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REDUCTION OF LOCALLY CONFORMAL SYMPLECTIC
MANIFOLDS WITH EXAMPLES OF NON-KAHLER
MANIFOLDS

By

Tomonori Noba

Abstract. Let (M,Q) be a locally conformal symplectic manifold.
Q is a non-degenerate 2-form on M such that there is a closed 1-
form w, called the Lee form, satisfing dQQ = w A Q. In this paper we
consider Marsden-Weinstein reduction theorem which induces Jacobi-
Liouville theorem as a special case. For locally conformal Kihler
manifolds, this reduction theorem gives a construction of non-Kihler
manifolds in general dimension.

1. Introduction

For a nondegenerate 2-form Q on a connected smooth manifold M of real
dimension 2n (n > 1), we say that (M, Q) is locally conformal symplectic if there
exists a closed 1-form w, called the Lee form, such that dQ = w A Q. Further-
more, if w is exact, (M, Q) is said to be globally conformal symplectic, in which
case, M has a natural symplectic structure. For any real-valued smooth function
S eC*(M) on M, let X; be the associated Hamiltonian vector field defined by
i(X)Q =df — fo. Set C*(M)? := {f € C*(M);i(Xs)w = 0}. Let G be a Lie
group with Lie algebra g which acts differentiably on M preserving Q. To each
¢ € g, we associate a vector field &£;, on M obtained by the infinitesimal action of
f.kAssume, for every ¢ e g, a smooth function u, exists in such a way that the
Hamiltonian vector field Xy, coincides with {3,. Then we can uniquely define a
moment map u: M — g* by

& u(x)) = pe(x), xeM.

Key words and phrases. locally conformal symplectic manifold, non-Kéhler manifold, moment map.
2000 Mathematics Subject Classification. Primary 53D20, Secondary 53CS55.

Received September 11, 2002.

Revised January 20, 2003.



128 Tomonori Noba

This map is always G-equivariant. Let g;, be the set of all regular values of
u#, and for each #n e g*, let G, denote the isotropy subgroup of G at 5. Put
M, :=puY(n)/G,, and let m,:u~'(n) > M, and 1, :p"'(7) — M be the pro-
jection and the inclusion, respectively. We first prove the following reduction
theorem:

THEOREM A. (1) Let ne€ gy, be such that Gy acts on u='(n) properly and
freely. Assume that 1,00 = 0. Then M, admits a unique symplectic form Q, such
that 7, Qy = 1,Q.

(2) Assume that 0 € gy, and that the isotropy subgroup Go of G at 0 acts on
u~1(0) properly and freely. Then My admits a unique locally conformal symplectic
SJorm Qg with Lee form wq satisfing nyQo = 13Q and ngjwy = 150.

(3) Let f: M — R be a G-invariant function and F, the flow on M of the
Hamiltonian vector field Xy. Suppose that either n =0 or f e COO(M)A. Then
the flow F, canonically induces a flow F, on M, satisfing n,oF, = F,omn, and
Jfpomy = fou, for some f, e C*(M,). Moreover f, is constant along the flow F,
if f e C(M)".

We next consider a reduction theorem for locally conformal Kihler struc-
tures. Namely, assuming (M,Q) to be a locally conformal Kidhler manifold in
Theorem A, we obtain:

THEOREM B. In theorem A, assume further that (M,Q) is a locally conformal
Kdhler manifold.

(1) Suppose that 0 € gy, and that the isotropy subgroup Go of G at 0 acts
on u~Y(0) properly and freely. If My is compact and wq is not d-exact, then M,
admits no Kdhler metrics.

(2) For each negy,, My= pY(n)/G, admits a natural complex structure.

Now we construct non-Kéhler manifolds as an application of this theorem.
Let us fix n+ 1 complex numbers «,...,a,+1 such that || = = |ay41| > 1.
Denote by (a) the cyclic group generated by the transformations «: (zi,...,
Znt1) = (00215 .oy Oy 1Zns1) O crl - {0}. This group acts freely and holomor-
phically on C”"*!' — {0} as a properly discontinuous group. Thus the quotient

Haller and Rybicki also constructed locally conformal symplectic manifolds by analogy with the
reduction theorem for Poisson manifolds. The crucial point of our work lies in the key equality
Eyw(X) =0 in which allows us to obtain a very simple formulation as above.
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space CH™!:=(C""' —{0})/<«) is a complex manifold, and called a Hopf
manifold. Consider the real 1-parameter family of nondegenerate 2-forms

Q) — V71 ]|z“2rzdzj/\dzj + t||z”2(;;l)l()z Zidz)) A (3 zi de),
(=

t>—1

on C"' —{0}. Each Q, define a locally conformal Kéhler structure on CH"*!
with Lee form

z;dz; + Z; dz;
C()(’)z—(]—*—t)Z(j j - J J)’ > —1.
b
Fix pairwise relatively prime integers aj,...,a,11 with @y >ay > > apy;.

Define an action of G = S' = {109 R} on C"*' := {z = (z1,...,231)} by

Sl x Cn-H - CrH—l :627:\/—10, (Zl’“ ) ,Zn+1)

— (eaIZm/—thZl ) ’ea,,+|27r\/—_102n+1). (11)

P

This leads to an action on CH"*!. Then the corresponding moment map u is

given by

_a1[21|2 +--+ a,,+1|z,,+1]2
211>

Let ¢ and k be, respectively, the numbers of positive a;’s and negative a;’s.

Assume that # > 0, k > 0 and that £ + k = n+ 1. Then by (2) of Theorem A, we

obtain the reduction space M, over 0 e g*. Furthermore, without loss of gen-
erality, we may assume ¢ < k. Then

,u(z-l,...,z,,ﬂ) - (12)

THEOREM C. In the situation just above, My with natural complex structure
admits no Kdihler metrics. Moreover, its cohomology ring is

H*(Mo; Z) = ((Z[x2] ® Alex-1])/R) @ H*(S'; Z),

where R is the ideal of Z[x;] ® Alex_1] generated by three elements

4 /-1 k k-1 4
U/_](ala-'waf)xz 3 O-k_l(a/+19'°',an+1)x2 y  Xp€2k—1.

Here o' :==0 and each ol", 1 <i<m, denotes the i-th elementary symmetric
Sfunction of m variables.
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2. Hamiltonian Dynamics for Locally Conformal Symplectic Manifolds

Let {U,},., be an open cover of M such that w =do, for some o, €
C*(U,) on U,. Then Q, := e ?*Q is a symplectic form on U,. For fe C*(M),
define the Hamiltonian vector field X, of f, :=e % f by i(X,)Q, = df,. Hence,
on U,,

(X)Q =df — f doy = df — fo.

Since the right-hand side is independent of local expressions, the vector fields
X,, « € A, glue together to define the Hamiltonian vector field Xy of f such that
Xly, = Xo. Let X(M) be the space of all smooth vector fields on M.

PROPOSITION 2.1. Let (M,Q) be a locally conformal symplectic manifold.
Then the map of C®(M) to X(M) which sends each f € C*(M) to Xy € X(M) is
injective.

ProoF. Assume X; = 0. Then we have df — fw = 0. Hence f vanishes at
some point xo € M, because otherwise, w would be exact in contradiction. Since
w is d-closed,

w = —dt/1,

on some open neighborhood U of xo, where 7 is nowhere vanishing on U. By this
together with df = fw, we obtain d(ft)=tdf + fdr=0, ie., ft is constant
on U. Hence by f(xp) =0, the function f vanishes everywhere on U. By the
connectedness of M, it is now easy to see that f vanishes everywhere on M.

1

For (M,Q) above, the canonical vector field A is the Q-dual of the Lee
form w, i.e., A is the vector field on M defined by i(4)Q = w. Then a smooth
function f on M sits in C*(M )* if and only if df(4) vanishes identically on
M in view of the equalities w(Xy) = i(X;)i(4)Q = —i(A)(df — fw) = —df (4).
To each pair (f,g) of functions in C®(M), we associate the Poisson bracket
{f,g} = Q(X,,X;) = Xrg — gw(Xy). This obviously satisfies the Jacobi identity,
though the Leibniz rule does not necessarily hold. Moreover, (C*(M . {,}) is a
Poisson algebra such that

X(s.q = X7, X,], for all f,geC*(M)". (2.1)

LemMma 2.2. (1) If fe C®(M)*, then f is constant along the flow of X;.
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2) Let F, be the flow of X;. Then F Q= Q for all te R if and only if
f t
feCc? (M)

ProOF. (1) By the defition of Xy, we have df (Xy) — fo(Xr) = Q(X;, Xr) =
0. Hence df (X;) = fo(X;) =0 if fe C®(M)™.

(2) Since (d/dt)F}Q=FLyxQ=F}(i(X;)(wAQ)+d(df — fw))=Fo(Xy)Q,
it follows that (d/dt)F;Q =0 if and only if f e C*(M)“. O

REMARK 2.3. Let Q,, t€]0,1], be a one-parameter family of locally con-
formal symplectic forms on M. For each (M,€,), let A4, and w, be the associated
canonical vector field and the Lee form, respectively. If there exists a 1-form g,
on M satisfing

(d/dt)Qt = dO't - at(At)Qt — Wy A\ Oy,

then there is a one-parameter family of diffeomorphisms ¢, on M such that
9 Q; = Qo for all te R. Indeed, ¢, is the flow of the vector field X; defined by
i(X;)Q[ - —Gt-

3. Moment Maps for Locally Conformal Symplectic Manifolds

Let G x M — M be a smooth action of a Lie group G on a locally con-
formal symplectic manifold (M,Q) such that the action preserves Q. We here
assume that, for every ¢ e g, the associate vector field £,, is Hamiltonian, i.e., £y
is expressible as X, for some smooth function u: on M. We first observe the
following:

LeMMmA 3.1. w(&y) =0 for all £eqg.

PROOF. By i(&y)Q = du; — pz0 and i(Epy) od = Lg,, —d o i(Ey), we have
i(Ey) dQ =du; A in view of Lz, Q =0. On the other hand,

(&) dQ = i(Ep) (@ A Q) = (((Er)0)Q — 0 A i(Er)Q = 0(E41) Q2 — 0 Al

Hence w(Sy)Q = du: A+ wAdu; =0. By the nondegeneracy of Q, we now
conclude that w(&,,) =0. ]

Put &9, := (g7!),&a for each g € G, where g is regarded as a diffeomorphism
of M. Then by i(¢3,)Q = g*(du; — pew) = i(Xy+,.)Q, we have g*p: = piaq(y-1)e-
This means the equivariance of the moment map x: M — g*. By [2.1),
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X{ucwq} = [Xﬂz’Xﬂr,] = [Casim] = —[Enlp = —X/‘[c’.'ll'

Hence by [Proposition 2.1, we have {usu,} =~ for all & neg.

LEMMA 3.2. Let ne gy, and peu(n). Assume that the action of G, on
u~Y(n) is free and proper. Then, on the tangent space T, »(M) of M at p, the
Jfollowing holds:

(1) Tp(Gy - p) = T,(G- p)N T, (1 (),

(2) For every X € Ty(u~'(n)) and Y € T,(G - p), there exists an element &Y
in g such that Q(X,Y) = u:v(X). In particular T,(u~'(n)) is the Q-orthogonal
complement of T,(G-p) in T,(M) if and only if per(X) =0 for all X e
To(1~'(n)) and Y € T,(G - p).

Proor. (1) Let ¢ € g and g, be the Lie algebra of the isotropy subgroup G;.
By the equivariance of x4, we have du(¢))(p) =ad(£)*(n), and hence & (p) €
Tp(«~'(n)) if and only if ad(¢)*(n) =0, ie., £eg,.

(2) For Y as above, there exists an element ¢¥ in g such that the associated
vector field ¢}, on M coincides with Y. Then

QX, Y) = —i(X)i(Y)Q = —i(X)i(&)Q = —i(X)(dpsr — peyw) = prox(X)

for all X and Y as above, as required. O

PROPOSITION 3.3.  For a G-invariant smooth function f: M — R, let F, be
the flow of Xy. For a point pe M, if either peu='(0) or fe C®(M)*, then
H(Fi(p)) = u(p).

PrOOF. Since f is invariant, we have i(&,) df =0 for every & eg. Then
by (&) df = —i(Xp)i(Ea)Q = —i(Xy) g + pei(Xp)w, we obtain i(X;) du; =
u:i(Xr)w. The claim is now immediate. O

PrROOF OF THEOREM A. For every X € T,(u"!()), where e Oreg> let [X]
denotes its canonical image in T,(x"'(%))/T,(G, - p). By (2) of Lemma 3.2, if
either # is zero or « vanishes on T,(4 (7)), then we can define forms Q, and w,
on M, by

Q,((X],[Y]) :=Q(X,Y) and w,([X]) = o(X),

where X, Y e T,(u"!()). This obviously satisfies n,Q, = 1,Q and 7,0, = 0.
Hence 7, dQy = 1,(0 AQ) = m;(wy AQy). Then the surjectivity of 7, and dx,

implies dQ, = w, AQ,. From this identity, we obtain (2) by setting # = 0. The
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same identity also gives (1), because dQ, =0 follows from w, =0. We shall

finally prove (3) as follows. By [Proposition 3.3, ¢~ !(5) is invariant under the
flow F, of Xy, and hence F; induces a well-defined flow F, on M,. Since f is

G-invariant, there exists a unique function f, on M, such that f,omn, = foy,.
Now we assume f e C*(M)*. Then Ly, Q = o(X;)Q = 0. Since n;Ft*Q,, =
Fn,Qy = F'1;Q=17Q = n,;Q,, the surjectivity of n, implies F'Q, =Q,, as
required. L]

PrROOF OF THEOREM B. Let (M,g,J) be a Hermitian manifold whose
fundamental 2-form Q is locally conformal Kéhler.

(1) Note that du(JEy)(p) = Q&p, JE3)(P) = Lus Epdalp) forall £,¢" e g
and pe,u_l(gr*eg), where J is the complex structure of M, and <, )q is the
metric on M associated to Q. Hence g* is identified with Jg. In particular, M) is
naturally a complex manifold and admits no Kéhler structures by the following
general fact by Vaisman ([11]): For a compact locally conformal Kéhler manifold
(M,Q), there exists some global Kdhler metric on M if and only if (M,Q) is a
globally conformal Kiéhler manifold.

(2) Fix 7€ gp,- On each peu'(n), we consider subspaces E, := {X(p) e
Tou' (1) du(X) = du(JX) = 0} and {Ey + e}, == {(Enr +ueA)(p)ié € g} in
T,u'(n). Then we obtain an orthogonal decomposition

TyM = E, @ {Cm + 1z A}, @ J{cu + A},

Set E = Upeu_.(”) E,. It is easily seen that EV0 = T'OM| ., N (Tpu ' (n) ® C),
where E!'0 is the v/—1-eigenspace in £ ® C. Assuming the following [Lemma 3.4,
dny|g, — Tr,(pMy is surjective, and then dny|g o J = J, o dny|; define a natural

complex structure J, on M,, as required.

LeMMA 3.4. If there exist {eg, satisfing Cy + peA € g# NT,u ' (n), then
E=0.

Proor. We may prove for all {'eg,,

g(Ey +ped, &) =0 (3.1)

leads to £ = 0. By the definition of Hamiltonian vector fields, g(&y + p:4, &) =
——d,ué(Jéjw). On the other hand, since g is J invariant, g(&,, + uéA,éj’w) =
dus (JEpyr) — per(JTEp) + pg(dus (JA) — per(JA)). We have then for all &' e 9,

{dﬂé(fffu) =0,
due (JSu) — peo(JEa) + pe(dpe (JA) — per(J4)) = 0.
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By the upper equality, we obtain u=w(J¢y) = pew(JE,y,) + duy(JEp), and sub-
stituting this for the lower equality, we have

peg(A, uehyy — En) = 0.

If p; # 0, the this shows 4 € gt. The claim is now obtained in consideration of
(3.1). ]

4. Proof of Theorem C

In this section, we study properties of the reduction space M, in Theorem C.
For each 1€ (—1, ), the Lee form o in the introduction is not d-exact, where
the Lee form w on M, satisfies mywo = zoco . Hence wg cannot be d-exact. Then
by Theorem B, M, admits no Ké&hler metrics.

Let F be the quotient of S%~! x §%-1 (= €’ x C¥) by the S!-action in
in the introduction. As a differentiable manifold, M is the direct product of a G-
invariant circle S! and the S!'-bundle F over (S%~!/S') x ($%~1/S1). To obtain
the cohomology ring of F, we consider the following commutative diagram of
fiblations (see Eschenburg [4], [5]):

F=UQ\U) x UK)JU(¢ = 1) x Uk = 1) —"— Bygyeow

! ;

p
Byyxu-1)xUk-1) — Byiyxumy)?
where U(1) acts on U(¢) x U(k) from the left with weight ay,...,as,ar41,...,
an+1. Recall that H*By,y = Z [c1,¢2,...,¢,) for each positive integer n, where
ci € H¥By(y. By setting ¢/ :=¢;®1 and ¢/ = 1®¢;, we have H*By)xuw) =
Zlcyy..., ¢ cy...,¢;). Then

H*B(U(/)XU(k))Z S Z[X]y s Xy Pl ooy Vo XL ooy X Vs s Vi)

where x/:=c/®1, y/:=1®¢/ and x/:=c¢/®1, y/:=1®¢/. The Serre
spectral sequence associated to the fibration p’: By)xvwk) — B(U( )X UG))? is iso-
morphic to Ey'(p') = H By sy vy ® H'(U(4) x U(k)) If we denote by k, :
H*Byy vy — B 9(p') the natural projection of Ej°(p')-term, then p”

koo : H*B(U({)XU(k))z — Ezoo(pl) c H* BU(/)xU(k) by BOI‘C] .

LemMA 4.1. The differentials d,: E>'(p') — ES*"'=r*1(p') in cohomology
spectral sequence E**(p') converging to H*Byxux) are
(1) dy(eb;_) =0 and dy(es; ) = tkai(x; — y{), f r<2i—1and 1 <i</
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(2) d(ey;—y) =0 and dy(ey 1) = thky(x]' — y/), if r<2j—1and 1 < j <k,
where e}, | = e{i_l ®1 and eé},l =1 ®e§j_1 for generators efi_l and eé‘j_l of

H*U(¢) and H*U(k), respectively.

Let u be a 2-dimensional generator of H 2(BU(I);Z), and let v; and v;’ be
the i-th and j-th generators in H*U(¢/) and H*U(k). The inclusion U(1) x
U —1)x Uk — 1) — (U(¢) x U(k))* is the product of

(p): UQ1) - U(¢) x Uk)
e2n\/—_10 — (e2n\/—_la|6', e e2n\/—_la/0’ eZﬂ\/—_la”lH’ o e27r\/—_1a,,+16)

and the natural inclusion
1: U —-1)xUlk—-1) - U(¢) x U(k).

We have then p*(x!)=0d(ai,...,a)u* ®]1, pr(y) =1®v;, p*(x)=
ajk(a”l,...,anﬂ)uzf@ 1, and p*(yjf’) =1 ®vjf’. Theorem C is now immediate
consequence of the following lemma:

LEMMA 4.2. On the cohomology spectral sequence E}*(p) converging to
H*My, the E3" term is isomorphic to

Zu®L1®uy,..,1®@u,_,1®@v/,...,1®0v,_ | @ Alef,...,e5_1,€ls- - en_il

and the differentials d, : ES'(p) — ESt»'1(p) are -

(1) d,(e5;_) =0 and dy(e};_y) = tka(ol(al,...,an ) ® 1 —1®v)), if r<
2i—land 1 <i<{ -1,

(2) dr(ez;_1) =0 and dy(ey; ) = tky(af(arst, - an)u? @ 1 = 1® /), if
r<2—land 1 <j<k-1,

(3) da(eyy_y) = tkor(af (ar, ..., a,)u* ®1) and dy.(ey,_,) = thkax(af(ars1, .- -,
an+])u2k ® 1).
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