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ASYMPTOTIC ESTIMATES FOR DENSITIES OF
MULTI-DIMENSIONAL STABLE DISTRIBUTIONS

By

Seiji HIRABA

1. Introduction and Results

Let u(dx) be a stable distribution on R with exponent 0 < « < 2. Its log-
characteristic function ¥(z) := log [z« e™*u(dx) (i =+/—1) is given by the fol-
lowing:

_J N [z, 0>|* [1 — i(sgn{z, 0)) tan %OE] AdO) + i{z,b) (o # 1),
Y(z) = S
- [ 120 [1 + 12 (sgncz,09) logl<z, e>1]z<d0> Lidsby (x=1),
Sd—l

where <{z,0) = E;i:l z;0; for z = (z1,...,24), 0= (01,...,0,), “sgn x” is the sign
function, ie., sgnx=1 (x>0), =0 (x=0), =—1 (x<0), A(df) is a finite
measure on S?~! and b € R%. Moreover if u is non-degenerate, then u has a C*-
density function p(x) with respect to the Lebesgue measure dx, i.e., u(dx) =

p(x) dx and

(1.1) p(x) JRd exp[—ilx,z) + ¥(2)] dz.

~ (2n)’
The non-degeneracy of x means SpanSptu=R? and it is equivalent to
Span Spt A = RY, where Spt u (resp. Spt A) is a support of u (resp. 1) and for a set
S < R? Span S is a linear subspace of R? spanned by S (cf. [3)).

In the present paper we would like to investigate the asymptotic behavior
of p(ro) as r — oo for each direction o € S*~! under the following assumption.

ASSUMPTION 1. Let b= 0. For some number m > 0,
Spt A= {0, 6@, ... 6@} =89! and SpanSpt i=R?,

that is, the support of 1 is only finitely many points which linearly spans R°.
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Note that we always denote vectors as o) = (a\),...,6\/).

In the one-dimensional case the asymptotic behavior of p(y) as y — +o0
is well-known as follows. If A has mass at {+1}, then p(y) ~ C(a)y~!=* as
y — 400, with some constant C(«) > 0 which is determined by « and A({£1}).
Also if 4 does not have mass at {—1}, then p(y) =0 if and only if y <0 and
0 < a < 1. Moreover

1 nly| 2c 7| y|
* P(y) 2¢/ce exp[ 4c¢ me CXP( 2c ( ),

1 <a<2= p(y) ~ C@)'|y|*® 2 exp[—y|y|7* D] (y = —o0),

where constants C(a)’,c,y >0 are determined by o and A({—1}) (cf. [2].
Note that for positive functions f(r),g(r) of r > 1, f(r) ~g(r) (r — o) means
lirnr—»oo f(r)/g(r) = L

In the two-dimensional case and in some special cases of three-dimension, we
gave the asymptotic behavior of p(rg) in [I].

In this paper we give the asymptotic behavior of p(ro) in the general di-
mension d > 1. For each n=1,2,...,d, let

s=1

S(n) = {Zasa(js);as >0,j,=1,2,...,d+m (s= 1,2,...,;1)}nsd-l

and
T(n) := S(n)\S(n—1) with S(0):= .

That is, 0 € T(n) means ¢ can be expressed by a linear sum of just n-number
of independent vectors of T(1) = S(1) = {6V),6?,...,al@*™} with positive co-
efficients and it can not be by less than n-number of independent vectors with
positive coefficients (note that ¢ may be also expressed by more than n-number of
independent vectors with positive coefficients).

Let Int S(d) denote the interior of S(d) in S?°! and for r > 1,

exp| > — 2 exp( > (x=1)
h(r) = 4 P|@ e P2 —
r(2_°‘)/(2°‘_2) exp[_ra/(“_l)] (1 <o < 2)

THEOREM 1. Under Assumption 1, the following hold with some constants
C(a,0) >0, 0 < Cy < Gy, y, >y, >0 which are independent of r > 1.

(i) Let 0 <a < 1. If 6 € T(n) NInt S(d) for some n=1,...,d, then p(ro) ~
C(a,0)r "1+ a5 r — co. If o ¢ Int S(d), then p(ra) =0 for all r > 0.
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(i) Let 1<a<2. If ceT(n) for some n=1,...,d, then p(ro)~
C(o,0)r ™1+ g5 r — 0. If 0 ¢ S(d), then Cihy(y,r) < p(ro) < Cohy(y,r) for all
r>1.

It is possible to determine the constant C(«, o) exactly. We shall give a more
detailed result at the end of the next section (see [Theorem 2)). From the above
result the following is immediately obtained.

CorOLLARY 1. If S(d) =S"! and o€ T(n) for some n=1,...,d, then
p(re) ~ C(a, 0)r ™+% a5 r — 0.

2. Further Results

Let /) be the unit vector in xj-axis direction (j=1,...,d). Adding to
Assumption 1, we may suppose {a(V),c® ... 6@} linearly spans R? and there is
a d x d-regular matrix Q such that ¢() = Qe(/), by changing the order of {¢();
j=1,2,...,d +m} if necessary, where we regard /), (/) as column vectors (Q
is given by Q = (¢l -..5@)). Let

Po(x) := |det Q|p(Qx), or equivalently, p(x) = |det Q| 'po(Q™'x).

If we denote

() =) = |

F({z,0))A(db)
sd—l

with a suitable function F, and let ‘Q be a transposed matrix of @, then
the log-characteristic function Wp(z) of po(x) is given by W, ('Q7'z) =¥, (z2),
where Ao(d0) = A(Qdf) on Q~'(S?!). Thus Spt iy contains e) = Q~lg\V)
(j=1,...,d). In fact,

(@) polx) = det QI | exp[-i<Qx. 2>+ ¥i(2) ds
— |det Q| Ld exp|—ix, 02> + Wi (2)] dz
= [ expl-icxwy + 9i(Q7w)] .
Moreover by <‘O~'w,0> = (w, 0"'6> we have

B0 W) = [ Fnglonaae) = | | | F(n,0)4(Qdh) = ()

0-1(s%)
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This implies ¥y = ¥;,. Therefore our results are invariant for regular linear
transformations Q by changing S%°! to Q~1(S97}).
For each j=1,2,...,d +m and teR, let

—A({e D7) [1 — i(sgn t) tan 225] (o # 1),
(1) =
—2({a )1 [1 + i;zz—(sgn ?) log|t|} (a =1).

and let p;j(y) be the one-dimensional a-stable density corresponding to ‘F;(z).
Then p;(y) is a C* function satisfying the following: p;(y) ~ Ci(a)y~!=* as y —
+o00. pi(¥) =0 if and only if y <0, 0 < a < 1. Moreover

_ L [rlyl 2 (ny]
=12 p()~ 3 Wexp[%j woo(5)] 0=

I<a<2= p(y) ~ GO)'Iy** 2 expl-p |y (y - —o0).
Here constants Cj(«), Cj(a)',¢;,y; > 0 are determined by « and A({c/)}).

Let p@(x) := p1(x1)--- pa(xq) for x = (x1,...,xq4). If m =0, then py(x) =
pD(x). If m > 1, then by ¥y(z) = Zf:lm ¥;(<{z, 0 'a(V}) we have

(2.1) po(x) = J dyi J dymp@ (x — y1Q71a@D — ...

—00 -0

— IO e N a1 (31) -+ Paym(Vm)-

In fact, in general, if p(x) is a d-dimensional density with a log-characteristic
function ¥(z) := Wy(z) — ¥j(<z, 0 'a\)}), then

(Zn)dpQ(x) = Ld exp[—i{x,z) + ¥p(z)] dz

= J exp[—i{x,z) + P (2)] exp[¥;(<z,, Q0 '6\))] dz
Rd

e 0]

explivz, 0-'a>]p () dy) dz

—00

= JRd exp[—i{x,z) + ¥(2)] (J

- J b Ld exp[—i{x — yQ 1o\, 2> + ¥(2)] p;(y) dz

— o0

e e}

= (20)* J 50x — 300D py(3) dy.

— o0
Hence we have [2.1).
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When o € T(n), we define a family of indexes
Jn) = { {1, jn} = {l,...,d +m}y;0 = aic) + - + a6,
a;>0 (s=1,...,n),{c"),...,6} are linearly independent}.

For each {Ji,..., jn} € J(n), we always fix {gUr), ... oUs} such that {a\),.
oU2} is a basis of R and a d x d-matrix Q;, _; such that Q; ;e =gl®
(s=1,...,d), where (ij,...,iz) is a permutation of (1,...,d). Moreover if n < d,
then let

‘PL ,]n( ety - -0 2ig) = =¥, a1, wa)  with w; =z, (i=1i5), wi=0 (i #is)

,,,,,

and p; . (Xi,,,---,%;,) be a (d — n)-dimensional stable density corresponding to
¥, .. It is expressed by

ee}

e8]
J aAy\pjs. (y1) -+ J AYmPjgem(Ym)
— o0

-0

m .
X Pjnr1 (xin+1 — Zysél(::-s)) e (xtd Z ysé(}dﬂ))
s=1

where {jiit,--., jasm} ={1,...,d +m\{Jj1,...,ja} and EU#) .= Rglars) ¢ RY
with R= Q7! .. Wealso set p;- . (0,...,0) := 1. Now we state a more detailed
result than in case of g€ T(n).

THEOREM 2. Let o€ T(n) (and o€ Int S(d) if 0 <o < 1). It holds that
plra)~ > |det ;. ;7 pi(rar) - by (ran)py; (05, 0)
{jla--'ajn}e'](n)

as r — oo, where each p;- . (0,...,0) is positive and (ay,...,a,) is determined
by o =31 a6 such that a; >0 (s=1,...,n).

3. Proofs of Theorems

Adding Assumption 1, we may also assume (¢(V),...,6(@) = (e),... e@)
and m > 1. For simplicity, let ) := g@*+/) (j=1,...,m). Then by with
Q = E; (the d x d-unit matrix) we have

0 0
p(x) = J dy, - J dymp (x = ™ — - = yn™)
—00

—
X pavt(¥1) - -+ Pasm(Ym),
where p@)(x) = pi(x1) - pa(xa) for x = (x1,...,Xa). -
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We first show the latter half of each result of (i) and (ii) in Theorem 1.

PrOPOSITION 1. Let S(d) # S\

(i) If 0<a< 1 and o ¢ Int S(d), then p(ro) =0 for r > 0.

(i) If 1<a<?2 and o¢ S(d), then Cihy(yr) < p(ro) < Cohy(y,r) for all
r=>1, where 0 < C; < C; < 0, y; >y > 0 are independent of r > 1.

Proor. Since e(V),... e e S(d) #S“! and o ¢ Int S(d), there is a number
io =1,...,d such that g;, < 0 and we may assume that S(d) = {f € Sé-1. 6,, =0}
by using a regular linear transformation if necessary. For simplicity, let iy = 1.
Hence nij) >0 (j=1,...,m). Moreover o ¢ S(d) implies g, < 0.

(i) Let 0<a< 1. If o¢IntS(d), then o; <0. By p;(y)=0 (y <0) for
every J,

S 00
p(ro) = L dy, JO dymp D (ra — @D — ...y, pld+m))

X pa+1(¥1) - -+ Parm(Ym)-

Thus ro; — ymgl) = PV ;75'") <0 by ngj) > 0 for every j. Therefore p,(ro; —
ymgl) - = y,,,ng )) 0 and hence p(ro) = 0.

i) Let l<a<2 Ifo¢ S(d), then g1 < 0. Let ¢ > 0 be a sufficiently small
number such that —o; — s(n(” ('")) > ¢. By the definition of A,(r), there

exist constants Cp,y, > 0 such that p]( y) < Coh,(y,r) whenever y < —er, r>1
for every j=1,...,d + m. We have

p(ra) = zm: Z J_sr dyjl Pd+j, (yjl) T
i}

—&r o0
J ayj pa+ i (Vi) J e Pd+jirs Vi) -
— 00

—&r

o0
J @, Pasjn (33, P (ro — y1q™ — - — yg™),
—&r
where {jkt+1,---,Jm} ={1,...,mN\{J1,...,Jjk}. In the right-hand side if k =0,
then the corresponding term satisfies

o¢}

[0 0]
J dyipasi(y1) - - J dymParm(ym)p D (ra — yigV — - — y,0™) < Clhy(y,r)

—&r —&r
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for some Cj > 0. In fact, if y; > —er for every j, then

ro| — ymgl) — = ymngm) <r(oy + 8(1751) 4+ 4 nﬁ'”))) < —er.

Hence pi(ro; — ymgl) — = ymngm)) < Cohy(y,r), which implies the above in-

equality. If k > 1, then it is easy to see that

oo
J PO (re = yin'™ — - = yun™) dy;
—0
is bounded in (y1,..., ¥j—1, ¥j+1,-- ., ¥m). Therefore for some constants CJ > 0,
—&r
J dyflpd-l-jl (yjl)p(d)(ra - yl”(l) - ymn(M))
—00
e}
< Cohy(y,7) J pD(ra — yinV — -+ — y,,n™) dy;,
—0

< C(/)/hoc(yzr)-

Thus we have p(ro) < Ch,(y,r). Finally, for the lower estimate, since p;(y) is
strictly positive and continuous, if 0 < y; <1 for every j, then

Pra—yinW — - — 3,m™) = C'hy(yy7)

for all »r > 1 with some constants C’' > 0, y; > 0. Therefore

1 1

p(ro) = L dyipari(y1) - JO dYmPasm(¥m)p D (ra — yin® — . — yn™)
> Crhy(y;r). [ ]

Next in order to show the first half of each (i), (ii) in [Theorem 1, it suffices
to show [Theorem 2. We always assume o € T'(n) for some n=1,...,d (and g €
Int S(d) if 0 <a < 1). Then by using a regular linear transformation, we may
also assume that g = gjel) + ... + g,e® with a1 >0,...,0, > 0.

PrROOF OF THEOREM 2. Let ¢ > 0 be a sufficiently small number such that

. 1
co = min {0 —eln”| +--+1n" D} >0

=1,

and gy := & dm max n.s); i=1,...,d,s=1,...,m}. We have
i 15T
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J ayj, Pa+j (i) -+
|)’11 | =er

j dyjkpd+jk (yjk) J dyjk+1pd+jk+1 (yjk+l) T
|y | =er

nyk+l |<er

)

J dy;, asjn (Vi) PP (16 — yigV — - = yun®™),
[ Vim | <er

where {jk+1,---50mt ={1,....mN\{/, ..., Jk}
In the following for positive functions f;(r), f(r) of r =1 (e > 0), let
fe(r) ~ f(r) as r— o0, e | 0 denote lif(r)l lirg) f(r)/f(r)=1.
For instance, if o; >0, then pj(ro; +¢) ~ pi(ro;) as r— oo, €l0 by

pj(r) ~ Ci(a)r™1=* as r — oo.
In the case kK = 0, the corresponding term satisfies

J dy1pasi (1) -+ J AymPasm(ym) P (ro — yin — -+ = y,n™)
|yi|<er | ym|<er
~ pi(ray) - - Pn(ran)Pl ..... (0,...,0)
as r— o0, ¢ |0, where pi ,(0,...,0) is given by
(3.1)
fo'e] o] m (s)
J ayipav1(y1) - - J AYmPa+m(Ym)Pns1 Z y5’7n+1 o Pa| — Z Yslg
— - s=1

if n<d, and p{ 4(0,...,0)=1 if n=4d. In fact, let G:=(g1,...,0,) and
79 = (ry(ls),...,n,,)) (s=1,...,m). Foreach j=1,...,n, by pj(ro; + €) ~ p;(ro;)

as r— o0, €] 0, and

) m)
Zm <rlo;i+e(ln;,’ |+ -+ |n; ,

S > oy — e+ ) = e
we have p®(ré — y i) — ... — y,7i™) ~ p™(r6) as r — oo and & | 0. Hence
by
Pro— i — - — yun™)
= P (rg — D — oot — ™)

1 1
X Pt (=3 = =y - pa(=y11 — - = ),
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the above asymptotic is obtained if pi ,(0,...,0) > 0. We show that if n < d,
then

e )

AYmPd+m(Ym) Pnt1 ( Z ys;ynﬂ) - Da (_ Z J’sﬂ‘(;)) >0
s=1

(note that it is obvious pi- ,(0,...,0) is given by the above formula). When
1 <a <2, pj(y) is strictly positive and continuous. Hence it is evident. When
0 <a <1, we also assumed o € Int S(d). By pj(y) =0 for y <0, pl, n(0,...,0)
is equal to

00 m
Jo ady1pav1(y1) -+ J AYmPavm(Ym) Pt ( Z ysnn+1) *rPd <_ Z ys’?&”) .
s=1

The following lemma ensure p;_ ,(0,...,0) >0 by p;(y) > 0 for y >0 and the
continuity of p;(y).

Joo dy1pas1(y1) - J

—0o0 -0

LeMMAa 1. Let 1<n<d—-1 and o0 =01V + -+ ,e®™ with a1 >0,...,
on>0. If cent S(d), then there exists a vector (yi,..., Ym) sSuch that y; >0,...,
ym>Oandy177k)+ +ym77k <0f0rallk-—n+1 ., d.

Proor. For xeR? we denote %:= (xp41,...,%;5), and %eInt(R%™) if
xx <0 for every k=n+1,...,d. We have to show that
v + -+ y,,4™ e Int(RE™)  for some y; >0,..., y > 0.

Let Sp= Con{g™*D) ... 6@+m} cR?" be the convex cone subtended by
{60+ gdtmy = falntl) o) 5D 40m) Noting that o € R” x {0},
if Sp is contained in a half space of R?™" then o e dS(d). Hence o e Int S(d)

implies Sy = R?™". Therefore there exists a basis {¢(), ..., ("} = {60+
6@t} of RY™ such that the cone S = Con{G("),... 60"} c RY™ satisfies
Int SN Int(R%™) % . Thus we fix a point % € Int SNInt(R*™") such that % #
7 (j=1,...,m). Then %= a16®™ + ...+ ay_,6(an) with positive numbers
a; > 0. Now we can consider the following two cases.

[First case] {6(),..., 60} does not contain any é*) (k=n+1,...,d),
ie.,

{6@ ... ,&(id—n)} = {ﬁ(jl), L ,ﬁ(jd—n)}.

Thus %= a1 + ... + az_,4la) with a; >0. We would like to add other
A9 (#4990 i=1,...,d —n) with positive coefficients. In this case for some

{ir,.. . ig} = {1,2,...,d —n} (0<g<d—n), #¥) can be expressed by 7)) =



270 Seiji HIRABA

YL bl =30y cfti) with by >0, ¢; > 0. Note that if ¢ =0, then A =
_(Clﬁ(jl) 4+ 4 cd_nﬁ(jd—n)). Hence

X = ﬁ(j) + (a1 + 01)ﬁ(j‘) + -+ (ag—n + cd_n)ﬁ(jd—n).

On the other hand, if ¢ > 1, then Y7, bijts) = 40 + 37,1 ¢ff#). Thus for a
sufficiently small & > 0 such that a;, —eb; >0 (s=1,...,q9), we have

q9 q
X = § (ajs - abs)ﬁ(ji_\-) +¢& E bqﬁ(jis) + E aiﬁ(ji)
s=1 s=1 i¢{is}

q . .
s=1 i¢{is}

Therefore % can be expressed by y1A(1) +--- + 7™ e Int(R*™) with y; > 0.
[Second case] {6, ... 6V} contains some é*) (k=n+1,...,d), that is,

{5-(1'1), . ,&(id—n)} — {é(}'l), o ,é(jq), ﬁ(jqﬂ)’ o ,ﬁ(jd—n)}‘

Then % = a18U) + - - + a,8U0) + bygler) + .. 4 by_p_,iUén) with a; > 0, b, > 0.
In this case by the same way as above, we have

£=cé) ... 4+ cqé(jq) + ylﬁ(l) 4o+ ymﬁ(m) with ¢; > 0, y; > 0.

This implies 17 + - + pufi®™ = % — (c18V) + -+ + ¢,6W)) e Int(R%™"). |

REMARK 1. By this lemma, it can be also shown that p;- . (0,...,0) >0 in

.....
.....

Therefore pjll i,(0,...,0) is given by the same formula as in (3.1) with

.....

{RaU} ™ instead of {79}™,.

In the case k > 1, it is possible to show the following Claim 1. If kK < n and
{n), ... nUU)} are linearly independent, then let

T = {{ik+1,---,in} <{l,...,d};

k n
o= an+ > be® with a;>0,b; >0,
s=1 s=k+1

where {n\/),... U0 ele)  olin} are linearly independent}.
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Note that J(n) can be expressed by the following disjoint unioin:
J(n) ={{1,...,n}}

n
Ul U {{d+h, - d+jrikttse-sink; {ksts o yin} €5}
k=1 {j1,rJi}

={1,...,m}

(Claim 1) If Kk <n and J;__; # <, then

dyjkpd+jk(yjk) J dyjk+1pd+jk+1 (yjk+1) T

|y,-k+1 |<er

J dyjlpd+jl (yjl) T J
|y | =er

|ij'28r
J @y Pt j (3o ) P (ra — i — - = yun®™)
ijm|<€r

~ Y CiprinPasi (rar) -+ pacj, (raic) iy, (rbicsr) - - pi, (rby)

{ik+l 30eey ln}
er] »»»»» Jk

as r — oo, ¢ | 0. Otherwise the above term is o(r~"(1*%) as r — oo for any small
e>0. Here C;,, ;=1 (n=d) and if n <d, then

(OO o0

Cik+lv"'7in = dyjk+1pd+jk+1 (yjk+1) o J dyjmpd+jm(yjm)

J—00 — 0

r 0O o m
dyjl ot J dyjk H Di (_ E YS”;('S)) .
o0 —o0 i=1,...,d; s=1
Pty n

Note that C,,, .. 1is positive. In fact, denote {ii,..., ik, dns1,...,0a} =

{1, d\{ik+1,- -+, 0n} and let Q= Qayji,...d4je ics1,nin D€ @ d X d-matrix such
that Qel) = () = g+ (s=1,...,k) and Qe =¢l) (s=k+1,...,d). By

change of variables (y;,..., ;) to (Ji,..., ) such that

m ) k ) m )
_j}s = Z yj”i}) = Z yj;”,('sjl) + Z J’j,ﬂ,('sj') (S = 17 s ak),
=1 =1

t=k+1

we have the following.
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LeMMA 2. If n<d, then
Cieptyenin = 14t Q7' D75 aiiivirsnin 0522 ,0) (> 0).

Proor. The positivity of pg; 4 ;.. . (0,...,0) was mentioned in
Remark 1. For the equation, it is enough to show the case (ji,...,jm)=

(1,...,m). By the definition, pj,, (0,...,0) is given by

..... d+k, i, in
e} o0 [0} [se}
| vt [ dmpamton) [ dsimno0)-+ | dnem (0
— o0 — 00 — 00 —00
k ' m
Pins (‘Zfs(ke(h))inﬂ - Z y’(R”(t))im)
s=1 t=k+1
k m
( > n(Re), = 3 »(Rv"))fd)
s=1 t=k+1
For simplicity, we consider the case (ij,...,i5) =(1,...,d). Denote Q =

(Qs1)1<5,<a and R= (Rs,t)1<s,1<a- Then Q. = ’7£t) (t<k)and Q5,=6;, (t=
k+1), where &, =1 (s=1), =0 (s #1). Let Ok := (Qs.1)1 <y rck = (;7§’))15“5k
and E; = (95,1),<;,<;- By R=Q7', we have

(9 O _ (ot 0)
Q-—(* Ed—k) and R (* E;d)

Let u=n+1,...,d. Fort=1,...,k,

k
> Ruotl) =3 Rl = 3 Rusrl) == = 1
s=1

s=k+1

For s=1,...;)k and t=k+1,...,m,
(Re™), = (Re¥), =R, and (Ry"Y), = (RyY), ZR a0+ 70,

Therefore by change of variables (j,..., ¥) to (»1,...,yx) such that

i!”sj)—zyngt)+zy” S_l,"'ak)a

t=k+1

we have dy, ---dy, = |det Q| dy;---dyx and for u >n+1,
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=D H(Re™), = > y(Ry')
s=1 t=k+1
k m
s (z 4 3 ymﬁ”) Sy, (zR ) 41 )
s=1 t=k+1 t=k+1 s=1
k k m
DIIOSTIES SRR o)
t=1 s=1 t=k+1 t=1
HCnCC p¢J1_+l,,d+k,k+l,,n(0’ PP ,0) = ldet Qle.’_l’,n With
o0 (e 0]
Citl,n = J AVi1Pdrk+1(Vis1) - J AYmPavm(Ym)
—© -0
J dy1 - J dve ] » ZJ&’? g u
- —oo i=1,....d,
i#k+1,..,n

We show Claim 1. If y; < —er, then py,;(y;) has an exponential decay and

[e 0]
J POo—yinV - = yun™) dy; < J POro = yin® — -« — yun™) dy,
yi<—er

is bounded in (yi,...,¥j-1, ¥j+1,---, Ym). Thus Claim 1 is reduced to the fol-
lowing. Let v:= —y;, nUt) — ... — y; nUn), then [v] < eor by [y, | <er,...,
|yi.| < er (recall ¢y = ¢ dm max{lnj(.s)|;j= l,...,d,s=1,...,m}).

(Claim 2) If 1 <k<n and J; ; # O, then

(3.2) J ayj, Pavj (Vi) - J avj, Pa+ji (¥;.) P9 (ra — y;nv
Yy =zer y

iy ZEF

[ g yjkn(jk) + U)

~ Y Cireris©)Pari (rar) - - Pa o (rax) Piyy (rbics1) - - - i, (rn)

{lk+1 3eeey ln}

as r — o0, ¢ | 0, bounded and pointwise in |v] < gor. Otherwise, i.e., if Kk > n or
Jjr.so = &, then it is o(r"1+%)) as r — oo for any small ¢ > 0. Here

Y [e'e]
Cik+l»-~-»in (U) = J dyjl te J dyjk H ( Zy]s (/) + U) .
—® —©

i=1,.
l#’k-&-l, 7ln
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In the above, for positive functions f(r,e,v),g(r) (r = 1, sufficiently small
¢>0 and veRY),

f(r,e,v) ~g(r) as r— oo, ¢ |0, bounded and pointwise in |v| < gor
means that
f(r,e,0)1{| <sory/9(r) is bounded in (r,¢,v) and

lim lim f(r, & v)1s<er}/9(r) =1 for every v e RY.

el0 r—oo

For simplicity, we consider the case (ji,...,jk)=(1,...,k), that is,
(.. nU) = (gD, ...,qW) and (yj,..., yi) = (¥, yi). Let

k
B := Con{nV, ... A0} = {Zasn(”;as >0,s=1,2,... ,k}
s=1
and ko := dim B (< k). Fix a basis {#(1),..., 5} = {#,...,#®} of Span B.

We may set {#1),... gUkd} = {n1) ... nkol},

In the following we always use the same notation C > 0 as constants which
are independent of r > 1. They may be different in each line.

Let ko > n. By using change of variables it is easy to see that

JR dyy - J Ay, p' D (ra — yin") — - — yn® + ) < C,
R

where C is independent of r>1 and (yx,+1,...,yk). Hence we have, by
Par1(31) - Parke(Po) < Crroll+),

k
J dylpd+l(J’1) st J dykpd+k(yk)p(d) (ra- _ z ys”(s) _|_ U)
yrzer Vi zer .

s=1

< Crko(l+e) JR Parkor1(Vkot1) @Vko+1 - .[R Pa+k( k) dykj »
y

1=>ér

s=1

k
- J Ay, P | ro =y + v
Yo Z &

< Cr ko149 — o142y a5 r - o0 by ko > n.

Next let ko < n. We first show the above term is O(r"(1*¥) (k = ko) or
o(r"+9)) (k > ko) as r — oo for any small ¢ > 0. If ko = n, then it is evident.
Let ko < n. We need the following lemma. For each r > 1, let
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k
He(r) = {x: ro — Zys”(s);ys > ¢er (S: ],,k)}

s=1

Moreover let

( 1 2 ko) )
R
SV Ne) (ko)
’7. ;7 PR 77
Iko = {il,...,iko}C{l,...,d};det 1.2 1'2 | ’2. #0 )
o @ k)
\ ”ikO ’7ik0 e ”ikoo }

and denote {i1,..., ik} :={1,...,d}\{i1,- -, ik, }-

LemMa 3. Let ko < n. There exists 0 > 0 such that for all r > 1,

d
H,(r) (U c:’m)u U Um0l
i=1 {il,...,iko}efko {ik0+1,...,i,,}
={i1yeees iko}c

where & > 0 is independent of r > 1 and
Co(r) := {x e R% x; < —r},

0

bt i (r)={xe R“';x,-koJrl >0r,...,x; =0r}.

We shall give the proof in the next section. By this lemma we have

k
dykpd+k(yk)P(d) (m — Z ys”(s) + U)

s=1

J dJ’1Pd+1(y1) T J
yi=er

Yie=er

d k
s J " JR" dy - - dyk ( Z Lesmng, ) (m - Zysﬂ(s))
i=1 s=1
k
DI VIR FR 5 S )
S

{i1yeees ikO } Clko {ik0+1 o
c{il,,..,iko}c

k
x p (”7 -> v+ v) par1 (V1) - Pask( Vi)

s=1
Here we may assume 6 > ¢y > 0 by taking a sufficiently small ¢ > 0 from the

beginning. If ro — 3% |y, € C3(r), then by ra; — X yn' > —6r and |v] <
gr we have
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k
Y (m 3 "y + ) < Cpi(=3"MlIpill -+ lpiall N pesall - -~ I pall,

s=1

where ' =6 —¢ >0 and |- || = - ||, denotes the supremum norm. Hence the
corresponding term has an exponential decay. Next if

lk0+l ye-es In

k
x=(X1,...,Xq) :==rc— Zysq(‘) eD? (ryNH(r)
s=1

for some {i1,..., ik, } € Ix, and {ixy+1,---,in} = {i1,..-,ik,}°, then by using change
of variables,

J J dy1 - Ay, Piy (Xi,) - -+ Piy (¥ko) < C
R Jr

and by y;>er, we have pir1(y1)--- Pariy(Vr,) < Cr~%0(1+%)  Furthermore by

P9 = pi o Piy * Picyor = Pin * Pianr " Pis and Picyrs (Xkot1) - -+ Py (%3,) <
Cr~{n=ko)(149) it holds

,,,,,

< Cp-(nko)(1+2) j

i =er

J dyl "'dykopil(xil)"'piko(xiko)
kaZEr

< Cr—(n—ko)(1+2)

If k& > ko, then

@© 00
J Do J AyiParkor1 (Vkot1) -~ Pask(ye) = O~ *50)%) 0

er er

as r — oo. Hence for k > ko,

,,,,,

s=1

k
x p@ (m = ysn + v) Pas1(¥1) - Pask( Vi)

{S Cr"(+2) (k= ko)
= o(r~"1+9)) (k> ko).

Thus we also have p(rg) < Cr"0+% for all r > 1.
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We show the asymptotic behavior (3.1). From the above estimate, it is
enough to consider the case 1 <k = k¢ <n and

‘ k
x=(X1,...,X4) :=ro — Zysn(s) e H.(r)N{x1 > =dr,...,xq > —Or}.

s=1

First consider the main term. Let {ix1,...,in} €J1, .k (# &), that is, o can be
expressed by o= >"%  an® + 327, be® with a; >0, b, > 0 and linearly in-
dependent vectors {n(),... 5® elen) e}

k k n
o= 3 o1 = Yty — O+ 3 b,
s=1 s=1 s=k+1

We divide the integral area E, := {(y1,...,yk);ys=¢r (s=1,...,k)} to E, =
F,U G, such that
F, = U Fiu,in(r) and G, := ﬂ Gigsryenrin(7),

{iketsnint €tk {iks1yeerin} €00,k
where, noting that {a;,...,ax} is determined by {ixi1,...,in},

F; Wn(r) :={(»y1,-.., yx) € Ep;|ras — ys| <er for all s=1,...,k},

tktlyeeesln

Gigsr,oin(r) == {(31, ..., Yk) € Ey;|ras — ys| = er for some s=1,...,k}.

If ¢ > 0 is sufficiently small, then {F;

ket Lyeens

F, = & and G, = E,. By change of variables j, = ra; — y;, F;

k1o In
to

i,(r)} are disjoint. If J;__x = ¢, then
(r) is changed

Fiprrin(r) == A1, -, Fi)i | 3l <er for all s=1,...,k}

and we have

aaaaa

J dypa+1(y1) - - J Ak Park(Vi)1F, (V1,5 Vi)
n=zer

Vi Zé&r
x pD(re — yin) — - — yp® 4 )
=], B Bueta 50 bt 5
b 1o in r

k n
x pt@ (Z o + Z rbge) 4 v)

s=1 S=k+1

~ C(v)pa+i(rar) - - park(rax) Pi,, (rbrs1) -~ - pi, (rbn)
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as r — o0, ¢ | 0, bounded and pointwise in v < gyr, where

C(U)=Jiooodyl'~-rO dyx H ( Zysn,)-l—v)

- i=1,...,
[ E 3 PRI 1

Next on G, in order to show the correspondmg terms are o(r"(1*%)), we need the
following result which is more detail than [Lemma 3. For each {i,...,i} € Ik,
denote {ixs1,...,04} == {i1,..., i}, ie., {7V,... q®) ) ()} is a basis
of R?. Let

I o = {{i1,...,ix} € It; there exists {ix;+1,...,in} €Ji, .k such that

{ik+1,...,i,,} [ {i],...,ik}c}

and ka » = Ix\Ix,n. Note that {i,...,ix} € Iy , means that o can be expressed by

k d

=> an® + Y be®  with a;> 0, bs 2 0,
s=1 s=k+1

where just (n — k)-number of {b,} are positive and {5(1),...,n%) el  elia)}

is a basis of RY.

LEMMA 4. Let 1 <k =ko < n. There exists 6 > 0 such that for all r > 1,
H.(r)N{x; > —0or,...,xq > —0r} < A}i‘"(r) UA}S; (r),
where 6 > 0 is independent of r > 1, and

A5, (= U U D, .0

{i| ..... ik}elk',, {ik+| ..... i,,}
C{i],...,ik}(

k
J e é S
Alk‘" (r) D U U U Dis1ik+l ~~~~~ in (r) U U le+| ,,,,, Int1 (r)
' {ityersy ik}EIk‘." 5=1 {iks1,-rin} {ik+1seerint1}
< {ityen it} < {ity ik}’

We give the proof in the next section. We may also assume J > ¢y > 0 by
taking a suﬂiciently small ¢ > 0 from the beginning. Denote x = (x},...,x4) :=
ro — Z 1 ysn®). We can consider the following two cases.

(Case 1) x=ro— yinV — .. — yy® € 45 (r).

There exist {i,...,i} € I, and {ixs1,... z,,} < {i1,...,ix} such that xe
D . (r). Thus by |v| < egor and 6 > g9 > 0, we have

Tet1yeey 1,

(3.3) Pig (Kiyy + i) Piy(xi, +vi,) < Cr~(n=k)(1+a)
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for all r > 1 with some C > 0. Moreover by {ii,...,i} € Ik n,

k k d
X =7ro— Z ysn® = Z(ras — ys)n(s) + Z rbe™  with a; > 0, by > 0,
s=1 s=1 s=k+1

where just (n — k)-number of {b;} are positive. By change of variables j, =
ra; — y;, let G, be changed to G, then G, = {|y,| = &r for some s >k + 1}.
Hence we have

J Ay\par1(y1) -+ J Ay pa+k(Vi)le,(¥1, .-y V&)
yy=er

Yk 2éer

X P(d) (ro — yw(l) T ykﬂ(k) + U)lpf (NNH,(r) (x)

et in

< C’r*k(H“)J dyy - - dyx
G,

k n
x p (Z(ms =+ 37 rbee® +") Log,,...ao0a (%)

s=1 s=k+1 /77

r

k k
< ¢+ j _djy - dipy (Z ) + vh) Py (Z ) + vik)
s=1
— o(r—n(1+a))

as r — oo for any small ¢ >0 (by G, | &).
(Case 2) x=ro— yinV —-.. — ) e Aakc (r).
Fix {i1,...,ik} eI, . f xe D, . (r) for some s=1,...,k and {ix41,. .-,

in} = {i1,...,i}", then also holds, and by change of variables (y1,..., yk)
to (xi,...,x;) we have

J ay\pa1(y1) -+~ J Ay pa+k( Vi)
yi=er

Yr=er

X P(d)(’”o' - ylﬂ(l) - J’kﬂ(k) +v)lps in(r)ﬂHe(r)(x)

is, iy ] rens

o0 o0
<Cr —"(I’L“)J dxi, -+ J dx;, pi, (Xi, +vi,) - -+ pi (i +03) Lix, >0y (X3,)

— 00 — 00

00
< Cr‘"“*”J pi.(xi, + v;,) dx;,
or

— Cr—n(1+a)r—a — O(r—n(H—a))
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as r — oo for any small ¢ > 0. If xe D? iy () (n<d) for some {ixy1,...,

Het1ye-

w1} < {i1,...,i}°, then it immediately holds that

I ayipari1(y1)--- J AV pa+k (Vi)
yr=¢r

Yie=er

x pD(ra — yin® — .- — yen® 4 0)1 s o) (%)-

et 1o 0n

< Cr—(n+1)(1+ot) — O(r—n(1+¢x))

as r —» oo for any small ¢ > 0. |

4. Proofs of Key Lemmas

We give the proofs of Lemma 3 and Lemma 4. First we give a fundamental
result. The following result may be intuitively obvious at least for d < 3.

Lemma 5. If x= Zle an) with a; >0 (s=1,...,k), then there exist a
basis {n"),... .7t} < {#"),... y®} of Span B and ¢; >0 (s=1,... ko) such
that x = 3% c.p),

ProOF. We use the induction on ko and k > kg. First if kg = 1, then £k =1
(i.e., n) only) or k=2 (ie., #¥) = —#®@) and our claim clearly holds. Next let
Zo > 2. We assume that the result holds in case of kg <4y — 1 and k > ko. We
have to show the case kg = ¢4 and k > ko. If k = ko, then the result is evident.
Let £ > ko. We again assume that the result holds for ko <k <7/. Let x=
St an® with ;>0 (s=1,...,/+1). It suffices to show that it can be ex-
pressed by x =35 c7U) with ¢, >0 (s=1,...,k), where {70),... nUk)}
need not be a basis of Span B (because by the assumption of the induction, it can
be retaken as a basis). We have

k ko
X = Zasn(s) + a/+117([+1) = Z CS?](I:) + a;+177(f+1) with Cs = 0,

s=1 s=1

where {#(),... #%)} is a basis of Span B. If some ¢, = 0, then the claim holds.
Let ¢; >0 for all s=1,...,ko. For simplicity, set #% := ¢ and #C¢tD .=
as 1tV Then {7®),... 5%} is also a basis of Span B. Hence

t ko
A = =" b + > bg® (b, 20,0 < 1 < ko).
s=1

s=t+1
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It 1s enough to consider the case ¢ > 1 and we may assume by > by > --- > b, >0
by changing the order of s =1,...,¢, if necessary. Thus

!

x=Y (1-b, n<’s+Z(1+b i),
s=1 s=t+1
When b; < 1, the claim follows. When b; > 1,
Al — f+1) Zbl A05) 4 Z zs)'

s—t+1

Set by :=1/b; and by := by/b; (s=2,...,ko). Then by <1 (s=1,2,...,) and

t k()
x=(1=b)f" "+ (1=bJa™ + 3 (1457
s=2

s=t+1

Therefore the claim holds for k =7+ 1. [ |

ProoF oF LEMMA 3. It is enough to show the case r =1 by consider-
ing (x/r, ys/r) instead of (x,y;). Moreover let H:=0— B, C?:= C?(1) and

D? =D? _(1). By H,(1) = H, it suffices to show that for some & > 0,
lk0+[,..., lk 4 1geeey
d
(4.1) He({UC)ul U U Dl
i=1 {ityeitg Y €dig {ikgatrenin}

c{il,...,iko}c

[The First Claim] (ULIC;S)” ={xeR%x; > —6,...,x5 > —0} and

c

(42) U Dzioﬂ,...,i,, = U {x € Rd; Xj < 0. .. » Xanr < 5}
{ig+15ein} {Jtseees Ja—ns1}
C{il,...,iko}c C{ila""iko}c
In fact, let {iky+1,...,a}:={1,...,d}\{i1,...,ix,}- If x is in the left hand
side, then x is not such that “at least (n — ko)-number of {x;, ,,,...,x;} satisfies
x;, = 0. That is (noting that the rest number is at most (d — ko) — (n — ko) =
d —n), x is not such that “at most (d —n)-number of {x; ,,,...,x;,} satisfies

xj, <0”. Hence x is such that “at least (d —n+ 1)-number of {x; ,,...,x;}
satisfies x; < 6”. This implies x is in the right-hand side. The reverse is also true.
Thus we have (4.2).
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[The Second Claim] It holds that

(43) (HNRY)N N U {xeR%x,=-=x,=0}=0.
{il,...,iko}elko {inyesia}
< {i1ynikg }

In fact, let x e HNRY. If we assume that for any {il,..., i} € Ik, there exists
{iko+1, ceuyinm1} < {i, .-, iko}c such that
x e Con{el, ... eV} =RIN{xeR%x;, =--- = x;, =0},

where {i,,... iz} :={1,...,d}\{i1,...,in-1}, then by H = ¢ — B, there exist f =
S % an® e B (a5 = 0) such that x =0 —f = 577 bl (bs > 0). That is,

ko n—1
o= Zasn(” + ste(“) with a;, >0, b, > 0.

s=1 s=1

Fix {i1,...,i,} € I, (which is equivalent to that {1 ... ytko) elkor) . eli)}
is a basis of R? by the definition of I,). Let I = {s=1,...,ko;e) ¢ Span B},
J:={1,...,ko}\I and ¢/ =#I. We may denote I = {1,...,¢}, J={/+1,...,ko}
by changing the order. We show that £ > 1 is essentially reduced to £/ = 0 and
this case has a contradiction.

First let £ =0, i.e., I = . Then J = {1,...,ko} and e\*) € Span B for all
s € J. By applying with By := Con{B,e(*);s € J} = Span B instead of B,
we have o € T'(ng) for some nyp < n— 1. In fact, by the above expression of ¢ and
{q D, ... y*o) elios) (1)} are linearly independent, o can be expressed by a
linear sum of at most (n — 1)-number of these vectors with positive coefficients.
This contradicts with g € T(n).

Next let £ > 1. Then

5 £ ] n—1 ] - ko ko )
oc=B+ Ebse(“) + Z bel)  with B := Zasn(s) + Z bse) € Span B.
s=1 s=ko+1 s=1 s=£+1
By Lemma 3, f can be expressed by a linear sum of at most ko-number of
linearly independent vectors of {n(1),...,n%0) el¥);5e J} with positive coeffi-
cients. Hence by o € T(n), at least one a; >0 (s=1,...,7), we may let s= 1.

Since e(®) can be expressed by e = Y% ¢4 4 Zf:ko L1 ¢e® (¢, eR), and by
e ¢ Span B, we have ¢, # 0 for some s > n, e.g., let s = n. Then {1 ... »ko)
elion) | elin-1) (i) elin) (i)} s also a basis of RY, i.e., {in,i2,..., 0k} €
I,. Hence by the above assumption there exists {jko+1,.-.,Jn-1} < {in,i2,...,
ir, }¢ such that x € Con{e(m (2 . . elko) elikor) oD} je.,
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ko n-1
x=bjel +> " ble® + > ble)  with b > 0.
s=2 s=ko+1
Thus by x = 32"7/ bel®), we have b, =0 and b/ = bs (s=2,...,ko). Moreover
for s=ko+1,...,n—1, if />0, then j; is a member of {izs=ko+1,...,
n—1} and b/ = b, >0. Thus we may assume bleUs) = bel®) for all s=ko+
1,...,n—1. Hence

4 n—1
o= ﬂ + Z bse(is) + Z bse(is)_
s=2 s=ko+1
This is the case £ — 1 for {iy, i, ..., ik, } € Ix,- Hence the case £ > 1 is reduced to

{ =0 and we have a contradict.

[The Last Claim] (4.3) implies for some & > 0. In fact, if we first
assume for every J > 0,

(HNRY)N N U {xeR%x;, <6,...,x, <} # .
{il 7777 iko}EIkO {iny'“vid}
C{il,...,iko}c

That is, for each ¢ > 1 (let 6 = 1/¢), there exists x) e HNRY such that

x e N U {xeR%x;, <1/¢,...,x;, <1/¢}.

{ih"‘viko}elko {inr"vid}
< {ll 3y iko }C

This means there exists at least one {ii,..., i, } € Ix,, and also exist {i,,...,iz} <
{i1,...,ix,}° and a subsequence {¢} such that for some B% e B,

g—B% =xDe{xeR;0<x, <1/4,...,0 <x;, <1/4}.
Thus B4 satisfies 8% <a; (i=1,...,d) and

lim B9 = o, (s # in...,0a)-

Jj—©0
Since B is a closed convex cone, we may assume |%)| <1 (k > 1). Hence it is
possible to take a further subsequence {£} = {£;} such that a limit point f:=
lim;_, B%) exists. Therefore fe B, and x:=0—f e HNRY satisfies Xj ==
x;; = 0. This is inconsistent with (4.3). Hence for some J > 0, we have

(HNRZ)N N U {xeR%x;, <4,...,x, <} =@.

{i[,...,iko}elko {iny-eeyia}
c{i;,...,iko}c
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Furthermore by the same way we have
HN{x; > —-0,...,xq > —6}

n m U {XERd;x,‘"<5,...,X,‘d<5}=@.

{il,...,iko}elko {inye-ria} .
c{il,...,iko}

Therefore by (4.2) we have [4.1). |

ProOF OF LEMMA 4. Let 1 < k = k¢ < n. This lemma can be proved by the
same way as above. It is enough to consider the case r=1. Let H := ¢ — B,

) . no ) — No
Dy irnin =D () and Dy, =Dy . (1). It suffices to show that
for some 6 > 0,
) )
(4.4) Hn{xl >"‘5,-..,xd>“5}CAI,(‘"UAII:",
where
J . )
Alk,n T U U Dik_H ..... in?
{ityerix} €l n {+1500n}
< {i,..., ik}t
) k J é
AIkc‘n = U U . U . Disvik+l*""in U ) U Dik+1,~--,in+1
{i],...,ik}EI’:" =1 {iks1,--rin} {lk+|,...,i,,+,}
C{il ----- ik}t C{il,...,ik}c

Note that by the first claim of the previous proof, for a fixed {i,...,i} € Ig ,, we
have

c

k k

U U Dif,ik“ ..... in = (| {x, =d}N U Di(zﬂ,...,i,,

s=1 {lk-f-l 1111 ln} s=1 {ik+l»---,ln}
<{ii,..., i} <{ityen, ik}

={x,'l<5,...,xik<(5}U U {x,-n<5,...,x,«d<5}

{inyeesia}
< {1y ik }°
and
(4
o —
U Dik+l,...,i,,+1 - U {xin+1 < 5’ ceey Xy < 5}
{ik+la"'7in+l} {in-H1'"7id}c{ilv"'vik}C

{1y ik}
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Hence by
U {xi, <6,...,x;, <8} = U {x;,., <6,...,x;, <5},
{inyeeria} = {ityes i }° {int1seeria} = {iryy ik }°

we have (noting that if B< C, then (AUB)NC = (4N C)UB)

4

k
U U Dif,ik+|,...,in U U Dii+|,...,i,,+|

s=1 {ik+lv~--yin} {ik+11"')in+l}
< {iyen, ik} < {1y ik }°

{x,-1<§,...,x,~k<5}ﬂ U {x,-n+,<5,...,x,-d<5}

{in+17"'7 ld}
C{il,...,ik}c

U U {x,-"<§,...,x,-d<6}
{inye-sia}

{1y ik }€

In order to show [4.4), by the same way as in the last claim of the previous proof,
it is enough to show that '

(HNRE) N (4y,,) N (B UCye) = I,
where

(A]kﬁn)c = ﬂ U {xin —_ e = xid = O},
{ilv"')ik}elk,n {ina"')id}
< {itye.- ik}c

By = N {xi = =x;, =0}N U {xp,=-=x,=0}|,
{i,ic}elf {ins1,meria}
C{il,...,ik}c

C= U {x=-=x,=0}

{il,u-,ik}EI]:n {in,...,id}c{il,...,ik}c
Note that (A]kyn)c N (B[kcn U C[kvn) = ((AIk,")c ﬂB;kc") U ((A]k’n)c N Clk‘”) and, by Ik =

Ir,n UI{, (disjoint union),

(Alk,n)cncllén = ﬂ U {xin : =xid =0}

{it,ric} €l {inyees ig}<{iryes ik}c
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Moreover by (4.3) (the second claim in the previous proof) we have (HNR?)N
(A1) N Cye = &. Therefore the above claim is reduced to

(HNR{) N (Ag,) N By, = &.
However we can show that
(HNRY)N By = &,
more strongly, for any fixed {i,...,i} €I{,, it holds that
(4.5)
HMRDN ] {xy==x,=0n U {x,==x,=0}|=02.

{in+1 1'“7id}
< {ityeenix}€

In fact, if we assume there exists x € H such that

(46) xeRiN{xj=--=x,=0}n ) {x, = =x, =0}

(instoria)

c{ill,...,i:}c
By xe€ H, we have x = — § for some =%, ¢ e B with ¢, > 0. More-
over by (4.6), we also have x = 3¢, | be™ with b, > 0, where at most (n — k)-
number of {b;} are positive. Hence

k d
(47) g = ﬁ +x = Z cs”(s) + Z bse(is)_
s=1 s=k+1

On the other hand, by the definition of I{ ,, o can not be expressed by the fol-
lowing form.

k d
o= z;asn(s) + zk:l bee™ with a; > 0, b, > 0,
s= S=K+

where just (n — k)-number of {b.} are positive

(note that {#(1),... n®) elik)  el@)} is a basis of RY). By o € T(n), this implies

in [(4.7) at least (n — k + 1)-number of {b;} are positive. This contradicts. There-

fore we have (4.5), and hence, holds. |
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