S,P}$ , the tangent plane $T_{q}(S)$ to
$S$ at $q$ is not parallel to $P$ . We see that $\Xi_{S,P}$ is an open set of $S$ . A point of
$S\backslash \Xi_{S,P}$ is called a parallel point of $S$ with respect to a base plane $P$ . If there exists
a base plane $P_{0}$ of $S$ satisfying $\Xi_{S,P_{0}}=\emptyset$ , then each connected component of $S$

is part of a plane in $R^{3}$ . In the following, suppose $\Xi_{S,P}\neq\emptyset$ for any base plane
$P$ .

For a base plane $P_{0}$ of $S$ and a point $q\in\Xi_{S,P_{0}}$ , let $P_{P_{0},q}^{\perp}$ be the plane in
$R^{3}$ through $q$ perpendicular to each of $P_{0}$ and $T_{q}(S)$ , and $C_{P_{0},q}^{\perp}$ the connected
component of $P_{P_{0},q}^{\perp}\cap\Xi_{S,P_{0}}$ containing $q$ . We shall prove

PROPOSITION 3.1. The plane $P_{P_{0},q}^{\perp}$ is perpendicular to $T_{p}(S)$ for any $p\in C_{P_{0},q}^{\perp}$ .

PROOF. For each $q\in\Xi_{S,P_{0}}$ , let $(x, y, z)$ be orthogonal coordinates on $R^{3}$

satisfying the following:

(a) the point $q$ corresponds to (0,0,0);
(b) the xz-plane $P_{XZ}$ is parallel to $P_{0}$ ;
(c) the yz-plane $P_{yz}$ is equal to $P_{P_{0},q}^{\perp}$ .

Then the xy-plane $P_{xy}$ is not perpendicular to $T_{q}(\Xi_{S,P_{0}})$ . Let $f$ be a smooth
function on a neighborhood of $q$ in $P_{xy}$ such that $G_{f}$ is a neighborhood of $q$

in $\Xi_{S,P_{0}}$ . The function $f$ satisfies $f(O, 0)=pf(0,0)=0$ . Noticing that $\partial/\partial x$ is in
a principal direction at each point of $G_{f}$ , we see that a vector field

$V_{f}$ $:=-F_{f}\frac{\partial}{\partial x}+E_{f}\frac{\partial}{\partial y}$ ,

which is perpendicular to $\partial/\partial x$ with respect to the first fundamental form $I_{f}$ , is
also in a principal direction at each point of $G_{f}$ . In addition, by Proposition 2.2,
we see that $pf$ is constant on each integral curve of $V_{f}$ . Then by $pf(0,0)=0$

together with the definition of $V_{f}$ , we see that the integral curve of $V_{f}$ through $q$

is contained in $P_{yz}$ and that at any point $p$ of this integral curve, $P_{yz}$ is per-
pendicular to $T_{p}(S)$ . Hence we obtain Proposition 3.1. $\square $
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REMARK 3.2. In [2], we presented another proof of Proposition 3.1 on
condition that $S$ is real-analytic.

COROLLARY 3.3. The following hold:

(a) $C_{P_{0},q}^{\perp}$ is a simple curve;
(b) A principal direction of $S$ at each point of $C_{P_{0},q}^{\perp}$ which is parallel to $P_{0}$ is

perpendicular to $P_{P_{0},q}^{\perp}$ ;
(c) The tangent line to $C_{P_{0},q}^{\perp}$ at each point of $C_{P_{0},q}^{\perp}$ is a principal direction of $S$

and not parallel to $P_{0}$ .

For a base plane $P_{0}$ of $S$ and a point $q\in\Xi_{S,P_{0}}$ , let $P_{P_{0},q}$ be the plane in $R^{3}$

through $q$ parallel to $P_{0}$ and $C_{P_{0},q}$ the connected component of $P_{P_{0},q}\cap S$ con-
taining $q$ . We shall prove

PROPOSITION 3.4. The angle between $T_{p}(S)$ and $P_{P_{0},q}$ does not depend on the
choice of $p\in C_{P_{0},q}$ .

PROOF. For each $q\in\Xi_{S,P_{0}}$ , let $(x, y, z)$ and $f$ be as in the proof of
Proposition 3.1. Let $\alpha_{f}(x, y)$ be the angle between $T_{(x,y)}(G_{f})$ and $P_{P_{0},(x,y)}$ . Then
we see that $\alpha_{f}(x, y)$ is equal to the angle between $V_{f}(x, y)$ and $P_{P_{0},(x,y)}$ . Therefore
we obtain

$\cos^{2}\alpha_{f}=\frac{q_{f}^{2}}{1+p_{f^{2}}+q_{f}^{2}}$ .

By Proposition 2.2, we obtain $\partial(\cos^{2}\alpha_{f})/\partial x\equiv 0$ . This implies Proposition
3.4. $\square $

COROLLARY 3.5. The set $C_{P_{0},q}$ is a simple curve in $\Xi_{S,P_{0}}$ such that the tangent

line to $C_{P_{0},q}$ at each point of $C_{P_{0},q}$ is a principal direction of $S$ .

4. Generating Pairs

Let $S$ be an embedded, parallel curved surface and $P_{0}$ a base plane of $S$ .
Then from Corollary 3.3 and Corollary 3.5, we see that for any $q\in\Xi_{S,P_{0}}$ ,
$(C_{P_{0}},{}_{q}C_{P_{0},q}^{\perp})$ is a generating pair such that $C_{P_{0},q}$ and $C_{P_{0},q}^{\perp}$ are the base curve and
the generating curve of $(C_{P_{0}},{}_{q}C_{P_{0},q}^{\perp})$ , respectively and that $(C_{P_{0}},{}_{q}C_{P_{0},q}^{\perp})$ satisfies
$q=p_{(C_{P_{0}}{}_{q}C_{P_{0}^{\perp},q})}$ and $S\in\Sigma_{(C_{P_{0}}{}_{q}C_{P_{0}q}^{\perp})}$ . Therefore we obtain
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PROPOSITION 4.1. Let $S$ be an embedded, parallel curved surface and $P_{0}a$

base plane of S. Then $S$ is generated at any poin $t$ of $\Xi_{S,P_{0}}$ .

We shall prove

PROPOSITION 4.2. Let $(C_{b}, C_{g})$ be a generating pair such that $C_{b}$ and $C_{g}$

are the base curve and the generating curve of $(C_{b}, C_{g})$ , respectively. Then
$\Sigma_{(C_{b},C_{g})}\neq\otimes$ .

PROOF. For each $p\in C_{b}$ , there exists an isometry $\Phi_{p}$ of $R^{3}$ satisfying

(a) $\Phi_{p}(p_{(C_{b},C_{g})})=p$ ;
(b) $\Phi_{p}(P_{g})$ is normal to $C_{b}$ at $p$ ;
(c) the angle between $P_{b}$ and the tangent line to $\Phi_{p}(C_{g})$ at $p$ is equal to the

angle between $P_{b}$ and the tangent line to $C_{g}$ at $p_{(C_{b},C_{g})}$ ;
(d) the map $\Phi$ : $C_{b}\times R^{3}\rightarrow R^{3}$ defined by $\Phi(p, X):=\Phi_{p}(X)$ is smooth;
(e) $\Phi_{p_{(c_{b}c_{g})}}$ is the identity map.

In addition, there exist neighborhoods $O_{b},$ $O_{g}$ of $p_{(C_{b},C_{g})}$ in $C_{b},$ $C_{g}$ , respectively
such that

$s_{o_{b},0_{g}:=\bigcup_{p\in O_{b}}\Phi_{p}(O_{g})}$
(1)

is an embedded surface. Let $q$ be a point of $S_{O_{b},O_{g}}$ such that $T_{q}(S_{O_{b},O_{g}})$ is not
parallel to $P_{b}$ and $(x, y, z)$ orthogonal coordinates on $R^{3}$ satisfying the following:

(a) the point $q$ corresponds to (0,0,0);
(b) $P_{xz}$ is parallel to $P_{b}$ ;
(c) $P_{y_{-}^{-}}$ is perpendicular to each of $P_{b}$ and $T_{q}(S_{O_{b},O_{g}})$ .

Let $f$ be a smooth function defined on a neighborhood $U$ of $q$ in $P_{xy}$ such that
$G_{f}$ is a neighborhood of $q$ in $S_{O_{b},O_{g}}$ . Then we obtain $pf(0, y)=s_{f}(0, y)=0$ for
any $y\in R$ satisfying $(0, y)\in U$ . Therefore we obtain

$PD_{f}(\frac{\partial}{\partial x},\frac{\partial}{\partial x})=PD_{f}(\frac{\partial}{\partial y},\frac{\partial}{\partial y})=0$

at $(0, y)$ , i.e., we see that each of $\partial/\partial x$ and $\partial/\partial y$ is in a principal direction
at $(0, y)$ . In particular, we see that at $q$ , there exists a principal direction parallel
to $P_{b}$ . If $q$ is a point of $S_{O_{b},O_{g}}$ such that $T_{q}(S_{O_{b},O_{g}})$ is parallel to $P_{b}$ , then any
principal direction at $q$ is parallel to $P_{b}$ . Therefore we see that $S_{O_{b},O_{g}}$ is a parallel
curved surface such that $P_{b}$ is a base plane of $S_{O_{b},O_{g}}$ . If $q$ is a point of $ O_{b}\cap$
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$\Xi_{S_{o_{b}o_{g}},P_{b}}$ or $O_{g}\cap\Xi_{S_{o_{b}o_{g}},P_{b}}$ , then we see from Corollary 3.3 that the tangent line
at $q$ is a principal direction of $S_{O_{b},O_{g}}$ . If $q$ is a point of $O_{b}$ or $O_{g}$ and if $q$ is
an umbilical point of $S_{O_{b},O_{g}}$ , then the tangent line at $q$ is a principal direction of
$S_{O_{b},O_{g}}$ . Suppose that $q$ is a point of $O_{b}$ and that $q$ is a non-umbilical point and
a parallel point with respect to $P_{b}$ . Then there exists a point of $\Xi_{s_{o_{b},0_{g},P_{b}}}$ in any
neighborhood of $q$ in $\Phi_{q}(C_{g})$ . Therefore by the continuity of a principal dis-
tribution, we see that the tangent line to $O_{b}$ at $q$ is a principal direction of $S_{0_{b},O_{g}}$ .
If $q$ is a point of $O_{g}$ and if $q$ is a non-umbilical point and a parallel point with
respect to $P_{b}$ , then we similarly obtain the same result. Hence we obtain Prop-
osition 4.2. $\square $

REMARK 4.3. In the following, such a surface as $S_{O_{b},O_{g}}$ constructed in (1) is
called a canonical parallel curved surface generated by a generating pair $(C_{b}, C_{g})$ .
We see that a canonical parallel curved surface is generated at any point.

REMARK 4.4. In Proposition 4.1 and Proposition 4.2, we may find relations
between parallel curved surfaces and generating pairs. We take notice of the
following question:

For a given generating pair $(C_{b}, C_{g})$ , does the non-empty set $\Sigma_{(C_{b},C_{g})}$ de-
termine the only one germ of parallel curved surface? In other words, does
any element $S$ of $\Sigma_{(C_{b},C_{g})}$ contain a canonical parallel curved surface
generated by $(C_{b}, C_{g})$ ?

By Proposition 3.1 together with Proposition 3.4, we see that if for a generating
pair $(C_{b}, C_{g}),$ $C_{g}$ is not tangent to $P_{b}$ at $p_{(C_{b},C_{g})}$ , then the set $\Sigma_{(C_{b},C_{g})}$ determines
the only one germ. Suppose that $C_{g}$ is tangent to $P_{b}$ at $p_{(C_{b},C_{g})}$ and let $a_{0}$ be a
smooth function on a neighborhood of $p_{(C_{b},C_{g})}$ in $P_{b}\cap P_{g}$ such that the graph of
$a_{0}$ in $P_{g}$ is a neighborhood of $p_{(C_{b},C_{g})}$ in $C_{g}$ . In Section 6, we shall show that if
not all the derivatives of $a_{0}$ at $p_{(C_{b},C_{g})}$ are equal to zero, then the set $\Sigma_{(C_{b},C_{g})}$

determines the only one germ (Remark 6.5). However, we shall also show in the
present section that if all the derivatives of $a_{0}$ at $p_{(C_{b},C_{g})}$ are equal to zero, then
$\Sigma_{(C_{b},C_{g})}$ always gives plural germs (Example 4.5). We also take notice of the
following question:

Let $S$ be a parallel curved surface and $P_{0}$ a base plane of $S$ . Then is
$S$ generated at a parallel point with respect to $P_{0}$ ? In addition, if $S$

is generated at some parallel point $p0$ with respect to $P_{0}$ , then is $S$ uniquely
generated at $p0$? In other words, for two generating pairs $(C_{b}^{(1)}, C_{g}^{(1)})$ ,
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$(C_{b}^{(2)}, C_{q}^{(2)})$ such that $S$ is generated at $p_{0}$ by each of these two pairs, does
there exist a neighborhood $V$ of $p_{0}$ in $S$ satisfying

$(C_{b}^{(1)}\cup C_{g}^{(1)})\cap V=(C_{b}^{(2)}\cup C_{q}^{(2)})\cap V$?

By Corollary 3.3 together with Corollary 3.5, we see that a parallel curved
surface $S$ is uniquely generated at any non-parallel point $q$ with respect to a base
plane if there exists no totally umbilical neighborhood of $q$ in $S$ . In addition,
Theorem 1.2, which we shall prove in Section 6, implies that if for a smooth
function $F$ as in Theorem 1.2, $G_{F}$ is not part of any surface of revolution, then
$G_{F}$ is uniquely generated at $0$ . Even if all the partial derivatives of a smooth
function $F$ as in the beginning of the second paragraph in Section 1 are equal to
zero at $(0,0)$ , it is possible that $G_{F}$ is uniquely generated at $0$ : if we set

$F(x, y)$ $:=\left\{\begin{array}{l}0, ifx=0,\\exp(-l/x^{2}), ifx\neq 0,\end{array}\right.$

then the graph of $F$ is a suitable example. However, in the present section, we
shall construct an example of a parallel curved surface which is generated but
not uniquely generated at some parallel point $p$ with respect to a base plane
and in which there exists no totally umbilical neighborhood of $p$ (Example 4.5).
We already know Theorem 1.1 in the real-analytic case. Therefore we already
have an example of a parallel curved surface which is not generated at some
point. In Section 5, we shall prove Theorem 1.1 in the general case. In addition,
in the present section, we shall construct an example of a parallel curved surface
which is neither part of any surface of revolution nor generated at some parallel
point with respect to a base plane (Example 4.6).

We shall present types of parallel curved surface which never appear in the
real-analytic case.

EXAMPLE 4.5. For a positive number $\delta_{0}>0$ , let $a_{0}$ be a smooth function on
an open interval $I_{0}$ $:=(-\delta_{0},\delta_{0})$ satisfying $a_{0}(0)=0$ and the condition that all the
derivatives of $a_{0}$ at $0$ are equal to zero, and $C_{b},$ $C_{g}$ two curves in $P_{xy}$ and $P_{XZ}$ ,
respectively defined by

$C_{b}$ $:=\{(0, y, 0);y\in R\}$ ,

$C_{g}$ $:=\{(x, 0, a_{0}(x));x\in I_{0}\}$ .

Then we see that $(C_{b}, C_{g})$ is a generating pair. We shall prove that there exists an
element $S_{0}$ of $\Sigma_{(C_{b},C_{g})}$ satisfying the following:
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(a) $S_{0}$ contains no canonical parallel curved surface generated by $(C_{b}, C_{g})$ ;
(b) $S_{0}$ is generated but not uniquely generated at $0$ .

From (a), we see that $\Sigma_{(C_{b},C_{g})}$ gives plural germs and that there exists no to-
tally umbilical neighborhood of $0$ in $S_{0}$ . Suppose that $a_{0}$ is not constant on
any neighborhood of $0$ in $I_{0}$ . Let $n$ be a positive integer and for $\delta\in(0,\delta_{0})$ , let
$C_{b,+}^{(n)},$ $C_{b,-}^{(n)}$ be simple curves in the planes $\{z=a_{0}(\delta)\},$ $\{z=a_{0}(-\delta)\}$ , respectively
defined by

$C_{b,+}^{(n)}$ $:=\{(\delta+y^{2n}, y, a_{0}(\delta));y\in R\}$ ,

$C_{b,-}^{(n)}$ $:=\{(-\delta-y^{2n}, y, a_{0}(-\delta));y\in R\}$ .

We set

$C_{g,+}$ $:=C_{g}\cap\{x>0\}$ , $C_{g,-}$ $:=C_{g}\cap\{x<0\}$ .

Then we may choose $\delta\in(0,\delta_{0})$ so that for any $\epsilon\in\{+, -\},$ $(C_{b,\epsilon}^{(n)}, C_{g,\epsilon})$ is a
generating pair such that

$S_{c_{b,\epsilon}^{(n)},c_{g\iota}}$

$:=\bigcup_{p\in C_{b\epsilon}^{(n)}}\Phi_{p}(C_{g,\epsilon})$

is a canonical parallel curved surface generated by $(C_{b,\epsilon}^{(n)}, C_{g,\epsilon})$ . We set

$X$
$:=P_{xy}\cap(\overline{S_{C_{b+}^{(n)},C_{q+}}}\cup\overline{S_{c_{b-}^{(n)},c_{g-}}})$ ,

where $\overline{S_{C_{b\epsilon}^{(n)},C_{g\epsilon}}}$ is the closure of $S_{C^{(n)}}c$ in $R^{3}$ . Let $A_{+},$ $A_{-}$ be two connected
$ b,\epsilon g\epsilon$

components of $P_{xy}\backslash X$ which contain points $(0,1,0),$ $(0, -1,0)$ , respectively. Then

$S_{0}^{(n)}$

$:=S_{c_{b,+}^{(n)},c_{g,+}}\cup\overline{A_{+}}\cup S_{c_{b.-}^{(n)},c_{g,-}}\cup\overline{A_{-}}$

is an element of $\Sigma_{(C_{b},C_{g})}$ . We see that $S_{0}^{(n)}$ contains no canonical parallel curved
surface generated by $(C_{b}, C_{g})$ and that $S_{0}^{(n)}$ is generated but not uniquely gen-
erated at $0$ . Suppose that $a_{0}$ is constant on $I_{0}$ . Let $n$ be a positive integer and $D_{n}$

an open disc in $P_{xy}$ defined by

$D_{n}$ $:=\{(x-\frac{1}{2^{n}})^{2}+(y-\frac{1}{2^{n}})^{2}<\frac{1}{2^{2n+3}}\}$ .

Then for arbitrary distinct two positive integers $n_{1},$ $n_{2}\in N,$ $ D_{n_{1}}\cap D_{n_{2}}=\emptyset$ . We set

$Y$
$:=P_{xy}\backslash \bigcup_{n\in N}D_{n}$ .
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For each $n\in N$ , let $F_{n}$ be a smooth function on $D_{n}$ defined by

$F_{n}(x, y)$ $:=\exp(-2^{n}-\frac{1}{1-2^{2n+3}\{(x-1/2^{n})^{2}+(y-1/2^{n})^{2}\}})$ .

Then

$S_{0}$

$:=Y\cup\bigcup_{n\in N}G_{F_{n}}$

is an element of $\Sigma_{(C_{b},C_{g})}$ . We see that $S_{0}$ contains no canonical parallel curved
surface generated by $(C_{b}, C_{g})$ and that $S_{0}$ is generated but not uniquely generated
at $0$ . We may prove that $\Sigma_{(C_{b},C_{g})}$ gives plural germs as long as $C_{b}$ is a curve in
$P_{xy}$ through $0$ tangent to the y-axis at $0$ .

EXAMPLE 4.6. Let $k$ be a smooth, positive-valued function on an open
interval $(-2\pi/3,2\pi/3)$ satisfying the following:

(a) $k^{\prime}>0$ on $(-2\pi/3, -\pi/3)$ ;
(b) $k\equiv 1$ on $[-\pi/3, \pi/3]$ ;
(c) $k^{\prime}<0$ on $(\pi/3,2\pi/3)$ .

Let $\lambda$ : $(-2\pi/3,2\pi/3)\rightarrow\{z=1\}$ be a smooth map from $(-2\pi/3,2\pi/3)$ into the
plane $\{z=1\}$ in $R^{3}$ satisfying $|\lambda^{\prime}|\equiv 1,$ $|\lambda^{\prime\prime}|\equiv k$ and

$\lambda([-\pi/3, \pi/3])=\{(\cos\theta, \sin\theta, 1);\theta\in[-\pi/3, \pi/3]\}$ .

We set $C_{b}:=\lambda((-2\pi/3,2\pi/3))$ . In addition, we set

$C_{g}$ $:=\{(r, 0, z)\in R^{3}; z=e\cdot e^{-1/r}, r>0\}$ .

Then $(C_{b}, C_{g})$ is a generating pair. We see that

$s_{c_{b},c_{g}:=\bigcup_{p\in C_{b}}\Phi_{p}(C_{g})}$

is a canonical parallel curved surface generated by $(C_{b}, C_{g})$ and that $P_{xy}$ is a
base plane of $S_{C_{b},C_{g}}$ . Let $\overline{C_{0}}$ be the intersection of the plane $P_{xy}$ with the closure
$\overline{S_{C_{b},C_{g}}}$ of $S_{C_{b},C_{g}}$ in $R^{3}$ and $C_{0}$ the interior of $\overline{C_{0}}$ . Then we see that each connected
component of $C_{0}\backslash \{0\}$ is an embedded curve but that $C_{0}$ is not immersed at $0$ .
Let $e_{1},$ $e_{2}$ be the two ends of $\overline{C_{0}}$ and $D_{0}$ the domain bounded by $\overline{C_{0}}$ and the line
segment determined by $e_{1},$ $e_{2}$ . Then we see that the set

$S_{0}$ $:=S_{C_{b},C_{g}}\cup C_{0}\cup D_{0}$
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is a parallel curved surface such that $P_{xy}$ is a base plane of $S_{0}$ . In addition, we see
that $S_{0}$ is not part of any surface of revolution and that $S_{0}$ is generated at any
point of $S_{0}\backslash \{0\}$ but not generated at $0$ .

Example 4.6 implies Theorem 1.3.
In order to prove Theorem 1.4, we shall use the following:

PROPOSITION 4.7. Let $S$ be a connected, complete, embedded, parallel curved
surface which is uniquely generafed at any parallel point of $S$ with respect to a base
plane. Then $S$ is a canonical parallel curved surface generated by a generating pair
$(C_{b}, C_{q})$ such that each of $C_{b}$ and $C_{g}$ is isometric to $R$ or a simple closed curve. $In$

particular, $S$ is homeomorphic to a plane, a cylinder or a torus.

5. Parallel Points of a Parallel Curved Surface
A parallel point $p$ of $S$ with respect to a base plane $P_{0}$ of $S$ is called isolafed

if there exists a neighborhood of $p$ in $S$ in which $p$ is the only one parallel point
of $S$ with respect to $P_{0};p$ is called isolated in the weak sense if the following hold:

(a) $S$ is not generated at $p$ by any generating pair such that its base curve is
contained in the tangent plane at $p$ ;

(b) there exists a neighborhood $U$ of $p$ in $S$ such that at each parallel point $q$

of $U\backslash \{p\}$ with respect to $P_{0},$ $S$ is uniquely generated by a generating pair
such that its base curve is contained in the tangent plane at $q$ .

By Proposition 3.4, we see that if $p$ is isolated, then $p$ is isolated in the weak
sense.

EXAMPLE 5.1. Let $S$ be part of an embedded surface of revolution such that
a point $p$ of $S$ lies on its axis of rotation. Then $p$ is a parallel point with respect
to a plane normal to the axis. We see that if $S$ is real-analytic and if $S$ is not part
of any plane, then $p$ is isolated and that if $S$ is not real-analytic, then $p$ is not
always isolated. We also see that even if $p$ is not isolated, it is possible that $p$ is
isolated in the weak sense.

EXAMPLE 5.2. Let $S_{0}$ be as in Example 4.6. Then $0$ is a parallel point with
respect to a base plane $P_{xy}$ . In addition, $S_{0}$ is not generated at $0$ . However, since
in any neighborhood of $0$ , there exists another parallel point $p$ with respect to $P_{0}$

than $0$ such that $S_{0}$ is not uniquely generated at $p$ , we see that $0$ is not isolated in
the weak sense.

We shall prove
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PROPOSITION 5.3. Let $S$ be a connected, embedded, parallel curved surface and
$P_{0}$ a base plane of $S$ .

(a) If there exis $ts$ a parallel point $p$ of $S$ with respect to $P_{0}$ which is isolated
in the weak sense, then $S$ is part of a surface of revolution such that $p$ lies
on its axis of $ro$ tation.

(b) In addition, $\iota fS$ is complete, then $S$ is a surface of revolution which crosses
its axis of $ro$ tation at just one point orjust two points; correspondingly, $S$ is
homeomorphic to a plane or a sphere.

We shall also prove

PROPOSITION 5.4. Let $S$ be an embedded, parallel curved surface and $P_{0}a$

base plane of S. Then for a parallel point $p$ of $S$ with respect to $P_{0}$ ,

(a) if $p$ is a non-umbilical point, then $S$ is uniquely generated at $p$ by a
generating pair such that its base curve is contained in the tangent plane
at $p$ ;

(b) $lfp$ is an isolafed umbilical poin $t$ , then $p$ is isolafed in the weak sense.

By (a) of Proposition 5.3 together with (b) of Proposition 5.4, we obtain
Theorem 1.1. In addition, by Proposition 4.7, Proposition 5.3 and Proposition
5.4, we obtain Theorem 1.4.

PROOF OF PROPOSITION 5.3. Suppose that there exists a parallel point $p$ with
respect to $P_{0}$ which is isolated in the weak sense. Then let $(x, y, z)$ be orthogonal
coordinates on $R^{3}$ satisfying the following:

(a) $p$ corresponds to (0,0,0);
(b) $P_{xy}$ is tangent to $S$ at $p$ .

Let $f$ be a smooth function defined on $\{x^{2}+y^{2}<r_{0}^{2}\}$ for some $r_{0}>0$ satisfying
the following:

(a) $G_{f}$ is a neighborhood of $p$ in $S$ ;
(b) at each parallel point $q$ of $G_{f}\backslash \{p\}$ with respect to $P_{0},$ $S$ is uniquely

generated by a generating pair such that its base curve is contained in the
tangent plane at $q$ .

Suppose that there exists a point $q0$ of $\Xi_{G_{f},P_{0}}$ such that $P_{P_{0},q_{0}}^{\perp}$ does not contain $p$ .
Then we see that there exists a point $q\mathfrak{l}$ of $C_{P_{0},q0}\cap G_{f}$ such that $P_{P_{0},q_{1}}^{\perp}$ contains $p$ .
Since at any parallel point of $G_{f}\backslash \{p\},$ $S$ is uniquely generated, we see that there
exists a simple curve $C_{b}$ through $p$ contained in $P_{xy}\cap G_{f}$ . The curve $C_{b}$ is normal
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to $P_{P_{0},qI}^{\perp}$ at $p$ . We set $C_{g}:=P_{P_{0},q_{1}}^{\perp}\cap G_{f}$ . Then we see that $S$ is generated at $p$ by
a generating pair $(C_{b}, C_{g})$ , which causes a contradiction. Therefore we see that
for any $q0\in\Xi_{G_{f},P_{0}},$ $P_{P_{0},q0}^{\perp}$ contains $p$ . Then we see that $S$ is part of a surface
of revolution such that $p$ lies on its axis of rotation. Hence we obtain (a) of
Proposition 5.3. In addition, by (a) of Proposition 5.3, we obtain (b) of Propo-
sition 5.3. $\square $

$PR\infty F$ OF (a) OF PROPOSITION 5.4. Let $(x, y, z)$ be as in the proof of
Proposition 5.3 and $f$ a smooth function defined on a neighborhood of $p$ in $P_{xy}$

such that any point of $G_{f}$ is a non-umbilical point of $S$ . Then not all the partial
derivatives of $f$ of order two at $(0,0)$ are equal to zero. In addition, since $f$

satisfies $\varpi_{f}\equiv 0$ , we may suppose that all the partial derivatives of $f-x^{2}$ of
order two at $(0,0)$ are equal to zero. Then there exists a positive number $x_{0}>0$

satisfying $X_{f}(x)$ $:=(x, 0,f(x, 0))\in\Xi_{G_{f},P_{0}}$ for any $x\in(-x_{0}, x_{0})\backslash \{0\}$ . Let $C_{b}$ be an
integral curve of a principal distribution on $G_{f}$ tangent to the y-axis at $(0,0,0)$ .
Then noticing Corollary 3.3 and Corollary 3.5, we obtain $ C_{b}\cap C_{P_{0},X,(x)}=\emptyset$ for
any $x\in(-x_{0}, x_{0})\backslash \{0\}$ and we may suppose

$G_{f}=C_{b}\cup\bigcup_{x\in(-x_{0},x_{0})\backslash \{0\}}C_{P_{0},X_{/}(x)}$
.

Therefore we obtain $C_{b}\subset P_{xy}$ . We set $C_{g}$ $:=P_{XZ}\cap G_{f}$ . Then by Corollary 3.3, we
see that $(C_{b}, C_{g})$ is a generating pair such that $G_{f}$ is generated at $p$ by $(C_{b}, C_{g})$ .
We easily see that $G_{f}$ is uniquely generated at $p$ . Hence we obtain (a) of Prop-
osition 5.4. $\square $

PROOF OF (b) OF PROPOSITION 5.4. By Proposition 4.1 together with (a) of
Proposition 5.4, we see that there exists a neighborhood $U$ of $p$ in $S$ such that at
each point of $U\backslash \{p\},$ $S$ is uniquely generated by a generating pair the base curve
of which is contained in a plane parallel to $P_{0}$ . Suppose that $S$ is generated at
$p$ by a generating pair $(C_{b}, C_{g})$ such that $P_{b}$ is the tangent plane at $p$ . We may
suppose that any point of $C_{b}\backslash \{p\}$ is a non-umbilical point of $S$ . Then by Prop-
osition 3.4, we see that $p$ is a non-umbilical point or a non-parallel point with
respect to $P_{0}$ , which causes a contradiction. Hence we obtain (b) of Proposi-
tion 5.4. $\square $

6. Partial Differential Equations $\varpi=0$ and $\varpi^{\perp}=0$

Let $f$ be a smooth function of two variables. From Proposition 2.2, we see
that $G_{f}$ is a parallel curved surface such that the xz-plane is its base plane if and
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only if $f$ satisfies $\varpi_{f^{\perp}}\equiv 0$ . From Proposition 4.2, we obtain the following
proposition in relation to the existence of a solution for the partial differential
equation $\varpi^{\perp}=0$ :

PROPOSITION 6.1. Let $I_{1},$ $I_{2}$ be open intervals which contain $0$ and $a_{1},$ $a_{2}$

smooth functions on $I_{1},$ $I_{2}$ , respectively. Suppose $a_{1}(0)=a_{2}(0)$ and $a_{1}^{\prime}(0)=0$ . Then
there exist a neighborhood $V$ of $(0,0)$ in $R^{2}$ and a smooth function $f$ defined on $V$

satisfying the following:

(a) $\varpi_{f^{\perp}}\equiv 0$ on $V$;
(b) $f(x, O)=a_{1}(x)$ for any $x\in I_{1}$ satisfying $(x, O)\in V$ ;
(c) $f(O, y)=a_{2}(y)$ for any $y\in I_{2}$ satisfying $(0, y)\in V$ .

In addition, by Proposition 3.1 together with Proposition 3.4, we obtain the
following proposition in relation to the uniqueness of a solution for $\varpi^{\perp}=0$ :

PROPOSITION 6.2. Let $f_{1},$ $f_{2}$ be smooth functions defined on a neighborhood $V$

of $(0,0)$ in $R^{2}$ satisfying the following:

(a) $pf_{i}(0,0)=0$ for $i=1,2$ ;
(b) $\varpi_{f^{\perp_{j}}}\equiv 0$ on Vfor $i=1,2$ ;
(c) $f_{1}(x, O)=f_{2}(x, 0)$ for any $x\in R$ satisfying $(x, 0)\in V$ ;
(d) $f_{1}(0, y)=f_{2}(0, y)$ for any $y\in R$ satisfying $(0, y)\in V$ .

Then there exists a neighborhood $V^{\prime}$ of $(0,0)$ in $V$ satisfying $f_{1}\equiv f_{2}$ on $V^{\prime}$ .

From Proposition 2.1, we see that $G_{f}$ is a parallel curved surface such that
the xy-plane is its base plane if and only if $f$ satisfies $\varpi_{f}\equiv 0$ . From Proposition
4.2, we obtain the following proposition in relation to the existence of a solution
for the partial differential equation $\varpi=0$ :

PROPOSITION 6.3. Let $C_{0}$ be a simple curve in $P_{xy}$ through $(0,0)$ tangent to
the y-axis at $(0,0)$ . Let $I_{0}$ be an open interval which contains $0$ and $a_{0}$ a smooth
function on $I_{0}$ satisfying $a_{0}(0)=0$ . Then there exist a neighborhood $U$ of $(0,0)$ in
$R^{2}$ and a smooth function $f$ defined on $U$ satisfying the following:

(a) $\varpi_{f}\equiv 0$ on $U$;
(b) $f|_{C_{0}\cap U}\equiv 0$ ;
(c) $f(x, O)=a_{0}(x)$ for any $x\in I_{0}$ satisfying $(x, 0)\in U$ .
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We shall prove Theorem 1.2 in the present section. By Theorem 1.2, Corol-
lary 3.5 and Proposition 6.2, we obtain the following proposition in relation to
the uniqueness of a solution for $\varpi=0$ :

PROPOSITION 6.4. Let $f_{1},$ $f_{2}$ be smooth functions defined on a neighborhood $U$

of $(0,0)$ in $R^{2}$ satisfying the following:

(a) $\varpi_{f_{i}}\equiv 0$ on Ufor $i=1,2$ ;
(b) there exists a simple curve in $P_{xy}$ through $(0,0)$ tangent to the y-axis at

$(0,0)$ on which $f_{i}\equiv 0$ for $i=1,2$ ;
(c) $f_{1}(x, 0)=f_{2}(x, 0)$ for any $x\in R$ satisfying $(x, O)\in U$ ;
(d) not all the partial derivatives of $f_{i}$ at $(0,0)$ are equal to zero for $i=1,2$ .

Then there exists a neighborhood $U^{\prime}$ of $(0,0)$ in $U$ satisfying $fI\equiv f_{2}$ on $U^{\prime}$ .

REMARK 6.5. Let $C_{0}$ and $a_{0}$ be as in Proposition 6.3 and set

$C_{b}$ $:=C_{0}$ , $C_{g}$ $:=\{(x, 0, a_{0}(x));x\in I_{0}\}$ .

Suppose that not all the derivatives of $a_{0}$ at $0$ are equal to zero. Then from
Proposition 6.4, we see that $(C_{b}, C_{g})$ is a generating pair such that the set $\Sigma_{(C_{b},C_{p},)}$

determines the only one germ.

REMARK 6.6. Let $C_{0}$ and $a_{0}$ be as in Proposition 6.3. As we have seen in
Example 4.5, if all the derivatives of $a_{0}$ at $0$ are equal to zero, then $\Sigma_{(C_{b},C_{/})}$

always gives plural germs. This means that we may not remove condition (d) in
Proposition 6.4.

REMARK 6.7. By Theorem 1.2, Proposition 4.7, Proposition 5.3 and Propo-
sition 5.4, we see that a connected, complete, real-analytic, embedded and parallel
curved surface is homeomorphic to a sphere, a plane, a cylinder or a toms, which
was already obtained in [2].

PROOF OF THEOREM 1.2. Let $F$ be a smooth function as in the beginning of
the second paragraph in Section 1 such that not all the partial derivatives of $F$ at
$(0,0)$ are equal to zero. Then there exists a homogeneous polynomial $g$ of degree
$k\geqq 2$ such that all the partial derivatives of $F-g$ of order less than $k+1$ are
equal to zero. By $\varpi_{F}\equiv 0$ , we obtain $\varpi_{g}\equiv 0$ . Then noticing Remark 1.6, we may
suppose one of the following:

(a) $k$ is even and $g$ is equal to $(x^{2}+y^{2})^{k/2}$ ;
(b) $g$ is equal to $x^{k}$ .
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If $g=(x^{2}+y^{2})^{k/2}$ , then $0$ is an isolated parallel point of $G_{F}$ with respect to a
base plane $P_{xy}$ . Therefore from (a) of Proposition 5.3, we see that $G_{F}$ is part of a
surface of revolution such that $0$ lies on its axis of rotation. Suppose $g=x^{k}$ .
Then there exists a positive number $x_{0}>0$ satisfying $ X_{F}(x):=(x, 0, F(x, 0))\in$

$\Xi_{G_{F},P_{\backslash j}}$ for any $x\in(-x_{0}, x_{0})\backslash \{0\}$ . Suppose that for each positive integer $n\in N$ ,

there exists a number $x_{n}\in(0, \min\{x_{0},1/n\})$ satisfying $q_{F}(x_{n}, 0)\neq 0$ . Then notic-
ing $\lim_{x\rightarrow 0}q_{F}(x, 0)/x^{k-1}=0$ , we see that there exists a positive integer $n_{0}\in N$

such that for each integer $n\geqq n_{0},$ $P_{P_{\backslash y},X_{F}(x_{n})}^{\perp}$ is not normal to $C_{P_{\lambda}y\prime X_{F}(X\downarrow)}$ at an
intersection, which causes a contradiction. Therefore we obtain $q_{F}(x, 0)=0$ for
any $x\in(-x_{0},x_{0})$ . In particular, we see that $P_{XZ}$ is normal to $G_{F}$ at any point of
a neighborhood of $0$ in $P_{x_{-}^{-}}\cap G_{F}$ . Let $C_{b,+}$ (respectively, $C_{b,-}$ ) be the interior of
the intersection of $P_{xy}$ with the closure of

$\bigcup_{x\in(0,x_{0})}C_{P_{\backslash },,X_{F}(x)}(respectively,\bigcup_{x\in(-x_{0},0)}C_{P_{\mathscr{O}},X_{F}(x))}$

in $R^{3}$ . Then $C_{b,+}$ and $C_{b}$,-are smooth curves in $P_{xy}$ tangent to the y-axis at $0$ .
We see by Proposition 3.4 that at any point of $C_{b,+}$ and $C_{b,-}$ , not all the partial
derivatives of $F$ of order $k$ are equal to zero. Suppose that for each neighborhood
$U_{+}$ of $0$ in $C_{b,+}$ , there exists a point of $U_{+}\backslash \{0\}$ which is not contained in $C_{b,-}$ .
Then we may find a point $p_{+}$ of $U_{+}\backslash \{0\}$ such that the plane normal to $U_{+}$ at $p_{+}$

is not normal to $C_{b}$,-at an intersection, which causes a contradiction. Therefore
we see that there exists a neighborhood $U$ of $0$ in $C_{b,+}$ contained in $C_{b,-}$ . We
set $C_{b}$ $:=U$ and let $C_{g}$ be a connected neighborhood of $0$ in $P_{xz}\cap G_{F}$ satisfying
$C_{q}\backslash \{0\}\subset\Xi_{G_{F},P_{\backslash \iota}}$ . We see that $(C_{b}, C_{g})$ is a generating pair such that there exists
a neighborhood of $0$ in $G_{F}$ which is a canonical parallel curved surface generated
by $(C_{b}, C_{g})$ . Noticing $C_{g}\backslash \{0\}\subset\Xi_{G_{F},P_{\backslash y}}$ , we obtain Theorem 1.2. $\square $

7. Construction of a Compact, 0rientable, Parallel Curved Surface of
Genus $g\geqq 2$

Let $g$ be an integer not less than two, and let $C_{1},$ $C_{2},$
$\ldots,$

$C_{g}$ be circles in $P_{xy}$

with radius two and $D_{i}$ the open disc bounded by $C_{j}(i\in\{1,2, \ldots, g\})$ . We set
$\overline{D_{i}}$ $:=D_{i}\cup C_{j}$ for $i\in\{1,2, \ldots, g\}$ and suppose $\overline{D_{i}}\cap\overline{D_{j}}=\emptyset$ for arbitrary distinct
two $i,$ $j\in\{1,2, \ldots, g\}$ . Let $C_{0}$ be a circle such that the open disc $D_{0}$ bounded by
$C_{0}$ contains $\overline{D_{1}},\overline{D_{2}},$ $\ldots,\overline{D_{g}}$ . We set $S_{g}^{(0)}$ $:=C_{0}\cup D_{0}\backslash \bigcup_{i^{g}=1}D_{j}$ . Let Proj be a map
from $R^{3}$ onto $\{z=2\}$ defined by Proj $(x, y, z)$ $:=(x, y, 2)$ for each $(x, y, z)\in R^{3}$ .
We set $S_{g}^{(2)}:=Proj^{(2)}(S_{g}^{(0)})$ .



242 Naoya ANDO

Let $k$ be a smooth function on $(-2,2)$ defined by

$k(t)$ $:=a_{0}\exp(\frac{1}{t^{2}-4})$ ,

where

$a_{0}$

$:=\frac{\pi}{\int_{-2}^{2}\exp(\frac{1}{t^{2}-4})dt}$

.

Then $k$ satisfies

$\int_{-2}^{2}k(t)dt=\pi$ . (2)

For a sufficiently small positive number $\epsilon_{0}>0$ , let $\gamma$ be a map from $(-2-\epsilon_{0}$ ,
$2+\epsilon_{0})$ into $P_{XZ}$ satisfying $|\gamma^{\prime}|\equiv 1$ on $(-2-\epsilon_{0},2+\epsilon_{0}),$ $|\gamma^{J/}|=k$ on $(-2,2)$ and

$\gamma(t)=\left\{\begin{array}{l}(2+t,0,0) fort\in(-2-\epsilon_{0},-2],\\(2-t,0,c) fort\in[2,2+\epsilon_{0}),\end{array}\right.$ (3)

where $c>0$ . Noticing (2), we see that such a map as $\gamma$ exists. We represent $\gamma$ as
$\gamma=(\gamma_{1},0, \gamma_{3})$ and we set

$\Gamma:=(\gamma_{1},0,\frac{2}{c}\gamma_{3})$ .

Then from (3), we see that for $t\in[2,2+\epsilon_{0}$ ), $\Gamma(t)$ is contained in the plane
$\{z=2\}$ . We set $C^{\perp}:=\Gamma((-2,2))$ .

For each $i\in\{0,1, \ldots, g\}$ and each $p\in C_{j}$ , let $\Psi_{p}$ be an isometry of $R^{3}$

satisfying the following:

(a) $\Psi_{p}(0,0,0)=p$ ,
(b) for a sufficiently small $\epsilon_{0}>0,$ $\Psi_{p}(t, 0,0)$ is contained in $S_{g}^{(0)}$ for any

$t\in(-\epsilon_{0},0]$ ,
(c) $(d\Psi_{p})_{(0,0,0)}((\partial/\partial x)_{(0,0,0)})$ is normal to $C_{j}$ ,
(d) $(d\Psi_{p})_{(0,0,0)}((\partial/\partial z)_{(0,0,0)})=(\partial/\partial z)_{p}$ .

We set

$S_{i}^{\perp}:=\bigcup_{p\in C_{i}}\Psi_{p}(C^{\perp})$
, $S_{g}^{(\perp)}$ $:=\bigcup_{i=0}^{g}S_{i}^{\perp}$ , $S_{g}$ $:=S_{g}^{(0)}\cup S_{g}^{(\perp)}\cup S_{g}^{(2)}$ .

Then we see that $S_{g}$ is a connected, compact, orientable, embedded, parallel
curved surface of genus $g$ . Since there exist embedded, parallel curved surfaces
homeomorphic to a sphere and a torus, respectively, we obtain Theorem 1.5.
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