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A REMARK ON WELL-POSEDNESS FOR HYPERBOLIC
EQUATIONS WITH SINGULAR COEFFICIENTS

By

Daniele DEL SANTO and Martino PRIZZI

Abstract. We prove some $C^{\infty}$ and Gevrey well-posedness results for
hyperbolic equations with singular coefficients.

1. Introduction

This work is devoted to the study of the well-posedness of the Cauchy
problem for a linear hyperbolic operator whose coefficients depend only on time.

We consider the equation

(1.1) $u_{tl}-\sum_{i,j=1}^{n}a_{ij}(t)u_{x_{j}x_{/}}$. $=0$

in $[0, T]\times R^{n}$ , with initial data

(1.2) $u(O, x)=u_{0}(x)$ , $u_{l}(0, x)=u_{1}(x)$

in $R^{n}$ . The matrix $(a_{ij})$ is supposed to be real and symmetric. Setting

(1.3) $a(t, \xi)$ $:=\sum_{i,j=1}^{n}a_{ij}(t)\xi_{i}\xi_{j}/|\xi|^{2}$ , $(t, \xi)\in[0, T]\times(R^{n}\backslash \{0\})$ ,

we assume that $a(\cdot, \xi)\in L^{1}(0, T)$ for all $\xi\in R^{n}\backslash \{0\}$ .
We suppose that the equation (1.1) is hyperbolic i.e.

(1.4) $a(t, \xi)\geq\lambda_{0}\geq 0$

for all $(t, \xi)\in[0, T]\times(R^{n}\backslash \{0\})$ .
In the strictly hyperbolic case (i.e. $\lambda_{0}>0$) it is well known that if the
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coefficients $a_{ij}$ are Lipschitz-continuous then the Cauchy problem (1.1), (1.2) is
well-posed in Sobolev spaces. In the same case if the $a_{ij}\prime s$ are Log-Lipschitz-
continuous or Holder-continuous of index $\alpha,$ $(1.1),$ $(1.2)$ is well-posed in $C^{\infty}$ or
in the Gevrey space $\gamma^{(s)}$ for $s<1/(1-\alpha)$ respectively (see [1]). In the weakly
hyperbolic case (i.e. $\lambda_{0}=0$) if the coefficients are $C^{k,\alpha}$ then the problem (1.1),
(1.2) is $\gamma^{(s)}$ -well-posed for $s<1+(k+\alpha)/2$ (see [4]). Some counter examples
show that all these results are sharp (see also [5]).

Recently Colombini, Del Santo and Kinoshita have considered the same
problem for operators having coefficients which are $C^{1}$ on $[0, T]\backslash \{t_{0}\}$ with a
singularity concentrated at $t_{0}$ . In this situation, under the main assumptions that

$|t_{0}-\cdot|^{p}a^{\prime}(\cdot, \xi)=\beta(\cdot, \xi)\in L^{\infty}(0, T)$ for all $\xi\in R^{n}\backslash \{0\}$

(1.5)
$|t_{0}-\cdot|^{r}a(\cdot, \xi)=\alpha(\cdot, \xi)\in L^{\infty}(0, T)$ for all $\xi\in R^{n}\backslash \{0\}$

it is possible to show that the Cauchy problem (1.1), (1.2) is $\gamma^{(s)}$ -well-posed, the
value of $s$ depending on $p$ and $r$ (see [2] and [3]) (here and in the following /

denotes the differentiation with respect to $t$).
The aim of the present work is to improve the results of [2] and [3] allowing

the function $\beta$ in (1.5) to be in a $L^{q}$ space and removing the growth assumption
on $a$ . We make the following assumptions: let $ 1\leq q\leq+\infty$ and $p\geq 0$ and let
$t_{0}\in[0, T]$ ; suppose that

(H1) $a(\cdot, \xi)\in\bigcap_{\epsilon>0}W^{1,1}(]0, t_{0}-\epsilon[\cup]t_{0}+\epsilon, T[)$ for all $\xi\in R^{n}\backslash \{0\}$ ;
(H2) $|t_{0}-\cdot|^{p}a^{\prime}(\cdot, \xi)=\beta(\cdot, \xi)\in L^{q}(0, T)$ for all $\xi\in R^{n}\backslash \{0\}$ .

In the weakly hyperbolic case the results are the following.

THEOREM 1. Assume that $3\leq(p+1/q)$ . Then the Cauchy problem (1.1),

(1.2) is $\gamma^{(\sigma)}$ -well-posed for $1\leq\sigma<\frac{(p+1/q)-\frac{3}{2}}{(p+1/q)-2}$ . If moreover

(1.6) $|t_{0}-\cdot|^{r}a(\cdot, \xi)=\alpha(\cdot, \xi)\in L^{s}(0, T)$ for all $\xi\in R^{n}\backslash \{0\}$ ,

with $ r\geq 0,1\leq s\leq+\infty$ and $(r+1/s)\leq 1$ , then the Cauchy problem (1.1), (1.2) is
$\gamma^{(\sigma)}$ -well-posed for $1\leq\sigma<\frac{(p+1/q)\frac{3}{2}(r+1/s)}{(p+1/q)-(r+1/s)-1}$ .

THEOREM 2. Assume that $(p+1/q)<3$ . Then the Cauchy problem (1.1),
(1.2) is $\gamma^{(\sigma)}$ -well-posed for all $1\leq\sigma<\frac{3}{2}$ .

The result conceming the strictly hyperbolic case are contained in the fol-
lowing theorems.
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THEOREM 3. Assume that $1<(p+1/q)<3$ . Moreover, assume that $\lambda_{0}>0$ .
Then the Cauchy problem (1.1), (1.2) is $\gamma^{(\sigma)}$ -well-posed for all $1\leq\sigma<\frac{(p+1/q)}{(p+1/q)-1}$ .

THEOREM 4. Assume that $(p+1/q)\leq 1$ . Moreover, assume that $\lambda_{0}>0$ . Then
the Cauchy prob$lem(1.1),$ $(1.2)$ is $C^{\infty}$ -well-posed.

REMARK 1. Adapting to the present situation some counter examples con-
tained in [4], [2], and [3] it is possible to see that the results of Theorems 1-4
are optimal. Let us show this in some detail in the case of Theorem 1. Sup-
pose $p0+1/q0=3$ . In this case $\frac{(po+1/q_{0})-\frac{3}{2}}{(po+1/qo)-2}=\frac{(po+1/qo)\frac{3}{2}(r_{0}+1/s_{0})}{(po+1/qo)-(r_{0}+1/s_{0})-1}=\frac{3}{2}$ ; consequently
Theorem 2 in [4] shows that this value of the Gevrey index cannot be improved.
Consider next the case that $p0+1/q0>3$ and $(r_{0}+1/s_{0})\leq 1$ . Let $\overline{\sigma}>\sigma_{0}=$

$\frac{(p_{0}+1/qo)\frac{3}{2}(ro+1/s_{0})}{(po+1/qo)-(r_{0}+1/s_{0})-1}$ We fix $q\iota>q0$ and $s_{1}>s_{0}$ in such a way that $p_{0}+1/q_{1}>3$ ,
$r_{0}+1/s_{1}<1$ and $\sigma_{0}<\sigma_{1}:=\frac{(p_{0}+1/ql)-\frac{3}{2}(r_{0}+1/s_{1})}{(po+1/q_{1})-(r_{0}+1/s_{1})-1}<\overline{\sigma}$ . From Theorem 4 in [3] we
have that there exists a function $a:[0,1[\rightarrow[1/2,$ $+\infty$ [ such that $a\in C^{\infty}([0,1 [)$

and

$(1-t)^{po+1/ql}a^{\prime}(t)\in L^{\infty}$ , $(1-t)^{r_{0}+1/s_{1}}a(t)\in L^{\infty}$ ,

and there exist $u_{0},$
$u_{1}\in\gamma^{(\sigma)}$ for all $\sigma>\sigma_{1}$ such that the Cauchy problem

(1.7) $u_{tt}-a(t)u_{XX}=0$ , $u(O, x)=u_{0}(x)$ , $u_{t}(0, x)=u_{1}(x)$ ,

has no solution in $W^{2,1}([0,1], \mathscr{D}^{\prime(\sigma)}(R))$ for all $\sigma>\sigma_{1}$ . Consequently

$(1-t)^{p0}a^{\prime}(t)\in L^{q0}$ , $(1-t)^{r_{0}}a(t)\in L^{s_{0}}$ ,

$u_{0},$
$u_{1}\in\gamma^{(\overline{\sigma})}$ and the Cauchy problem (1.7) does not have a solution in

$W^{2,1}([0,1], \mathscr{D}^{r(\overline{\sigma})}(R))$ .

REMARK 2. Let us remark that Theorem 1 is a nontrivial improvement of
Theorem 2 in [3] also in the case of $ q=\infty$ . In fact the growth condition on $a$ is
removed and the result is sharp (see [3, Th. 4]).

2. Proof of Theorems 1-4

As a preliminary step, let us observe that, since the coefficients $a_{ij}$ are real
integrable functions, the Cauchy problem (1.1), (1.2) is well posed in $\mathscr{A}^{\prime}(R^{n})$ , the
space of real analytic functionals. Moreover, if the initial data vanish in a ball,
then the solution vanishes in a cone, whose slope depends on the coefficients $a_{ij}$ .
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Therefore it will be sufficient to show that, under the hypotheses of each theorem,
if $u_{0}$ and $u_{1}$ have compact support then the corresponding solution $u$ is not only
in $W^{2,1}([0, T], \mathscr{A}^{\prime}(R^{n}))$ , but it belongs to a Gevrey space in the $x$ variable. Our
main tools in doing this will be the Paley-Wiener theorem (in the version of [1,
p. 517], to which we refer here and throughout) and some energy estimates.

Denoting by $v$ the Fourier transform of $u$ with respect to $x$ , equation (1.1)
reads

(2.1) $v^{\prime\prime}(t, \xi)+a(t, \xi)|\xi|^{2}v(t, \xi)=0$ .

Let $\epsilon$ be a positive parameter and for each $\epsilon$ let $a_{\epsilon}$ : $[0, T]\times(R^{n}\backslash \{0\})\rightarrow R$ be a
strictly positive real function such that $a_{\epsilon}(\cdot, \xi)\in W^{1,1}(0, T)$ for all $\xi\in R^{n}\backslash \{0\}$ .
We define the approximate energy of $v$ by

(2.2) $E_{\epsilon}(t, \xi)$ $:=a_{\epsilon}(t, \xi)|\xi|^{2}|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}$ , $(t, \xi)\in[0, T]\times(R^{n}\backslash \{0\})$ .

Differentiating $E_{\epsilon}$ with respect to $t$ and using (2.1) we get

$E_{\epsilon}^{\prime}(t, \xi)=a_{\epsilon}^{\prime}(t, \xi)|\xi|^{2}|v(t, \xi)|^{2}+2a_{\epsilon}(t, \xi)|\xi|^{2}{\rm Re}(v^{\prime}(t, \xi)\overline{v}(t, \xi))$

$+2{\rm Re}(v^{\prime\prime}(t, \xi)\overline{v}^{\prime}(t, \xi))$

$\leq(\frac{|a_{\epsilon}^{\prime}(t,\xi)|}{a_{\epsilon}(t,\xi)}+\frac{|a_{\epsilon}(t,\xi)-a(t,\xi)|}{a_{\epsilon}(t,\xi)^{1/2}}|\xi|)E_{\epsilon}(t, \xi)$ .

By Gronwall’s lemma we obtain

(2.3) $E_{\epsilon}(t, \xi)\leq E_{\epsilon}(O, \xi)\exp(\int_{0^{T}}\frac{|a_{\epsilon}^{\prime}(t,\xi)|}{a_{\epsilon}(t,\xi)}dt+|\xi|\int_{0^{T}}\frac{|a_{\epsilon}(t,\xi)-a(t,\xi)|}{a_{\epsilon}(t,\xi)^{1/2}}dt)$

for all $t\in[0, T]$ and for all $\xi\in R^{n},$ $|\xi|\geq 1$ .
Now we are able to give the

PROOF OF THEOREM 1. First of all, observe that condition (1.6) is always
satisfied at least with $r=0$ and $s=1$ (recall that $a_{ij}\in L^{1}(0,$ $T)$ ).

Since $u_{0},$
$u_{1}\in\gamma^{(\sigma)}\cap C_{0^{\infty}}$ , the Paley-Wiener theorem ensures that there exist

$M,\delta>0$ such that

(2.4) $|v(0, \xi)|^{2}+|v^{\prime}(0, \xi)|^{2}\leq M\exp(-\delta|\xi|^{1/\sigma})$

for all $\xi\in R^{n},$ $|\xi|\geq 1$ . To verify that $u\in W^{2,1}([0, T], \gamma^{(\sigma)})$ it is sufficient to show
that there exist $M^{\prime},\delta^{\prime}>0$ such that



A remark on well-posedness for hyperbolic equations 193

(2.5) $|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}\leq M^{\prime}\exp(-\delta^{\prime}|\xi|^{1/\sigma})$

for all $t\in[0, T]$ and for all $\xi\in R^{n},$ $|\xi|\geq 1$ . We consider first the case $t_{0}=T$ . For
$\epsilon\in]0,$ $T$ ], we set

(2.6) $a_{\epsilon}(t, \xi)$ $:=\left\{\begin{array}{l}a(t,\xi)+\epsilon^{2-(r+1/s)}(T-l)^{-2}\\\epsilon^{-(z+r)}a(t,\xi)(T-l)^{z+r}+\epsilon^{-(r+1/s)}\end{array}\right.$ $for0\leq t\leq T-\epsilon forT-\epsilon\leq t\leq T$

where $z$ is any positive number such that

(2.7) $z>\max\{1/s, (p+1/q)-r-1\}$ .

Then

(2.8) $a_{\epsilon}(t, \xi)=\left\{\begin{array}{l}\alpha(t,\xi)(T-t)^{-r}+\epsilon^{2-(r+1/s)}(T-l)^{-2}\\\epsilon^{-(z+r)}\alpha(t,\xi)(T-l)^{z}+\epsilon^{-(r+1/s)}\end{array}\right.$ $forT-\epsilon\leq t\leq Tfor0\leq t\leq T-\epsilon$

and

(2.9)
$a_{\epsilon}^{\prime}(t, \xi)=\left\{\begin{array}{l}\beta(t,\xi)(T-t)^{-p}-2\epsilon^{2-(r+1/s)}(T-t)^{-3}\\\epsilon^{-(z+r)}(\beta(t,\xi)(T-t)^{z+r-p}-(z+r)\alpha(t,\xi)(T-\iota)^{z-1})\end{array}\right.$ $for0\leq_{-}t_{\mathcal{E}}\leq T-\epsilon forT\leq\iota\leq T$

Our choice of $z$ implies that $a_{\epsilon}(\cdot, \xi)\in W^{1,1}(0, T)$ for all $\xi\in R^{n}\backslash \{0\}$ . By (2.8) and
(2.9) we get

$\int_{0^{T}}\frac{|a_{\epsilon}^{\prime}(t,\xi)|}{a_{\epsilon}(t,\xi)}dt\leq\int_{0^{T-\epsilon}}\frac{|\beta(t,\xi)|(T-t)^{-p}}{\epsilon^{2-(r+1/s)}(T-t)^{-2}}dt$

$+\int_{0^{T-\epsilon}}\frac{2\epsilon^{2-(r+1/s)}(T-t)^{-3}}{\epsilon^{2-(r+1/s)}(T-t)^{-2}}dt$

$+\int_{T-\epsilon}^{T}\frac{\epsilon^{-(z+r)}|\beta(t,\xi)|(T-t)^{z+r-p}}{\epsilon^{-(r+1/s)}}dt$

$+\int_{T-\epsilon}^{T}\frac{\epsilon^{-(z+r)}(z+r)|\alpha(t,\xi)|(T-t)^{z-1}}{\epsilon^{-(r+1/s)}}dt$

The choice of $z$ allows us to use Holder inequality; an easy computation shows
that

(2.10) $\int_{0^{T}}\frac{|a_{\epsilon}^{\prime}(t,\xi)|}{a_{\epsilon}(t,\xi)}dt\leq C^{\prime}(1+|\log\epsilon|)\epsilon^{-(p+1/q)+(r+1/s)+1}$ ,

where $C^{\prime}$ is a constant depending only on $C,$ $r,s,$ $p,$ $q$ and $z$ . On the other hand,



194 Daniele Del SANTO and Martino PRIZZI

$\int_{0^{T}}\frac{|a_{\epsilon}(t,\xi)-a(t,\xi)|}{a_{\epsilon}(t,\xi)^{1/2}}dt=\int_{0^{T-\epsilon}}\frac{\epsilon^{2-(r+1/s)}(T-t)^{-2}}{\epsilon^{1-(1/2)(r+1/s)}(T-t)^{-1}}dt$

$+\int_{T-\epsilon}^{T}\frac{\epsilon^{-(z+r)}\alpha(t,\xi)(T-t)^{z}}{\epsilon^{-(1/2)(r+1/s)}}dt$

$+\int_{T-\epsilon}^{T}\frac{\epsilon^{-(r+1/s)}}{\epsilon^{-(1/2)(r+1/s)}}dt+\int_{T-\epsilon}^{T}\frac{\alpha(t,\xi)(T-t)^{-r}}{\epsilon^{-(1/2)(r+1/s)}}dt$ .

The first three summands on the right hand side can be estimated again by using
Holder inequality. In order to estimate the fourth summand, we shall distinguish
the case $(r+1/s)<1$ and $(r+1/s)=1$ . In the first case, we use once more
H\"older inequality; in the second case, we use the fact that $\alpha(t, \xi)(T-t)^{-r}=$

$a(t, \xi)\in L^{1}(0, T)$ . At the end, we get

(2.11) $\int_{0^{T}}\frac{|a_{\epsilon}(t,\xi)-a(t,\xi)|}{a_{\epsilon}(t,\xi)^{1/2}}dt\leq C^{\prime\prime}(1+|\log\epsilon|)\epsilon^{-(1/2)(r+1/s)+1}$ ,

where $C^{\prime\prime}$ is a constant depending only on $C,$ $r,$ $s,$ $p,$ $q$ and $z$ . By (2.3), (2.10) and
(2.11) we obtain

(2.12) $E(t, \xi)\leq E(O, \xi)\exp(\tilde{C}(1+|\log\epsilon|)(\epsilon^{-(p+1/q)+(r+1/s)+1}+|\xi|\epsilon^{-(1/2)(r+1/s)+1}))$

for all $\iota\in[0, T]$ and for all $\xi\in R^{n},$ $\xi\geq 1$ , where $\tilde{C}$ is a positive constant
depending only on $C,$ $r,$ $s,$ $p,$ $q$ and $z$ .

Now, by (2.2) and (2.6), we have

(2.13) $E_{\epsilon}(O, \xi)\leq(a(O, \xi)+T^{-(r+1/s)})|\xi|^{2}|v(0, \xi)|^{2}+|v^{\prime}(0, \xi)|^{2}$

and

(2.14) $E_{\epsilon}(t, \xi)\geq T^{-2}\epsilon^{2-(r+1/s)}|\xi|^{2}|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}$ .

Then choosing $\epsilon:=|\xi|^{-[(p+1/q)-(3/2)(r+1/s)]^{-1}}$ we deduce

$T^{-2}|\xi|^{2-(2-(r+1/s))/((p+1/q)-(3/2)(r+1/s))}|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}$

$\leq(\tilde{K}|\xi|^{2}|v(0, \xi)|^{2}+|v^{\prime}(0, \xi)|^{2})$

$\times\exp(\tilde{C}(1+|\log|\xi||)|\xi|^{((p+1/q)-(r+1/s)-1)/((p+1/q)-(3/2)(r+1/s))})$ .

Using the Paley-Wiener theorem, the well-posedness follows for all $1\leq\sigma<$

$\frac{(p+1/q)\frac{3}{2}(r+1/s)}{(p+1/q)-(r+1/s)-1}$

If $t_{0}=0$ , for $\epsilon\in$ ] $0,$ $T$ ] we set
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(2.15) $a_{\epsilon}(t, \xi)$ $:=\left\{\begin{array}{l}\epsilon^{-(z+r)}a(t,\xi)t^{z+r}+\epsilon^{-(r+1/s)}\\a(t,\xi)+\epsilon^{2-(r+1/s)_{f}-2}\end{array}\right.$ $for0\leq t\leq\epsilon for\epsilon\leq t\leq T$

where $z$ satisfies (2.7). Our choice of $z$ implies that $a_{\epsilon}(\cdot, \xi)\in W^{1,1}(0, T)$ for all
$\xi\in R^{n}\backslash \{0\}$ . So, in particular, $a_{\epsilon}(\cdot, \xi)$ is continuous on $[0, T]$ . Arguing as before,
we obtain (2.12). An easy computation shows that $|a(t, \xi)|\leq\tilde{K}t^{1-(p+1/q)}$ for all
$\xi\in R^{n}\backslash \{0\}$ . It follows that

$a_{\epsilon}(O, \xi)=\lim_{\tau\rightarrow 0}a_{\epsilon}(\tau, \xi)=\lim_{\tau\rightarrow 0}(\epsilon^{-(z+r)}a(\tau, \xi)\tau^{z+r}+\epsilon^{-(r+1/s)})$

$\leq\tilde{K}\lim_{\tau\rightarrow}\sup_{0}(\epsilon^{-(z+r)}\tau^{z+r+1-(p+1/q)}+\epsilon^{-(r+1/s)})$ .

By (2.7) we deduce that $a_{\epsilon}(O, \xi)\leq\tilde{K}\epsilon^{-(r+1/s)}$ . It follows that

(2.16) $E_{\epsilon}(O, \xi)\leq\tilde{K}\epsilon^{-(r+1/s)}|\xi|^{2}|v(0, \xi)|^{2}+|v^{\prime}(0, \xi)|^{2}$ .

Moreover, we have also

(2.17) $E_{\epsilon}(t, \xi)\geq T^{-2}\epsilon^{2-(r+1/s)}|\xi|^{2}|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}$ .

Then, choosing again $\epsilon:=|\xi|^{-[(p+1/q)-(3/2)(r+1/s)]^{-1}}$ , we deduce

$|\xi|^{2-(2-(r+1/s))/((p+1/q)-(3/2)(r+1/s))}|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}$

$\leq(\tilde{K}|\xi|^{2+(r+1/s)/((p+1/q)-(3/2)(r+1/s))}|v(0, \xi)|^{2}$

$+|v^{\prime}(0, \xi)|^{2})\exp(\tilde{C}(1+|\log|\xi||)|\xi|^{((p+1/q)-(r+1/s)-1)/((p+1/q)-(3/2)(r+1/s))})$ .

Using the Paley-Wiener theorem, the well-posedness follows again for all $1\leq\sigma<$

$\frac{(p+1/q)\frac{3}{2}(r+1/s)}{(p+1/q)-(r+1/s)-1}$

Finally, if $ t_{0}\in$ ] $0,$ $T$ [, it will be sufficient to solve first the Cauchy problem in
$[0, t_{0}]$ , then to solve the problem in $[t_{0}, T]$ with the initial data obtained from the
previous one and finally to glue together the two solutions. $\square $

In order to prove Theorem 2, we proceed exactly like in the proof of
Theorem 1. In this case the role of condition (1.6) is played by the estimate

(2.18) $a(t, \xi)\leq C^{\prime}|t-t_{0}|^{-(p+1/q)+1}$ for all $\xi\in R^{n}\backslash \{0\}$ ,

which is a direct consequence of condition (H2). The function $a_{\epsilon}(\cdot, \xi)$ is defined
by

(2.19) $a_{\epsilon}(t, \xi)$ $:=\left\{\begin{array}{l}a(t,\xi)+\epsilon^{3-(p+1/q)}(T-t)^{-2}\\a(T-\epsilon,\xi)+\epsilon^{1-(p+l/q)}\end{array}\right.$ $for0\leq t\leq T-\epsilon forT-\epsilon\leq t\leq T$
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if $t_{0}=T$ and by

(2.20) $a_{\epsilon}(t, \xi)$ $:=\left\{\begin{array}{l}a(\epsilon,\xi)+\epsilon^{l-(p+l/q)}\\a(t,\xi)+\epsilon^{3-(p+1/q)}t^{-2}\end{array}\right.$ $for0\leq t\leq\epsilon for\epsilon\leq t\leq T$

if $t_{0}=0$ . Arguing like in the proof of Theorem 1, we get

(2.21) $\int_{0^{T}}\frac{|a_{\epsilon}^{\prime}(t,\xi)|}{a_{\epsilon}(t,\xi)}dt\leq C^{\prime\prime}(1+|\log\epsilon|)\epsilon^{(p+1/q)-3}$ ,

and

(2.22) $\int_{0^{T}}\frac{|a_{\epsilon}(t,\xi)-a(t,\xi)|}{a_{\epsilon}(t,\xi)^{1/2}}dt\leq C^{\prime J}(1+|\log\epsilon|)\epsilon^{-(1/2)(p+1/q)+3/2}$

and the conclusion follows by choosing $\epsilon:=|\xi|^{-(2/3)[3-(p+1/q)]^{-1}}$

Theorem 3 is the strictly hyperbolic version of Theorem 2. We define again
$a_{\epsilon}$ by (2.19) and (2.20), but in this case the positive lower bound for $a(t, \xi)$ allows
us to obtain better estimates for $\int_{0^{T}}\frac{|a_{\epsilon}^{\prime}(t,\xi)|}{a_{\epsilon}(t,\xi)}dt$ . Let us consider, for example, the
case $t_{0}=T$ . First observe that, by rescaling the $x$ variable if necessary, we can
always assume that $\lambda_{0}=1$ . Then we can minorize $a_{\epsilon}(t, \xi)$ by the constant 1 on
$[0, T-\epsilon^{(1/2)[3-(p+1/q)]}]$ and by $\epsilon^{3-(p+1/q)}(T-t)^{-2}$ on $[T-\epsilon^{(1/2)[3-(p+1/q)]}, T-\epsilon]$ .
So we obtain that

(2.23) $\int_{0^{T}}\frac{|a_{\epsilon}^{\prime}(t,\xi)|}{a_{\epsilon}(t,\xi)}dt\leq C^{\prime\prime}(1+|\log\epsilon|)\epsilon^{(1/2)((p+1/q)-1)((p+1/q)-3)}$ .

The conclusion follows by choosing $\epsilon:=|\xi|^{-2[p+1/q]^{-1}[3-(p+1/q)]^{-1}}$

Finally, we give the

PROOF OF THEOREM 4. Since $u_{0},$ $u_{1}\in C_{0^{\infty}}$ , the Paley-Wiener theorem ensures
that for all $\zeta>0$ there exists $M_{\zeta}>0$ such that

(2.24) $|v(0, \xi)|^{2}+|v^{\prime}(0, \xi)|^{2}\leq M_{\zeta}|\xi|^{-\zeta}$

for all $\xi\in R^{n},$ $|\xi|\geq 1$ . To verify that $u\in W^{2,1}([0, T], C_{0^{\infty}})$ it is sufficient to show
that for all $\eta>0$ there exists $M_{\eta}>0$ such that

(2.25) $|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}\leq M_{\eta}|\xi|^{-\eta}$

for all $t\in[0, T]$ and for all $\xi\in R^{n},$ $|\xi|\geq 1$ . We give the details only in the case
$t_{0}=T$ . If $q=1$ , then necessarily $p=0$ . This means that $a(\cdot, \xi)\in W^{1,1}(0, T)$ and
it is well known that this is enough to detect $C^{\infty}$ -well-posedness of the Cauchy
problem (1.1), (1.2). If $q>1$ , for $\epsilon\in$ ] $0,$ $T$], we set
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(2.26) $a_{\epsilon}(t, \xi)$ $:=\left\{\begin{array}{l}a(t,\xi)\\a(T-\epsilon,\xi)\end{array}\right.$ $for0\leq t\leq T-\epsilon forT-\epsilon\leq t\leq T$

Now observe that

$|a(t, \xi)|\leq|a(0, \xi)|+\int_{0^{l}}|a^{\prime}(\tau, \xi)|d\tau\leq|a(0, \xi)|+\int_{0^{t}}\beta(\tau, \xi)(T-\tau)^{-p}d\tau$

$\leq|a(0, \xi)|+\Vert\beta(\cdot, \xi)\Vert_{L^{q}}(\int_{0^{l}}(T-\tau)^{-pq^{\prime}}d\tau)^{/q^{\prime}}\leq C(1+|\log(T-t)|^{1/q^{\prime}})$

An easy computation shows that

(2.27) $\int_{0^{T}}|a_{\epsilon}^{\prime}(t, \xi)|dt\leq C^{\prime}|\log\epsilon|^{1/q^{\prime}}$

and

(2.28) $\int_{0^{T}}|a_{\epsilon}(t, \xi)-a(t, \xi)|dt\leq C^{\prime}\epsilon|\log\epsilon|^{1/q^{\prime}}$

Then we deduce by (2.3) that

(2.29) $|\xi|^{2}|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}$

$\leq(a(O, \xi)|\xi|^{2}|v(0, \xi)|^{2}+v^{\prime}(0, \xi)|^{2})$

$\times\exp(C^{\prime}|\log\epsilon|^{1/q^{\prime}}+C^{\prime}|\xi|\epsilon|\log\epsilon|^{1/q^{\prime}})$ .

Here, for simplicity, we have assumed that $\lambda_{0}=1$ . Choosing $\epsilon:=|\xi|^{-1}$ , we obtain

(2.30) $|\xi|^{2}|v(t, \xi)|^{2}+|v$ ‘
$(t, \xi)|^{2}$

$\leq(a(O, \xi)|\xi|^{2}|v(0, \xi)|^{2}+|v^{\prime}(0, \xi)|^{2})\exp(C^{\prime}|\log|\xi||^{1/q^{\prime}})$ .

Now, for $|\xi|\geq e$ , we have $|\log|\xi||^{1/q^{\prime}}\leq|\log|\xi||$ , and hence

(2.31) $|\xi|^{2}|v(t, \xi)|^{2}+|v^{\prime}(t, \xi)|^{2}\leq(a(0, \xi)|\xi|^{2}|v(0, \xi)|^{2}+|v^{\prime}(0, \xi)|^{2})|\xi|^{C^{\prime}}$

By the Paley-Wiener theorem, the well-posedness in $C_{0^{\infty}}$ follows. $\square $
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