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ON THE GENERALIZED JOSEPHUS PROBLEM

Mar chuimhne air an t-ollamh Rob Alasdair Mac Fhraing nach mairean

By

Saburé UcHIYAMA

1. Introduction

The legendary problem of Josephus and the forty Jews and the problem of
fifteen Christians and fifteen Tarks, and also some variants thereof, are widely

well known (cf. [1], [6], [10], [11], [14]) and have been discussed and generalized
mathematically by several authors (cf. e.g. [2], [3], [4], [5], [8)-

These problems, in a rather general form, may well be formulated thus: Let n
and m be given positive integers; we arrange n distinct points, named 1,2,...,n,
in a circle in the natural order (the points adjacent to 1 being 2 and n if n > 2)
and delete, starting from the point 1, every mth point in turn until all the points
are removed. The problem is to determine the kth point a,(k,n) (sometimes

called the kth Josephus number) to be deleted when n,m and k (1 < k <n) are
- assigned. It is plain that

1 <ap(k,n)<n
and
am(l,n) =m (mod n).
Consequently, if the validity is assumed of the congruence
(1) amk +1,n+1) =m+ apn(k,n) (modn+1) (1 =<k =<n),

then one can recursively determine all the numbers a,,(k,n).

A simple proof of the congruence relation (1) which is due substantially to
P. G. Tait [13], was given by R. A. Rankin [8] (see also [4]); however, it should
be noted that the basic congruence (1) was practically known to Seki Takakazu
(1642?7-1708) in and to Leonhard Euler (1707-1783) in as well. On the
basis of (1) Rankin has established an algorithm for determining the last
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Josephus number d,,(n) = a,(n,n) for n > m = 2 and obtained in the special case
of m =2 an explicit formula for d,(n), namely

(2) dy(n) =2n+1 -2 for 2/ < n <2,

Rankin also gives in the case of m =3 a second algorithm which he called
a short form is in general not quite correct, and a few of the counterexamples
found are: n=12,13,18,19,20,27,28,29,30,31,32,45,46,47,48,49, and 50. It
should be noticed here that A. M. Odlyzko and H. S. Wilf [7] have also treated
the special case of k = n and given a compact formula for m = 3 (cf. §5 below)
as well as the simple result (2) for m = 2. It might be noted further that general
solutions a,,(k,n) (1 <k < n) for the Josephus problem in the extended form
had already been found by H. Schubert and by E. Busche [2]; their solu-
tions which coincide with each other for k£ = n, may be described in terms of
certain sequences of integers that are defined recursively by a recurrence rela-
tion (see §3 below). Another recursive solution was given by F. Jakdébczyk [5] to
the generalized Josephus problem, together with a solution to the problem con-
verse to the original, that is, the problem to decide the number k (1 <k < n)
such that a,(k,n) =/ when [ (1 =1/ =<n) is specified in advance; we note that
a simpler solution to this converse problem had also been provided by Busche
substantially on the basis of the congruence relation (1). Some other types
of (modified) converse problems are discussed in W. W. Rouse Ball and H. S.
M. Coxeter and in W. J. Robinson [9]. Furthermore, still another solution
based again upon the relation (1) to the extended Josephus problem has been
furnished by L. Halbeisen and N. Hungerbiihler [4] and, according to their claim,
the result obtained by them is not a recursive one; however, in their solution,
which depends partly on an unproved hypothesis, the Josephus numbers a,,(k, n)
involve a crucial constant o that depends on m,n and k and is defined, when
m > 2, by an infinite series the coefficients of whose terms are to be determined
obviously recursively.

Our principal aim in this article is twofold. Firstly, we shall provide an
alternative proof for the classical results due to Schubert and to Busche men-
tioned above (§3); our proof is, we believe, simpler and more transparent than
the original (cf. [2]). Secondly, without any unproven hypothesis, we describe in
a somewhat modified form a new algorithm of Halbeisen and Hungerbiihler’s
to decide the Josephus numbers a,(k,n) (1 <k <n), by reducing it to its
apparently primitive order that has been found independently by the present
writer (§4); we note that the underlying ideas in here go back to the idea due
in substance to L. Euler [3] who had a clear conception of its importance.
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In an appendix (§7, the final section) will be briefly reviewed the concern of
Seki Takakazu’s with the generalized Josephus problem.
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2. Preliminaries

For the sake of completeness we here reproduce a proof of Tait’s con-
gruence relation (1), as given by Rankin [8]. Let m be a fixed positive integer and
n an arbitrary positive integer. Let there be given at first n points, 1,2,...,#n, in
a circle, so that the neighbor of the points 2 and »n is the point 1, if n > 2. We
now place another point n+ 1 between » and 1, and we begin anew numbering
the points with the point b + 1, where b is determined so as to satisfy

=-m (modn+1), 0<b<n+1.
Let b(k,n+ 1) be the kth point to be removed in this novel situation. We find
b(l,n+1)=n+1, blk+1,n+1)=anlk,n) (1<k=n),
and it is easy to see that
blk+1,n+1)-b=a,k+1,n+1) (modn+1),

and the relation (1) foHows at once.

It will sometimes be convenient to define a,,(0,n) =0. Thus the numbers
am(k,n) (1 <k < n) are completely determined in principle by the congruence
relation (1).

Now the simple solution by Busche to the converse Josephus problem can
be described in the following manner. Let »n and / (1 £./ £ n) be given. We put
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A(0,n) = 1. Suppose A(i,n — i) is defined for an i (0 <i<n). If A(i,n—1i) >0,
then we determine A(i+ 1,n—i— 1) by the conditions

A(i+1l,n—i—-1)=A(i,n—i)—m (modn —i)
and
0 A(i+1l,n—i—-1)<n-—i.

If Ai+1,n—i—1)=0 then k=i+1 and a,(k,n) =1, as a consequence of
(1). By repeating this procedure if 4(i+1,n—i—1) > 0, we can eventually find
a unique value of k£ (1 £k < n) for which an,(k,n) =1.

ExaMpPLE. For m=10, n=30, / =14 we find k = 15:

i 0 1 2 3 4 5 6 7 8 9
n—i 30 29 28 27 26 25 24 23 22 21
A(i,n—1i): 14 4 23 13 3 19 9 23 13 3

i 10 11 12 13 14 15
n—i: 20 19 18 17 16 15
AGiin—i): 14 4 13 3 10 0

Now, in order to describe classical solutions by Schubert and by Busche of
the generalized Josephus problem, we have to introduce certain infinite sequences
N;, called modulation sequences, of integers. Let m = 2 be again a fixed integer.
A modulation sequence is the sequence of positive integers N; = N;(m,t) (i =
1,2,...) defined recursively by

m(N; + t)

6 M0, N = [P0 iz,

where ¢ is a fixed nonnegative integer. Here, and in what follows, we denote by
[x] (resp. by |x]) the least (resp. the greatest) integer not less than (resp. not
greater than) the real number x. It is easily seen that N;y; > N; for i = 1. We
have N; # 1 (mod m) for all i > 1, since the inequality

m(N + t)
m—1

m(N + t)

1
m-—1 +

SmK+1<
is equivalent to 0 < m(N +t) — m(m — 1)K < m — 1, but this is impossible, if N
and K are integral.

The modulation sequence of Schubert’s is the sequence N; = N;(m,0) (i =
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1,2,...) with Ny =m(n—k)+1, and the modulation sequence of Busche’s is
N/ = Ni(m,n—k) (i=1,2,...) with Ny =1. We shall show that
(4) N;i—N/=m(n—-k) for all i=1.

In fact, the assertion (4) is obvious for i = 1. Suppose now that (4) holds true for
an i = 1. We have then

L= 1) = [P E

l'm(Ni’ +m(n —k))

e —’ZNHI,

which proves the relation (4) by induction.
The modulation sequences of Schubert’s and of Busche’s coincide with each
other, if k =n.

Now, explicit upper and lower bounds for the terms N; of Schubert’s
modulation sequence (so that for the terms N/ of Busche’s sequence also) can be
found without difficulty. In fact, if we write actually, with Ny =m(n — k) + 1,

mN,-+a,- (12 1)’

Niy =
i+1 m— 1 =

then 0 <6, <m—2 and o; =0 if and only if m — 1| N;. Just as in we define
an analytic function of z

f(z) = N12+Z g
i=1

m—1

the convergence radius of the power series on the right being at least 1. We may
apply mutatis mutandis the argument of [4; pp. 310-311], even in a manner much
simpler than in there, to show that the limit

5 pmtim (121 (1 1)

exists, and further that

Oge(il) _Ni=m-2 (iz1),

m_

where both of the inequality signs are strict if m > 2. Note that 8 is a positive
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constant depending on m,n and k. Thus, if in particular m = 2, then 0 = n—
k+ (1/2) and we have

Ni=m—-k2' 427" (iz1),

which can also be shown easily by induction on i, and if m = 3 then we have

N = [GG)J (i21).

We note that, if m > 2 then the sequence
a,-=(m—l)N,-+1—mN,- (l=1,2,)

is not (ultimately) periodic. Suppose the contrary; then there must exist positive
integers ip and p such that o;4, = g; for all i = i,. We have for i = iy

0 =0i4p —0i = (m— 1)(Nitp+1 — Niy1) — m(Niyp — Ny)

and, therefore, for all j =1

m \/
Nitpj— Niyj = (m) (Nisp — Ni),
which is clearly impossible, since Ny, — N; > 0.

The constant 0 is effectively computable.

REMARK. It will be of some interest to observe that the sequence

03\ .
Wi =§<-2—) (l— 1,2,...),

where 6 is defined by (5) with m =3, N; > 0 being chosen arbitrarily, is not
uniformly distributed modulo one, because otherwise the sequence of integers
N;=|3w;] (i=1,2,...) would be uniformly distributed modulo 3 in the sense
of I. Niven, but this is not the case, since we know that N; # 1 (mod 3) for all
i > 1, as has been noticed above. Compare: I. Niven, Uniform distribution of
sequences of integers, Trans. Amer. Math. Soc., 98 (1961) 52-61.

3. Classical Solutions

Here we survey the leading traits of solutions by H. Schubert and by E.
Busche of the generalized Josephus problem (cf. [2]). Let n and m be again
two positive integers, m = 2. Solutions will be furnished when formulas for the
Josephus numbers a,,(k,n) (1 <k < n) are explicitly given.
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(i) H. Schubert’s formula. Let N; (i =1,2,...) be the modulation sequence of
Schubert’s. Then, if N; < mn+ 1 < Ny, or equivalently if N;_; < (m — 1)n < N;
(with Ny = 0), we have

am(k,n) =mn+1— N,

(i) E. Busche’s formula. Let N/ (i=1,2,...) be the modulation sequence of

1

Busche’s. Then, if N/ <mk +1 < N/, we have
am(k,n) =mk + 1 — Nj.

Computations needed for the determination of a,,(k,n) are practically similar
in these formulas, but the numerals that appear will be in genaral slightly shorter
in Busche’s method than in Schubert’s. The formulas (i) and (ii) coincide for
k = n, and Rankin’s formula (2) for d,(n) is their special case of m =2, k = n.

Since the formulas (i) and (ii) are mutually equivalent in view of (4), we shall
give a proof only for (i).

In order to establish the validity of Schubert’s solution (i) it will suffice to
show that, if we define

flk,n) :=mn+1—-N; (1=k<=<n),

observing 0 < f(k,n) < n, where N; <mn+ 1 < N;,1, then f(k,n) satisfies the
conditions

(6) f(lan) zam(l’n)
and
(7) flk+1,n+1)=m+ f(k,n) (modn+1)

for all n and k£ (1 <k <n).

Note that the modulation sequence N; (i =1,2,...) depends only on the
difference » — k and not on the values of n and k separately, if m is once fixed,
thus, the modulation sequence for n+ 1, k£ 4+ 1 is the same as the one for n,k.
The largest integer n for which mn+ 1 — N; <n is given by n =n; = |(N; — 1)/
(m —1)], whereas the largest integer n for which mn + 1 < N; is found to be
n=ny; = [(Ni1 — 1)/m]; here, we have n; = ny, since the both sides are equal to

——F—1 if m—=1|N;, and

[LJ if m—14N;.
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We first prove (7). Now, if
Ni<mn+1<mmn+1)+1< Ny,

then
flk+1,n+1)=mn+1)+1—-N;,=m+ f(k,n)

and (7) is obvious. If
Ni<mn+1< Ny SN;<mn+1)+1<Niyy (j=i+1),
then we have n= |[(N, —1)/m] for each v with i+ 1 < v < j and, therefore,

. . _ mNV_l—(m—l) Nv—l
m — 1| N,_; implies n—[ m(m — 1) } I,

Tm—-1

and

m-—1 m-—1

m— 14 N,_, implies n = l;;_ [mN”“JJ - [Nv—l J,

where use is made of the relation

"’;NV‘I‘ if m—1|N_1,
Ne=q0

[’" ”“1J+1 if m—14N,_,.

m—1

It follows that we have
N,—N_1=n+1 (l+1§v§./),
and hence
fk+1,n+1)— f(k,n) =m—(N; - Ny)
J
=m— Y _ (N,—Ny_y)
v=i+1
:m_(j_l)(n+l)a
which proves (7).
We now proceed to prove (6) by distinguishing the cases according as n = m
or n<m.

Case 1: n = m. It is plain that a,,(1,n) = m. We have to show that for some
(unique) i =1

Ni<mn+1< N1 and f(l,n)=mn+1—-N;,=m.



On the generalized Josephus problem 327

We have Ny =m(n— 1)+ 1 by definition and

le
m-—1

n

N,

%

=mn—1)+n+ >mn+1,

m—1

so that i=1 and f(1,n)=mn+1—- N, =m.

Case 2: n <m. Write m = An+ u with integers A,u such that A =1, 0 <
4 < n. We have then a,,(1,n) = u. We show that for some i = 1 one has N; <
mn+1 < N;;; and

mn+1—N;=pu or Ni=mn—1)+in+1.
1) If A=u=1, then m—1=n, and we find
m—1|Ny=m-1)(n-1)+n,

mN1 n
Nz—-m_l—m(n—l)—l—n—f——n—l—_—i—mn,
and
N3 :—————-—mNz :mn+n+1.
m—1

Thus we have i=2 and f(l,n)=mn+1-N,=1=p.
2)If A=1, u>1, then m=n+pu, m—14N; and

N
N, = [m l-l =mnh-1)+n+1,
m—1
n
N3 = mn + >mn+1,
2n—1

so that i=2 and f(l,n)=mn+1—- N, = p.
3) If A=2 then m—12= in, m— 14 Nj, and

sz [le
m-—1

-] =mn—-1)+n+l=(m—-1)(n—-1)+2n
Suppose now that for some v, 2 £ v < A, one has

N=mn-1)+v-1n+1=m-1)(n—1)+wn.
Then m —14/ N, and so

mN,
Ny = [m—l] =mn-1)+wm+1

=(m-1)(n—-1)+(v+1n.
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It follows that
Ni=mn—-1)+(A—-1n+1=(m—-1)(n—1)+ in.
Hence, if £ > 1 then m -1 > An and
Nijp=mn—1)+in+l1=(m—-1)(n—1)+ (A+ D)n,
and if u=1 then m— 1= An and

mN,l
m-—1

Ny = =mn—-1)+In+1;

in either case one has
(A+1)n

= — A+1
Nippzmn—-1)+(A+1)n+ m— 1

>mn+n—u+1=Z2mn+1,

whence i=A+1 and f(I,n)=mn+1—- N, =pu.
We thus have proved (6) and, in view of (7) and (1), our proof of Schubert’s
formula (i), and of Busche’s formula (ii) as well, is now complete.

ExampPLE. For m=10, n=30, k=15 we have mn+1=2301, mk+1=
151, and
i 1 2 3 4 5 6 7 8
N;i: 151 168 187 208 232 258 287 319
N/: 1 18 37 58 82 108 137 169

Thus a;0(15,30) = 301 — 287 = 151 — 137 = 14.

4. A New Solution

Our new algorithm for determining the Josephus numbers a,,(k,n) (1 <
k < n), where m = 2, will be formulated in terms of two sequences n; and c¢;
(i=1,2,...), the definitions of which are as follows. We define three sequences
of positive integers n;,¢; and ¢/ (i =1,2,...) by taking nj,c¢; and ¢ that satisfy
the conditions
n>0 0<c=c¢c =m+1,

and setting recursively for i > 1

) . [m(n,- +1)— c,-J

m-—1
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9) iy =ci+(m—1)(mp +1) —mn + 1),
(10) Civ1 = ¢y (mod miyy + 1), 0<ciyg Sm + 1

We have n;;1 > n; for all i = 1. In fact, if ¢; =n; + 1 then n;y; =n; + 1 and,
if ¢; £ n; then

m(ni+1)_ni~l=ni+—1 .
m-—1 m—1

Rit1 >

It follows from (8) and (9) that 0 < ¢/, < m — 1; therefore, we have, by [10),
¢i=c; for all i for which n;+12m—1 or n; Zm — 2, apart from i=1.
For the special case of m =2 we have, with nj =¢; =1,

ni=2"—-1, ¢=1 for all i=1,

as can readily be shown by induction on i.
Let m = 2 be arbitrary. It is easily seen that, if we define the sequence »n; with

ny =1 (so that ¢; =1 or 2), then we have
ni=1i for1<i<m,

and n, = m provided c,,—; > 1. ‘
Let m = 2 be again an arbitrary fixed integer. Our formula for the numbers
am(k,n) (1 <k < n) will now be described thus: let us construct the sequences »;

and ¢; (i=1,2,...) with
m=n—k, c=an(l,np+1) if 1 <k<n,

and
nm=1, ¢ =a,2,2) if k=n,

and by relations (8), (9) and [10). We have then

(11) ' am(k,n) =c;i+mmn—n; — 1)
if n; <n<ngg.
Note that
am(l,n+1)=m (modn; +1)
and

am(2,2) =d,(2) =1 or 2

according as m is even or odd.
The validity of our formula follows from the validity of Schubert’s
formula (i) and from Lemmas 1 and 2 below.
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LEMMA 1. To every i = 1 there corresponds a unique j = j(i) = 1 such that
(12) m(ni+1)+1—c =N,
Moreover, we always have j(i+ 1) > j(i), and j(i+ 1) = j(@) + 1 if cixy = ¢}y, or

a fortiori if n; 2 m— 3.

ProoF. For i =1 relation (12) is obvious from Schubert’s formula (i), since
c1 = am(ky,ny + 1) with k; =1 or 2 according as 1 <k <n or k=n.

It is a matter of simple computations to see that, if i =1, 1 <n<m -2 and
¢i = ap(kiyn; + 1), then we have n;y; =n;+1 and

ciiy=ci+(m—=1)(n+1)—mn +1)
=c¢;+m (modn; +1)

and therefore, by (10) and (1), c¢iy1 = am(kiv1,ni41 + 1), where kiyy = k; + 1. It
follows from this that

mni1+1)+1—cip1 =N;

with some unique j = j(i + 1).
Suppose now that n; = m — 3 and (12) holds true; then we have ¢y = ¢}
and, by (9) and (8),

m(niz1 +1)+1—cip1 = Nj+ni + 1 = Njyy,

where

. m(n,-+1)—-c,- _ ]V]
n,+1+1—l m—1 J+1_[m-—1]

Thus, we have j(i + 1) = j(i) + 1 provided n; = m — 3. Existence of j(i) for
all i = 1 now follows by induction. '
We have, by writing j = j(i) and j' = j(i + 1) for simplicity’s sake,
Nj» = Nj = m(niy1 —ni) — (cip1 — i) > 0,
since niy1 —n; =1 and |¢iy1 — ¢;| S m—1. This means that j' > j. If in here
civ1 = ¢}, then we find

N
Ny —=Nj=ny1 +1= [m—JI] = Nj+1 — Nj.

Hence we have j' = j+ 1, as asserted.
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LemmA 2. Suppose that the equality (12) holds true. Then, an integer n sat-
isfies the inequality

(13) n<n=<n
if and only if it satisfies

(14) N; <mn+1 < Nj.

ProOOF. Suppose that n satisfies (14). Since we have j(i+1)=j+1 by
Lemma 1, it follows from (14) that

— . m — c.

i i+1
<n<A4p+——

m m

m
n; +

where 0 < ¢; £ m (¢; = m may happen only for i=1) and 0 < ¢;;; Em ~ 1, and
we have (13).

Conversely, suppose now that n satisfies (13). If n, <m — 3 then n =n;y; =
n; + 1, and

Ni=mmni+1)+1—ci<mn+1,

whereas, since ¢; < n; + 1, we have

N:
Nj+1=Nj+[m_jl

-'=Nj+n,-+2>mn+1;

and if n, 2 m — 2 then j(i+ 1) = j+ 1 by Lemma 1, and we obtain (14) from the
inequality

mn;+1<mn+1=<mni+1,

since we have mn;,+1+m<mn+1 and m — ¢ <m, m—ci1 >0.
Thus, our proof of the formula (11) is now complete.

ExamPLE. For m =10, n = 30, k = 15, we have n; =15, ¢; = a1o(1,16) =

10 and:
i 1 2 3 4 5 6 7 8

ni: 15 16 18 20 23 25 28 31
¢: 10 3 4 3 9 3 4 2

Hence a;0(15,30) =4+ 10(30 — 28 — 1) = 14.

A consequence of Lemmas 1 and 2 is that the number of iteration steps
required in our algorithm to determine the value of a,,(k,n) is in general slightly
less than the number of corresponding steps in Schubert’s or Busche’s algorithm.
For instance, for the case of k =n, m =2, we have
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mhn +1)+1—c =2m—eg,

where ¢ = 0 or 1 according as m is even or odd, and it is not difficult to see that
N;=ifor 1 £i <m. Moreover, we have N,,.; =m+2j for 1 £ j < (m—¢)/2;
indeed, if Ny, =m+2v for some v, 0 Sv=<(m—e¢)/2 -1, then

mN,
Nmive1 = [m fqv-l
_mm+2v)+m—-1-1
- m-—1
=m+2v+2,

where 0 < 7=2v+1<m— 1. Thus we find Ny = 2m — ¢, where L = (3m — ¢)/2.

As a matter of course one may carry out, on the basis of the relation (1), a
direct proof of substantially in the same manner as, but in a way somewhat
easier than, in the proof of Schubert’s formula (i) for a,(k,n) (1 £k <n), as
given in §3 above, noticing that n;.; is the largest positive integer n for which
holds the inequality

ci+mn—n—1) < n

We omit the details, however.

5. A Special Case

Here we shall briefly review the Josephus problem for & = n, namely the
problem to determine the last number to be removed, d,,(n) = a,,(n,n), where we
assume as before that m = 2. Since d,,(1) = 1 for all m, we may suppose in what
follows that n > 1.

Starting with n; = 1 and ¢; = dp(2), that is, ¢; =1 or 2 according as m is
even or odd, we construct the sequences »; and ¢; (and ¢;) (i = 1,2,...) using the
relations (8), (9) and [(10). It follows from the general formula [11), with k = n,
that if n, <n=<=n;y (i=1) then

(15) dn(n) =ci+mn—n; —1).

As was observed in §4, if m =2 and n; =c¢; =1, we have n; =2 — 1 and
¢ =1 for all i > 1. Since then the inequality n; < n < n;;; is equivalent to 2’ <
n < 21 we thus obtain again Rankin’s formula (2).

It should be also noted that, for m = 2, our construction shows that n; =i
for 1 <i < m and, therefore, ¢; = d,,(i + 1) for those values of i. Since we have
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dm(m) = 2 if m = 3, it follows that n,, = m and ¢, = d,(m) for m = 3. Hence,
if m = 3 and if the value of the number d,,(m) is available beforehand, we may
start just as in Rankin [8] the sequences »; and ¢; with n; = m and ¢; = d,,(m + 1)
=du,(m)—1, in so far as we concern with the case of n > m = 3.

The formula for d,,(n) for m =3 found in is

dy(n) =3n+1-— [C (%)DJ

where C = 1.62227 05028 84767 31595 69509 82899 32411... and D = D(n) =
[logs/»((2n+1)/C)]; this is naturally a result of Schubert’s (or equivalently of
Busche’s) type and, in view of our analysis in §2 above, a similar, concise for-
mula can also be provided for any Josephus number a,,(k,n) (1 <k < n) in the

case of m = 3.
Here is a short table of d,(m) (1 <m =< 60).

m: 1 2 3 4 5 6 7 8 9 10
dw(m): 1 1 2 2 2 4 5 4 8 8

m: 11 12 13 14 15 16 17 18 19 20
dw(m): 7 11 8 13 4 11 12 8 12 2

m: 21 22 23 24 25 26 27 28 29 30
doim): 13 7 22 2 8 13 26 4 26 29

m: 31 32 33 34 35 36 37 38 39 40
du(m): 17 27 26 7 33 20 16 22 29 4

m: 41 42 43 44 45 46 47 48 49 50
da(m): 13 22 25 14 22 37 18 46 42 46

m: 51 52 53 54 .55 56 57 58 59 60
dn(m): 9 41 12 7 26 42 24 S5 44 53

REMARK. It will be of some interest to note that several entries of the
above table of d,(m), namely the ones for m = 2,3,4,5, and 6, are found among
other numerals in the table given by L. Euler [3], who also discovered, moreover,
the significance of our sequences n; and ci (or, of something equivalent to them);
however, the sequences numerically presented by him in the special case of m =9
would seem to contain, by contamination, errors from a certain point onwards,
but the table of his as a whole is properly understandable.
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6. Illustrations

We present in the following some numerical examples mostly treated by
Rankin [8], by Jakobezyk [5], by Busche [2] and by Halbeisen and Hungerbiihler
[4]. All the results obtained by newly applying our method agree, of course, with
those of these authors’. The writer is much obliged to Dr H. Mikawa for the
numerical computations relevant to examples 9) and 10) below.

1) To compute d3(41). Here m =3, n=41. We know d3(3) =2, so that
n=3 c¢=1
i1 23 4 5 6 7 8
ni: 3 5 8 13 20 30 46 69
1 11

i 2 2 1 2 1

Hence d3(41) =1+ 3(41-30—-1) =31.

2) To compute d3(53). Here m =3, n = 53. Using the table given in 1)
above, we find d5(53) =2+ 3(53 —46 —1) = 20.

3) To determine dg(117). Here m = 6, n = 117, and d¢(6) = 4; n; = 6, ¢; = 3.
We have

i1 2 3 15 16 17
n: 6 7 9 ... 88 106 127
¢: 3 1 3 2 3 1

and dg(117) =3+ 6(117 — 106 — 1) = 63.
4) To compute as(46,117). Here m =6, n =117, k =46, and n; =71, ¢ =
as(1,72) = 6. We find
i1 2 3 4
n;: 71 85 102 123
¢g: 6 4 3 5

whence a6(46,117) =3 +6(117 — 102 — 1) = 87.
5) To compute ag(66,117). Here m =6, n =117, k = 66; and so n; = 51,
C1 =a5(1,52) =6:
i 1 2 3 4 5 6
n: 51 61 73 88 106 127
c: 6 4 2 3 4 2

Thus a(66,117) =4+ 6(117 — 106 — 1) = 64.
6) To determine ae(116,117). We have m =6, n=117, k =116, so that
ny = 1, C1 =a5(1,2) =2
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i1 2 3 ... 20 21 22
ni: 1 2 3 ... 8 103 124
Cj. 2 2 4 4 2 3

and we get as(116,117) =2+ 6(117 — 103 — 1) = 80.
7) To compute ag(10,11). For m =9, n=11, k =10 we have n; =1, ¢; =
as(1,2) =1, and we find ay(10,11) =4 since

i1 2 3 45 6 7 8 9 10 11
n: 1 23 45 6 7 8 9 10 11
¢c: 1 1 21 4 6 7 7 6 4 1

8) To determine ag(9,11). We are given m =9, n = 11, k = 9; in here n; = 2,
1 = ay(1,3) =3

i1 23 456 7 8 9
n: 23 45 6 7 8 9 11
¢: 343 61 2 21 7

Hence a9(9,11) =1+9(11 -9 —1) = 10.

9) To determine a,,(k,n) for m =7, n = Ry3, k = n — 2001, where, and in the
next example 10), Rp3 = 11111111111111111111111 is the so-called repunit prime
of 23 digits. We have n; = 2001, ¢; = a7(1,2002) = 7, and eventually find nyg <
n < nyg; and cpg0 = 5, where nygy = 9538759184899654873314. Thus

a7(k,n) =54+ 7(11 — nagp — l)
= 11006463483480193664577.

10) To compute d,,(n) for m =7, n = Ry3. Here n; =7, ¢; = 4, and we find
n3je < n < n317 and c316 = 2, where n3;¢ = 9711936891836718664167, so that
d7(n) =2+ 7(n — N316 — 1)
= 9794219534920747128603.

7. Appendix

Let us consider again the generalized Josephus problem with parameters
n 21 and m = 2 and, denoting by a,,(k,n) (k = 1) as before the kth member to
be removed, we write d,,(n) = a,,(n,n). For a fixed m Seki Takakazu called a
natural number # a limitative number (IEFR%) if one has d,(n+ 1) =1, that is,
the number 1 is the last member to be deleted in this situation.
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We define two sequences of integers N; and o; by putting

mN; .
= ] = | — >
Ny =1, N [ — 1-‘ iz1)

and
ogi=(m—1)Nyy—mN;, 050,=m-2 (iz]).
If Ni=(m-1)K;—0; i<j<i+1) then Ny =mK; —o; and
Oit1 — 0 = (m — 1)Kiy1 — mK;;

thus, d,(K;) =1 when and only when g; =0, so that if K; 22 then K;—1 is a
limitative number for m and vice versa.

A short table of limitative numbers for m (2 < m < 10), with five entries
for each of these m’s, was given by Seki in [12], the computation of whom was
carried out only by directly applying the fundamental congruence relation (1).
Later on, Takebe Katahiro (1664—1739) of the Seki school slightly extended the
table of limitative numbers of Seki’s, but there seems to be some errors in his
calculation.

It is almost apparent that Seki had an idea that the following hypothesis

would be true:

HYPOTHESIS. For every fixed m = 2 there exist infinitely many limitative

numbers n.

This hypothesis holds true for m = 2 and 3 at the least. In fact, for m = 2 we
find &2(2°) =1 (i 2 1), and all of the numbers 2 —1 (i=1,2,3,...) are limita-
tive, and any limitative number for m =2 has this form, that is, a form of a
power of two minus one. For the case of m =3 we have

2Niy1 —3N; =0, 0;,=0,1 (iz1);

if o; # 0 for all sufficiently large i, then we would have for some iy =1 6; = 1 for
all i = iy, which is impossible as was noticed before (cf. §2 above). Thus, there
are infinitely many limitative numbers in this case, m = 3. For m = 4 these simple
arguments will fail to prove (or disprove) our hypothesis above. As a matter of
fact, for odd m > 3 the existence even of a single limitative number is quite
unclear, whereas for even m the number 1 is always a limitative number.
Here we shall give a table of limitative numbers for m up to 60, with ten

entries for each of m.
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Limitative Numbers
= 2 1 3 7 15 31 63 127 255 511 1023
3 3 5 8 30 69 104 354 798 1797 2696
4 1 4 8 11 15 217 516 1225 6889 12248
5 2 5 11 14 36 57 141 221 346 677
6 1 2 7 13 73 127 318 1143 1976 2846
7 22 49 92 234 319 2376 4403 5137 32672 60530
8 1 4 9 19 29 44 76 87 114 500
9 90 145 207 233 474 1083 1371 4455 5012 8029
10 1 15 21 70 226 527 1226 2850 5960 17096
11 2 6 13 16 24 105 170 206 366 865
12 1 2 3 6 15 171 1168 3044 12252 17353
13 23 25 35 38 894 1137 5208 13611 176328 308786
14 1 3 5 6 145 227 1688 24341 28230 115408
15 3 4 8 11 16 20 78 337 1440 3533
16 1 5 8 10 19 25 35 40 149 159
17 2 55 75 102 326 1319 3482 3931 8647 10372
18 1 2 4 5 10 27 41 55 186 197
19 4 89 94 117 704 923 1586 2876 6833 9452
20 1 8 9 17 20 80 515 777 1515 6375
21 5 6 12 36 44 108 205 1317 2609 6595
22 1 4 17 24 575 4462 15672 21705 39739 293749
23 2 S 15 28 37 51 181 207 296 370
24 1 2 3 6 7 9 12 21 24 41
25 8 14 16 32 371 913 2752 5510 6228 452865
26 1 3 37 114 139 373 511 598 1078 6304
27 3 11 13 16 49 55 98 155 161 416
28 1 10 15 19 24 29 44 64 120 134
29 2 4 10 16 47 65 75 111 115 1861
30 1 2 13 14 21 36 40 46 117 562
31 8 794 1635 2270 2856 5504 14722 17345 202881 223853
32 1 5 8 115 135 192 256 310 533 1384
33 4 61 67 1312 3305 21604 25985 41228 107025 530171
34 1 5 7 11 13 18 24 29 36 59
35 2 10 13 19 81 207 393 8039 18635 32325
36*
37 4 7 12 30 41 70 74 180 472 2449
38 1 3 8 17 18 22 30 43 48 294
39 3 30 45 62 108 148 231 1547 2169 2470
40 1 36 41 255 590 6229 6893 14734 36659 37599
41 2 6 109 242 274 969 3096 5201 8955 84723
42 1 2 34 47 393 1756 1981 5862 6005 20527
43 10 106 364 570 12464 14696 15771 16531 22447 35102
44 1 8 11 77 95 166 373 780 3249 15879
45 20 22 26 37 50 125 140 14825 47702 308045
46 1 36 53 58 71 1288 1570 5148 9739 18423
47*
48 1 2 3 37 56 68 606 1814 3272 10641
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49
50

51
52
53
54
55
56
57
58
59
60

135

—
W
—_N == =N =W

227
3

20
7
6
2

24

11

182
6

14

2

414
4

28
17
31
15
28
14
192
23
95
3

2396
22

39
359
75
18
107
36
2751
32
113
4

3069
25

443
2068
709
22
109
172
3525
37
119
S

4358
39

980
2279
795
29
201
9135
8393
355
149
7
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71992
58

2858
5679
67401
49
233
47940
11141
677
541
10

406910
63

3847
16526
114895
56
7383
59512
103637
701
676

11

3133496
330

16993
102546
133808

265

10273
354260
182598

820

32265

16

3333448
1634

21129
231801
139004

308
26676
1044344
217954
864
234388
21

*The sequences of limitative numbers for m = 36 and 47 fairly rapidly increase and so will be given

here separately:

m=36: 1,2,3,54519,235911,1694972,2184101, 7981011, 31735572, 100730052;
m=47: 2,4,166,1745,2164,273565,468341, 675061, 1402505, 1936444,

REMARK.
dn(3) =1
dn(4) =1

It is a matter of simple calculation to verify that we have

if and only if m =0 or 5 (mod 6);

if and only if m =0,2 or 3 (mod 12);

dn(5) =1 if and only if m=0,4,8,15,18,19,22,29,33,37,47 or 50 (mod 60);

and

d(6) =1

if and only if m=0,3,5,14,16,18,21,23,32 or 34 (mod 60).

Thus, we may conclude that 19/30 (ca. 63.3%) of odd integers m = 3 admit at
least one limitative number » satisfying 2 < n < 5 and 7/10 (70%) of even integers
m = 2 admit one or more limitative numbers n with 2 <n < S.

As is observed in Rankin [8] it will be worth noticing that we have for every
fixed n > 1

dr(n) = ds(n)

whenever r =5 (mod M), M being the least common multiple of the integers

1,2,...,

n.
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