REDUCTION OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS WITH EXAMPLES OF NON-KÄHLER MANIFOLDS

By

Tomonori Noda

Abstract. Let (M,Ω) be a locally conformal symplectic manifold. Ω is a non-degenerate 2-form on M such that there is a closed 1-form ω , called the Lee form, satisfing $d\Omega = \omega \wedge \Omega$. In this paper we consider Marsden-Weinstein reduction theorem which induces Jacobi-Liouville theorem as a special case. For locally conformal Kähler manifolds, this reduction theorem gives a construction of non-Kähler manifolds in general dimension.

1. Introduction

For a nondegenerate 2-form Ω on a connected smooth manifold M of real dimension 2n (n>1), we say that (M,Ω) is locally conformal symplectic if there exists a closed 1-form ω , called the Lee form, such that $d\Omega = \omega \wedge \Omega$. Furthermore, if ω is exact, (M,Ω) is said to be globally conformal symplectic, in which case, M has a natural symplectic structure. For any real-valued smooth function $f \in C^{\infty}(M)$ on M, let X_f be the associated Hamiltonian vector field defined by $i(X_f)\Omega = df - f\omega$. Set $C^{\infty}(M)^A := \{f \in C^{\infty}(M); i(X_f)\omega = 0\}$. Let G be a Lie group with Lie algebra \mathfrak{g} which acts differentiably on M preserving Ω . To each $\xi \in \mathfrak{g}$, we associate a vector field ξ_M on M obtained by the infinitesimal action of ξ . Assume, for every $\xi \in \mathfrak{g}$, a smooth function μ_{ξ} exists in such a way that the Hamiltonian vector field $X_{\mu_{\xi}}$ coincides with ξ_M . Then we can uniquely define a moment $map \ \mu : M \to \mathfrak{g}^*$ by

$$\langle \xi, \mu(x) \rangle = \mu_{\xi}(x), \quad x \in M.$$

Key words and phrases. locally conformal symplectic manifold, non-Kähler manifold, moment map. 2000 Mathematics Subject Classification. Primary 53D20, Secondary 53C55. Received September 11, 2002. Revised January 20, 2003.

This map is always G-equivariant. Let \mathfrak{g}_{reg}^* be the set of all regular values of μ , and for each $\eta \in \mathfrak{g}^*$, let G_{η} denote the isotropy subgroup of G at η . Put $M_{\eta} := \mu^{-1}(\eta)/G_{\eta}$, and let $\pi_{\eta} : \mu^{-1}(\eta) \to M_{\eta}$ and $\iota_{\eta} : \mu^{-1}(\eta) \hookrightarrow M$ be the projection and the inclusion, respectively. We first prove the following reduction theorem:

THEOREM A. (1) Let $\eta \in \mathfrak{g}_{reg}^*$ be such that G_{η} acts on $\mu^{-1}(\eta)$ properly and freely. Assume that $\iota_{\eta}^*\omega = 0$. Then M_{η} admits a unique symplectic form Ω_{η} such that $\pi_{\eta}^*\Omega_{\eta} = \iota_{\eta}^*\Omega$.

- (2) Assume that $0 \in \mathfrak{g}_{reg}^*$ and that the isotropy subgroup G_0 of G at 0 acts on $\mu^{-1}(0)$ properly and freely. Then M_0 admits a unique locally conformal symplectic form Ω_0 with Lee form ω_0 satisfing $\pi_0^*\Omega_0 = \iota_0^*\Omega$ and $\pi_0^*\omega_0 = \iota_0^*\omega$.
- (3) Let $f: M \to \mathbf{R}$ be a G-invariant function and F_t the flow on M of the Hamiltonian vector field X_f . Suppose that either $\eta = 0$ or $f \in C^{\infty}(M)^A$. Then the flow F_t canonically induces a flow \overline{F}_t on M_{η} satisfing $\pi_{\eta} \circ F_t = \overline{F}_t \circ \pi_{\eta}$ and $f_{\eta} \circ \pi_{\eta} = f \circ \iota_{\eta}$ for some $f_{\eta} \in C^{\infty}(M_{\eta})$. Moreover f_{η} is constant along the flow \overline{F}_t if $f \in C^{\infty}(M)^A$.

We next consider a reduction theorem for locally conformal Kähler structures. Namely, assuming (M,Ω) to be a locally conformal Kähler manifold in Theorem A, we obtain:

THEOREM B. In theorem A, assume further that (M,Ω) is a locally conformal Kähler manifold.

- (1) Suppose that $0 \in \mathfrak{g}_{reg}^*$ and that the isotropy subgroup G_0 of G at 0 acts on $\mu^{-1}(0)$ properly and freely. If M_0 is compact and ω_0 is not d-exact, then M_0 admits no Kähler metrics.
 - (2) For each $\eta \in \mathfrak{g}_{reg}^*$, $M_{\eta} = \mu^{-1}(\eta)/G_{\eta}$ admits a natural complex structure.

Now we construct non-Kähler manifolds as an application of this theorem. Let us fix n+1 complex numbers $\alpha_1, \ldots, \alpha_{n+1}$ such that $|\alpha_1| = \cdots = |\alpha_{n+1}| > 1$. Denote by $\langle \alpha \rangle$ the cyclic group generated by the transformations $\alpha: (z_1, \ldots, z_{n+1}) \mapsto (\alpha_1 z_1, \ldots, \alpha_{n+1} z_{n+1})$ of $\mathbb{C}^{n+1} - \{0\}$. This group acts freely and holomorphically on $\mathbb{C}^{n+1} - \{0\}$ as a properly discontinuous group. Thus the quotient

Haller and Rybicki [7] also constructed locally conformal symplectic manifolds by analogy with the reduction theorem for Poisson manifolds. The crucial point of our work lies in the key equality $\xi_Y \omega(X) = 0$ in Lemma 3.2, which allows us to obtain a very simple formulation as above.

space $CH^{n+1} := (C^{n+1} - \{0\})/\langle \alpha \rangle$ is a complex manifold, and called a *Hopf manifold*. Consider the real 1-parameter family of nondegenerate 2-forms

$$\Omega^{(t)} = \sqrt{-1} \frac{\|z\|^{2t} \sum dz_j \wedge d\bar{z}_j + t\|z\|^{2(t-1)} (\sum \bar{z}_j dz_j) \wedge (\sum z_k d\bar{z}_k)}{\|z\|^{2(t+1)}}, \quad t > -1$$

on $\mathbb{C}^{n+1} - \{0\}$. Each Ω_t define a locally conformal Kähler structure on $\mathbb{C}H^{n+1}$ with Lee form

$$\omega^{(t)} = -(1+t) \frac{\sum (z_j d\bar{z}_j + \bar{z}_j dz_j)}{\|z\|^2}, \quad t > -1.$$

Fix pairwise relatively prime integers a_1, \ldots, a_{n+1} with $a_1 \ge a_2 \ge \cdots \ge a_{n+1}$. Define an action of $G = S^1 = \{e^{2\pi\sqrt{-1}\theta}; \theta \in \mathbb{R}\}$ on $\mathbb{C}^{n+1} := \{z = (z_1, \ldots, z_{n+1})\}$ by

$$S^{1} \times \mathbf{C}^{n+1} \to \mathbf{C}^{n+1} : e^{2\pi\sqrt{-1}\theta}, (z_{1}, \dots, z_{n+1})$$

$$\mapsto (e^{a_{1}2\pi\sqrt{-1}\theta}z_{1}, \dots, e^{a_{n+1}2\pi\sqrt{-1}\theta}z_{n+1}). \tag{1.1}$$

This leads to an action on CH^{n+1} . Then the corresponding moment map μ is given by

$$\mu(z_1,\ldots,z_{n+1}) = -\frac{a_1|z_1|^2 + \cdots + a_{n+1}|z_{n+1}|^2}{\|z\|^2}.$$
 (1.2)

Let ℓ and k be, respectively, the numbers of positive a_i 's and negative a_i 's. Assume that $\ell > 0$, k > 0 and that $\ell + k = n + 1$. Then by (2) of Theorem A, we obtain the reduction space M_0 over $0 \in \mathfrak{g}^*$. Furthermore, without loss of generality, we may assume $\ell \le k$. Then

Theorem C. In the situation just above, M_0 with natural complex structure admits no Kähler metrics. Moreover, its cohomology ring is

$$H^*(M_0; \mathbf{Z}) \cong ((\mathbf{Z}[x_2] \otimes \Lambda[e_{2k-1}])/R) \otimes H^*(S^1; \mathbf{Z}),$$

where R is the ideal of $\mathbf{Z}[x_2] \otimes \Lambda[e_{2k-1}]$ generated by three elements

$$\sigma_{\ell-1}^{\ell}(a_1,\ldots,a_{\ell})x_2^{\ell-1}, \quad \sigma_{k-1}^{k}(a_{\ell+1},\ldots,a_{n+1})x_2^{k-1}, \quad x_2^{\ell}e_{2k-1}.$$

Here $\sigma_0^m := 0$ and each σ_i^m , $1 \le i \le m$, denotes the i-th elementary symmetric function of m variables.

Acknowledgement

I wish to thank Professors I. Enoki, A. Fujiki and T. Mabuchi for useful suggestions and encouragement.

2. Hamiltonian Dynamics for Locally Conformal Symplectic Manifolds

Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of M such that $\omega=d\sigma_{\alpha}$ for some $\sigma_{\alpha}\in C^{\infty}(U_{\alpha})$ on U_{α} . Then $\Omega_{\alpha}:=e^{-\sigma_{\alpha}}\Omega$ is a symplectic form on U_{α} . For $f\in C^{\infty}(M)$, define the Hamiltonian vector field X_{α} of $f_{\alpha}:=e^{-\sigma_{\alpha}}f$ by $i(X_{\alpha})\Omega_{\alpha}=df_{\alpha}$. Hence, on U_{α} ,

$$i(X_{\alpha})\Omega = df - f d\sigma_{\alpha} = df - f\omega.$$

Since the right-hand side is independent of local expressions, the vector fields X_{α} , $\alpha \in A$, glue together to define the *Hamiltonian vector field* X_f of f such that $X_f|_{U_{\alpha}} = X_{\alpha}$. Let $\mathfrak{X}(M)$ be the space of all smooth vector fields on M.

PROPOSITION 2.1. Let (M,Ω) be a locally conformal symplectic manifold. Then the map of $C^{\infty}(M)$ to $\mathfrak{X}(M)$ which sends each $f \in C^{\infty}(M)$ to $X_f \in \mathfrak{X}(M)$ is injective.

PROOF. Assume $X_f = 0$. Then we have $df - f\omega = 0$. Hence f vanishes at some point $x_0 \in M$, because otherwise, ω would be exact in contradiction. Since ω is d-closed,

$$\omega = -d\tau/\tau$$
,

on some open neighborhood U of x_0 , where τ is nowhere vanishing on U. By this together with $df = f\omega$, we obtain $d(f\tau) = \tau df + f d\tau = 0$, i.e., $f\tau$ is constant on U. Hence by $f(x_0) = 0$, the function f vanishes everywhere on U. By the connectedness of M, it is now easy to see that f vanishes everywhere on M.

For (M,Ω) above, the canonical vector field A is the Ω -dual of the Lee form ω , i.e., A is the vector field on M defined by $i(A)\Omega = \omega$. Then a smooth function f on M sits in $C^{\infty}(M)^A$ if and only if df(A) vanishes identically on M in view of the equalities $\omega(X_f) = i(X_f)i(A)\Omega = -i(A)(df - f\omega) = -df(A)$. To each pair (f,g) of functions in $C^{\infty}(M)$, we associate the Poisson bracket $\{f,g\} := \Omega(X_g,X_f) = X_fg - g\omega(X_f)$. This obviously satisfies the Jacobi identity, though the Leibniz rule does not necessarily hold. Moreover, $(C^{\infty}(M)^A,\{,\})$ is a Poisson algebra such that

$$X_{\{f,g\}} = [X_f, X_g], \text{ for all } f, g \in C^{\infty}(M)^A.$$
 (2.1)

LEMMA 2.2. (1) If $f \in C^{\infty}(M)^A$, then f is constant along the flow of X_f .

(2) Let F_t be the flow of X_f . Then $F_t^*\Omega = \Omega$ for all $t \in \mathbf{R}$ if and only if $f \in C^{\infty}(M)^A$.

PROOF. (1) By the defition of X_f , we have $df(X_f) - f\omega(X_f) = \Omega(X_f, X_f) = 0$. Hence $df(X_f) = f\omega(X_f) = 0$ if $f \in C^{\infty}(M)^A$.

(2) Since
$$(d/dt)F_t^*\Omega = F_t^*L_{X_f}\Omega = F_t^*(i(X_f)(\omega \wedge \Omega) + d(df - f\omega)) = F_t^*\omega(X_f)\Omega$$
, it follows that $(d/dt)F_t^*\Omega = 0$ if and only if $f \in C^{\infty}(M)^A$.

REMARK 2.3. Let Ω_t , $t \in [0,1]$, be a one-parameter family of locally conformal symplectic forms on M. For each (M,Ω_t) , let A_t and ω_t be the associated canonical vector field and the Lee form, respectively. If there exists a 1-form σ_t on M satisfing

$$(d/dt)\Omega_t = d\sigma_t - \sigma_t(A_t)\Omega_t - \omega_t \wedge \sigma_t,$$

then there is a one-parameter family of diffeomorphisms φ_t on M such that $\varphi_t^*\Omega_t = \Omega_0$ for all $t \in \mathbb{R}$. Indeed, φ_t is the flow of the vector field X_t defined by $i(X_t)\Omega_t = -\sigma_t$.

3. Moment Maps for Locally Conformal Symplectic Manifolds

Let $G \times M \to M$ be a smooth action of a Lie group G on a locally conformal symplectic manifold (M,Ω) such that the action preserves Ω . We here assume that, for every $\xi \in \mathfrak{g}$, the associate vector field ξ_M is Hamiltonian, i.e., ξ_M is expressible as $X_{\mu_{\xi}}$ for some smooth function μ_{ξ} on M. We first observe the following:

LEMMA 3.1.
$$\omega(\xi_M) = 0$$
 for all $\xi \in \mathfrak{g}$.

PROOF. By $i(\xi_M)\Omega = d\mu_{\xi} - \mu_{\xi}\omega$ and $i(\xi_M) \circ d = L_{\xi_M} - d \circ i(\xi_M)$, we have $i(\xi_M) \ d\Omega = d\mu_{\xi} \wedge \omega$ in view of $L_{\xi_M}\Omega = 0$. On the other hand,

$$i(\xi_M) \ d\Omega = i(\xi_M)(\omega \wedge \Omega) = (i(\xi_M)\omega)\Omega - \omega \wedge i(\xi_M)\Omega = \omega(\xi_M)\Omega - \omega \wedge d\mu_{\xi}.$$

Hence $\omega(\xi_M)\Omega = d\mu_{\xi} \wedge \omega + \omega \wedge d\mu_{\xi} = 0$. By the nondegeneracy of Ω , we now conclude that $\omega(\xi_M) = 0$.

Put $\xi_M^g:=(g^{-1})_*\xi_M$ for each $g\in G$, where g is regarded as a diffeomorphism of M. Then by $i(\xi_M^g)\Omega=g^*(d\mu_\xi-\mu_\xi\omega)=i(X_{g^*\mu_\xi})\Omega$, we have $g^*\mu_\xi=\mu_{\mathrm{Ad}(g^{-1})\xi}$. This means the equivariance of the moment map $\mu:M\to \mathfrak{g}^*$. By (2.1),

$$X_{\{\mu_{\xi},\mu_{\eta}\}} = [X_{\mu_{\xi}},X_{\mu_{\eta}}] = [\xi_{M},\eta_{M}] = -[\xi,\eta]_{M} = -X_{\mu_{[\xi,\eta]}}.$$

Hence by Proposition 2.1, we have $\{\mu_{\xi}, \mu_{\eta}\} = -\mu_{[\xi, \eta]}$ for all $\xi, \eta \in \mathfrak{g}$.

LEMMA 3.2. Let $\eta \in \mathfrak{g}_{reg}^*$ and $p \in \mu^{-1}(\eta)$. Assume that the action of G_{η} on $\mu^{-1}(\eta)$ is free and proper. Then, on the tangent space $T_p(M)$ of M at p, the following holds:

- (1) $T_p(G_{\eta} \cdot p) = T_p(G \cdot p) \cap T_p(\mu^{-1}(\eta)),$
- (2) For every $X \in T_p(\mu^{-1}(\eta))$ and $Y \in T_p(G \cdot p)$, there exists an element ξ^Y in $\mathfrak g$ such that $\Omega(X,Y) = \mu_{\xi^Y}\omega(X)$. In particular $T_p(\mu^{-1}(\eta))$ is the Ω -orthogonal complement of $T_p(G \cdot p)$ in $T_p(M)$ if and only if $\mu_{\xi^Y}\omega(X) = 0$ for all $X \in T_p(\mu^{-1}(\eta))$ and $Y \in T_p(G \cdot p)$.
- PROOF. (1) Let $\xi \in \mathfrak{g}$ and \mathfrak{g}_{η} be the Lie algebra of the isotropy subgroup G_{η} . By the equivariance of μ , we have $d\mu(\xi_M)(p) = \mathrm{ad}(\xi)^*(\eta)$, and hence $\xi_M(p) \in T_p(\mu^{-1}(\eta))$ if and only if $\mathrm{ad}(\xi)^*(\eta) = 0$, i.e., $\xi \in \mathfrak{g}_{\eta}$.
- (2) For Y as above, there exists an element ξ^{Y} in g such that the associated vector field ξ_{M}^{Y} on M coincides with Y. Then

$$\Omega(X,Y) = -i(X)i(Y)\Omega = -i(X)i(\xi_M^Y)\Omega = -i(X)(d\mu_{\xi^Y} - \mu_{\xi^Y}\omega) = \mu_{\xi^Y}\omega(X)$$
 for all X and Y as above, as required.

PROPOSITION 3.3. For a G-invariant smooth function $f: M \to \mathbb{R}$, let F_t be the flow of X_f . For a point $p \in M$, if either $p \in \mu^{-1}(0)$ or $f \in C^{\infty}(M)^A$, then $\mu(F_t(p)) = \mu(p)$.

PROOF. Since f is invariant, we have $i(\xi_M) df = 0$ for every $\xi \in \mathfrak{g}$. Then by $i(\xi_M) df = -i(X_f)i(\xi_M)\Omega = -i(X_f) d\mu_{\xi} + \mu_{\xi}i(X_f)\omega$, we obtain $i(X_f) d\mu_{\xi} = \mu_{\xi}i(X_f)\omega$. The claim is now immediate.

PROOF OF THEOREM A. For every $X \in T_p(\mu^{-1}(\eta))$, where $\eta \in \mathfrak{g}_{reg}^*$, let [X] denotes its canonical image in $T_p(\mu^{-1}(\eta))/T_p(G_\eta \cdot p)$. By (2) of Lemma 3.2, if either η is zero or ω vanishes on $T_p(\mu^{-1}(\eta))$, then we can define forms Ω_η and ω_η on M_η by

$$\Omega_{\eta}([X],[Y]) := \Omega(X,Y) \quad \text{and} \quad \omega_{\eta}([X]) := \omega(X),$$

where $X, Y \in T_p(\mu^{-1}(\eta))$. This obviously satisfies $\pi_\eta^* \Omega_\eta = \iota_\eta^* \Omega$ and $\pi_\eta^* \omega_\eta = \iota_\eta^* \omega$. Hence $\pi_\eta^* d\Omega_\eta = \iota_\eta^* (\omega \wedge \Omega) = \pi_\eta^* (\omega_\eta \wedge \Omega_\eta)$. Then the surjectivity of π_η and $d\pi_\eta$ implies $d\Omega_\eta = \omega_\eta \wedge \Omega_\eta$. From this identity, we obtain (2) by setting $\eta = 0$. The same identity also gives (1), because $d\Omega_{\eta}=0$ follows from $\omega_{\eta}=0$. We shall finally prove (3) as follows. By Proposition 3.3, $\mu^{-1}(\eta)$ is invariant under the flow F_t of X_f , and hence F_t induces a well-defined flow \bar{F}_t on M_{η} . Since f is G-invariant, there exists a unique function f_{η} on M_{η} such that $f_{\eta}\circ\pi_{\eta}=f\circ\iota_{\eta}$. Now we assume $f\in C^{\infty}(M)^A$. Then $L_{X_f}\Omega=\omega(X_f)\Omega=0$. Since $\pi_{\eta}^*\bar{F}_t^*\Omega_{\eta}=F_t^*\pi_{\eta}^*\Omega_{\eta}=F_t^*\iota_{\eta}^*\Omega=\iota_{\eta}^*\Omega=\pi_{\eta}^*\Omega_{\eta}$, the surjectivity of π_{η} implies $\bar{F}_t^*\Omega_{\eta}=\Omega_{\eta}$, as required.

PROOF OF THEOREM B. Let (M,g,J) be a Hermitian manifold whose fundamental 2-form Ω is locally conformal Kähler.

- (1) Note that $d\mu_{\xi}(J\xi'_M)(p) = \Omega(\xi_M, J\xi'_M)(p) = \langle \xi_M, \xi'_M \rangle_{\Omega}(p)$ for all $\xi, \xi' \in \mathfrak{g}$ and $p \in \mu^{-1}(\mathfrak{g}^*_{reg})$, where J is the complex structure of M, and $\langle , \rangle_{\Omega}$ is the metric on M associated to Ω . Hence \mathfrak{g}^* is identified with $J\mathfrak{g}$. In particular, M_0 is naturally a complex manifold and admits no Kähler structures by the following general fact by Vaisman ([11]): For a compact locally conformal Kähler manifold (M,Ω) , there exists some global Kähler metric on M if and only if (M,Ω) is a globally conformal Kähler manifold.
- (2) Fix $\eta \in \mathfrak{g}_{reg}^*$. On each $p \in \mu^{-1}(\eta)$, we consider subspaces $E_p := \{X(p) \in T_p \mu^{-1}(\eta); d\mu(X) = d\mu(JX) = 0\}$ and $\{\xi_M + \mu_{\xi}A\}_p := \{(\xi_M + \mu_{\xi}A)(p); \xi \in \mathfrak{g}\}$ in $T_p \mu^{-1}(\eta)$. Then we obtain an orthogonal decomposition

$$T_p M = E_p \oplus \{\xi_M + \mu_{\xi} A\}_p \oplus J\{\xi_M + \mu_{\xi} A\}_p.$$

Set $E = \bigcup_{p \in \mu^{-1}(\eta)} E_p$. It is easily seen that $E^{1,0} = T^{1,0} M|_{\mu^{-1}(\eta)} \cap (T_p \mu^{-1}(\eta) \otimes C)$, where $E^{1,0}$ is the $\sqrt{-1}$ -eigenspace in $E \otimes C$. Assuming the following Lemma 3.4, $d\pi_{\eta}|_{E_p} \to T_{\pi_{\eta}(p)} M_{\eta}$ is surjective, and then $d\pi_{\eta}|_E \circ J = J_{\eta} \circ d\pi_{\eta}|_E$ define a natural complex structure J_{η} on M_{η} , as required.

Lemma 3.4. If there exist $\xi \in \mathfrak{g}_{\eta}$ satisfing $\xi_M + \mu_{\xi} A \in \mathfrak{g}_{\eta}^{\perp} \cap T_p \mu^{-1}(\eta)$, then $\xi = 0$.

Proof. We may prove for all $\xi' \in \mathfrak{g}_{\eta}$,

$$g(\xi_M + \mu_{\varepsilon}A, \xi_M') = 0 \tag{3.1}$$

leads to $\xi=0$. By the definition of Hamiltonian vector fields, $g(\xi_M+\mu_\xi A,\xi_M')=-d\mu_\xi(J\xi_M')$. On the other hand, since g is J invariant, $g(\xi_M+\mu_\xi A,\xi_M')=d\mu_{\xi'}(J\xi_M)-\mu_{\xi'}\omega(J\xi_M)+\mu_\xi(d\mu_{\xi'}(JA)-\mu_{\xi'}\omega(JA))$. We have then for all $\xi'\in\mathfrak{g}_\eta$

$$\begin{cases} d\mu_{\xi}(J\xi'_M) = 0, \\ d\mu_{\xi'}(J\xi_M) - \mu_{\xi'}\omega(J\xi_M) + \mu_{\xi}(d\mu_{\xi'}(JA) - \mu_{\xi'}\omega(JA)) = 0. \end{cases}$$

By the upper equality, we obtain $\mu_{\xi'}\omega(J\xi_M) = \mu_{\xi}\omega(J\xi_M') + d\mu_{\xi'}(J\xi_M)$, and substituting this for the lower equality, we have

$$\mu_{\xi}g(A,\mu_{\xi}\xi_{M}'-\xi_{M})=0.$$

If $\mu_{\xi} \neq 0$, the this shows $A \in \mathfrak{g}^{\perp}$. The claim is now obtained in consideration of (3.1).

4. Proof of Theorem C

In this section, we study properties of the reduction space M_0 in Theorem C. For each $t \in (-1, \infty)$, the Lee form $\omega^{(t)}$ in the introduction is not d-exact, where the Lee form ω_0 on M_0 satisfies $\pi_0^*\omega_0 = \iota_0^*\omega^{(t)}$. Hence ω_0 cannot be d-exact. Then by Theorem B, M_0 admits no Kähler metrics.

Let F be the quotient of $S^{2\ell-1} \times S^{2k-1}$ ($\subset \mathbb{C}^{\ell} \times \mathbb{C}^{k}$) by the S^{1} -action in (1.1) in the introduction. As a differentiable manifold, M_{0} is the direct product of a G-invariant circle S^{1} and the S^{1} -bundle F over $(S^{2\ell-1}/S^{1}) \times (S^{2k-1}/S^{1})$. To obtain the cohomology ring of F, we consider the following commutative diagram of fiblations (see Eschenburg [4], [5]):

$$F = U(1) \backslash U(\ell) \times U(k) / U(\ell-1) \times U(k-1) \xrightarrow{\hat{\rho}} B_{U(\ell) \times U(k)}$$

$$\downarrow^{p} \qquad \qquad \downarrow^{p'}$$

$$B_{U(1) \times U(\ell-1) \times U(k-1)} \xrightarrow{\rho} B_{(U(\ell) \times U(k))^{2}},$$

where U(1) acts on $U(\ell) \times U(k)$ from the left with weight $a_1, \ldots, a_\ell, a_{\ell+1}, \ldots, a_{n+1}$. Recall that $H^*B_{U(n)} \cong \mathbb{Z}[c_1, c_2, \ldots, c_n]$ for each positive integer n, where $c_i \in H^{2i}B_{U(n)}$. By setting $c_i' := c_i \otimes 1$ and $c_j'' = 1 \otimes c_j$, we have $H^*B_{U(\ell) \times U(k)} \cong \mathbb{Z}[c_1', \ldots, c_\ell', c_1'', \ldots, c_k'']$. Then

$$H^*B_{(U(\ell)\times U(k))^2}\cong Z[x_1',\ldots,x_{\ell}',y_1',\ldots,y_{\ell}',x_1'',\ldots,x_k'',y_1'',\ldots,y_k''],$$

where $x_i':=c_i'\otimes 1$, $y_i':=1\otimes c_i'$ and $x_j'':=c_j''\otimes 1$, $y_j'':=1\otimes c_j''$. The Serre spectral sequence associated to the fibration $p':B_{U(\ell)\times U(k)}\to B_{(U(\ell)\times U(k))^2}$ is isomorphic to $E_2^{s,t}(p')\cong H^sB_{(U(\ell)\times U(k))^2}\otimes H^t(U(\ell)\times U(k))$. If we denote by $k_r:H^*B_{(U(\ell)\times U(k))^2}\to E_r^{*,0}(p')$ the natural projection of $E_2^{*,0}(p')$ -term, then $p'^*=k_\infty:H^*B_{(U(\ell)\times U(k))^2}\to E_\infty^{*,0}(p')\subset H^*B_{U(\ell)\times U(k)}$ by Borel [2].

LEMMA 4.1. The differentials $d_r: E_r^{s,t}(p') \to E_r^{s+r,t-r+1}(p')$ in cohomology spectral sequence $E_r^{*,*}(p')$ converging to $H^*B_{U(\ell)\times U(k)}$ are

(1)
$$d_r(e'_{2i-1}) = 0$$
 and $d_{2i}(e'_{2i-1}) = \pm k_{2i}(x'_i - y'_i)$, if $r \le 2i - 1$ and $1 \le i \le \ell$

(2) $d_r(e_{2j-1}'') = 0$ and $d_{2j}(e_{2j-1}'') = \pm k_{2j}(x_j'' - y_j'')$, if $r \le 2j-1$ and $1 \le j \le k$, where $e_{2i-1}' := e_{2i-1}^{\ell} \otimes 1$ and $e_{2j-1}'' := 1 \otimes e_{2j-1}^{k}$ for generators e_{2i-1}^{ℓ} and e_{2j-1}^{k} of $H^*U(\ell)$ and $H^*U(k)$, respectively.

Let u be a 2-dimensional generator of $H^2(B_{U(1)}; \mathbb{Z})$, and let v_i' and v_j'' be the i-th and j-th generators in $H^*U(\ell)$ and $H^*U(k)$. The inclusion $U(1) \times U(\ell-1) \times U(k-1) \to (U(\ell) \times U(k))^2$ is the product of

$$\iota(p): U(1) \to U(\ell) \times U(k)$$

$$e^{2\pi\sqrt{-1}\theta} \mapsto (e^{2\pi\sqrt{-1}a_1\theta} \dots e^{2\pi\sqrt{-1}a_{\ell}\theta}, e^{2\pi\sqrt{-1}a_{\ell+1}\theta} \dots e^{2\pi\sqrt{-1}a_{n+1}\theta})$$

and the natural inclusion

$$\tau: U(\ell-1) \times U(k-1) \to U(\ell) \times U(k).$$

We have then $\rho^*(x_i') = \sigma_i^{\ell}(a_1, \ldots, a_{\ell})u^{2i} \otimes 1$, $\rho^*(y_j') = 1 \otimes v_i'$, $\rho^*(x_j'') = \sigma_j^k(a_{\ell+1}, \ldots, a_{n+1})u^{2j} \otimes 1$, and $\rho^*(y_j'') = 1 \otimes v_j''$. Theorem C is now immediate consequence of the following lemma:

LEMMA 4.2. On the cohomology spectral sequence $E_r^{*,*}(p)$ converging to H^*M_0 , the $E_2^{*,*}$ term is isomorphic to

$$Z[u \otimes 1, 1 \otimes v'_1, \ldots, 1 \otimes v'_{\ell-1}, 1 \otimes v''_1, \ldots, 1 \otimes v''_{k-1}] \otimes \Lambda[e'_1, \ldots, e'_{2\ell-1}, e''_1, \ldots, e''_{k-1}],$$

and the differentials $d_r: E_r^{s,t}(p) \to E_r^{s+r,t-r+1}(p)$ are

- (1) $d_r(e'_{2i-1}) = 0$ and $d_{2i}(e'_{2i-1}) = \pm k_{2i}(\sigma_i^{\ell}(a_1, \dots, a_{\ell})u^{2i} \otimes 1 1 \otimes v'_i)$, if $r \leq 2i 1$ and $1 \leq i \leq \ell 1$,
- (2) $d_r(e_{2j-1}'') = 0$ and $d_{2j}(e_{2j-1}'') = \pm k_{2j}(\sigma_j^k(a_{\ell+1}, \dots, a_{n+1})u^{2j} \otimes 1 1 \otimes v_j'')$, if $r \le 2j-1$ and $1 \le j \le k-1$,
- (3) $d_{2\ell}(e'_{2\ell-1}) = \pm k_{2\ell}(\sigma^{\ell}_{\ell}(a_1,\ldots,a_{\ell})u^{2\ell} \otimes 1)$ and $d_{2k}(e''_{2k-1}) = \pm k_{2k}(\sigma^{k}_{k}(a_{\ell+1},\ldots,a_{\ell+1})u^{2k} \otimes 1)$.

References

- [1] R. Abraham and J. E. Marsden: Foundations of Mechanics, 2nd edition, Reading, Massachusetts, 1978.
- [2] A. Borel: Sur la cohomologie des espaces fibrés principaux et des espaces homogénes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
- [3] S. Dragomir and L. Ornea: Locally conformal Kähler geometry, Progress in Math. 155 (Birkhäuser, Boston, 1998).
- [4] J. H. Eschenburg: New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982), 469–480.
- [5] J. H. Eschenburg: Cohomology of biquotients, Manuscripta Math., 75 (1992), 151-166.

- [6] V. Guillemin and S. Sternberg: Symplectic techniques in Phisics, Cambridge Univ. Press, Cambridge, 1984.
- [7] S. Haller and T. Rybicki: Reduction for locally conformal symplectic manifolds, J. Geom. Phys. 37, no. 3 (2001), 262–271.
- [8] S. Kobayashi: Transformation Groups in Differential Geometry, Ergebnisse de Math. 70 (Springer, Berlin, 1972).
- [9] P. Libermann and C.-M. Marle: Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, Hlland, 1987.
- [10] J. E. Marsden and A. Weinstein: Reduction of symplectic manifolds with symmetry, Reports on Math. Phys. 5 (1974), 121-130.
- [11] I. Vaisman: On Locally Conformal Almost Kähler Manifolds, Israel J. Math. 24 (1976), 338-351.
- [12] I. Vaisman: Locally Conformal Symplectic Manifolds, Internat. J. Math. & Math. Sci. vol. 8 No. 3 (1985), 521-536.

Department of Mathematics
Graduate school of science
Osaka University
1-1 Machikaneyama, Toyonaka
Osaka 560-0043, Japan
e-mail: noda@gaia.math.wani.osaka-u.ac.jp