ASYMPTOTIC ESTIMATES FOR DENSITIES OF MULTI-DIMENSIONAL STABLE DISTRIBUTIONS

By

Seiji HIRABA

1. Introduction and Results

Let $\mu(dx)$ be a stable distribution on \mathbf{R}^d with exponent $0 < \alpha < 2$. Its log-characteristic function $\Psi(z) := \log \int_{\mathbf{R}^d} e^{ixz} \mu(dx)$ $(i = \sqrt{-1})$ is given by the following:

$$\Psi(z) = \begin{cases} -\int_{\mathbf{S}^{d-1}} \left| \langle z, \theta \rangle \right|^{\alpha} \left[1 - i(\operatorname{sgn}\langle z, \theta \rangle) \tan \frac{\pi \alpha}{2} \right] \lambda(d\theta) + i\langle z, b \rangle & (\alpha \neq 1), \\ -\int_{\mathbf{S}^{d-1}} \left| \langle z, \theta \rangle \right| \left[1 + i \frac{2}{\pi} (\operatorname{sgn}\langle z, \theta \rangle) \log |\langle z, \theta \rangle| \right] \lambda(d\theta) + i\langle z, b \rangle & (\alpha = 1), \end{cases}$$

where $\langle z,\theta\rangle=\sum_{j=1}^d z_j\theta_j$ for $z=(z_1,\ldots,z_d),\ \theta=(\theta_1,\ldots,\theta_d),$ "sgn x" is the sign function, i.e., sgn x=1 $(x>0),\ =0$ $(x=0),\ =-1$ $(x<0),\ \lambda(d\theta)$ is a finite measure on \mathbf{S}^{d-1} and $b\in\mathbf{R}^d$. Moreover if μ is non-degenerate, then μ has a C^∞ -density function p(x) with respect to the Lebesgue measure dx, i.e., $\mu(dx)=p(x)\ dx$ and

(1.1)
$$p(x) = \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} \exp[-i\langle x, z \rangle + \Psi(z)] dz.$$

The non-degeneracy of μ means $\operatorname{Span}\operatorname{Spt}\mu=\mathbb{R}^d$ and it is equivalent to $\operatorname{Span}\operatorname{Spt}\lambda=\mathbb{R}^d$, where $\operatorname{Spt}\mu$ (resp. $\operatorname{Spt}\lambda$) is a support of μ (resp. λ) and for a set $S\subset\mathbb{R}^d$, $\operatorname{Span}S$ is a linear subspace of \mathbb{R}^d spanned by S (cf. [3]).

In the present paper we would like to investigate the asymptotic behavior of $p(r\sigma)$ as $r \to \infty$ for each direction $\sigma \in \mathbf{S}^{d-1}$ under the following assumption.

Assumption 1. Let b = 0. For some number $m \ge 0$,

Spt
$$\lambda = {\sigma^{(1)}, \sigma^{(2)}, \dots, \sigma^{(d+m)}} \subset \mathbf{S}^{d-1}$$
 and Span Spt $\lambda = \mathbf{R}^d$,

that is, the support of λ is only finitely many points which linearly spans \mathbf{R}^d .

Revised September 27, 2002.

Received November 9, 2001.

Note that we always denote vectors as $\sigma^{(j)} = (\sigma_1^{(j)}, \dots, \sigma_d^{(j)})$.

In the one-dimensional case the asymptotic behavior of p(y) as $y \to \pm \infty$ is well-known as follows. If λ has mass at $\{+1\}$, then $p(y) \sim C(\alpha)y^{-1-\alpha}$ as $y \to +\infty$, with some constant $C(\alpha) > 0$ which is determined by α and $\lambda(\{\pm 1\})$. Also if λ does not have mass at $\{-1\}$, then p(y) = 0 if and only if $y \le 0$ and $0 < \alpha < 1$. Moreover

$$\alpha = 1 \Rightarrow p(y) \sim \frac{1}{2\sqrt{ce}} \exp\left[\frac{\pi|y|}{4c} - \frac{2c}{\pi e} \exp\left(\frac{\pi|y|}{2c}\right)\right] \quad (y \to -\infty),$$

$$1 < \alpha < 2 \Rightarrow p(y) \sim C(\alpha)' |y|^{(2-\alpha)/(2\alpha-2)} \exp[-\gamma |y|^{\alpha/(\alpha-1)}] \quad (y \to -\infty),$$

where constants $C(\alpha)', c, \gamma > 0$ are determined by α and $\lambda(\{-1\})$ (cf. [2]). Note that for positive functions f(r), g(r) of $r \ge 1$, $f(r) \sim g(r)$ $(r \to \infty)$ means $\lim_{r \to \infty} f(r)/g(r) = 1$.

In the two-dimensional case and in some special cases of three-dimension, we gave the asymptotic behavior of $p(r\sigma)$ in [1].

In this paper we give the asymptotic behavior of $p(r\sigma)$ in the general dimension $d \ge 1$. For each n = 1, 2, ..., d, let

$$S(n) := \left\{ \sum_{s=1}^{n} a_s \sigma^{(j_s)}; a_s \ge 0, j_s = 1, 2, \dots, d + m \ (s = 1, 2, \dots, n) \right\} \cap \mathbf{S}^{d-1}$$

and

$$T(n) := S(n) \setminus S(n-1)$$
 with $S(0) := \emptyset$.

That is, $\sigma \in T(n)$ means σ can be expressed by a linear sum of just *n*-number of independent vectors of $T(1) = S(1) = {\sigma^{(1)}, \sigma^{(2)}, \dots, \sigma^{(d+m)}}$ with positive coefficients and it can not be by less than *n*-number of independent vectors with positive coefficients (note that σ may be also expressed by more than *n*-number of independent vectors with positive coefficients).

Let Int S(d) denote the interior of S(d) in S^{d-1} and for $r \ge 1$,

$$h_{\alpha}(r) := \begin{cases} \exp\left[\frac{\pi r}{4} - \frac{2}{\pi e} \exp\left(\frac{\pi r}{2}\right)\right] & (\alpha = 1), \\ r^{(2-\alpha)/(2\alpha-2)} \exp\left[-r^{\alpha/(\alpha-1)}\right] & (1 < \alpha < 2). \end{cases}$$

THEOREM 1. Under Assumption 1, the following hold with some constants $C(\alpha, \sigma) > 0$, $0 < C_1 \le C_2$, $\gamma_1 > \gamma_2 > 0$ which are independent of $r \ge 1$.

(i) Let $0 < \alpha < 1$. If $\sigma \in T(n) \cap \text{Int } S(d)$ for some $n = 1, \ldots, d$, then $p(r\sigma) \sim C(\alpha, \sigma) r^{-n(1+\alpha)}$ as $r \to \infty$. If $\sigma \notin \text{Int } S(d)$, then $p(r\sigma) = 0$ for all $r \ge 0$.

(ii) Let $1 \le \alpha < 2$. If $\sigma \in T(n)$ for some n = 1, ..., d, then $p(r\sigma) \sim C(\alpha, \sigma)r^{-n(1+\alpha)}$ as $r \to \infty$. If $\sigma \notin S(d)$, then $C_1h_{\alpha}(\gamma_1 r) \le p(r\sigma) \le C_2h_{\alpha}(\gamma_2 r)$ for all $r \ge 1$.

It is possible to determine the constant $C(\alpha, \sigma)$ exactly. We shall give a more detailed result at the end of the next section (see Theorem 2). From the above result the following is immediately obtained.

COROLLARY 1. If $S(d) = \mathbf{S}^{d-1}$ and $\sigma \in T(n)$ for some n = 1, ..., d, then $p(r\sigma) \sim C(\alpha, \sigma) r^{-n(1+\alpha)}$ as $r \to \infty$.

2. Further Results

Let $e^{(j)}$ be the unit vector in x_j -axis direction (j = 1, ..., d). Adding to Assumption 1, we may suppose $\{\sigma^{(1)}, \sigma^{(2)}, ..., \sigma^{(d)}\}$ linearly spans \mathbf{R}^d and there is a $d \times d$ -regular matrix Q such that $\sigma^{(j)} = Qe^{(j)}$, by changing the order of $\{\sigma^{(j)}; j = 1, 2, ..., d + m\}$ if necessary, where we regard $\sigma^{(j)}, e^{(j)}$ as column vectors (Q) is given by $Q = (\sigma^{(1)} \cdots \sigma^{(d)})$. Let

$$p_Q(x) := |\det Q| p(Qx)$$
, or equivalently, $p(x) = |\det Q|^{-1} p_Q(Q^{-1}x)$.

If we denote

$$\Psi(z) = \Psi_{\lambda}(z) = \int_{\mathbf{S}^{d-1}} F(\langle z, \theta \rangle) \lambda(d\theta)$$

with a suitable function F, and let tQ be a transposed matrix of Q, then the log-characteristic function $\Psi_Q(z)$ of $p_Q(x)$ is given by $\Psi_\lambda({}^tQ^{-1}z) = \Psi_{\lambda_Q}(z)$, where $\lambda_Q(d\theta) = \lambda(Q \ d\theta)$ on $Q^{-1}(\mathbf{S}^{d-1})$. Thus $\mathbf{Spt}\ \lambda_Q$ contains $e^{(j)} = Q^{-1}\sigma^{(j)}$ $(j=1,\ldots,d)$. In fact,

$$(2\pi)^{d} p_{Q}(x) = |\det Q| \int_{\mathbf{R}^{d}} \exp[-i\langle Qx, z \rangle + \Psi_{\lambda}(z)] dz$$

$$= |\det Q| \int_{\mathbf{R}^{d}} \exp[-i\langle x, {}^{t}Qz \rangle + \Psi_{\lambda}(z)] dz$$

$$= \int_{\mathbf{R}^{d}} \exp[-i\langle x, w \rangle + \Psi_{\lambda}({}^{t}Q^{-1}w)] dw.$$

Moreover by $\langle {}^tQ^{-1}w, \theta \rangle = \langle w, Q^{-1}\theta \rangle$ we have

$$\Psi_{\lambda}({}^{t}Q^{-1}w) = \int_{\mathbf{S}^{d-1}} F(\langle w, Q^{-1}\theta \rangle) \lambda(d\theta) = \int_{Q^{-1}(\mathbf{S}^{d-1})} F(\langle w, \tilde{\theta} \rangle) \lambda(Q \ d\tilde{\theta}) = \Psi_{\lambda_{Q}}(w).$$

This implies $\Psi_Q = \Psi_{\lambda_Q}$. Therefore our results are invariant for regular linear transformations Q by changing \mathbf{S}^{d-1} to $Q^{-1}(\mathbf{S}^{d-1})$.

For each j = 1, 2, ..., d + m and $t \in \mathbb{R}$, let

$$\Psi_{j}(t) = \begin{cases} -\lambda(\{\sigma^{(j)}\})|t|^{\alpha} \left[1 - i(\operatorname{sgn} t) \tan \frac{\pi \alpha}{2}\right] & (\alpha \neq 1), \\ -\lambda(\{\sigma^{(j)}\})|t| \left[1 + i\frac{2}{\pi}(\operatorname{sgn} t) \log|t|\right] & (\alpha = 1). \end{cases}$$

and let $p_j(y)$ be the one-dimensional α -stable density corresponding to $\Psi_j(t)$. Then $p_j(y)$ is a C^{∞} function satisfying the following: $p_j(y) \sim C_j(\alpha) y^{-1-\alpha}$ as $y \to +\infty$. $p_j(y) = 0$ if and only if $y \le 0$, $0 < \alpha < 1$. Moreover

$$\alpha = 1 \Rightarrow p_j(y) \sim \frac{1}{2\sqrt{c_j e}} \exp\left[\frac{\pi|y|}{4c_j} - \frac{2c_j}{\pi e} \exp\left(\frac{\pi|y|}{2c_j}\right)\right] \quad (y \to -\infty),$$

$$1 < \alpha < 2 \Rightarrow p_j(y) \sim C_j(\alpha)' |y|^{(2-\alpha)/(2\alpha-2)} \exp[-\gamma_j |y|^{\alpha/(\alpha-1)}] \quad (y \to -\infty).$$

Here constants $C_j(\alpha)$, $C_j(\alpha)'$, c_j , $\gamma_j > 0$ are determined by α and $\lambda(\{\sigma^{(j)}\})$.

Let $p^{(d)}(x) := p_1(x_1) \cdots p_d(x_d)$ for $x = (x_1, \dots, x_d)$. If m = 0, then $p_Q(x) = p^{(d)}(x)$. If $m \ge 1$, then by $\Psi_Q(z) = \sum_{j=1}^{d+m} \Psi_j(\langle z, Q^{-1}\sigma^{(j)} \rangle)$ we have

(2.1)
$$p_{Q}(x) = \int_{-\infty}^{\infty} dy_{1} \cdots \int_{-\infty}^{\infty} dy_{m} p^{(d)}(x - y_{1}Q^{-1}\sigma^{(d+1)} - \cdots - y_{m}Q^{-1}\sigma^{(d+m)}) p_{d+1}(y_{1}) \cdots p_{d+m}(y_{m}).$$

In fact, in general, if $\tilde{p}(x)$ is a *d*-dimensional density with a log-characteristic function $\tilde{\Psi}(z) := \Psi_O(z) - \Psi_i(\langle z, Q^{-1}\sigma^{(j)}\rangle)$, then

$$(2\pi)^{d} p_{Q}(x) = \int_{\mathbb{R}^{d}} \exp[-i\langle x, z \rangle + \Psi_{Q}(z)] dz$$

$$= \int_{\mathbb{R}^{d}} \exp[-i\langle x, z \rangle + \tilde{\Psi}(z)] \exp[\Psi_{j}(\langle z, Q^{-1}\sigma^{(j)} \rangle)] dz$$

$$= \int_{\mathbb{R}^{d}} \exp[-i\langle x, z \rangle + \tilde{\Psi}(z)] \left(\int_{-\infty}^{\infty} \exp[iy\langle z, Q^{-1}\sigma^{(j)} \rangle] p_{j}(y) dy \right) dz$$

$$= \int_{-\infty}^{\infty} dy \int_{\mathbb{R}^{d}} \exp[-i\langle x - yQ^{-1}\sigma^{(j)}, z \rangle + \tilde{\Psi}(z)] p_{j}(y) dz$$

$$= (2\pi)^{d} \int_{-\infty}^{\infty} \tilde{p}(x - yQ^{-1}\sigma^{(j)}) p_{j}(y) dy.$$

Hence we have (2.1).

When $\sigma \in T(n)$, we define a family of indexes

$$J(n) := \{ \{j_1, \dots, j_n\} \subset \{1, \dots, d+m\}; \sigma = a_1 \sigma^{(j_1)} + \dots + a_n \sigma^{(j_n)},$$

$$a_s > 0 \ (s = 1, \dots, n), \{\sigma^{(j_1)}, \dots, \sigma^{(j_n)}\} \text{ are linearly independent} \}.$$

For each $\{j_1,\ldots,j_n\}\in J(n)$, we always fix $\{\sigma^{(j_{n+1})},\ldots,\sigma^{(j_d)}\}$ such that $\{\sigma^{(j_1)},\ldots,\sigma^{(j_d)}\}$ is a basis of \mathbf{R}^d and a $d\times d$ -matrix Q_{j_1,\ldots,j_n} such that $Q_{j_1,\ldots,j_n}e^{(i_s)}=\sigma^{(j_s)}$ $(s=1,\ldots,d)$, where (i_1,\ldots,i_d) is a permutation of $(1,\ldots,d)$. Moreover if n< d, then let

$$\Psi_{j_1,\ldots,j_n}^{\perp}(z_{i_{n+1}},\ldots,z_{i_d}):=\Psi_{\mathcal{Q}_{j_1,\ldots,j_n}}(w_1,\ldots,w_d) \quad \text{with } w_i=z_{i_s} \ (i=i_s), \ w_i=0 \ (i\neq i_s)$$

and $p_{j_1,\ldots,j_n}^{\perp}(x_{i_{n+1}},\ldots,x_{i_d})$ be a (d-n)-dimensional stable density corresponding to $\Psi_{j_1,\ldots,j_n}^{\perp}$. It is expressed by

$$\int_{-\infty}^{\infty} dy_1 p_{j_{d+1}}(y_1) \cdots \int_{-\infty}^{\infty} dy_m p_{j_{d+m}}(y_m) \times p_{j_{n+1}}\left(x_{i_{n+1}} - \sum_{s=1}^{m} y_s \xi_{i_{n+1}}^{(j_{d+s})}\right) \cdots p_{j_d}\left(x_{i_d} - \sum_{s=1}^{m} y_s \xi_{i_d}^{(j_{d+s})}\right),$$

where $\{j_{d+1},\ldots,j_{d+m}\}:=\{1,\ldots,d+m\}\setminus\{j_1,\ldots,j_d\}$ and $\xi^{(j_{d+s})}:=R\sigma^{(j_{d+s})}\in\mathbf{R}^d$ with $R=Q_{j_1,\ldots,j_n}^{-1}$. We also set $p_{j_1,\ldots,j_d}^\perp(0,\ldots,0):=1$. Now we state a more detailed result than Theorem 1 in case of $\sigma\in T(n)$.

Theorem 2. Let $\sigma \in T(n)$ (and $\sigma \in \text{Int } S(d)$ if $0 < \alpha < 1$). It holds that

$$p(r\sigma) \sim \sum_{\{j_1,\ldots,j_n\} \in J(n)} |\det Q_{j_1,\ldots,j_n}|^{-1} p_{j_1}(ra_1) \cdots p_{j_n}(ra_n) p_{j_1,\ldots,j_n}^{\perp}(0,\ldots,0)$$

as $r \to \infty$, where each $p_{j_1,\ldots,j_n}^{\perp}(0,\ldots,0)$ is positive and (a_1,\ldots,a_n) is determined by $\sigma = \sum_{s=1}^n a_s \sigma^{(j_s)}$ such that $a_s > 0$ $(s = 1,\ldots,n)$.

3. Proofs of Theorems

Adding Assumption 1, we may also assume $(\sigma^{(1)}, \ldots, \sigma^{(d)}) = (e^{(1)}, \ldots, e^{(d)})$ and $m \ge 1$. For simplicity, let $\eta^{(j)} := \sigma^{(d+j)}$ $(j = 1, \ldots, m)$. Then by (2.1) with $Q = E_d$ (the $d \times d$ -unit matrix) we have

$$p(x) = \int_{-\infty}^{\infty} dy_1 \cdots \int_{-\infty}^{\infty} dy_m p^{(d)}(x - y_1 \eta^{(1)} - \cdots - y_m \eta^{(m)})$$

$$\times p_{d+1}(y_1) \cdots p_{d+m}(y_m),$$

where $p^{(d)}(x) = p_1(x_1) \cdots p_d(x_d)$ for $x = (x_1, \dots, x_d)$.

We first show the latter half of each result of (i) and (ii) in Theorem 1.

Proposition 1. Let $S(d) \neq S^{d-1}$.

- (i) If $0 < \alpha < 1$ and $\sigma \notin \text{Int } S(d)$, then $p(r\sigma) = 0$ for $r \ge 0$.
- (ii) If $1 \le \alpha < 2$ and $\sigma \notin S(d)$, then $C_1 h_{\alpha}(\gamma_1 r) \le p(r\sigma) \le C_2 h_{\alpha}(\gamma_2 r)$ for all $r \ge 1$, where $0 < C_1 \le C_2 < \infty$, $\gamma_1 > \gamma_2 > 0$ are independent of $r \ge 1$.

PROOF. Since $e^{(1)}, \ldots, e^{(d)} \in S(d) \neq \mathbf{S}^{d-1}$ and $\sigma \notin \mathbf{Int} S(d)$, there is a number $i_0 = 1, \ldots, d$ such that $\sigma_{i_0} \leq 0$ and we may assume that $S(d) \subset \{\theta \in \mathbf{S}^{d-1}; \theta_{i_0} \geq 0\}$ by using a regular linear transformation if necessary. For simplicity, let $i_0 = 1$. Hence $\eta_1^{(j)} \geq 0$ $(j = 1, \ldots, m)$. Moreover $\sigma \notin S(d)$ implies $\sigma_1 < 0$.

(i) Let $0 < \alpha < 1$. If $\sigma \notin \text{Int } S(d)$, then $\sigma_1 \le 0$. By $p_j(y) = 0$ $(y \le 0)$ for every j,

$$p(r\sigma) = \int_0^\infty dy_1 \cdots \int_0^\infty dy_m p^{(d)} (r\sigma - y_1 \eta^{(d+1)} - \cdots - y_m \eta^{(d+m)})$$
$$\times p_{d+1}(y_1) \cdots p_{d+m}(y_m).$$

Thus $r\sigma_1 - y_1\eta_1^{(1)} - \cdots - y_m\eta_1^{(m)} \le 0$ by $\eta_1^{(j)} \ge 0$ for every j. Therefore $p_1(r\sigma_1 - y_1\eta_1^{(1)} - \cdots - y_m\eta_1^{(m)}) = 0$ and hence $p(r\sigma) = 0$.

(ii) Let $1 \le \alpha < 2$. If $\sigma \notin S(d)$, then $\sigma_1 < 0$. Let $\varepsilon > 0$ be a sufficiently small number such that $-\sigma_1 - \varepsilon(\eta_1^{(1)} + \cdots + \eta_1^{(m)}) > \varepsilon$. By the definition of $h_{\alpha}(r)$, there exist constants $C_0, \gamma_2 > 0$ such that $p_j(y) \le C_0 h_{\alpha}(\gamma_2 r)$ whenever $y \le -\varepsilon r$, $r \ge 1$ for every $j = 1, \ldots, d + m$. We have

$$p(r\sigma) = \sum_{k=0}^{m} \sum_{\substack{\{j_1, \dots, j_k\} \\ \subset \{1, \dots, m\}}} \int_{-\infty}^{-\varepsilon r} dy_{j_1} p_{d+j_1}(y_{j_1}) \cdots$$

$$\int_{-\infty}^{-\varepsilon r} dy_{j_k} p_{d+j_k}(y_{j_k}) \int_{-\varepsilon r}^{\infty} dy_{j_{k+1}} p_{d+j_{k+1}}(y_{j_{k+1}}) \cdots$$

$$\int_{-\infty}^{\infty} dy_{j_m} p_{d+j_m}(y_{j_m}) p^{(d)}(r\sigma - y_1 \eta^{(1)} - \dots - y_m \eta^{(m)}),$$

where $\{j_{k+1},\ldots,j_m\}=\{1,\ldots,m\}\setminus\{j_1,\ldots,j_k\}$. In the right-hand side if k=0, then the corresponding term satisfies

$$\int_{-\varepsilon r}^{\infty} dy_1 p_{d+1}(y_1) \cdots \int_{-\varepsilon r}^{\infty} dy_m p_{d+m}(y_m) p^{(d)}(r\sigma - y_1 \eta^{(1)} - \cdots - y_m \eta^{(m)}) \leq C_0' h_{\alpha}(\gamma_2 r)$$

for some $C'_0 > 0$. In fact, if $y_j \ge -\varepsilon r$ for every j, then

$$r\sigma_1 - y_1\eta_1^{(1)} - \dots - y_m\eta_1^{(m)} \le r(\sigma_1 + \varepsilon(\eta_1^{(1)} + \dots + \eta_1^{(m)})) < -\varepsilon r.$$

Hence $p_1(r\sigma_1 - y_1\eta_1^{(1)} - \cdots - y_m\eta_1^{(m)}) \le C_0h_\alpha(\gamma_2r)$, which implies the above inequality. If $k \ge 1$, then it is easy to see that

$$\int_{-\infty}^{\infty} p^{(d)}(r\sigma - y_1\eta^{(1)} - \cdots - y_m\eta^{(m)}) dy_j$$

is bounded in $(y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_m)$. Therefore for some constants $C_0'' > 0$,

$$\int_{-\infty}^{-\varepsilon r} dy_{j_1} p_{d+j_1}(y_{j_1}) p^{(d)}(r\sigma - y_1 \eta^{(1)} - \dots - y_m \eta^{(m)})$$

$$\leq C_0 h_{\alpha}(\gamma_2 r) \int_{-\infty}^{\infty} p^{(d)}(r\sigma - y_1 \eta^{(1)} - \dots - y_m \eta^{(m)}) dy_{j_1}$$

$$\leq C_0'' h_{\alpha}(\gamma_2 r).$$

Thus we have $p(r\sigma) \le C_2 h_\alpha(\gamma_2 r)$. Finally, for the lower estimate, since $p_j(y)$ is strictly positive and continuous, if $0 \le y_j \le 1$ for every j, then

$$p^{(d)}(r\sigma - y_1\eta^{(1)} - \cdots - y_m\eta^{(m)}) \ge C'h_\alpha(y_1r)$$

for all $r \ge 1$ with some constants C' > 0, $\gamma_1 > 0$. Therefore

$$p(r\sigma) \ge \int_0^1 dy_1 p_{d+1}(y_1) \cdots \int_0^1 dy_m p_{d+m}(y_m) p^{(d)}(r\sigma - y_1 \eta^{(1)} - \cdots - y_m \eta^{(m)})$$

$$\ge C_1 h_{\alpha}(y_1 r).$$

Next in order to show the first half of each (i), (ii) in Theorem 1, it suffices to show Theorem 2. We always assume $\sigma \in T(n)$ for some n = 1, ..., d (and $\sigma \in Int S(d)$ if $0 < \alpha < 1$). Then by using a regular linear transformation, we may also assume that $\sigma = \sigma_1 e^{(1)} + \cdots + \sigma_n e^{(n)}$ with $\sigma_1 > 0, ..., \sigma_n > 0$.

PROOF OF THEOREM 2. Let $\varepsilon > 0$ be a sufficiently small number such that

$$c_0 := \min_{j=1,\ldots,n} \{ \sigma_j - \varepsilon(|\eta_j^{(1)}| + \cdots + |\eta_j^{(m)}|) \} > 0$$

and $\varepsilon_0 := \varepsilon \, dm \, \max\{|\eta_j^{(s)}|; j=1,\ldots,d,s=1,\ldots,m\}$. We have

$$p(r\sigma) = \sum_{k=0}^{m} \sum_{\substack{\{j_{1}, \dots, j_{k}\}\\ \subset \{1, \dots, m\}}} \int_{|y_{j_{1}}| \geq \varepsilon r} dy_{j_{1}} p_{d+j_{1}}(y_{j_{1}}) \cdots$$

$$\int_{|y_{j_{k}}| \geq \varepsilon r} dy_{j_{k}} p_{d+j_{k}}(y_{j_{k}}) \int_{|y_{j_{k+1}}| < \varepsilon r} dy_{j_{k+1}} p_{d+j_{k+1}}(y_{j_{k+1}}) \cdots$$

$$\int_{|y_{j_{m}}| < \varepsilon r} dy_{j_{m}} p_{d+j_{m}}(y_{j_{m}}) p^{(d)}(r\sigma - y_{1}\eta^{(1)} - \dots - y_{m}\eta^{(m)}),$$

where $\{j_{k+1},...,j_m\} = \{1,...,m\} \setminus \{j_1,...,j_k\}.$

In the following for positive functions $f_{\varepsilon}(r), f(r)$ of $r \ge 1$ $(\varepsilon > 0)$, let

$$f_{\varepsilon}(r) \sim f(r)$$
 as $r \to \infty$, $\varepsilon \downarrow 0$ denote $\lim_{\varepsilon \downarrow 0} \lim_{r \to \infty} f_{\varepsilon}(r)/f(r) = 1$.

For instance, if $\sigma_j > 0$, then $p_j(r\sigma_j \pm \varepsilon) \sim p_j(r\sigma_j)$ as $r \to \infty$, $\varepsilon \downarrow 0$ by $p_j(r) \sim C_j(\alpha) r^{-1-\alpha}$ as $r \to \infty$.

In the case k = 0, the corresponding term satisfies

$$\int_{|y_1| < \varepsilon r} dy_1 p_{d+1}(y_1) \cdots \int_{|y_m| < \varepsilon r} dy_m p_{d+m}(y_m) p^{(d)}(r\sigma - y_1 \eta^{(1)} - \cdots - y_m \eta^{(m)})$$

$$\sim p_1(r\sigma_1)\cdots p_n(r\sigma_n)p_{1,\ldots,n}^{\perp}(0,\ldots,0)$$

as $r \to \infty$, $\varepsilon \downarrow 0$, where $p_{1,\ldots,n}^{\perp}(0,\ldots,0)$ is given by

$$\int_{-\infty}^{\infty} dy_1 p_{d+1}(y_1) \cdots \int_{-\infty}^{\infty} dy_m p_{d+m}(y_m) p_{n+1} \left(-\sum_{s=1}^m y_s \eta_{n+1}^{(s)} \right) \cdots p_d \left(-\sum_{s=1}^m y_s \eta_d^{(s)} \right)$$

if n < d, and $p_{1,\dots,d}^{\perp}(0,\dots,0) = 1$ if n = d. In fact, let $\tilde{\sigma} := (\sigma_1,\dots,\sigma_n)$ and $\tilde{\eta}^{(s)} := (\eta_1^{(s)},\dots,\eta_n^{(s)})$ $(s = 1,\dots,m)$. For each $j = 1,\dots,n$, by $p_j(r\sigma_j \pm \varepsilon) \sim p_j(r\sigma_j)$ as $r \to \infty$, $\varepsilon \downarrow 0$, and

$$r\sigma_{j} - \sum_{s=1}^{m} y_{s} \eta_{j}^{(s)} \begin{cases} < r(\sigma_{j} + \varepsilon(|\eta_{j}^{(1)}| + \cdots + |\eta_{j}^{(m)}|)), \\ > r(\sigma_{j} - \varepsilon(|\eta_{j}^{(1)}| + \cdots + |\eta_{j}^{(m)}|)) \ge rc_{0}, \end{cases}$$

we have $p^{(n)}(r\tilde{\sigma} - y_1\tilde{\eta}^{(1)} - \cdots - y_m\tilde{\eta}^{(m)}) \sim p^{(n)}(r\tilde{\sigma})$ as $r \to \infty$ and $\epsilon \downarrow 0$. Hence by

$$p^{(d)}(r\sigma - y_1\eta^{(1)} - \dots - y_m\eta^{(m)})$$

$$= p^{(n)}(r\tilde{\sigma} - y_1\tilde{\eta}^{(1)} - \dots - y_m\tilde{\eta}^{(m)})$$

$$\times p_{n+1}(-y_1\eta_{n+1}^{(1)} - \dots - y_m\eta_{n+1}^{(m)}) \dots p_d(-y_1\eta_d^{(1)} - \dots - y_m\eta_d^{(m)}),$$

the above asymptotic is obtained if $p_{1,\dots,n}^{\perp}(0,\dots,0) > 0$. We show that if n < d, then

$$\int_{-\infty}^{\infty} dy_1 p_{d+1}(y_1) \cdots \int_{-\infty}^{\infty} dy_m p_{d+m}(y_m) p_{n+1} \left(-\sum_{s=1}^{m} y_s \eta_{n+1}^{(s)} \right) \cdots p_d \left(-\sum_{s=1}^{m} y_s \eta_d^{(s)} \right) > 0$$

(note that it is obvious $p_{1,\ldots,n}^{\perp}(0,\ldots,0)$ is given by the above formula). When $1 \leq \alpha < 2$, $p_j(y)$ is strictly positive and continuous. Hence it is evident. When $0 < \alpha < 1$, we also assumed $\sigma \in \operatorname{Int} S(d)$. By $p_j(y) = 0$ for $y \leq 0$, $p_{1,\ldots,n}^{\perp}(0,\ldots,0)$ is equal to

$$\int_0^\infty dy_1 p_{d+1}(y_1) \cdots \int_0^\infty dy_m p_{d+m}(y_m) p_{n+1} \left(-\sum_{s=1}^m y_s \eta_{n+1}^{(s)} \right) \cdots p_d \left(-\sum_{s=1}^m y_s \eta_d^{(s)} \right).$$

The following lemma ensure $p_{1,\ldots,n}^{\perp}(0,\ldots,0)>0$ by $p_j(y)>0$ for y>0 and the continuity of $p_j(y)$.

LEMMA 1. Let $1 \le n \le d-1$ and $\sigma = \sigma_1 e^{(1)} + \cdots + \sigma_n e^{(n)}$ with $\sigma_1 > 0, \ldots, \sigma_n > 0$. If $\sigma \in \text{Int } S(d)$, then there exists a vector (y_1, \ldots, y_m) such that $y_1 > 0, \ldots, y_m > 0$ and $y_1 \eta_k^{(1)} + \cdots + y_m \eta_k^{(m)} < 0$ for all $k = n+1, \ldots, d$.

PROOF. For $x \in \mathbf{R}^d$, we denote $\hat{x} := (x_{n+1}, \dots, x_d)$, and $\hat{x} \in \mathbf{Int}(\mathbf{R}^{d-n})$ if $x_k < 0$ for every $k = n+1, \dots, d$. We have to show that

$$y_1\hat{\eta}^{(1)} + \dots + y_m\hat{\eta}^{(m)} \in Int(\mathbf{R}^{d-n})$$
 for some $y_1 > 0, \dots, y_m > 0$.

Let $\hat{S}_0 = \mathbf{Con}\{\hat{\sigma}^{(n+1)}, \dots, \hat{\sigma}^{(d+m)}\} \subset \mathbf{R}^{d-n}$ be the convex cone subtended by $\{\hat{\sigma}^{(n+1)}, \dots, \hat{\sigma}^{(d+m)}\} = \{\hat{e}^{(n+1)}, \dots, \hat{e}^{(d)}, \hat{\eta}^{(1)}, \dots, \hat{\eta}^{(m)}\}$. Noting that $\sigma \in \mathbf{R}^n \times \{0\}^{d-n}$, if \hat{S}_0 is contained in a half space of \mathbf{R}^{d-n} , then $\sigma \in \partial S(d)$. Hence $\sigma \in \mathbf{Int} \ S(d)$ implies $\hat{S}_0 = \mathbf{R}^{d-n}$. Therefore there exists a basis $\{\hat{\sigma}^{(i_1)}, \dots, \hat{\sigma}^{(i_{d-n})}\} \subset \{\hat{\sigma}^{(n+1)}, \dots, \hat{\sigma}^{(d+m)}\}$ of \mathbf{R}^{d-n} such that the cone $\hat{S} = \mathbf{Con}\{\hat{\sigma}^{(i_1)}, \dots, \hat{\sigma}^{(i_{d-n})}\} \subset \mathbf{R}^{d-n}$ satisfies $\mathbf{Int} \ \hat{S} \cap \mathbf{Int}(\mathbf{R}^{d-n}) \neq \emptyset$. Thus we fix a point $\hat{x} \in \mathbf{Int} \ \hat{S} \cap \mathbf{Int}(\mathbf{R}^{d-n})$ such that $\hat{x} \neq \eta^{(j)}$ $(j=1,\dots,m)$. Then $\hat{x}=a_1\hat{\sigma}^{(i_1)}+\dots+a_{d-n}\hat{\sigma}^{(i_{d-n})}$ with positive numbers $a_i>0$. Now we can consider the following two cases.

[First case] $\{\hat{\sigma}^{(i_1)},\ldots,\hat{\sigma}^{(i_{d-n})}\}$ does not contain any $\hat{e}^{(k)}$ $(k=n+1,\ldots,d)$, i.e.,

$$\{\hat{\sigma}^{(i_1)},\ldots,\hat{\sigma}^{(i_{d-n})}\}=\{\hat{\eta}^{(j_1)},\ldots,\hat{\eta}^{(j_{d-n})}\}.$$

Thus $\hat{x} = a_1 \hat{\eta}^{(j_1)} + \dots + a_{d-n} \hat{\eta}^{(j_{d-n})}$ with $a_i > 0$. We would like to add other $\hat{\eta}^{(j)}$ $(\neq \hat{\eta}^{(j_i)}, i = 1, \dots, d-n)$ with positive coefficients. In this case for some $\{i_1, \dots, i_q\} \subset \{1, 2, \dots, d-n\}$ $(0 \leq q \leq d-n)$, $\hat{\eta}^{(j)}$ can be expressed by $\hat{\eta}^{(j)} = 1$

 $\sum_{s=1}^{q} b_s \hat{\eta}^{(j_{is})} - \sum_{i \notin \{i_s\}} c_i \hat{\eta}^{(j_i)} \text{ with } b_s \ge 0, \ c_i \ge 0. \text{ Note that if } q = 0, \text{ then } \hat{\eta}^{(j)} = -(c_1 \hat{\eta}^{(j_1)} + \dots + c_{d-n} \hat{\eta}^{(j_{d-n})}). \text{ Hence}$

$$\hat{x} = \hat{\eta}^{(j)} + (a_1 + c_1)\hat{\eta}^{(j_1)} + \dots + (a_{d-n} + c_{d-n})\hat{\eta}^{(j_{d-n})}.$$

On the other hand, if $q \ge 1$, then $\sum_{s=1}^q b_s \hat{\eta}^{(j_{i_s})} = \hat{\eta}^{(j)} + \sum_{i \notin \{i_s\}} c_i \hat{\eta}^{(j_i)}$. Thus for a sufficiently small $\varepsilon > 0$ such that $a_{j_s} - \varepsilon b_s > 0$ $(s = 1, \ldots, q)$, we have

$$\hat{x} = \sum_{s=1}^{q} (a_{j_s} - \varepsilon b_s) \hat{\eta}^{(j_{i_s})} + \varepsilon \sum_{s=1}^{q} b_q \hat{\eta}^{(j_{i_s})} + \sum_{i \notin \{i_s\}} a_i \hat{\eta}^{(j_i)}$$

$$=\sum_{s=1}^q(a_{j_s}-\varepsilon b_s)\hat{\eta}^{(j_{i_s})}+\varepsilon\hat{\eta}^{(j)}+\sum_{i\notin\{i_s\}}(a_i+\varepsilon c_i)\hat{\eta}^{(j_i)}.$$

Therefore \hat{x} can be expressed by $y_1\hat{\eta}^{(1)} + \cdots + y_m\hat{\eta}^{(m)} \in \mathbf{Int}(\mathbf{R}^{d-n})$ with $y_j > 0$. [Second case] $\{\hat{\sigma}^{(i_1)}, \dots, \hat{\sigma}^{(i_{d-n})}\}$ contains some $\hat{e}^{(k)}$ $(k = n + 1, \dots, d)$, that is,

$$\{\hat{\sigma}^{(i_1)},\ldots,\hat{\sigma}^{(i_{d-n})}\}=\{\hat{e}^{(j_1)},\ldots,\hat{e}^{(j_q)},\hat{\eta}^{(j_{q+1})},\ldots,\hat{\eta}^{(j_{d-n})}\}.$$

Then $\hat{x} = a_1 \hat{e}^{(j_1)} + \dots + a_q \hat{e}^{(j_q)} + b_1 \hat{\eta}^{(j_{q+1})} + \dots + b_{d-n-q} \hat{\eta}^{(j_{d-n})}$ with $a_s > 0$, $b_t > 0$. In this case by the same way as above, we have

$$\hat{x} = c_1 \hat{e}^{(j_1)} + \dots + c_q \hat{e}^{(j_q)} + y_1 \hat{\eta}^{(1)} + \dots + y_m \hat{\eta}^{(m)}$$
 with $c_s > 0, y_i > 0$.

This implies
$$y_1 \hat{\eta}^{(1)} + \dots + y_m \hat{\eta}^{(m)} = \hat{x} - (c_1 \hat{e}^{(j_1)} + \dots + c_q \hat{e}^{(j_q)}) \in Int(\mathbf{R}^{d-n}).$$

REMARK 1. By this lemma, it can be also shown that $p_{j_1,\ldots,j_n}^{\perp}(0,\ldots,0)>0$ in Theorem 2. In fact, for each $s=1,\ldots,d$, $R\sigma^{(j_s)}=e^{(i_s)}$ holds by $Q_{j_1,\ldots,j_n}e^{(i_s)}=\sigma^{(j_s)}$ $(R=Q_{j_1,\ldots,j_n}^{-1})$. Hence $\sigma=\sum_{s=1}^n a_s\sigma^{(j_s)}$ implies $R\sigma=\sum_{s=1}^n a_sR\sigma^{(j_s)}=\sum_{s=1}^n a_se^{(i_s)}$. Therefore $p_{j_1,\ldots,j_n}^{\perp}(0,\ldots,0)$ is given by the same formula as in (3.1) with $\{R\sigma^{(j_s)}\}_{s=d+1}^{d+m}$ instead of $\{\eta^{(s)}\}_{s=1}^m$.

In the case $k \ge 1$, it is possible to show the following Claim 1. If $k \le n$ and $\{\eta^{(j_1)}, \ldots, \eta^{(j_k)}\}$ are linearly independent, then let

$$J_{j_1,...,j_k} := \left\{ \{i_{k+1},...,i_n\} \subset \{1,...,d\}; \right.$$

$$\sigma = \sum_{s=1}^{k} a_s \eta^{(j_s)} + \sum_{s=k+1}^{n} b_s e^{(i_s)} \text{ with } a_s > 0, b_s > 0,$$

where $\{\eta^{(j_1)},\ldots,\eta^{(j_k)},e^{(i_{k+1})},\ldots,e^{(i_n)}\}$ are linearly independent $\}$.

Note that J(n) can be expressed by the following disjoint union:

$$J(n) = \{\{1, \dots, n\}\}$$

$$\cup \bigcup_{k=1}^{n} \bigcup_{\substack{\{j_1, \dots, j_k\} \\ \subset \{1, \dots, m\}}} \{\{d+j_1, \dots, d+j_k, i_{k+1}, \dots, i_n\}; \{i_{k+1}, \dots, i_n\} \in J_{j_1, \dots, j_k}\}.$$

(Claim 1) If $k \le n$ and $J_{j_1,\dots,j_k} \ne \emptyset$, then

$$\int_{|y_{j_{1}}| \geq \varepsilon r} dy_{j_{1}} p_{d+j_{1}}(y_{j_{1}}) \cdots \int_{|y_{j_{k}}| \geq \varepsilon r} dy_{j_{k}} p_{d+j_{k}}(y_{j_{k}}) \int_{|y_{j_{k+1}}| < \varepsilon r} dy_{j_{k+1}} p_{d+j_{k+1}}(y_{j_{k+1}}) \cdots$$

$$\int_{|y_{j_{m}}| < \varepsilon r} dy_{j_{m}} p_{d+j_{m}}(y_{j_{m}}) p^{(d)}(r\sigma - y_{1}\eta^{(1)} - \cdots - y_{m}\eta^{(m)})$$

$$\sim \sum_{\substack{\{i_{k+1}, \dots, i_{n}\}\\ \in J_{j_{1}, \dots, j_{k}}}} C_{i_{k+1}, \dots, i_{n}} p_{d+j_{1}}(ra_{1}) \cdots p_{d+j_{k}}(ra_{k}) p_{i_{k+1}}(rb_{k+1}) \cdots p_{i_{n}}(rb_{n})$$

as $r \to \infty$, $\varepsilon \downarrow 0$. Otherwise the above term is $o(r^{-n(1+\alpha)})$ as $r \to \infty$ for any small $\varepsilon > 0$. Here $C_{i_{k+1},\dots,i_d} = 1$ (n = d) and if n < d, then

$$C_{i_{k+1},...,i_n} = \int_{-\infty}^{\infty} dy_{j_{k+1}} p_{d+j_{k+1}}(y_{j_{k+1}}) \cdots \int_{-\infty}^{\infty} dy_{j_m} p_{d+j_m}(y_{j_m})$$

$$\int_{-\infty}^{\infty} dy_{j_1} \cdots \int_{-\infty}^{\infty} dy_{j_k} \prod_{\substack{i=1,...,d;\\i \neq i_{k+1},...,i_n}} p_i \left(-\sum_{s=1}^m y_s \eta_i^{(s)}\right).$$

Note that C_{i_{k+1},\dots,i_n} is positive. In fact, denote $\{i_1,\dots,i_k,i_{n+1},\dots,i_d\}:=\{1,\dots,d\}\setminus\{i_{k+1},\dots,i_n\}$ and let $Q=Q_{d+j_1,\dots,d+j_k,i_{k+1},\dots,i_n}$ be a $d\times d$ -matrix such that $Qe^{(i_s)}=\eta^{(j_s)}=\sigma^{(d+j_s)}$ $(s=1,\dots,k)$ and $Qe^{(i_s)}=e^{(i_s)}$ $(s=k+1,\dots,d)$. By change of variables (y_{j_1},\dots,y_{j_k}) to $(\tilde{y}_1,\dots,\tilde{y}_k)$ such that

$$-\tilde{y}_s := \sum_{j=1}^m y_j \eta_{i_s}^{(j)} = \sum_{t=1}^k y_{j_t} \eta_{i_s}^{(j_t)} + \sum_{t=k+1}^m y_{j_t} \eta_{i_s}^{(j_t)} \quad (s=1,\ldots,k),$$

we have the following.

LEMMA 2. If n < d, then

$$C_{i_{k+1},\ldots,i_n} = |\det Q|^{-1} p_{d+j_1,\ldots,d+j_k,i_{k+1},\ldots,i_n}^{\perp}(0,\ldots,0)$$
 (> 0).

PROOF. The positivity of $p_{d+j_1,\ldots,d+j_k,i_{k+1},\ldots,i_n}^{\perp}(0,\ldots,0)$ was mentioned in Remark 1. For the equation, it is enough to show the case $(j_1,\ldots,j_m)=(1,\ldots,m)$. By the definition, $p_{d+1,\ldots,d+k,i_{k+1},\ldots,i_n}^{\perp}(0,\ldots,0)$ is given by

$$\int_{-\infty}^{\infty} dy_{k+1} p_{d+k+1}(y_{k+1}) \cdots \int_{-\infty}^{\infty} dy_{m} p_{d+m}(y_{m}) \int_{-\infty}^{\infty} d\tilde{y}_{1} p_{i_{1}}(\tilde{y}_{1}) \cdots \int_{-\infty}^{\infty} d\tilde{y}_{k} p_{i_{k}}(\tilde{y}_{k})$$

$$p_{i_{n+1}} \left(-\sum_{s=1}^{k} \tilde{y}_{s} (Re^{(i_{s})})_{i_{n+1}} - \sum_{t=k+1}^{m} y_{t} (R\eta^{(t)})_{i_{n+1}} \right)$$

$$\cdots p_{i_{d}} \left(-\sum_{s=1}^{k} \tilde{y}_{s} (Re^{(i_{s})})_{i_{d}} - \sum_{s=1}^{m} y_{t} (R\eta^{(t)})_{i_{d}} \right)$$

For simplicity, we consider the case $(i_1, ..., i_d) = (1, ..., d)$. Denote $Q = (Q_{s,t})_{1 \le s,t \le d}$ and $R = (R_{s,t})_{1 \le s,t \le d}$. Then $Q_{s,t} = \eta_s^{(t)}$ $(t \le k)$ and $Q_{s,t} = \delta_{s,t}$ $(t \ge k+1)$, where $\delta_{s,t} = 1$ (s = t), = 0 $(s \ne t)$. Let $Q_k := (Q_{s,t})_{1 \le s,t \le k} = (\eta_s^{(t)})_{1 \le s,t \le k}$ and $E_j = (\delta_{s,t})_{1 \le s,t \le j}$. By $R = Q^{-1}$, we have

$$Q = \begin{pmatrix} Q_k & O \\ * & E_{d-k} \end{pmatrix}$$
 and $R = \begin{pmatrix} Q_k^{-1} & O \\ * & E_{d-k} \end{pmatrix}$.

Let u = n + 1, ..., d. For t = 1, ..., k,

$$\sum_{s=1}^{k} R_{u,s} \eta_s^{(t)} = \sum_{s=1}^{d} R_{u,s} \eta_s^{(t)} - \sum_{s=k+1}^{d} R_{u,s} \eta_s^{(t)} = \delta_{u,t} - \eta_u^{(t)} = -\eta_u^{(t)}.$$

For s = 1, ..., k and t = k + 1, ..., m,

$$(Re^{(i_s)})_{i_u} = (Re^{(s)})_u = R_{u,s}$$
 and $(R\eta^{(t)})_{i_u} = (R\eta^{(t)})_u = \sum_{s=1}^k R_{u,s}\eta_s^{(t)} + \eta_u^{(t)}$.

Therefore by change of variables $(\tilde{y}_1, \dots, \tilde{y}_k)$ to (y_1, \dots, y_k) such that

$$-\tilde{y}_s = \sum_{j=1}^m y_j \eta_s^{(j)} = \sum_{t=1}^k y_t \eta_s^{(t)} + \sum_{t=k+1}^m y_t \eta_s^{(t)} \quad (s=1,\ldots,k),$$

we have $d\tilde{y}_1 \cdots d\tilde{y}_k = |\det Q_k| dy_1 \cdots dy_k$ and for $u \ge n+1$,

$$-\sum_{s=1}^{k} \tilde{y}_{s} (Re^{(i_{s})})_{i_{u}} - \sum_{t=k+1}^{m} y_{t} (R\eta^{(t)})_{i_{u}}$$

$$= \sum_{s=1}^{k} \left(\sum_{t=1}^{k} y_{t} \eta_{s}^{(t)} + \sum_{t=k+1}^{m} y_{t} \eta_{s}^{(t)} \right) R_{u,s} - \sum_{t=k+1}^{m} y_{t} \left(\sum_{s=1}^{k} R_{u,s} \eta_{s}^{(t)} + \eta_{u}^{(t)} \right)$$

$$= \sum_{t=1}^{k} y_{t} \left(\sum_{s=1}^{k} \eta_{s}^{(t)} R_{u,s} \right) - \sum_{t=k+1}^{m} y_{t} \eta_{u}^{(t)} = -\sum_{t=1}^{m} y_{t} \eta_{u}^{(t)}.$$

Hence $p_{d+1,...,d+k,k+1,...,n}^{\perp}(0,\ldots,0) = |\det Q|C_{k+1,...,n}$ with

$$C_{k+1,\dots,n} = \int_{-\infty}^{\infty} dy_{k+1} p_{d+k+1}(y_{k+1}) \cdots \int_{-\infty}^{\infty} dy_m p_{d+m}(y_m)$$

$$\int_{-\infty}^{\infty} dy_1 \cdots \int_{-\infty}^{\infty} dy_k \prod_{\substack{i=1,\dots,d;\\i\neq k+1,\dots,n}} p_i \left(-\sum_{j=1}^m y_s \eta_i^{(j)}\right).$$

We show Claim 1. If $y_j \leq -\varepsilon r$, then $p_{d+j}(y_j)$ has an exponential decay and

$$\int_{y_{j} \leq -\varepsilon r} p^{(d)}(r\sigma - y_{1}\eta^{(1)} - \dots - y_{m}\eta^{(m)}) \ dy_{j} \leq \int_{-\infty}^{\infty} p^{(d)}(r\sigma - y_{1}\eta^{(1)} - \dots - y_{m}\eta^{(m)}) \ dy_{j}$$

is bounded in $(y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_m)$. Thus Claim 1 is reduced to the following. Let $v := -y_{j_{k+1}} \eta^{(j_{k+1})} - \cdots - y_{j_m} \eta^{(j_m)}$, then $|v| \le \varepsilon_0 r$ by $|y_{j_{k+1}}| \le \varepsilon r$, ..., $|y_{j_m}| \le \varepsilon r$ (recall $\varepsilon_0 = \varepsilon$ $dm \max\{|\eta_j^{(s)}|; j = 1, \ldots, d, s = 1, \ldots, m\}$).

(Claim 2) If $1 \le k \le n$ and $J_{j_1,\dots,j_k} \ne \emptyset$, then

(3.2)
$$\int_{y_{j_{1}} \geq \varepsilon r} dy_{j_{1}} p_{d+j_{1}}(y_{j_{1}}) \cdots \int_{y_{j_{k}} \geq \varepsilon r} dy_{j_{k}} p_{d+j_{k}}(y_{j_{k}}) p^{(d)}(r\sigma - y_{j_{1}} \eta^{(j_{1})} - \cdots - y_{j_{k}} \eta^{(j_{k})} + v)$$

$$\sim \sum_{\substack{\{i_{k+1}, \dots, i_{n}\}\\ \in J_{j_{1}, \dots, j_{k}}}} C_{i_{k+1}, \dots, i_{n}}(v) p_{d+j_{1}}(ra_{1}) \cdots p_{d+j_{k}}(ra_{k}) p_{i_{k+1}}(rb_{k+1}) \cdots p_{i_{n}}(rb_{n})$$

as $r \to \infty$, $\varepsilon \downarrow 0$, bounded and pointwise in $|v| \le \varepsilon_0 r$. Otherwise, i.e., if k > n or $J_{j_1,\dots,j_k} = \emptyset$, then it is $o(r^{-n(1+\alpha)})$ as $r \to \infty$ for any small $\varepsilon > 0$. Here

$$C_{i_{k+1},\ldots,i_n}(v):=\int_{-\infty}^{\infty}dy_{j_1}\cdots\int_{-\infty}^{\infty}dy_{j_k}\prod_{\substack{i=1,\ldots,d;\\i\neq i_{k+1},\ldots,i_n}}p_i\left(-\sum_{s=1}^ky_{j_s}\eta_i^{(j_s)}+v\right).$$

In the above, for positive functions $f(r, \varepsilon, v), g(r)$ $(r \ge 1)$, sufficiently small $\varepsilon > 0$ and $v \in \mathbb{R}^d$,

 $f(r, \varepsilon, v) \sim g(r)$ as $r \to \infty$, $\varepsilon \downarrow 0$, bounded and pointwise in $|v| \le \varepsilon_0 r$ means that

$$f(r, \varepsilon, v) 1_{\{|v| \le \varepsilon_0 r\}}/g(r)$$
 is bounded in (r, ε, v) and
$$\lim_{\varepsilon \downarrow 0} \lim_{r \to \infty} f(r, \varepsilon, v) 1_{\{|v| \le \varepsilon_0 r\}}/g(r) = 1 \text{ for every } v \in \mathbf{R}^d.$$

For simplicity, we consider the case $(j_1, ..., j_k) = (1, ..., k)$, that is, $(\eta^{(j_1)}, ..., \eta^{(j_k)}) = (\eta^{(1)}, ..., \eta^{(k)})$ and $(y_{j_1}, ..., y_{j_k}) = (y_1, ..., y_k)$. Let

$$B := \mathbf{Con}\{\eta^{(1)}, \dots, \eta^{(k)}\} = \left\{\sum_{s=1}^k a_s \eta^{(s)}; a_s \ge 0, s = 1, 2, \dots, k\right\}$$

and $k_0 := \dim B \ (\leq k)$. Fix a basis $\{\eta^{(j_1)}, \dots, \eta^{(j_{k_0})}\} \subset \{\eta^{(1)}, \dots, \eta^{(k)}\}$ of **Span** B. We may set $\{\eta^{(j_1)}, \dots, \eta^{(j_{k_0})}\} = \{\eta^{(1)}, \dots, \eta^{(k_0)}\}$.

In the following we always use the same notation C > 0 as constants which are independent of $r \ge 1$. They may be different in each line.

Let $k_0 > n$. By using change of variables it is easy to see that

$$\int_{\mathbf{R}} dy_1 \cdots \int_{\mathbf{R}} dy_{k_0} p^{(d)} (r\sigma - y_1 \eta^{(1)} - \cdots - y_k \eta^{(k)} + v) \le C,$$

where C is independent of $r \ge 1$ and (y_{k_0+1}, \ldots, y_k) . Hence we have, by $p_{d+1}(y_1) \cdots p_{d+k_0}(y_{k_0}) \le Cr^{-k_0(1+\alpha)}$,

$$\int_{y_{1} \geq \varepsilon r} dy_{1} p_{d+1}(y_{1}) \cdots \int_{y_{k} \geq \varepsilon r} dy_{k} p_{d+k}(y_{k}) p^{(d)} \left(r\sigma - \sum_{s=1}^{k} y_{s} \eta^{(s)} + v \right) \\
\leq C r^{-k_{0}(1+\alpha)} \int_{\mathbb{R}} p_{d+k_{0}+1}(y_{k_{0}+1}) dy_{k_{0}+1} \cdots \int_{\mathbb{R}} p_{d+k}(y_{k}) dy_{k} \int_{y_{1} \geq \varepsilon r} dy_{1} \\
\cdots \int_{y_{k_{0}} \geq \varepsilon r} dy_{k_{0}} p^{(d)} \left(r\sigma - \sum_{s=1}^{k} y_{s} \eta^{(s)} + v \right) \\
\leq C r^{-k_{0}(1+\alpha)} = o(r^{-n(1+\alpha)}) \quad \text{as } r \to \infty \quad \text{by } k_{0} > n.$$

Next let $k_0 \le n$. We first show the above term is $O(r^{-n(1+\alpha)})$ $(k = k_0)$ or $o(r^{-n(1+\alpha)})$ $(k > k_0)$ as $r \to \infty$ for any small $\varepsilon > 0$. If $k_0 = n$, then it is evident. Let $k_0 < n$. We need the following lemma. For each $r \ge 1$, let

$$H_{\varepsilon}(r) := \left\{ x = r\sigma - \sum_{s=1}^{k} y_s \eta^{(s)}; y_s \ge \varepsilon r \ (s = 1, \dots, k) \right\}.$$

Moreover let

$$I_{k_0} := \left\{ \{i_1, \dots, i_{k_0}\} \subset \{1, \dots, d\}; \det egin{pmatrix} \eta_{i_1}^{(1)} & \eta_{i_1}^{(2)} & \cdots & \eta_{i_1}^{(k_0)} \\ \eta_{i_2}^{(1)} & \eta_{i_2}^{(2)} & \cdots & \eta_{i_2}^{(k_0)} \\ \vdots & \vdots & \ddots & \vdots \\ \eta_{i_{k_0}}^{(1)} & \eta_{i_{k_0}}^{(2)} & \cdots & \eta_{i_{k_0}}^{(k_0)} \end{pmatrix}
eq 0
ight\}$$

and denote $\{i_1, \dots, i_{k_0}\}^c := \{1, \dots, d\} \setminus \{i_1, \dots, i_{k_0}\}$

Lemma 3. Let $k_0 < n$. There exists $\delta > 0$ such that for all $r \ge 1$,

$$H_{\varepsilon}(r) \subset \left(\bigcup_{i=1}^{d} C_{i}^{\delta}(r)\right) \cup \left(\bigcup_{\substack{\{i_{1},\ldots,i_{k_{0}}\} \in I_{k_{0}} \ \{i_{k_{0}+1},\ldots,i_{n}\}\\ \subset \{i_{1},\ldots,i_{k_{0}}\}^{c}}} D_{i_{k_{0}+1},\ldots,i_{n}}^{\delta}(r)\right),$$

where $\delta > 0$ is independent of $r \ge 1$ and

$$C_i^{\delta}(r) := \{ x \in \mathbf{R}^d; x_i \le -\delta r \},$$

$$D_{i_{k_0+1},\dots,i_n}^{\delta}(r) := \{ x \in \mathbf{R}^d; x_{i_{k_0+1}} \ge \delta r, \dots, x_{i_n} \ge \delta r \}.$$

We shall give the proof in the next section. By this lemma we have

$$\int_{y_{1} \geq \varepsilon r} dy_{1} p_{d+1}(y_{1}) \cdots \int_{y_{k} \geq \varepsilon r} dy_{k} p_{d+k}(y_{k}) p^{(d)} \left(r\sigma - \sum_{s=1}^{k} y_{s} \eta^{(s)} + v \right) \\
\leq \int \cdots \int_{\mathbb{R}^{k}} dy_{1} \cdots dy_{k} \left(\sum_{i=1}^{d} 1_{C_{i}^{\delta}(r) \cap H_{\varepsilon}(r)} \left(r\sigma - \sum_{s=1}^{k} y_{s} \eta^{(s)} \right) \right) \\
+ \sum_{\{i_{1}, \dots, i_{k_{0}}\} \subset I_{k_{0}}} \sum_{\substack{\{i_{k_{0}+1}, \dots, i_{n}\} \\ \subset \{i_{1}, \dots, i_{k_{0}}\}^{c}}} 1_{D_{i_{k_{0}+1}, \dots, i_{n}}^{\delta}(r) \cap H_{\varepsilon}(r)} \left(r\sigma - \sum_{s=1}^{k} y_{s} \eta^{(s)} \right) \right) \\
\times p^{(d)} \left(r\sigma - \sum_{s=1}^{k} y_{s} \eta^{(s)} + v \right) p_{d+1}(y_{1}) \cdots p_{d+k}(y_{k}).$$

Here we may assume $\delta > \varepsilon_0 > 0$ by taking a sufficiently small $\varepsilon > 0$ from the beginning. If $r\sigma - \sum_{s=1}^k y_s \eta^{(s)} \in C_i^{\delta}(r)$, then by $r\sigma_i - \sum_{s=1}^k y_s \eta_i^{(s)} \ge -\delta r$ and $|v| \le \varepsilon_0 r$ we have

$$p^{(d)}\left(r\sigma - \sum_{s=1}^{k} y_s \eta^{(s)} + v\right) \leq Cp_i(-\delta'r) \|p_1\| \cdots \|p_{i-1}\| \|p_{i+1}\| \cdots \|p_d\|,$$

where $\delta' = \delta - \varepsilon_0 > 0$ and $\|\cdot\| = \|\cdot\|_{\infty}$ denotes the supremum norm. Hence the corresponding term has an exponential decay. Next if

$$x = (x_1, \dots, x_d) := r\sigma - \sum_{s=1}^k y_s \eta^{(s)} \in D^{\delta}_{i_{k_0+1}, \dots, i_n}(r) \cap H_{\varepsilon}(r)$$

for some $\{i_1,\ldots,i_{k_0}\}\in I_{k_0}$ and $\{i_{k_0+1},\ldots,i_n\}\subset\{i_1,\ldots,i_{k_0}\}^c$, then by using change of variables,

$$\int_{\mathbf{R}} \cdots \int_{\mathbf{R}} dy_1 \cdots dy_{k_0} p_{i_1}(x_{i_1}) \cdots p_{i_{k_0}}(x_{k_0}) \le C$$

and by $y_s \ge \varepsilon r$, we have $p_{d+1}(y_1) \cdots p_{d+k_0}(y_{k_0}) \le C r^{-k_0(1+\alpha)}$. Furthermore by $p^{(d)} = p_{i_1} \cdots p_{i_{k_0}} \cdot p_{i_{k_0+1}} \cdots p_{i_n} \cdot p_{i_{n+1}} \cdots p_{i_d}$ and $p_{i_{k_0+1}}(x_{k_0+1}) \cdots p_{i_n}(x_{i_n}) \le C r^{-(n-k_0)(1+\alpha)}$, it holds

$$\int \cdots \int_{\mathbf{R}^{k_0}} dy_1 \cdots dy_{k_0} 1_{D^{\delta}_{i_{k_0+1},\dots,i_n}(r) \cap H_{\varepsilon}(r)} \left(r\sigma - \sum_{s=1}^k y_s \eta^{(s)} \right) p^{(d)} \left(r\sigma - \sum_{s=1}^k y_s \eta^{(s)} + v \right)$$

$$\leq C r^{-(n-k_0)(1+\alpha)} \int_{y_1 \geq \varepsilon r} \cdots \int_{y_{k_0} \geq \varepsilon r} dy_1 \cdots dy_{k_0} p_{i_1}(x_{i_1}) \cdots p_{i_{k_0}}(x_{i_{k_0}})$$

$$\leq C r^{-(n-k_0)(1+\alpha)}$$

If $k > k_0$, then

$$\int_{\varepsilon r}^{\infty} dy_{k_0+1} \cdots \int_{\varepsilon r}^{\infty} dy_k p_{d+k_0+1}(y_{k_0+1}) \cdots p_{d+k}(y_k) = O(r^{-(k-k_0)\alpha}) \to 0$$

as $r \to \infty$. Hence for $k \ge k_0$,

$$\int \cdots \int_{\mathbf{R}^k} dy_1 \cdots dy_k 1_{D_{i_{k_0+1},\dots,i_n}^{\delta}(r) \cap H_{\varepsilon}(r)} \left(r\sigma - \sum_{s=1}^k y_s \eta^{(s)} \right)$$

$$\times p^{(d)} \left(r\sigma - \sum_{s=1}^k y_s \eta^{(s)} + v \right) p_{d+1}(y_1) \cdots p_{d+k}(y_k)$$

$$\begin{cases} \leq Cr^{-n(1+\alpha)} & (k = k_0) \\ = o(r^{-n(1+\alpha)}) & (k > k_0). \end{cases}$$

Thus we also have $p(r\sigma) \leq Cr^{-n(1+\alpha)}$ for all $r \geq 1$.

We show the asymptotic behavior (3.1). From the above estimate, it is enough to consider the case $1 \le k = k_0 \le n$ and

$$x = (x_1, \ldots, x_d) := r\sigma - \sum_{s=1}^k y_s \eta^{(s)} \in H_{\varepsilon}(r) \cap \{x_1 > -\delta r, \ldots, x_d > -\delta r\}.$$

First consider the main term. Let $\{i_{k+1},\ldots,i_n\}\in J_{1,\ldots,k}\ (\neq\varnothing)$, that is, σ can be expressed by $\sigma=\sum_{s=1}^k a_s\eta^{(s)}+\sum_{s=k+1}^n b_se^{(i_s)}$ with $a_s>0$, $b_s>0$ and linearly independent vectors $\{\eta^{(1)},\ldots,\eta^{(k)},e^{(i_{k+1})},\ldots,e^{(i_n)}\}$.

$$r\sigma - \sum_{s=1}^{k} y_s \eta^{(s)} = \sum_{s=1}^{k} (ra_s - y_s) \eta^{(s)} + \sum_{s=k+1}^{n} rb_s e^{(i_s)}.$$

We divide the integral area $E_r := \{(y_1, \dots, y_k); y_s \ge \varepsilon r \ (s = 1, \dots, k)\}$ to $E_r = F_r \cup G_r$ such that

$$F_r := \bigcup_{\{i_{k+1},\dots,i_n\} \in J_1,\dots,k} F_{i_{k+1},\dots,i_n}(r) \quad ext{and} \quad G_r := \bigcap_{\{i_{k+1},\dots,i_n\} \in J_1,\dots,k} G_{i_{k+1},\dots,i_n}(r),$$

where, noting that $\{a_1, \ldots, a_k\}$ is determined by $\{i_{k+1}, \ldots, i_n\}$,

$$F_{i_{k+1},...,i_n}(r) := \{(y_1,...,y_k) \in E_r; |ra_s - y_s| < \varepsilon r \text{ for all } s = 1,...,k\},$$

$$G_{i_{k+1},...,i_n}(r) := \{(y_1,\ldots,y_k) \in E_r; |ra_s - y_s| \ge \varepsilon r \text{ for some } s = 1,\ldots,k\}.$$

If $\varepsilon > 0$ is sufficiently small, then $\{F_{i_{k+1},\dots,i_n}(r)\}$ are disjoint. If $J_{1,\dots,k} = \emptyset$, then $F_r = \emptyset$ and $G_r = E_r$. By change of variables $\tilde{y}_s = ra_s - y_s$, $F_{i_{k+1},\dots,i_n}(r)$ is changed to

$$\tilde{F}_{i_{k+1},\ldots,i_n}(r) := \{(\tilde{y}_1,\ldots,\tilde{y}_k); |\tilde{y}_s| < \varepsilon r \text{ for all } s = 1,\ldots,k\}$$

and we have

$$\int_{y_{1} \geq \varepsilon r} dy_{1} p_{d+1}(y_{1}) \cdots \int_{y_{k} \geq \varepsilon r} dy_{k} p_{d+k}(y_{k}) 1_{F_{i_{k+1}, \dots, i_{n}}(r)}(y_{1}, \dots, y_{k})
\times p^{(d)}(r\sigma - y_{1} \eta^{(1)} - \dots - y_{k} \eta^{(k)} + v)
= \int_{\tilde{F}_{i_{k+1}, \dots, i_{n}}(r)} d\tilde{y}_{1} \cdots d\tilde{y}_{k} p_{d+1}(ra_{1} + \tilde{y}_{1}) \cdots p_{d+k}(ra_{k} + \tilde{y}_{k})
\times p^{(d)} \left(\sum_{s=1}^{k} \tilde{y}_{s} \eta^{(s)} + \sum_{s=k+1}^{n} rb_{s} e^{(i_{s})} + v \right)
\sim C(v) p_{d+1}(ra_{1}) \cdots p_{d+k}(ra_{k}) p_{i_{k+1}}(rb_{k+1}) \cdots p_{i_{n}}(rb_{n})$$

as $r \to \infty$, $\varepsilon \downarrow 0$, bounded and pointwise in $v \le \varepsilon_0 r$, where

$$C(v) = \int_{-\infty}^{\infty} dy_1 \cdots \int_{-\infty}^{\infty} dy_k \prod_{\substack{i=1,\dots,d;\\i \neq i_{k+1},\dots,i_n\\ }} p_i \left(-\sum_{s=1}^k y_s \eta_i^{(s)} + v\right).$$

Next on G_r , in order to show the corresponding terms are $o(r^{-n(1+\alpha)})$, we need the following result which is more detail than Lemma 3. For each $\{i_1,\ldots,i_k\}\in I_k$, denote $\{i_{k+1},\ldots,i_d\}:=\{i_1,\ldots,i_k\}^c$, i.e., $\{\eta^{(1)},\ldots,\eta^{(k)},e^{(i_{k+1})},\ldots,e^{(i_d)}\}$ is a basis of \mathbb{R}^d . Let

$$I_{k,n}:=\{\{i_1,\ldots,i_k\}\in I_k; \text{ there exists } \{i_{k+1},\ldots,i_n\}\in J_{1,\ldots,k} \text{ such that } \{i_{k+1},\ldots,i_n\}\subset \{i_1,\ldots,i_k\}^c\}$$

and $I_{k,n}^c := I_k \setminus I_{k,n}$. Note that $\{i_1, \ldots, i_k\} \in I_{k,n}$ means that σ can be expressed by

$$\sigma = \sum_{s=1}^{k} a_s \eta^{(s)} + \sum_{s=k+1}^{d} b_s e^{(i_s)} \quad \text{with } a_s > 0, b_s \ge 0,$$

where just (n-k)-number of $\{b_s\}$ are positive and $\{\eta^{(1)}, \ldots, \eta^{(k)}, e^{(i_{k+1})}, \ldots, e^{(i_d)}\}$ is a basis of \mathbb{R}^d .

LEMMA 4. Let $1 \le k = k_0 \le n$. There exists $\delta > 0$ such that for all $r \ge 1$, $H_{\varepsilon}(r) \cap \{x_1 > -\delta r, \dots, x_d > -\delta r\} \subset A^{\delta}_{I_{k,n}}(r) \cup A^{\delta}_{I_{k,n}^{\delta}}(r)$,

where $\delta > 0$ is independent of $r \geq 1$, and

$$A^{\delta}_{I^{c}_{k,n}}(r) := \bigcup_{\{i_{1},...,i_{k}\} \in I^{c}_{k,n}} \left(\bigcup_{s=1}^{k} \bigcup_{\substack{\{i_{k+1},...,i_{n}\} \\ \subset \{i_{1},...,i_{k}\}^{c}}} D^{\delta}_{i_{s},i_{k+1},...,i_{n}}(r) \cup \bigcup_{\substack{\{i_{k+1},...,i_{n+1}\} \\ \subset \{i_{1},...,i_{k}\}^{c}}} D^{\delta}_{i_{k+1},...,i_{n+1}}(r) \right).$$

We give the proof in the next section. We may also assume $\delta > \varepsilon_0 > 0$ by taking a sufficiently small $\varepsilon > 0$ from the beginning. Denote $x = (x_1, \dots, x_d) := r\sigma - \sum_{s=1}^k y_s \eta^{(s)}$. We can consider the following two cases.

(Case 1)
$$x = r\sigma - y_1 \eta^{(1)} - \cdots - y_k \eta^{(k)} \in A_{I_{k,n}}^{\delta}(r)$$
.

There exist $\{i_1,\ldots,i_k\}\in I_{k,n}$ and $\{i_{k+1},\ldots,i_n\}\subset \{i_1,\ldots,i_k\}^c$ such that $x\in D^\delta_{i_{k+1},\ldots,i_n}(r)$. Thus by $|v|\leq \varepsilon_0 r$ and $\delta>\varepsilon_0>0$, we have

$$(3.3) p_{i_{k+1}}(x_{i_{k+1}} + v_{i_{k+1}}) \cdots p_{i_d}(x_{i_d} + v_{i_d}) \le Cr^{-(n-k)(1+\alpha)}$$

for all $r \ge 1$ with some C > 0. Moreover by $\{i_1, \ldots, i_k\} \in I_{k,n}$,

$$x = r\sigma - \sum_{s=1}^{k} y_s \eta^{(s)} = \sum_{s=1}^{k} (ra_s - y_s) \eta^{(s)} + \sum_{s=k+1}^{d} rb_s e^{(i_s)} \quad \text{with } a_s > 0, \ b_s \ge 0,$$

where just (n-k)-number of $\{b_s\}$ are positive. By change of variables $\tilde{y}_s = ra_s - y_s$, let G_r be changed to \tilde{G}_r , then $\tilde{G}_r \subset \{|y_s| \ge \varepsilon r \text{ for some } s \ge k+1\}$. Hence we have

$$\int_{y_{1} \geq \varepsilon r} dy_{1} p_{d+1}(y_{1}) \cdots \int_{y_{k} \geq \varepsilon r} dy_{k} p_{d+k}(y_{k}) 1_{G_{r}}(y_{1}, \dots, y_{k})
\times p^{(d)}(r\sigma - y_{1}\eta^{(1)} - \dots - y_{k}\eta^{(k)} + v) 1_{D_{i_{k+1},\dots,i_{n}}^{\delta}(r) \cap H_{\varepsilon}(r)}(x)
\leq Cr^{-k(1+\alpha)} \int_{G_{r}} dy_{1} \cdots dy_{k}
\times p^{(d)} \left(\sum_{s=1}^{k} (ra_{s} - y_{s}) \eta^{(s)} + \sum_{s=k+1}^{n} rb_{s} e^{(i_{s})} + v \right) 1_{D_{i_{k+1},\dots,i_{n}}^{\delta}(r) \cap H_{\varepsilon}(r)}(x).
\leq Cr^{-n(1+\alpha)} \int_{\tilde{G}_{r}} d\tilde{y}_{1} \cdots d\tilde{y}_{k} p_{i_{1}} \left(\sum_{s=1}^{k} \tilde{y}_{s} \eta_{i_{1}}^{(s)} + v_{i_{1}} \right) \cdots p_{i_{k}} \left(\sum_{s=1}^{k} \tilde{y}_{s} \eta_{i_{k}}^{(s)} + v_{i_{k}} \right)
= o(r^{-n(1+\alpha)})$$

as $r \to \infty$ for any small $\varepsilon > 0$ (by $\tilde{G}_r \downarrow \emptyset$).

(Case 2)
$$x = r\sigma - y_1 \eta^{(1)} - \cdots - y_k \eta^{(k)} \in A_{I_{k_n}}^{\delta}(r)$$
.

Fix $\{i_1, \ldots, i_k\} \in I_{k,n}^c$. If $x \in D_{i_s, i_{k+1}, \ldots, i_n}^{\delta}(r)$ for some $s = 1, \ldots, k$ and $\{i_{k+1}, \ldots, i_n\} \subset \{i_1, \ldots, i_k\}^c$, then (3.3) also holds, and by change of variables (y_1, \ldots, y_k) to $(x_{i_1}, \ldots, x_{i_k})$ we have

$$\int_{y_{1} \geq \epsilon r} dy_{1} p_{d+1}(y_{1}) \cdots \int_{y_{k} \geq \epsilon r} dy_{k} p_{d+k}(y_{k})
\times p^{(d)}(r\sigma - y_{1} \eta^{(1)} - \cdots - y_{k} \eta^{(k)} + v) 1_{D_{i_{s}, i_{k+1}, \dots, i_{n}}^{\delta}(r) \cap H_{\epsilon}(r)}(x)
\leq C r^{-n(1+\alpha)} \int_{-\infty}^{\infty} dx_{i_{1}} \cdots \int_{-\infty}^{\infty} dx_{i_{k}} p_{i_{1}}(x_{i_{1}} + v_{i_{1}}) \cdots p_{i_{k}}(x_{i_{1}} + v_{i_{k}}) 1_{\{x_{i_{s}} \geq \delta r\}}(x_{i_{s}})
\leq C r^{-n(1+\alpha)} \int_{\delta r}^{\infty} p_{i_{s}}(x_{i_{s}} + v_{i_{s}}) dx_{i_{s}}
= C r^{-n(1+\alpha)} r^{-\alpha} = o(r^{-n(1+\alpha)})$$

as $r \to \infty$ for any small $\varepsilon > 0$. If $x \in D_{i_{k+1},\dots,i_{n+1}}^{\delta}(r)$ (n < d) for some $\{i_{k+1},\dots,i_{n+1}\} \subset \{i_1,\dots,i_k\}^c$, then it immediately holds that

$$\int_{y_1 \ge \varepsilon r} dy_1 p_{d+1}(y_1) \cdots \int_{y_k \ge \varepsilon r} dy_k p_{d+k}(y_k)$$

$$\times p^{(d)}(r\sigma - y_1 \eta^{(1)} - \cdots - y_k \eta^{(k)} + v) 1_{D^{\delta}_{i_{k+1}, \dots, i_{n+1}}(r) \cap H_{\varepsilon}(r)}(x).$$

$$\leq Cr^{-(n+1)(1+\alpha)} = o(r^{-n(1+\alpha)})$$

as $r \to \infty$ for any small $\varepsilon > 0$.

4. Proofs of Key Lemmas

We give the proofs of Lemma 3 and Lemma 4. First we give a fundamental result. The following result may be intuitively obvious at least for $d \le 3$.

LEMMA 5. If $x = \sum_{s=1}^{k} a_s \eta^{(s)}$ with $a_s > 0$ (s = 1, ..., k), then there exist a basis $\{\eta^{(i_1)}, ..., \eta^{(i_{k_0})}\} \subset \{\eta^{(1)}, ..., \eta^{(k)}\}$ of **Span** B and $c_s \ge 0$ $(s = 1, ..., k_0)$ such that $x = \sum_{s=1}^{k_0} c_s \eta^{(i_s)}$.

PROOF. We use the induction on k_0 and $k \ge k_0$. First if $k_0 = 1$, then k = 1 (i.e., $\eta^{(1)}$ only) or k = 2 (i.e., $\eta^{(1)} = -\eta^{(2)}$) and our claim clearly holds. Next let $\ell_0 \ge 2$. We assume that the result holds in case of $k_0 \le \ell_0 - 1$ and $k \ge k_0$. We have to show the case $k_0 = \ell_0$ and $k \ge k_0$. If $k = k_0$, then the result is evident. Let $\ell \ge k_0$. We again assume that the result holds for $k_0 \le k \le \ell$. Let $k = 1 \le k_0 \le k \le \ell$ as $k \le \ell$. Let $k \le k_0 \le k \le \ell$ as $k \le \ell$ as $k \le \ell$ as $k \le \ell$. Let $k \le \ell$ be result holds for $k_0 \le k \le \ell$ as $k \le \ell$. Let $k \le \ell$ be retaken as a basis of Span B (because by the assumption of the induction, it can be retaken as a basis). We have

$$x = \sum_{s=1}^{k} a_s \eta^{(s)} + a_{\ell+1} \eta^{(\ell+1)} = \sum_{s=1}^{k_0} c_s \eta^{(i_s)} + a_{\ell+1} \eta^{(\ell+1)} \quad \text{with } c_s \ge 0,$$

where $\{\eta^{(i_1)}, \ldots, \eta^{(i_{k_0})}\}$ is a basis of **Span** B. If some $c_s = 0$, then the claim holds. Let $c_s > 0$ for all $s = 1, \ldots, k_0$. For simplicity, set $\hat{\eta}^{(i_s)} := c_s \eta^{(i_s)}$ and $\hat{\eta}^{(\ell+1)} := a_{\ell+1} \eta^{(\ell+1)}$. Then $\{\hat{\eta}^{(i_1)}, \ldots, \hat{\eta}^{(i_{k_0})}\}$ is also a basis of **Span** B. Hence

$$\hat{\eta}^{(\ell+1)} = -\sum_{s=1}^t b_s \hat{\eta}^{(i_s)} + \sum_{s=t+1}^{k_0} b_s \hat{\eta}^{(i_s)} \quad (b_s \ge 0, 0 \le t \le k_0).$$

It is enough to consider the case $t \ge 1$ and we may assume $b_1 \ge b_2 \ge \cdots \ge b_t \ge 0$ by changing the order of $s = 1, \ldots, t$, if necessary. Thus

$$x = \sum_{s=1}^{t} (1 - b_s) \hat{\eta}^{(i_s)} + \sum_{s=t+1}^{k_0} (1 + b_s) \hat{\eta}^{(i_s)}.$$

When $b_1 \le 1$, the claim follows. When $b_1 > 1$,

$$\hat{\eta}^{(i_1)} = -\frac{1}{b_1}\hat{\eta}^{(\ell+1)} - \sum_{s=2}^t \frac{b_s}{b_1}\hat{\eta}^{(i_s)} + \sum_{s=t+1}^{k_0} \frac{b_s}{b_1}\hat{\eta}^{(i_s)}.$$

Set $\hat{b}_1 := 1/b_1$ and $\hat{b}_s := b_s/b_1$ $(s = 2, ..., k_0)$. Then $\hat{b}_s < 1$ (s = 1, 2, ..., t) and

$$x = (1 - \hat{b}_1)\hat{\eta}^{(\ell+1)} + \sum_{s=2}^{t} (1 - \hat{b}_s)\hat{\eta}^{(i_s)} + \sum_{s=t+1}^{k_0} (1 + \hat{b}_s)\hat{\eta}^{(i_s)}.$$

Therefore the claim holds for $k = \ell + 1$.

PROOF OF LEMMA 3. It is enough to show the case r=1 by considering $(x/r,y_s/r)$ instead of (x,y_s) . Moreover let $H:=\sigma-B$, $C_i^\delta:=C_i^\delta(1)$ and $D_{i_{k_0+1},\dots,i_n}^\delta:=D_{i_{k_0+1},\dots,i_n}^\delta(1)$. By $H_\epsilon(1)\subset H$, it suffices to show that for some $\delta>0$,

$$(4.1) H \subset \left(\bigcup_{i=1}^{d} C_{i}^{\delta}\right) \cup \left(\bigcup_{\substack{\{i_{1}, \dots, i_{k_{0}}\} \in I_{k_{0}} \ \{i_{k_{0}+1}, \dots, i_{n}\} \\ \subset \{i_{1}, \dots, i_{k_{0}}\}^{c}}} D_{i_{k_{0}+1}, \dots, i_{n}}^{\delta}\right).$$

[The First Claim] $(\bigcup_{i=1}^d C_i^{\delta})^c = \{x \in \mathbf{R}^d; x_1 > -\delta, \dots, x_d > -\delta\}$ and

$$\left(4.2\right) \quad \left(\bigcup_{\substack{\{i_{k_0+1},\dots,i_n\}\\ \subset \{i_1,\dots,i_{k_0}\}^c}} D_{i_{k_0+1},\dots,i_n}^{\delta}\right)^c = \bigcup_{\substack{\{j_1,\dots,j_{d-n+1}\}\\ \subset \{i_1,\dots,i_{k_0}\}^c}} \{x \in \mathbf{R}^d; x_{j_1} < \delta,\dots,x_{j_{d-n+1}} < \delta\}$$

In fact, let $\{i_{k_0+1},\ldots,i_d\}:=\{1,\ldots,d\}\setminus\{i_1,\ldots,i_{k_0}\}$. If x is in the left hand side, then x is not such that "at least $(n-k_0)$ -number of $\{x_{i_{k_0+1}},\ldots,x_{i_d}\}$ satisfies $x_{i_s}\geq \delta$ ". That is (noting that the rest number is at most $(d-k_0)-(n-k_0)=d-n$), x is not such that "at most (d-n)-number of $\{x_{i_{k_0+1}},\ldots,x_{i_d}\}$ satisfies $x_{i_s}<\delta$ ". Hence x is such that "at least (d-n+1)-number of $\{x_{i_{k_0+1}},\ldots,x_{i_d}\}$ satisfies $x_{i_s}<\delta$ ". This implies x is in the right-hand side. The reverse is also true. Thus we have (4.2).

[The Second Claim] It holds that

$$(4.3) \quad (H \cap \mathbf{R}_{+}^{d}) \cap \bigcap_{\substack{\{i_{1}, \dots, i_{k_{0}}\} \in I_{k_{0}} \\ \in \{i_{1}, \dots, i_{k_{0}}\}^{c}}} \bigcup_{\substack{\{x \in \mathbf{R}^{d}; x_{i_{n}} = \dots = x_{i_{d}} = 0\} = \emptyset}.$$

In fact, let $x \in H \cap \mathbb{R}^d_+$. If we assume that for any $\{i_1, \ldots, i_{k_0}\} \in I_{k_0}$, there exists $\{i_{k_0+1}, \ldots, i_{n-1}\} \subset \{i_1, \ldots, i_{k_0}\}^c$ such that

$$x \in \mathbf{Con}\{e^{(i_1)}, \dots, e^{(i_{n-1})}\} = \mathbf{R}^d_+ \cap \{x \in \mathbf{R}^d; x_{i_n} = \dots = x_{i_d} = 0\},$$

where $\{i_n, \ldots, i_d\} := \{1, \ldots, d\} \setminus \{i_1, \ldots, i_{n-1}\}$, then by $H = \sigma - B$, there exist $\beta = \sum_{s=1}^{k_0} a_s \eta^{(s)} \in B \ (a_s \ge 0)$ such that $x = \sigma - \beta = \sum_{s=1}^{n-1} b_s e^{(i_s)} \ (b_s \ge 0)$. That is,

$$\sigma = \sum_{s=1}^{k_0} a_s \eta^{(s)} + \sum_{s=1}^{n-1} b_s e^{(i_s)} \quad \text{with } a_s \ge 0, \ b_s \ge 0.$$

Fix $\{i_1, \ldots, i_{k_0}\} \in I_{k_0}$ (which is equivalent to that $\{\eta^{(1)}, \ldots, \eta^{(k_0)}, e^{(i_{k_0+1})}, \ldots, e^{(i_d)}\}$ is a basis of \mathbb{R}^d by the definition of I_{k_0}). Let $I = \{s = 1, \ldots, k_0; e^{(i_s)} \notin \operatorname{Span} B\}$, $J := \{1, \ldots, k_0\} \setminus I$ and $\ell = \#I$. We may denote $I = \{1, \ldots, \ell\}$, $J = \{\ell+1, \ldots, k_0\}$ by changing the order. We show that $\ell \geq 1$ is essentially reduced to $\ell = 0$ and this case has a contradiction.

First let $\ell = 0$, i.e., $I = \emptyset$. Then $J = \{1, \dots, k_0\}$ and $e^{(i_s)} \in \operatorname{Span} B$ for all $s \in J$. By applying Lemma 5 with $B_J := \operatorname{Con}\{B, e^{(i_s)}; s \in J\} \subset \operatorname{Span} B$ instead of B, we have $\sigma \in T(n_0)$ for some $n_0 \leq n-1$. In fact, by the above expression of σ and $\{\eta^{(1)}, \dots, \eta^{(k_0)}, e^{(i_{k_0+1})}, \dots, e^{(i_{n-1})}\}$ are linearly independent, σ can be expressed by a linear sum of at most (n-1)-number of these vectors with positive coefficients. This contradicts with $\sigma \in T(n)$.

Next let $\ell \geq 1$. Then

$$\sigma = \tilde{\beta} + \sum_{s=1}^{\ell} b_s e^{(i_s)} + \sum_{s=k_0+1}^{n-1} b_s e^{(i_s)} \quad \text{with } \tilde{\beta} := \sum_{s=1}^{k_0} a_s \eta^{(s)} + \sum_{s=\ell+1}^{k_0} b_s e^{(i_s)} \in \mathbf{Span} \ B.$$

By Lemma 5, $\tilde{\beta}$ can be expressed by a linear sum of at most k_0 -number of linearly independent vectors of $\{\eta^{(1)},\ldots,\eta^{(k_0)},e^{(i_s)};s\in J\}$ with positive coefficients. Hence by $\sigma\in T(n)$, at least one $a_s>0$ $(s=1,\ldots,\ell)$, we may let s=1. Since $e^{(i_1)}$ can be expressed by $e^{(i_1)}=\sum_{s=1}^{k_0}c_s\eta^{(s)}+\sum_{s=k_0+1}^{d}c_se^{(i_s)}$ $(c_s\in \mathbf{R})$, and by $e^{(i_1)}\notin \mathbf{Span}\ B$, we have $c_s\neq 0$ for some $s\geq n$, e.g., let s=n. Then $\{\eta^{(1)},\ldots,\eta^{(k_0)},e^{(i_{k_0+1})},\ldots,e^{(i_{n-1})},e^{(i_1)},e^{(i_{n+1})},\ldots,e^{(i_d)}\}$ is also a basis of \mathbf{R}^d , i.e., $\{i_n,i_2,\ldots,i_{k_0}\}\in I_{k_0}$. Hence by the above assumption there exists $\{j_{k_0+1},\ldots,j_{n-1}\}\subset \{i_n,i_2,\ldots,i_{k_0}\}^c$ such that $x\in \mathbf{Con}\{e^{(i_n)},e^{(i_2)},\ldots,e^{(i_{k_0})},e^{(j_{k_0+1})},\ldots,e^{(j_{n-1})}\}$, i.e.,

$$x = b'_n e^{(i_n)} + \sum_{s=2}^{k_0} b'_s e^{(i_s)} + \sum_{s=k_0+1}^{n-1} b'_s e^{(j_s)}$$
 with $b'_s \ge 0$.

Thus by $x = \sum_{s=1}^{n-1} b_s e^{(i_s)}$, we have $b'_n = 0$ and $b'_s = b_s$ $(s = 2, ..., k_0)$. Moreover for $s = k_0 + 1, ..., n - 1$, if $b'_s > 0$, then j_s is a member of $\{i_s; s = k_0 + 1, ..., n - 1\}$ and $b'_s = b_s > 0$. Thus we may assume $b'_s e^{(j_s)} = b_s e^{(i_s)}$ for all $s = k_0 + 1, ..., n - 1$. Hence

$$\sigma = \tilde{\beta} + \sum_{s=2}^{\ell} b_s e^{(i_s)} + \sum_{s=k_0+1}^{n-1} b_s e^{(i_s)}.$$

This is the case $\ell-1$ for $\{i_n,i_2,\ldots,i_{k_0}\}\in I_{k_0}$. Hence the case $\ell\geq 1$ is reduced to $\ell=0$ and we have a contradict.

[The Last Claim] (4.3) implies (4.1) for some $\delta > 0$. In fact, if we first assume for every $\delta > 0$,

$$(H \cap \mathbf{R}_{+}^{d}) \cap \bigcap_{\substack{\{i_{1}, \dots, i_{k_{0}}\} \in I_{k_{0}} \\ \subset \{i_{1}, \dots, i_{k_{0}}\}^{c}}} \bigcup_{\substack{\{x \in \mathbf{R}^{d} : x_{i_{n}} < \delta, \dots, x_{i_{d}} < \delta\} \neq \emptyset}.$$

That is, for each $\ell \geq 1$ (let $\delta = 1/\ell$), there exists $x^{(\ell)} \in H \cap \mathbf{R}^d_+$ such that

$$x^{(\ell)} \in \bigcap_{\substack{\{i_1,\dots,i_{k_0}\} \in I_{k_0} \\ \subset \{i_1,\dots,i_{k_0}\}^c}} \bigcup_{\substack{\{i_n,\dots,i_d\} \\ \subset \{i_1,\dots,i_{k_0}\}^c}} \{x \in \mathbf{R}^d; x_{i_n} < 1/\ell, \dots, x_{i_d} < 1/\ell\}.$$

This means there exists at least one $\{i_1, \ldots, i_{k_0}\} \in I_{k_0}$, and also exist $\{i_n, \ldots, i_d\} \subset \{i_1, \ldots, i_{k_0}\}^c$ and a subsequence $\{\ell_j\}$ such that for some $\beta^{(\ell_j)} \in B$,

$$\sigma - \beta^{(\ell_j)} = x^{(\ell_j)} \in \{ x \in \mathbf{R}_+^d; 0 \le x_{i_n} < 1/\ell_j, \dots, 0 \le x_{i_d} < 1/\ell_j \}.$$

Thus $\beta^{(\ell_j)}$ satisfies $\beta_i^{(\ell_j)} \le \sigma_i$ (i = 1, ..., d) and

$$\lim_{j\to\infty}\beta_{i_s}^{(\ell_j)}=\sigma_{i_s}\quad (s\neq i_n,\ldots,i_d).$$

Since B is a closed convex cone, we may assume $|\beta^{(\ell_j)}| \le 1$ $(k \ge 1)$. Hence it is possible to take a further subsequence $\{\tilde{\ell_j}\} \subset \{\ell_j\}$ such that a limit point $\beta := \lim_{j\to\infty} \beta^{(\tilde{\ell_j})}$ exists. Therefore $\beta \in B$, and $x := \sigma - \beta \in H \cap \mathbb{R}^d$ satisfies $x_{i_n} = \cdots = x_{i_d} = 0$. This is inconsistent with (4.3). Hence for some $\delta > 0$, we have

$$(H \cap \mathbf{R}_{+}^{d}) \cap \bigcap_{\substack{\{i_{1}, \dots, i_{k_{0}}\} \in I_{k_{0}} \\ \subset \{i_{1}, \dots, i_{k_{0}}\}^{c}}} \bigcup_{\substack{\{i_{n}, \dots, i_{d}\} \\ \subset \{i_{1}, \dots, i_{k_{0}}\}^{c}}} \{x \in \mathbf{R}^{d}; x_{i_{n}} < \delta, \dots, x_{i_{d}} < \delta\} = \emptyset.$$

Furthermore by the same way we have

$$H \cap \{x_1 > -\delta, \dots, x_d > -\delta\}$$

$$\cap \bigcap_{\{i_1, \dots, i_{k_0}\} \in I_{k_0}} \bigcup_{\substack{\{i_n, \dots, i_d\} \\ \subset \{i_1, \dots, i_{k_0}\}^c}} \{x \in \mathbf{R}^d; x_{i_n} < \delta, \dots, x_{i_d} < \delta\} = \emptyset.$$

Therefore by (4.2) we have (4.1).

PROOF OF LEMMA 4. Let $1 \le k = k_0 \le n$. This lemma can be proved by the same way as above. It is enough to consider the case r = 1. Let $H := \sigma - B$, $D_{i_s,i_{k+1},\dots,i_n}^{\delta} := D_{i_s,i_{k+1},\dots,i_n}^{\delta}(1)$ and $D_{i_{k+1},\dots,i_{n+1}}^{\delta} := D_{i_{k+1},\dots,i_{n+1}}^{\delta}(1)$. It suffices to show that for some $\delta > 0$,

$$(4.4) H \cap \{x_1 > -\delta, \dots, x_d > -\delta\} \subset A_{I_{k,n}}^{\delta} \cup A_{I_{k,n}}^{\delta}$$

where

$$A^{\delta}_{I^c_{k,n}} := \bigcup_{\substack{\{i_1,\ldots,i_k\} \in I^c_{k,n} \\ \subset \{i_1,\ldots,i_k\}^c}} \left(\left(\bigcup_{s=1}^k \bigcup_{\substack{\{i_{k+1},\ldots,i_n\} \\ \subset \{i_1,\ldots,i_k\}^c}} D^{\delta}_{i_s,i_{k+1},\ldots,i_n} \right) \cup \left(\bigcup_{\substack{\{i_{k+1},\ldots,i_{n+1}\} \\ \subset \{i_1,\ldots,i_k\}^c}} D^{\delta}_{i_{k+1},\ldots,i_{n+1}} \right) \right).$$

Note that by the first claim of the previous proof, for a fixed $\{i_1, \ldots, i_k\} \in I_{k,n}^c$, we have

$$\left(\bigcup_{s=1}^{k} \bigcup_{\substack{\{i_{k+1},\dots,i_{n}\}\\ \subset \{i_{1},\dots,i_{k}\}^{c}}} D_{i_{s},i_{k+1},\dots,i_{n}}^{\delta}\right)^{c} = \bigcap_{s=1}^{k} \left(\{x_{i_{s}} \geq \delta\} \cap \bigcup_{\substack{\{i_{k+1},\dots,i_{n}\}\\ \subset \{i_{1},\dots,i_{k}\}^{c}}} D_{i_{k+1},\dots,i_{n}}^{\delta}\right)^{c}$$

$$= \{x_{i_{1}} < \delta, \dots, x_{i_{k}} < \delta\} \cup \left(\bigcup_{\substack{\{i_{n},\dots,i_{d}\}\\ \subset \{i_{1},\dots,i_{k}\}^{c}}} \{x_{i_{n}} < \delta, \dots, x_{i_{d}} < \delta\}\right)$$

and

$$\left(\bigcup_{\substack{\{i_{k+1},\ldots,i_{n+1}\}\\ \subset \{i_1,\ldots,i_k\}^c}} D_{i_{k+1},\ldots,i_{n+1}}^{\delta}\right)^c = \bigcup_{\substack{\{i_{n+1},\ldots,i_d\} \subset \{i_1,\ldots,i_k\}^c}} \{x_{i_{n+1}} < \delta,\ldots,x_{i_d} < \delta\}.$$

Hence by

$$\bigcup_{\{i_{n},\ldots,i_{d}\}\subset\{i_{1},\ldots,i_{k}\}^{c}}\{x_{i_{n}}<\delta,\ldots,x_{i_{d}}<\delta\}\subset\bigcup_{\{i_{n+1},\ldots,i_{d}\}\subset\{i_{1},\ldots,i_{k}\}^{c}}\{x_{i_{n+1}}<\delta,\ldots,x_{i_{d}}<\delta\},$$

we have (noting that if $B \subset C$, then $(A \cup B) \cap C = (A \cap C) \cup B$)

$$\left(\left(\bigcup_{s=1}^{k}\bigcup_{\substack{\{i_{k+1},\dots,i_{n}\}\\ \subset \{i_{1},\dots,i_{k}\}^{c}}} D_{i_{s},i_{k+1},\dots,i_{n}}^{\delta}\right) \cup \left(\bigcup_{\substack{\{i_{k+1},\dots,i_{n+1}\}\\ \subset \{i_{1},\dots,i_{k}\}^{c}}} D_{i_{k+1},\dots,i_{n+1}}^{\delta}\right)\right)^{c}$$

$$= \left(\left\{x_{i_{1}} < \delta,\dots,x_{i_{k}} < \delta\right\} \cap \bigcup_{\substack{\{i_{n+1},\dots,i_{d}\}\\ \subset \{i_{1},\dots,i_{k}\}^{c}}} \left\{x_{i_{n+1}} < \delta,\dots,x_{i_{d}} < \delta\right\}\right)$$

$$\cup \left(\bigcup_{\substack{\{i_{n},\dots,i_{d}\}\\ \subset \{i_{1},\dots,i_{k}\}^{c}}} \left\{x_{i_{n}} < \delta,\dots,x_{i_{d}} < \delta\right\}\right).$$

In order to show (4.4), by the same way as in the last claim of the previous proof, it is enough to show that

$$(H \cap \mathbf{R}^d_+) \cap (A_{I_{k,n}})^c \cap (B_{I_{k,n}^c} \cup C_{I_{k,n}^c}) = \varnothing,$$

where

$$(A_{I_{k,n}})^c := igcap_{\{i_1,...,i_k\} \in I_{k,n}} igcup_{\{i_n,...,i_d\} \atop c \in \{i_1,...,i_k\}^c} \{x_{i_n} = \cdots = x_{i_d} = 0\},$$

$$B_{I_{k,n}^c} := igcap_{\{i_1,...,i_k\} \in I_{k,n}^c} \left(\{x_{i_1} = \dots = x_{i_k} = 0\} \cap igcup_{\substack{\{i_{n+1},...,i_d\} \\ \subset \{i_1,...,i_k\}^c}} \{x_{i_{n+1}} = \dots = x_{i_d} = 0\}
ight),$$

$$C_{I_{k,n}^c} := \bigcap_{\{i_1,\ldots,i_k\} \in I_{k,n}^c \{i_n,\ldots,i_d\} \subset \{i_1,\ldots,i_k\}^c} \{x_{i_n} = \cdots = x_{i_d} = 0\}.$$

Note that $(A_{I_{k,n}})^c \cap (B_{I_{k,n}^c} \cup C_{I_{k,n}^c}) = ((A_{I_{k,n}})^c \cap B_{I_{k,n}^c}) \cup ((A_{I_{k,n}})^c \cap C_{I_{k,n}^c})$ and, by $I_k = I_{k,n} \cup I_{k,n}^c$ (disjoint union),

$$(A_{I_{k,n}})^c \cap C_{I_{k,n}^c} = \bigcap_{\{i_1,\ldots,i_k\} \in I_k \ \{i_n,\ldots,i_d\} \subset \{i_1,\ldots,i_k\}^c} \{x_{i_n} = \cdots = x_{i_d} = 0\}.$$

Moreover by (4.3) (the second claim in the previous proof) we have $(H \cap \mathbf{R}^d_+) \cap (A_{I_{k,n}})^c \cap C_{I_{k,n}^c} = \emptyset$. Therefore the above claim is reduced to

$$(H \cap \mathbf{R}^d_+) \cap (A_{I_{k,n}})^c \cap B_{I_{k,n}^c} = \varnothing.$$

However we can show that

$$(H \cap \mathbf{R}^d_+) \cap B_{I_{b,a}^c} = \varnothing,$$

more strongly, for any fixed $\{i_k, \ldots, i_k\} \in I_{k,n}^c$, it holds that

In fact, if we assume there exists $x \in H$ such that

$$(4.6) x \in \mathbf{R}_{+}^{d} \cap \{x_{i_{1}} = \dots = x_{i_{k}} = 0\} \cap \bigcup_{\substack{\{i_{n+1}, \dots, i_{d}\}\\ \subset \{i_{1}, \dots, i_{k}\}^{c}}} \{x_{i_{n+1}} = \dots = x_{i_{d}} = 0\}.$$

By $x \in H$, we have $x = \sigma - \beta$ for some $\beta = \sum_{s=1}^k c_s \eta^{(s)} \in B$ with $c_s \ge 0$. Moreover by (4.6), we also have $x = \sum_{s=k+1}^d b_s e^{(i_s)}$ with $b_s \ge 0$, where at most (n-k)-number of $\{b_s\}$ are positive. Hence

(4.7)
$$\sigma = \beta + x = \sum_{s=1}^{k} c_s \eta^{(s)} + \sum_{s=k+1}^{d} b_s e^{(i_s)}.$$

On the other hand, by the definition of $I_{k,n}^c$, σ can not be expressed by the following form.

$$\sigma = \sum_{s=1}^{k} a_s \eta^{(s)} + \sum_{s=k+1}^{d} b_s e^{(i_s)}$$
 with $a_s > 0, b'_s \ge 0$,

where just (n-k)-number of $\{b'_s\}$ are positive

(note that $\{\eta^{(1)}, \ldots, \eta^{(k)}, e^{(i_{k+1})}, \ldots, e^{(i_d)}\}$ is a basis of \mathbb{R}^d). By $\sigma \in T(n)$, this implies in (4.7) at least (n-k+1)-number of $\{b_s\}$ are positive. This contradicts. Therefore we have (4.5), and hence, (4.4) holds.

Acknowledgement

The author would like to thank Referee for his valuable comments and suggestions.

References

- [1] Hiraba, S., Asymptotic behaviour of densities of multi-dimensional stable distributions, Tsukuba J. Math. 18 (1994), 223-246.
- [2] Ibragimov, I. A. and Linnik, Yu., Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, 1971.
- [3] Sato, K., Lévy processes and infinite divisible distributions, Cambridge Univ. Press, Cambridge, 1999.

Department of Mathematics
Faculty of Science and Technology
Science University of Tokyo
2641 Yamazaki, Noda City
Chiba 278-8510, Japan
E-mail: hiraba_seiji@ma.noda.tus.ac.jp