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CHARACTERIZING MANIFOLDS MODELED ON
CERTAIN DENSE SUBSPACES OF NON-SEPARABLE
HILBERT SPACES

By

Katsuro Sakal and Masato YAGUCHI

Abstract. For an infinite set I", let /2f (T") be the linear span of the
canonical orthonormal basis of the Hilbert space 4(I"), that is,

fzf(l") = {x e £(T) | x(y) =0 except for finitely many y e I'}.

We denote fzf = /2f (N). Let Q =[—1,1]” be the Hilbert cube. In
this paper, we give characterizations of manifold modeled on the
following spaces: 4 (I") x fzf , fzf (T') and /2f (') x Q, where 4(I') x £
and 4(T) x Q are homeomorphic to #4(I"). Our results are obtained
by suitable alteration and modification of the separable case due to
Bestvina and Mogilski.

1. Introduction

Given a space E, an E-manifold is a topological manifold modeled on E,
that is, a paracompact Hausdorff space such that each point has an open
neighborhood which is homeomorphic to (x) an open set in E. In (cf. [17D),
Torunczyk gave a characterization of 4 (I")-manifolds, where 4(I") is the Hilbert
space of square-summable real-valued function on an infinite set I'. Let fzf (T) be
the linear span of the canonical orthonormal basis of 4(I"), that is,

{’zf(l“) = {x e (') | x(y) = 0 except for finitely many y e I'}.

In case I' = N, we denote fzf(N) = /2f as well as £ (N) = 6. Let Q=[-1,1]” be
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the Hilbert cube. As well-known, the separable Hilbert space ¢ is homeomorphic
to the psuedo-interior s = (—1,1)* of Q,

fzf ~ o= {xes|x(i) =0 except for finitely many ie N} and
tf x Q~ 62 = {x e tr|sup;ylix(i)| < o0}

~ X = {x e Q|sup,.n|x({)| < 1} = B(Q) = Q\s.
Notice that f2Q is a dense subspace of 4. By Mogilski 8], fzf - and fzf x Q-
manifolds were characterized. Furthermore, these were generalized to manifolds
modeled on various dense subspaces of £ by Bestvina and Mogilski [1]. In
particular, 4 x ¢ -manifolds were characterized in addition to /2f - and 4/ x Q-
manifolds.

In this paper, these results are extended to the non-separable case, that is, we
characterize 4(I") x fzf - fzf (T')- and fzf (T') x Q-manifolds for an arbitrary infinite
set I". One should note that 4(I") x fzf and fzf (') x Q are regarded as dense
subspace of (). In fact, since X x 4(I') = 4(I') for any completely metrizable
AR X with weight w(X) < card I" [13], we have

H(D) ~6H(T) x 6Hx6() x Q.

For each open cover % of Y, two maps f,g: X — Y are %-close (or f is
U-close to g) if each {f(x),g(x)} is contained in some U e % A closed set
A < X is called a (strong) Z-set in X provided, for each open cover % of X,
there is a map f: X — X such that f is #-close to idy and f(X)NA=¢
(cl f(X)NA = ). When X is an ANR, a closed set 4 is a Z-set in X if and only
if every map f:I¥ - X (k>0) can be approximated by maps g: I* - x\4
(i.e., for each open cover % of X, there is a map g : I* — X\ A which is %-close
to f). The union of countably many (strong) Z-sets in X is called a (strong)
Z,-set in X. A Z-embedding is an embedding whose image is a Z-set.

A space X is said to be universal for a class € (simply, €-universal) if every
map f: C — X of C € € is approximated by Z-embeddings. It is said that X is
strongly universal for € (simply, strongly €-universal) when the following con-
dition is satisfied:

(sug) for each C € ¥ and each closed set D = C, if f: C — X is a map such

that f|D is a Z-embedding, then, for each open cover % of X, there is
a Z-embedding 4 : C — X such that #|D = f|D and h is %-close to f.
The following is our main result:

MAIN THEOREM. Let X be a connected metrizable space and ' an infinite set
with card ' = 7.
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(1) X is homeomorpic to £,(I") x fzf (or an £H(T) x fzf -manifold) if and only
if X is an AR (or an ANR) with w(X) = 1, X is a o-completely metrizable
strong Zgs-space and strongly universal for the class of completely met-
rizable spaces with weight < 1.

(2) X is homeomorpic to fzf (T") (or an fzf (T')-manifold) if and only if X is an
AR (or an ANR) with w(X) =7, X is a strongly countable-dimensional
a-locally compact strong Zs-space and strongly universal for the class
of strongly countable-dimensional locally compact metrizable spaces with
weight < .

(3) X is homeomorpic to fzf (') x Q (or an fzf (T") x Q-manifold) if and only
if X is an AR (or an ANR) with w(X) = t, X is a a-locally compact strong
Zgs-space and strongly universal for the class of locally compact metrizable
spaces with weight < 1.

The above result can be obtained by suitable alteration and modification
of [1]. However, one should remind that some arguments in depend on
separability (e.g., Lemma 1.4, Propositions 1.7 and 2.3). Thus, we need to take
different approaches to obtain non-separable versions of some results in [I].

2. Preliminaries

Throughout of the paper, let T be an infinite cardinal and I" an infinite set with
card ' = 7.

Let 9 be the class of all metrizable spaces. For a class ¥ < 9, we denote by
%(7) the subclass of € consisting of all spaces X € ¥ with weight w(X) < 7. It is
said that

* € is topological if Xe€e¥, X~Y=Ye%,

* % is closed (resp. open) hereditary if X € €, A = X is closed (resp. open) in

X =>A4A€¥,

* € is additive if X = X;UX, and X;,X, €% are closed in X = X € ¥.
By %,, we denote the class consisting of all metrizable spaces which can be
expressed as countable unions of closed subspaces contained in €.

It is convenient to use the notation of [I3]:

E\) =6@), E)I)=~6() x4,
Ey(T) =4/ (I), Ey)=4(T)xQ,
M, = the class of completely metrizable spaces,

M, = the class of metrizable spaces which are countable unions
of completely metrizable closed sets,
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I3 = the class of metrizable spaces which are countable unions
of locally compact, locally finite-dimensional closed sets,

M4 = the class of metrizable spaces which are countable unions
of locally compact closed sets.

The classes M, M,, M3 and My are topological, closed hereditary and additive.
For each i =1,2,3,4, the following hold:

21. X eM;(r) if and only if X can be embedded into E;(I') as a closed set
[13, 1.1].

22. X x E{(T") = E{(T") for every AR X € M;(z) [13, Theorem 3.2].

23. X is an E{T')-manifold if and only if X € M;(zr) is an ANR and X X
E;(T') = X [13, Proposition 4.5].

The following classes are also topological, closed hereditary and additive:

Mo = the class of locally compact metrizable spaces and

M/ = the class of locally compact, locally finite-dimensional
metrizable spaces.

Observe that M, = (M;),, Mz = (M), and My = (My),.

We list the necessary results of non-separable infinite-dimensional manifolds
(cf. Preliminaries of [9]).! In the following, let E be a locally convex linear metric
space such that E~ E® or E~ EP, where

EP = {(xi);cy € E®|x; = 0 except for finitely many ie N}.
2.4 (TRIANGULATION). For each E-manifold M, there exists a locally finite-

dimensional simplicial complex K such that M ~ |K| x E, where |K| has the metric
topology [14, Theorem 3.4].

A near-homeomorphism is a map which can be approximated by homeo-
morphisms.

2.5 (StaABILITY). For every E-manifold M, the projection of M x E onto M is a
near-homeomorphsim, hence M x E~ M [12].

'These are discussed in [11].
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It is said that 4 = X is E-deficient if there exists a homeomorphism
h: X — X x E such that h(4) < X x {0}.

2.6. For a closed set K in an E-manifold M, the following are equivalent
([2, Theorem 1] and [17, Al]):

(1) K is a Z-set in M,

(2) K is a strong Z-set in M,

(3) K is E-deficient in M.

For an open cover  of Y, two maps f,g: X — Y are %-homotopic (or f is
U-homotopic to g) if there is a homotopy 4: X x I — Y such that ho = f, hy =¢
and each h({x} x 1) is contained in some U e % (h is called a %-homotopy).

2.7 (Z-SET UNKNOTTING). Let K be a Z-set in an E-manifold M and U an open
cover of M. If a Z-embedding h : K — M is %U-homotopic to id then h extends to
a homeomorphism h: M — M which is st U-close to id.

2.8 (NEGLIGIBILTY OF Z,;-SETS). In case E € Wy, if K is a Z,-set in an E-manifold
M, then the inclusion of M\K into M is a near-homeomorphism [4], [2].

A map f: X — Y is a fine homotopy equivalence if, for each open cover %
of Y, there is a map ¢g: Y — X (called a #-homotopy inverse) such that gf is
-homotopic to idy and gf is f~!(%)-homotopic to idy.

2.9. Every fine homotopy equivalence between E-manifolds is a near-
homeomorphism [6, Theorem 3.4].

3. Alteration of Bestvina-Mogilski’s Paper [1]

In this section, we make alteration of §1-5 of [1]. In order to treat non-
separable spaces, we generalize the Strong Discrete Approximation Property.
For each n € N, we say that X has the t-discrete n-cells property if, for each open
cover % of X, every map f:I"xI' - X is %-close to a map g:I"xI' - X
such that {g,(I")},.r is discrete in X, where g,:I” — X is defined by g,(x) =
g(x,7). When X has the t-discrete n-cells property for every n e NV, it is said that
it has the t-discrete cells property. The Strong Discrete Approximation Property is
no other than the No-discrete cells property. One should note that if X e 9 has
the t-discrete O-cells property then w(X) > .

Recall that a map f: X — Y is closed over A < Y if, for each ae A4 and
each neighborhood U of f~!(a) in X, there exists a neighborhood V of a in Y
such that f~1(V) c U, where it is possible that f~!(a) = U = ¥, which implies
that f(X)N A is closed in A4.
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3.1. Results in §1 of [I]. First, observe that separability is not used in the
proofs of Lemmas 1.1, 1.3 and Corollary 1.2 of [1], hence they are valid for non-
separable spaces. In the proof of Lemma 1.4 of [1], it is essential that each P, is
compact because X\ f;_;(P;—1) need to be open in X. It is a problem to prove
Lemma 1.4 of [I] without separability, that is,

ProBLEM 1. In a non-separable ANR X, if 4 is a Z-set and also a strong
Zs-set in X, is A a strong Z-set in X?

As same as Lemma 1.4 of [I], separability is required in the proof of
Proposition 1.7 of [I]. Then, the following is a problem.

PrROBLEM 2. Let X e M(z) be an ANR which has the r-discrete cells
property (z > Ng). Is every Z-set in X a strong Z-set in X?

Instead of Lemma 1.4 and Proposition 1.7 of [1], we can prove the following
without separability.

PrOPOSITION 3.1. Let X € M(z) be an ANR which has the t-discrete cells
property. If A is a Z-set and also a strong Zs-set in X, then A is a strong Z-set
in X.

PrROOF. We can write A = UieNU{O} A;, where Agc Ay <« Ay =--- are
strong Z-sets in X. For each open cover % of X, let -, be an open star-
refinement of #%. Since X is an ANR, we have a locally finite-dimensional
simplicial complex K with card K < w(X), f: X — |K| and g: |K| — X such
that gf is %_,-close to idy, where |K| admits the weak (Whitehead) topology.

We inductively construct open covers %; of X, maps A; : |K| — X, open sets
Vi, V! in X and discrete collections #; = {W,|c e KI\KUD}, w'={W/|ce
KO\KD} of open sets in X, i e NU{0}, such that

(1) mesh % < 27, st U < Ui—1, U < {Vi-1, X\l V", }, st(W,, %) = W, for

each o e K(-D,

(2) h; is U-close to hi_y, hi||KU=D| = h;_y ||KED),

(3) Aic V! ccl V/ = V; =« X\h(|K|),

@) cl W) =« W, = X\A4 and hi(o) =, _, W, for each o e K\,
where h_, =g. Since {W/|oeK®} is locally finite in X, the condition (4)
implies the following condition:

(5) clh(JKD)y = | W)= | d W cX\4.
geK® ceKW
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Assume that %, h;, V;, Vj’ , #; and “/Vj’ have been obtained for j < i. Since
cl V! | = Viiy, cl W/ = W, for each o € KD and #;_; is discrete in X, we can
choose an open cover % of X so as to satisfy the condition (1). Let %/ be an
open star-refinement of %;. Since cl h;_(|KV"V|)N4; = & and 4; is a strong
Z-set in X, we have a map 4/ : |[K| — X and open neighborhoods V;, ¥/ of 4; in
X such that

(6) h! is U/-close to h;_,

(7) A1 IKED] = hi_y [|KCD] and

@) clV/ cViccl Vi« X\cl h/(|K)).

Let % be an open refinement of %/ such that

9) @ < {Vi, X\(l (K] Uel 7)), X\cl V).

Since X is an ANR, %, has an open refinement %, such that two %,"-close
maps from an arbitrary space to X are %;'-homotopic.

For each i-simplex o€ K, U, =), k7' (W) is an open neighborhood
of 0o in |K|. Choose an i-cell ¢, in each i-simplex ¢ € K so that ¢\U, < ¢, and
{cs| 0 € KM\ KU-D} is discrete in |K|. Since X has the t-discrete i-cells property
and 4 is a Z-set in X, we have a map A/ : (J _ kg €o — X such that

(10) h;I(UasK(i)\K(i—l) ) NA =,

(11) A/ is %/-close to A and

(12) {h!(cs)|o e KO\KU=D} is discrete in X.

By using the Homotopy Extension Theorem, we can obtain a map #4;: |[K| — X
such that

(13) A UgeKa)\K(i—l) ce = h,

(14) ki [|IKED] = 4| |K6D| and

(15) h; is %;-homotopic to A,
whence 4; | |K(~D| = h;_1 | |[K| and &; is %;-close to h;_j, that is, h; satisfies the
condition (2). Since A; is %;-close to A/, it follows from (9) that #;(|K|) = X\cl V;,
that is, cl V' = X\A;(|K|). Thus, the condition (3) is satisfied.

By (12) and (13), for each i-simplex o € K, h;(c;) has open neighborhoods
W,, W/ in X such that cl W/ c W, = X\A4 and #; = {W,|oe KO\KU-V} is
discrete in X, hence %, = {W,|o e KV\K(~V} is also discrete in X. For each
i-simplex o € K) and x € o\c,a N U,, choose ¢’ < o so that h;_(x) € W},. Since
h; is %U;-close to h;_1, it follows from (1) that A;(x) € st(W,),, %;) < W,. Therefore,
hi(e) = \J, o, Wor. Then, the condition (4) is also satisfied.

By induction, we can obtain %;, h;, V;, #; for all i € N. By the condition (2),
we can define 4 : |K| — X by h||KY| = h;||K?|. Then, A is the uniform limit of
h; by (1), hence & is continuous. It follows from (1) and (2) that A is st %;-close
to h;, hence h is %;-close to h;. In particular, & is % j-close to h_; = g, hence
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hf is %-close to idy. Since %; < {Vi, X \cl V/’}, it follows from (3) that Af(X) <
h(K]) < st(hi(1K], ;) = st(X\Vi, %) < X\cl V7', hence
dmx)yn (J vw=g,

ie NU{0}
which means that cl Af (X)N A = & because 4 < Uz‘eNU{O} 128 O

By using Lemma 1.4 of [1], Corollary 1.5 of was obtained. But we use
Michael’s Theorem for local properties to prove the same result without
separability, that is,

PrROPOSITION 3.2. A closed set A in an ANR X is a strong Z-set in X if and

only if each a € A has an open neighborhood U in X such that AN U is a strong
Z-set in U.

Proor. The “only if” part is trivial. To see the “if” part, let % be the
property of open sets U in X such that AN U is a strong Z-set in U. It is enough
to prove that 2 is G-hereditary, that is, (1) if an open set U in X has £, then
every open set in U has Z; (2) if two open sets U; and U, in X have £, then
U U U, has Z4; (3) for a dicrete collection {U,},.A open sets in X, if each U,
has %4, then U 1ea Us has 2. Since Lemma 1.3 of m is valid without sepa-
rability, we have (1). And (3) is trivial.

To see (2), assume that U, and U, are open sets in X such that ANU; is
a strong Z-set in U;. We write AN (U, U U;) = A1 U A, such that 4; < U; and
A; is closed in U; U U,, whence A; is a strong Z-set in U;. For each open cover
U of U UU,, let ¥1 be an open star-refinement of %. Then, we have a map
f1: Uy — U, and an open neighborhood V; of 4, in Uj such that V1N f1(U;) =
<, fi i1s ¥1-close to id and f; can be extended to ﬂ U UU, - U1 UU; by
f~1 | U,\U, = id, whence V; ﬂfl(Ul U U,) = . Choose an open set W) in U U U,
so that (U1 UU;)Ncl Wy < V;. let ¥2 be an open cover of U; U U, such that

v> <71 and ¥ < {Vi, (U U Uy)\cl W}

Then, we have a map f,: U — U, and an open neighborhood V; of 4, in U,
such that VN fo(Us) = &, f» is ¥3-close to id and f can be extended to f :
UUU, - UyUU; by f~2 | U)\U; = id, whence V, ﬂfz(Ul UU,) = &. Observe
that Wi N f,£,(U, U Us) = &. Hence,

(WU N LAV D) = &.

Thus, AN(U,UU,) is a strong Z-set in U; U U,. O
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Note that Corollary 1.6 of is proved by Curtis [3, Lemma 7.2] without
separability.

In the proof of Corolary 1.8 of [I], the following is shown without sepa-
rability:

LeMMA 3.3. Let X be an ANR which has the Strong Discrete Approximation
Property. Then, every compact set in X is a Z-set.

This extends as follows:

ProPOSITION 3.4. Let X € M(t) be an ANR which has the t-discrete cells
property. Then, every closed set A in X with w(A) <t is a Z-set in X.

Proor. For eachne N and eachmap f:I" — X, let f: I" x I’ — X be the
map defined by f(x,y) = f(x). For each open cover % of X, f is U-close to a
map g : I" x ' — X such that {g,(I")}, . is discrete in X" by the z-discrete cells
property. Since w(A4) < t, it is easy to see that ANg,(I") = & for some yeT,
whence g, is %-close to f. Then, 4 is a Z-set in X. O

ProBLEM 3. In [Proposition 3.4 above, is 4 a strong Z-set in X?

We call X a Z,-space (or a strong Z,-space) if X itself is a Z,-set (or a strong
Zs-set) in X. By Baire’s Theorem, any completely metrizable spaces is not a
(strong) Z,-space. It is a problem whether Lemma 1.9 of [1] can be generalized to
non-separable spaces, that is,

PrROBLEM 4. Let X € M(7) be an ANR which is a strong Z,-space (t > No).
Does X have the 7-discrete cells property?

Lemmas 1.10 and 1.11 of are valid for non-separable spaces (cf. their
proofs).

3.2. Results in §2 of [IJ. Observe that Propositions 2.1 and 2.2 of are
proved whitout separability. Thus, they are valid for non-separable spaces.

In the proof of Proposition 2.3 of [1], Lemmas 1.4, 1.9 and Proposition 1.7
of are applied, where separability is necessary. Moreover, separability is also
used in the proof of 2.3 of [1] itself (the last paragraph). By adding the condition
on ¥ that 1" x I' € ¥ for each n € N, we can extend the result to ANR’s X with
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w(X) = 7. The proof is basically same as [1]. Since the proof in [1] contains some
misprints and some of details are not easy to follow, we give a complete proof,
where we make some small changes in the arguments to make the proof clear.

PROPOSITION 3.5. Let € be a closed hereditary additive topological class of
spaces such that 1" x I" € € for each n€ N, and let X be an ANR with w(X) = 7.
If X is a strongly €-universal strong Zs-space, then X is strongly €z-universal.

Proor. Since I" x I' € € for each ne N, if X is strongly #-universal then X
has the z-discrete cells property. By [Proposition 3.1, every Z-set in X is a strong
Z-set. Then, by Proposition 2.2 of [1], it suffices to show that each open set
U # & in X is %, -universal. Note that U is an ANR with w(U) = 7. Since U is
an F,-set in X, U is a strong Z,-space. It follows from Proposition 2.1 of
that U is strongly %-universal. Thus, we may assume that U = X, whence it
suffices to show that X is %,-universal.

Let f: C — X be a map of C € %,. In case C is an open set in some member
of &, it is proved by the same way as that f can be approximated by Z-
embeddings. We now consider the general case C e %,, that is, C = Ui n Cis
where C; < C, < --- are closed in C and C; € 4. We write X = ( ),_n Xi, where
X| c Xp .- are strong Z-sets in X. Given an admissible metric d for X, let
C(I¥, X) be the space of all (continuous) maps from I*¥ to X with the sup-metric
induced by d. For each k € N, since C(I*, X) has the same weight as X, there is
a map gi : I* x ' - X such that {gx ,|y €T} is dense in C(I*, X), where gi , :

I¥ — X is defined by gx ,(x) = gi(x,y). Given an open cover % of X, let %, be
an open star-refinement of %. By induction, we shall construct maps f;: C — X,
gi :1¥ x T — X (k <), and open covers % of X\(fi(C;)UX;), i e N, such that

(1) fi|Ci is a Z-embedding,

(2) filCio1 = fima|Cimn,

() HC\C)NA(C) = B,

(4) f; is closed over f;(Ci)UJX;,

(5) fil C\Ci_1 is %i—1-close to fi_y | C\Ciy,

6) ol H(C\Ci1) N (X\(fit (Cimt) U X)) = 2,

(7) st < U-y,

(8) diam U < min{27 1d(U, f;(C;)U X;)} for each U e %,
(9) gi(I*xT) is a Z-set in X,

2In the case C is an open set in some member of ¥, we can assume that C; < int C;y1. However, this
assumption cannot be used in the general case.
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(10) f(CO)NUpejei 91 x T) = &,
(11) {g;,|y €T} is 27'-dense in C(I*,X), that is, each ge C(I¥, X) is 27'-
close to some g; .,
where fy = f and Cy = Xy = .
Assume that f;y, gi! (k<i—1) and %_; have been obtained. Since
fi_1(Ci—y) is a Z-set in X by (1) and I¥ xT'e ¥, we can apply the strong
%-universality of X to find Z-embeddings g} : I¥ x ' — X (k < i) such that

gi(* x D) N fi1(Cim1) = &,

and each g} is 27 (*+D-close to gi, hence it satisfies (9) and (11).

Now, we denote

W = X\(fi-1(Ci-1) U Xi1).

Then, %;_; is an open cover of W. Let ¥~ be an open star-refinement of %;_;.
Since W is open in X, W is a strong Z,-space and has t-discrete cells property.
By [Proposition 3.1, each Z-set in W is a strong Z-set. Note that X;N W is a
strong Z-set in W by [Proposition 3.2 and W is strongly %-universal by .Prop-
osition 2.1 of [1]. We apply the special case to the open set C;\Ci_; in C; €%,
and use the Homotopy Extension Theorem to construct a map h: C\C;—; —» W
such that

(12) h| C\C;i-; is a Z-embedding,

(13) h is ¥ "-close to fi_1| C\Ci-1,

(14) L A(C\Co)) NW N (XU ;91 x 1)) = &5
Since A(C\Ci—1) U (X; N W) is a strong Z-set in W, we apply Lemma 1.1 of [1] to
obtain a map A : C\Ci_; — W such that

(15) h is ¥ "-close to h, hence it is #_i-close to f;_1|C\Ci_1 by (13),

(16) cl A(C\Cit) N W N (XU Uy g, 0705 x 1) = &,

(17) k| C\Ci—1 = h| C\Ci-,

(18) {l(c\ci) ﬂil(ci\ci:l) =,

(19) h is closed over A(C\C;—1)U (X;N W).

For each ze C;_; and ¢ > 0, since f;_; is continuous, we have a neigh-
borhood V of z in C such that ye V implies d(fi-1(»), fi-1(z)) < &/2. For
each ye V\C,_;, choose U e %_; so that h(y), fi-1(y) € U, whence we have

d(h(y), fi-1(»)) < 1d(fi1(»), fiz1(2)) by (8) for i — 1. Then, we have
d(h(y), fi-1(2)) < d(h(p), fi-1(¥)) + d(fie1(¥), fi-1(2))
<3d(fi-1(y), fi-1(2)) < e

Therefore, as an extension of A, we can obtain the map f; : C — X satisfying (2),
which clearly satsfies (3), (5), (6) and (10) (cf. (18), (15), (16)).
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Since f;|Ci—; = fi-1|Ci—1 and f;| G\ Ci—y = k| C\C;- are injective and
S(CACim1) N fi1(Cim1) = A(C\Cim1) N fi-1(Cim1) = B,

it follows that f;|C; is injective. If f; satisfies (4), that is, f; is closed over
fi(C)UX;, then fi|C; is an embedding.

Suppose that f; is not closed over f;(C;) U X;. Then, there exist a € f;(C;) U X;,
a neighborhood U of f;"!(a) in C (we allow U = f"!(a) = &) and a sequence
(zn)nen In C\U with lim fi(z,) = a. Since f;|Ci—1 = fi—1|Ci—1 is a closed embed-
ding into X by (1) for i — 1, we have z, € C\C;_, for sufficiently large ne N.
Since f;| C\Ci-; is closed over f;(C\Ci—1)U(X;N W) by (19), it follows that
aé¢ fi(C\Ci-))U(X;NW). Recall ae f;(C;)UX;. Then, we have

ace fi(Cio) U(XA\W) = fii(Ci) U Xig.

For suffiently large n € N, we can choose U, € %, so that fi(z,), fi-1(zx) € U, by
(5), whence

d(fi-1(zn), @) < d(fi(zn), fim1(zn)) + d(fi(z4), @) < 3d(fi(zn), @)

Then, lim f;_)(z,) =a, which implies that f~l(a)* @& by (4) for i—1.
Since f,~}(a) = Ci-y by (3) for i — 1, it follows from (2) that f,”}(a) = f;"!(a) <
U. Again by (4) for i— 1, we have a neighborhood V of a in X such that
f3(V) = U. For sufficiently large ne N, f;_1(z,) € V, hence z, e f;-}(V) = U.
This is a contradiction. Therefore, f; satisfies (4).

To see (1), it remains to show that f;(C;) is a Z-set in X. Observe that

X\(fi(CHUX;1) = W\R(C\Ci_1),

which is open in W. Then, f;(C;)U X;_; is closed in X, hence f;(C;)UX; is also
closed in X. Since f;_1(Ci—-1)UX; is a Z-set in X and f;(C;\Ci-1) = h(C;\Ci_1) is
a Z-set in W = X\(fi-1(Ci—1) U X)), it follows that f;(C;,) U X; is a Z-set in X. By
(3) and (4), we can see that f;(C;) is closed in f;(C;) U X;. Therefore, f;(C;) is a
Z-set in X.

Finally, by choosing an open cover %; of X\(f;(C;)U X;) so as to satisfy (7)
and (8), we can obtain f;, g; (k <i) and %; which satisfy all conditions (1)—(11).

By (2), we can define f, : C — X defined by fi|C; = fi|C;. It follows from
(5) and (8) that f, is 2-"*1-close to f;. Thus, f, is the uniform limit of (fi);.n,
so f. is continuous. By (1) and (3), f. is injective. Then, to see that f, is a
Z-embedding, it remains to show that f, is a closed map and f.(C) is a Z-set
in X.

Now, assume that f, is not closed. Then, we have a sequence (z,)nen In
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C such that (z,),cny has no convergent subsequences but (f.(z,))nen converges
to some ae X. Let a e X,,\X,,—1. Then, z, € C\C,, for sufficiently large ne V.
Otherwise, C,, contains a subsequence of (z,),en, Which is convergent because
|G = fin|Cm is a closed embedding. From (2), (5) and (7), it follows that
f+ | C\Cy, is st Up-close to fy,,| C\Cn. By (8), we have x,, y, € X for sufficiently
large n e N such that

d(fi(zn), Xn) < %d(j;(zn),a),
d(Xn, yn) < 3d(xn,a) and

d(Yn, fm(zn)) < %d(y,,, a).

Then, (f,(z,))nen also converges to a, hence

aecl f,,(C\Cy) < cl fn(C\Cp-1),

which implies that a € f,,_1(C,—1) by (6). By (1), (2) and (3), there is unique
c € Cy_1 such that f,(c) = fm—1(c) = a. Since (z,)nen does not converge to ¢ and
fm is closed over f,,(Cy) by (4), we have a neighborhood V' of a in X such that
infinitely many z, are not contained in £, !(V), that is, infinitely many f,(z,) are
not contained in V. This is a contradiction. Therefore, f. is a closed map.
To see that f,(C) is a Z-set in X, let g:I¥ - X be a map and &> 0.
Choose je N so that 27 < ¢ Then, g is e-close to some g,i . by (11), whence
f(C)ﬂgky(Ik) & for every i > j by (10). Since f.(C) = Umf C)), it follows
that f*(C)ﬂgk V(Ik) = . Hence, f.(C) is a Z-set in X. O

By the above version of Proposition 2.3 of [1], Corollary 2.4 of [1] is valid
for spaces X with w(X) =7 if I"xI'e ¥ for each ne N.

In this paper, the weak product of a space X with a basepoint * € X is
denoted by X intead of W (X,x). In the proof of Proposition 2.5 of [1],> when
w(X) =7 > Ro, we have X® ~ £(I") by Theorem 5.1 of [16]. Then, X and X
can be regarded as homotopy dense subsets of 4 (I'). Hence, every Z-set in X ¢
(or X/”) is a strong Z-set. In any other part, separability is not necessary.* Then,
Proposition 2.5 valid for a non-separable AR X.

Proposition 2.6 of [1] is also valid for non-separable spaces because the proof
does not require separability.

3In Proposition 2.5 of [1], X should be an AR (see the proof).
“p. 302 of [1], lines 4 and 5: f( 5 — k should be ~%— ( ()) -1

—, line 10: 8(f(c)) < 20(f"(c)) should be 25(f"(c)) <(f(€)) < 26(f"(c))-
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In the proof of Proposition 2.7 of [1], we cannot assume that % is countable
when X is non-separable. However, by Stone’s Theorem (cf. [5, 4.4.1]) and
Proposition 2.1 of [1], we can assume that % is locally finite o-discrete, whence it
is not difficult to modify the proof to be valid for non-separable spaces. We can
also apply Michael’s Theorem for local properies to prove this proposition
without separability.

3.3. Results in §3 of [I} A subset X < M is said to be homotopy dense if
there exists a deformation h: M x I — M such that Ay =id and h(M)c X
for 1> 0. By [15], X is homotopy dense in an ANR M if and only if M\X is
locally homotopy negligible in M. A strongly #-universal homotopy dense Z;-
set X = M is called a @-absorbing set in M. By just replacing “s-manifold”
by “¢(T)-manifold” in §3 of [I], we can obtain the non-separable version of
Theorems 3.1, 3.2 and 3.3 of [1]. In fact, all facts used in the proofs hold in the
non-separable case (cf. 2.6-2.9).

3.4. Results in §4 of [I] Observe that Lemma 4.1 of is valid for 4(T)-
manifolds (cf. 2.6, 2.7 and [16, Proposition 2.1]). In Theorem 4.2 of [1], if Y is
non-separable but w(Y) <z, we have an ¢(I')-manifold M = ¥ x £(T), where
Y e M(7) is an ANR which contains Y as a homotopy dense set (cf. [15,
[Proposition 4.1], [10]). Note that the projection pr; : Y x4(T) — Y is a fine
homotopy equivalence. Thus, we have

THEOREM 3.6. For each ANR Y € M(), there exists an ¢»(I")-manifold M
such that, for every €-absorbing set X < M, there is a fine homotopy equivalence
f:X—-Y. O

Then, we have the non-separable version of Corollary 4.3 of [I], where
“s-manifold” is just replaced by “4(I")-manifold”.

3.5. Results in §5 of [I]. In Lemma 5.2 of [1], if M is an 4(I")-manifold, then
Q and X in the proof are ¢4(I')-manifolds by Torunczyk characterization of
¢,(T)-manifolds, and i:Q — X is a near-homeomorphism by [2, Corollary].
Thus, by just replacing “s-manifold” by “#4(I')-manifold””, we have the non-
separable version of Lemma 5.2 of [I].

In the proof of Theorem 5.1 of [1], Theorem 2.3 of [1] is used. As saw in the
above, the condition that I" x I" e € for each n e IV is required when w(X) = 7.
Then, the non-seprable version of Theorem 5.1 of is as follows:
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THEOREM 3.7. Let € be a closed hereditary additive topological class of
spaces such that 1" x I € € for each n e N. Suppose that Q is a €-absorbing set
in an ¢,(I")-manifold M and X is a strong €-universal ANR with w(X) = t which
is written as X = Uie ~ Xi, where each X; is a strong Z-set in X and X; € €. Then,
every fine homotopy equivalence [ :Q — X is a near-homeomorphism. |

Thus, we have the following non-separable version of Theorem 5.3 of

THEOREM 3.8. Let € be a closed hereditary additive topological class of
spaces such that I" x I" € € for each n € N. Suppose that there exists a €-absorbing
set Q in £H(I'). Then, X is homeomorphic to Q if and only if X €¥b,, X is a
strongly €-universal AR which is a strong Zs-space. O

The non-separable version of Corollary 5.4 of [1] is true when “s” is replaced
by “/4(I')” and the condition I' € ¢ is added. Corollary 5.5 is valid for non-
separable spaces. '

THEOREM 3.9. Let € be a closed hereditary additive topological class of
spaces such that T € € and C x 1€ € for each C € €.°> Suppose that there exists
a €-absorbing set Q in £,(I"). Then, the following hold:

(1) Every £(T")-manifold contains a €-absorbing set.

(2) (Triangulation) X is a Q-manifold if and only if there exists a locally
finite-dimensional simplicial complex K with card K©© <t such that X =~
|K| x Q, where |K| admits the metric topology.

(3) (Open Embedding) Every connected Q-manifold can be embedded in Q as
an open set.®

(4) Every €-absorbing set in an ¢£(T")-manifold is a Q-manifold, and every
Q-manifold can be embedded in an ¢;(I')-manifold as a €-absorbing set.

The assertions (1), (2) and (3) are the non-separable versions of Cor-
ollaries 5.6 and 5.7 of [I]. For the assertion (4), the first half and the second half
are respectively the non-separable versions of the facts implicitly showed in the
proofs of Corolaries 5.7 and 5.6(ii) of [1].

As the above results are based on the existence of an %-absorbing set in
£,(I"), the following problem is fundamental:

By induction, we have C xI" € % for each Ce¥ and ne N. In particular, I" x T e ¢ for each
neN.

6To avoid the case that X has components more that 7, we have to assume that X is connected or
w(X)=r.
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PrROBLEM 5. For what class €, does there exist a ¥-absorbing set in #(I")?
Or, for given a model space E € M(7), let ¢ be the class of spaces which can be
embedded in E as closed sets. Can E be embedded in 4(I") as a ¥g-absorbing set?

4. The Proof of Main Theorem
The following is the answer to Problem 5 for My(7), M3(r) and WMy(7).

PROPOSITION 4.1. For each i =2,3,4, the space E;(I') can be embedded in
() as an M;(t)-absorbing set.

Proor. Note that Ej(T'); ~ Ei(T) (cf. [13, p. 61, Footnote (%)]). It follows
from [1, Proposition 2.5] that E;(I") is strongly 9;(7)-universal. Since E;(T") is a
Zs-space, it follows from [17, Al] that E;(I") is a strong Z,-space. It remains to
show that each E;(I') can be embedded in #(I") as a homotopy dense set.

First, E3(T') = fzf (I') itself is homotopy dense in #(I'). Then, it follows
that E4(T') = fzf(l") x Q is homotopy dense in 4(I') x Q ~£(I'). Since fzf is
homotopy dense in 4, it follows that E,(I") = 4(I") x lzf is homotopy dense in
(1) x lzf ~ £»('). Thus, each E;(I") can be embedded in 4(I") as a homotopy
dense set. tl

By combining the following proposition and [Proposition 3.5, we can obtain
Main Theorem.

PROPOSITION 4.2. Let X be a connected metrizable space. For each i = 2,3,4,
X is an E;(T')-manifold (or X ~ E;(I')) if and only if X € M;(t) is an ANR (or an
AR) which is a strongly I;(t)-universal strong Z,-space.

ProoF. First, we show the “only if”” part. By 2.3, X € 9k;(r) is an ANR (or
an AR) and X ~ X x E;(I'). Since every Z-set in X is a strongly Z-set by [17,
Al] and E;(I") is strongly 9R;(7)-universal, it follows from [1, Proposition 2.6] that
X is strongly 9M;(z)-universal. Moreover, X is a strong Z,-space because so is
E,(IN).

Next, we prove the “if” part. By [Theorem 3.6, we have an 4 (I")-manifold
M such that, for every IM;(7)-absorbing set W in M, there is a fine homotopy
equivalence ¢: W — X. By [Theorem 3.9(1), M contains an 9;(z)-absorbing
set W. Then, we have a fine homotopy equivalence ¢ : W — X, which is a
near-homeomorphism by [Theorem 3.7. Hence, X ~ W is an E;(I')-manifold by
Theorem 3.9(4). If X is an AR, M =~ 4(I') in the above, whence we have
X ~ W~ Ei(I") by [1, Theorem 3.1] and [Proposition 4.1. O
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Finally, the authors would like to express their thanks to the referee for his
helpful comments.

References

[1] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute
retracts, Michigan Math. J. 33 (1986), 291-313.
[2] T. A. Chapman, Deficiency in infinite-dimensional manifolds, Gen. Topology Appl. 1 (1971),
263-272.
[3] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107.
[4] W. H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math.
Soc. 23 (1969), 668—675.
[5] R. Engelking, General Topology (Revised and complete edition), Sigma Ser. in Pure Math. 6,
Heldermann Verlag, Berlin, 1989.
[6] S. Ferry, The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of
Math. 106 (1977), 101-119.
[7] E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), 163-172.
J. Mogilski, Characterizing the topology of infinite-dimensional o-compact manifolds, Proc.
Amer. Math. Soc. 92 (1984), 111-118.
[9] K. Sakai, A mapping theorem for infinite-dimensional manifolds and its generalizations, Colloq.
Math. 56 (1988), 319-332.
K. Sakai, The completions of metric ANR’s and homotopy dense subsets, J. Math. Soc. Japan
52 (2000), 835-846.

[11] K. Sakai, Lectures on Topology towards Infinite-Dimensional Spaces (2003 Version),
mimeographical notes.

[12] R. M. Schori, Topological stability for infinite-dimensional manifolds, Compositio Math. 23
(1971), 87-100.

[13] H. Torunczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974),
53-67.

[14] H. Torunczyk, On Cartesian factors and the topological classification of linear metric spaces,
Fund. Math. 88 (1975), 71-86.

{15] H. Torunczyk, Concerning locally homotopy negligible sets and characterization of 4-manifolds,
Fund. Math. 101 (1978), 93-110.

[16] H. Torunczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.

[17] H. Torunczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125

(1985), 89-93.

K. Sakai

Institute of Mathematics

University of Tsukuba

Tsukuba, 305-8571, Japan

E-mail address: sakaiktr@sakura.cc.tsukuba.ac.jp

M. Yaguchi

Institute of Mathematics

University of Tsukuba

Tsukuba, 305-8571, Japan

E-mail address: masato@math.tsukuba.ac.jp



	CHARACTERIZING MANIFOLDS ...
	1. Introduction
	2. Preliminaries
	3. Alteration of Bestvina-Mogilski's ...
	THEOREM 3.6. ...
	THEOREM 3.7. ...
	THEOREM 3.8. ...
	THEOREM 3.9. ...

	4. The Proof of Main Theorem
	References


