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CHARACTERIZING MANIFOLDS MODELED ON
CERTAIN DENSE SUBSPACES OF NON-SEPARABLE

HILBERT SPACES

By

Katsuro SAKAI and Masato YAGUCHI

Abstract. For an infinite set $\Gamma$ , let $\ell_{2}^{f}(\Gamma)$ be the linear span of the
canonical orthonormal basis of the Hilbert space $l_{2}(\Gamma)$ , that is,

$\ell_{2}^{f}(\Gamma)=$ { $x\in\ell_{2}(\Gamma)|x(\gamma)=0$ except for finitely many $\gamma\in\Gamma$ }.

We denote $\ell_{2}^{f}=l_{2}^{f}(N)$ . Let $Q=[-1,1]^{\omega}$ be the Hilbert cube. In
this paper, we give characterizations of manifold modeled on the
following spaces: $\ell_{2}(\Gamma)\times\ell_{2^{f}},$ $\ell_{2^{f}}(\Gamma)$ and $\ell_{2}^{f}(\Gamma)\times Q$ , where $\ell_{2}(\Gamma)\times l_{2}$

and $\ell_{2}(\Gamma)\times Q$ are homeomorphic to $\ell_{2}(\Gamma)$ . Our results are obtained
by suitable alteration and modification of the separable case due to
Bestvina and Mogilski.

1. Introduction

Given a space $E$ , an E-manifold is a topological manifold modeled on $E$ ,
that is, a paracompact Hausdorff space such that each point has an open
neighborhood which is homeomorphic to $(\approx)$ an open set in $E$ . In [16] (cf. [17]),
Toru\’{n}czyk gave a characterization of $\ell_{2}(\Gamma)$ -manifolds, where $l_{2}(\Gamma)$ is the Hilbert
space of square-summable real-valued function on an infinite set F. Let $\ell_{2}^{f}(\Gamma)$ be
the linear span of the canonical orthonormal basis of $\ell_{2}(\Gamma)$ , that is,

$\ell_{2}^{f}(\Gamma)=$ { $x\in\ell_{2}(\Gamma)|x(\gamma)=0$ except for finitely many $\gamma\in\Gamma$ }.

In case $\Gamma=N$ , we denote $l_{2}^{f}(N)=\ell_{2}^{f}$ as well as $\ell_{2}(N)=\ell_{2}$ . Let $Q=[-1,1]^{\omega}$ be
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the Hilbert cube. As well-known, the separable Hilbert space $\ell_{2}$ is homeomorphic
to the psuedo-interior $s=(-1,1)^{\omega}$ of $Q$ ,

$l_{2}^{f}\approx\sigma=$ {$x\in s|x(i)=0$ except for finitely many $i\in N$} and

$l_{2^{f}}\times Q\approx l_{2}^{Q}=\{x\in l_{2}|\sup_{i\in N}|ix(i)|<\infty\}$

$\approx\Sigma=\{x\in Q|\sup_{i\in N}|x(i)|<1\}\approx B(Q)=Q\backslash s$ .

Notice that $l_{2^{Q}}$ is a dense subspace of $l_{2}$ . By Mogilski [8], $\ell_{2}^{f_{-}}$ and $l_{2}^{f}\times Q-$

manifolds were characterized. Furthermore, these were generalized to manifolds
modeled on various dense subspaces of $l_{2}$ by Bestvina and Mogilski [1]. In
particular, $l_{2}\times l_{2}^{f}$-manifolds were characterized in addition to $l_{2}^{f}$-and $l_{2}^{f}\times Q-$

manifolds.
In this paper, these results are extended to the non-separable case, that is, we

characterize $l_{2}(\Gamma)\times\ell_{2}^{f_{-}},$ $\ell_{2}^{f}(\Gamma)$ -and $l_{2}^{f}(\Gamma)\times Q$-manifolds for an arbitrary infinite
set $\Gamma$ . One should note that $\ell_{2}(\Gamma)\times l_{2}^{f}$ and $l_{2}^{f}(\Gamma)\times Q$ are regarded as dense
subspace of $l_{2}(\Gamma)$ . In fact, since $X\times l_{2}(\Gamma)\approx\ell_{2}(\Gamma)$ for any completely metrizable
AR $X$ with weight $w(X)\leq card\Gamma[13]$ , we have

$l_{2}(\Gamma)\approx l_{2}(\Gamma)\times l_{2}\approx l_{2}(\Gamma)\times Q$ .

For each open cover $\mathscr{U}$ of $Y$ , two maps $f,$ $g:X\rightarrow Y$ are $\mathscr{U}$-close (or $f$ is
$\mathscr{U}$-close to g) if each $\{f(x), g(x)\}$ is contained in some $U\in \mathscr{U}$. A closed set
$A\subset X$ is called a (strong) Z-set in $X$ provided, for each open cover $\mathscr{U}$ of $X$ ,
there is a map $f:X\rightarrow X$ such that $f$ is $\mathscr{U}$-close to $id_{X}$ and $ f(X)\cap A=\emptyset$

(cl $ f(X)\cap A=\otimes$ ). When $X$ is an ANR, a closed set $A$ is a Z-set in $X$ if and only
if every map $f$ : $I^{k}\rightarrow X(k\geq 0)$ can be approximated by maps $g:I^{k}\rightarrow X\backslash A$

(i.e., for each open cover $\mathscr{U}$ of $X$ , there is a map $g:I^{k}\rightarrow X\backslash A$ which is $\mathscr{U}$-close
to $f$). The union of countably many (strong) Z-sets in $X$ is called a (strong)
$Z_{\sigma}$-set in $X$ . A Z-embedding is an embedding whose image is a Z-set.

A space $X$ is said to be universal for a class $\mathscr{C}$ (simply, $\mathscr{C}$-universal) if every
map $f:C\rightarrow X$ of $C\in \mathscr{C}$ is approximated by Z-embeddings. It is said that $X$ is
strongly universal for $\mathscr{C}$ (simply, strongly $\mathscr{C}$-universal) when the following con-
dition is satisfied:

$(su_{\varphi})$ for each $C\in \mathscr{C}$ and each closed set $D\subset C$ , if $f$ : $C\rightarrow X$ is a map such
that $f|D$ is a Z-embedding, then, for each open cover $\mathscr{U}$ of $X$ , there is
a Z-embedding $h:C\rightarrow X$ such that $h|D=f|D$ and $h$ is $\mathscr{U}$-close to $f$ .

The following is our main result:

MAIN THEOREM. Let $X$ be a connected metrizable space and $\Gamma$ an infinite set

with $card\Gamma=\tau$ .
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(1) $X$ is homeomorpic to $\ell_{2}(\Gamma)\times\ell_{2}^{f}$ (or an $\ell_{2}(\Gamma)\times\ell_{2}^{f}$-mamfold) $lf$ and only
$\iota fX$ is an $AR$ (or an $ANR$) with $w(X)=\tau,$ $X$ is a $\sigma$-completely metrizable
strong $Z_{\sigma}$-space and strongly universal for the class of completely met-

rizable spaces with weight $\leq\tau$ .
(2) $X$ is homeomorpic to $\ell_{2}^{f}(\Gamma)$ (or an $\ell_{2}^{f}(\Gamma)$ -manifold) $lf$ and only $\iota fX$ is an

$AR$ (or an $ANR$) with $w(X)=\tau,$ $X$ is a strongly countable-dimensional
$\sigma$-locally compact strong $Z_{\sigma}$-space and strongly universal for the class

of strongly countable-dimensional locally compact metrizable spaces with
weight $\leq\tau$ .

(3) $X$ is homeomorpic to $l_{2}^{f}(\Gamma)\times Q$ (or an $\ell_{2}^{f}(\Gamma)\times Q$-manifold) $lf$ and only

if $X$ is an $AR$ (or an $ANR$) with $w(X)=\tau,$ $X$ is a $\sigma$-locally compact strong
$Z_{\sigma}$-space and strongly universal for the class of locally compact metrizable
spaces with weight $\leq\tau$ .

The above result can be obtained by suitable alteration and modification
of [1]. However, one should remind that some arguments in [1] depend on
separability (e.g., Lemma 1.4, Propositions 1.7 and 2.3). Thus, we need to take
different approaches to obtain non-separable versions of some results in [1].

2. Preliminaries
Throughout of the paper, let $\tau$ be an infinite cardinal and $\Gamma$ an infinite set with

card $\Gamma=\tau$ .
Let $\mathfrak{M}$ be the class of all metrizable spaces. For a class $\mathscr{C}\subset \mathfrak{M}$ , we denote by

$\mathscr{C}(\tau)$ the subclass of $\mathscr{C}$ consisting of all spaces $X\in \mathscr{C}$ with weight $ w(X)\leq\tau$ . It is
said that

$\mathscr{C}$ is topological if $X\in \mathscr{C},$ $X\approx Y\Rightarrow Y\in \mathscr{C}$ ,. $\mathscr{C}$ is closed (resp. open) hereditary if $X\in \mathscr{C},$ $A\subset X$ is closed (resp. open) in
$X\Rightarrow A\in \mathscr{C}$ ,. $\mathscr{C}$ is additive if $X=X_{1}\cup X_{2}$ and $X_{1},$ $X_{2}\in \mathscr{C}$ are closed in $X\Rightarrow X\in \mathscr{C}$ .

By $\mathscr{C}_{\sigma}$ , we denote the class consisting of all metrizable spaces which can be
expressed as countable unions of closed subspaces contained in $\mathscr{C}$ .

It is convenient to use the notation of [13]:

$E_{1}(\Gamma)=\ell_{2}(\Gamma)$ , $E_{2}(\Gamma)=l_{2}(\Gamma)\times l_{2}^{f}$ ,

$E_{3}(\Gamma)=\ell_{2^{f}}(\Gamma)$ , $E_{4}(\Gamma)=\ell_{2^{f}}(\Gamma)\times Q$ ,

$\mathfrak{M}_{1}=the$ class of completely metrizable spaces,

$\mathfrak{M}_{2}=the$ class of metrizable spaces which are countable unions
of completely metrizable closed sets,
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$\mathfrak{M}_{3}=the$ class of metrizable spaces which are countable unions
of locally compact, locally finite-dimensional closed sets,

$\mathfrak{M}_{4}=the$ class of metrizable spaces which are countable unions
of locally compact closed sets.

The classes $\mathfrak{M}_{1},$ $\mathfrak{M}_{2},$ $\mathfrak{M}_{3}$ and $\mathfrak{M}_{4}$ are topological, closed hereditary and additive.
For each $i=1,2,3,4$ , the following hold:

2.1. $X\in \mathfrak{M}_{j}(\tau)$ if and only if $X$ can be embedded into $E_{j}(\Gamma)$ as a closed set
[13, 1.1].

2.2. $X\times E_{i}(\Gamma)\approx E_{i}(\Gamma)$ for every $ARX\in \mathfrak{M}_{i}(\tau)$ [ $13$ , Theorem 3.2].

2.3. $X$ is an $E_{j}(\Gamma)$ -manifold if and only if $X\in \mathfrak{M}_{j}(\tau)$ is an $ANR$ and $ X\times$

$E_{i}(\Gamma)\approx X$ [ $13$ , Proposition 4.5].

The following classes are also topological, closed hereditary and additive:

$\mathfrak{M}_{0}=the$ class of locally compact metrizable spaces and

$\mathfrak{M}_{0}^{f}=the$ class of locally compact, locally finite-dimensional
metrizable spaces.

Observe that $\mathfrak{M}_{2}=(\mathfrak{M}_{1})_{\sigma},$
$\mathfrak{M}_{3}=(\mathfrak{M}_{0}^{f})_{\sigma}$ and $\mathfrak{M}_{4}=(\mathfrak{M}_{0})_{\sigma}$ .

We list the necessary results of non-separable infinite-dimensional manifolds
(cf. Preliminaries of [9]).’ In the following, let $E$ be a locally convex linear metric
space such that $E\approx E^{\omega}$ or $E\approx E_{f^{\omega}}$ , where

$E_{f}^{\omega}=$ { $(x_{j})_{i\in N}\in E^{\omega}|x_{i}=0$ except for finitely many $i\in N$}.

2.4 (TRIANGULATION). For each E-manifold $M$, there exists a locally finite-
dimensional simplicial complex $K$ such that $M\approx|K|\times E$, where $|K|$ has the metric
topology [14, Theorem 3.4].

A near-homeomorphism is a map which can be approximated by homeo-
morphisms.

2.5 (STABILITY). For every E-manifold $M$, the projection of $M\times E$ onto $M$ is a
near-homeomorphsim, hence $M\times E\approx M[12]$ .

’ These are discussed in [11].
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It is said that $A\subset X$ is E-deficient if there exists a homeomorphism
$h:X\rightarrow X\times E$ such that $h(A)\subset X\times\{0\}$ .

2.6. For a closed set $K$ in an E-manifold $M$, the following are equivalent
([2, Theorem 1] and [17, Al]):

(1) $K$ is a Z-set in $M$,
(2) $K$ is a strong Z-set in $M$,
(3) $K$ is E-deficient in $M$.

For an open cover $\mathscr{U}$ of $Y$ , two maps $f,$ $g:X\rightarrow Y$ are $\mathscr{U}$-homotopic (or $f$ is
$\mathscr{U}$-homotopic to g) if there is a homotopy $h:X\times I\rightarrow Y$ such that $h_{0}=f,$ $h_{1}=g$

and each $h(\{x\}\times I)$ is contained in some $U\in \mathscr{U}$ ( $h$ is called a $\mathscr{U}$-homotopy).

2.7 ($Z$-SET UNKNOTTING). Let $K$ be a Z-set in an E-manifold $M$ and $\mathscr{U}$ an open
cover of M. If a Z-embedding $h:K\rightarrow M$ is $\mathscr{U}$-homotopic to id then $h$ extends to

a homeomorphism $\tilde{h}$ : $M\rightarrow M$ which is st $\mathscr{U}$-close to id.

2.8 (NEGLIGIBILTY OF $Z_{\sigma}$-SETS). In case $E\in \mathfrak{M}_{1},$ $\iota fK$ is a $Z_{\sigma}$-set in an E-manifold
$M$, then the inclusion of $M\backslash K$ into $M$ is a near-homeomorphism [4], [2].

A map $f:X\rightarrow Y$ is a fine homotopy equivalence if, for each open cover $\mathscr{U}$

of $Y$ , there is a map $g:Y\rightarrow X$ (called a $\mathscr{U}$-homotopy inverse) such that $gf$ is
$\mathscr{U}$-homotopic to $id_{Y}$ and $gf$ is $f^{-1}(\mathscr{U})$ -homotopic to $id_{X}$ .

2.9. Every fine homotopy equivalence between E-manifolds is a near-
homeomorphism [6, Theorem 3.4].

3. Alteration of Bestvina-Mogilski’s Paper [1]

In this section, we make alteration of \S \S 1-5 of [1]. In order to treat non-
separable spaces, we generalize the Strong Discrete Approximation Property.
For each $n\in N$ , we say that $X$ has the $\tau$-discrete n-cells property if, for each open
cover $\mathscr{U}$ of $X$ , every map $f$ : $I^{n}\times\Gamma\rightarrow X$ is $\mathscr{U}$-close to a map $g:I^{n}\times\Gamma\rightarrow X$

such that $\{g_{\gamma}(I^{n})\}_{\gamma\in\Gamma}$ is discrete in $X$ , where $g_{\gamma}$ : $I^{n}\rightarrow X$ is defined by $g_{\gamma}(x)=$

$g(x, \gamma)$ . When $X$ has the $\tau$-discrete n-cells property for every $n\in N$ , it is said that
it has the $\tau$-discrete cells property. The Strong Discrete Approximation Property is
no other than the $\aleph_{0}$ -discrete cells property. One should note that if $X\in \mathfrak{M}$ has
the $\tau$-discrete O-cells property then $ w(X)\geq\tau$ .

Recall that a map $f:X\rightarrow Y$ is closed over $A\subset Y$ if, for each $a\in A$ and
each neighborhood $U$ of $f^{-1}(a)$ in $X$, there exists a neighborhood $V$ of $a$ in $Y$

such that $f^{-1}(V)\subset U$ , where it is possible that $ f^{-1}(a)=U=\emptyset$ , which implies
that $f(X)\cap A$ is closed in $A$ .
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3.1. Results in \S 1 of [1]. First, observe that separability is not used in the
proofs of Lemmas 1.1, 1.3 and Corollary 1.2 of [1], hence they are valid for non-
separable spaces. In the proof of Lemma 1.4 of [1], it is essential that each $P_{i}$ is
compact because $X\backslash f_{i-1}(P_{i-1})$ need to be open in $X$ . It is a problem to prove
Lemma 1.4 of [1] without separability, that is,

PROBLEM 1. In a non-separable ANR $X$ , if $A$ is a Z-set and also a strong
$Z_{\sigma}$-set in $X$ , is $A$ a strong Z-set in $X$?

As same as Lemma 1.4 of [1], separability is required in the proof of
Proposition 1.7 of [1]. Then, the following is a problem.

PROBLEM 2. Let $X\in \mathfrak{M}(\tau)$ be an ANR which has the $\tau$-discrete cells
property $(\tau>\aleph_{0})$ . Is every Z-set in $X$ a strong Z-set in $X$?

Instead of Lemma 1.4 and Proposition 1.7 of [1], we can prove the following
without separability.

PROPOSITION 3.1. Let $X\in \mathfrak{M}(\tau)$ be an $ANR$ which has the $\tau$-discrete cells
property. If $A$ is a Z-set and also a strong $Z_{\sigma}$-set in $X$, then $A$ is a strong Z-set
in $X$.

PROOF. We can write $A=\bigcup_{i\in N\cup\{0\}}A_{j}$ , where $ A_{0}\subset A_{1}\subset A_{2}\subset\cdots$ are
strong Z-sets in $X$ . For each open cover $\mathscr{U}$ of $X$ , let $\mathscr{U}_{-1}$ be an open star-
refinement of $\mathscr{U}$. Since $X$ is an ANR, we have a locally finite-dimensional
simplicial complex $K$ with card $K^{(0)}\leq w(X),$ $f$ : $X\rightarrow|K|$ and $g:|K|\rightarrow X$ such
that $gf$ is $\mathscr{U}_{-1}$ -close to $id_{X}$ , where $|K|$ admits the weak (Whitehead) topology.

We inductively construct open covers $\mathscr{U}_{i}$ of $X$ , maps $h_{i}$ : $|K|\rightarrow X$ , open sets
$V_{i},$ $V_{i}$

‘ in $X$ and discrete collections $\mathscr{W}_{i}=\{W_{\sigma}|\sigma\in K^{(i)}\backslash K^{(i-1)}\},$ $\mathscr{W}_{i}^{\prime}=\{W_{\sigma}^{\prime}|\sigma\in$

$K^{(i)}\backslash K^{(i-1)}\}$ of open sets in $X,$ $i\in N\cup\{0\}$ , such that
(1) mesh $\mathscr{U}_{i}<2^{-i}$ , st $\mathscr{U}_{i}\prec \mathscr{U}_{i-1},$ $\mathscr{U}_{i}\prec\{V_{i-1}, X\backslash c1V_{i-1}^{\prime}\},$ $st(W_{\sigma}^{\prime}, \mathscr{U}_{i})\subset W_{\sigma}$ for

each $\sigma\in K^{(i-1)}$ ,

(2) $h_{j}$ is $\mathscr{U}_{i}$ -close to $h_{i-1},$ $h_{i}||K^{(i-1)}|=h_{i-1}||K^{(i-1)}|$ ,

(3) $A_{i}\subset V_{i}^{\prime}\subset c1V_{i}^{\prime}\subset V_{i}\subset X\backslash h_{j}(|K|)$ ,
(4) cl $W\subset W_{\sigma}\subset X\backslash A$ and $h_{i}(\sigma)\subset\bigcup_{\sigma^{\prime}\leq\sigma}W_{\sigma}^{\prime}$, for each $\sigma\in K^{(i)}$ ,

where $h_{-1}=g$ . Since $\{W|\sigma\in K^{(i)}\}$ is locally finite in $X$ , the condition (4)
implies the following condition:

(5) cl $h_{i}(|K^{(i)}|)\subset c1\bigcup_{\sigma\in K^{(i)}}W$ $=\bigcup_{\sigma\in K^{(i)}}$
cl $W$ $\subset X\backslash A$ .
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Assume that $\mathscr{U}_{j},$ $h_{j},$ $V_{j},$ $V_{j}^{\prime},$ $\mathscr{W}_{j}$ and $\mathscr{W}_{j}^{\prime}$ have been obtained for $j<j$ . Since
cl $V_{i-1}^{\prime}\subset V_{i-1}$ , cl $W‘\subset W_{\sigma}$ for each $\sigma\in K^{(i-1)}$ and $\mathscr{W}_{i-1}$ is discrete in $X$ , we can
choose an open cover $\mathscr{U}_{i}$ of $X$ so as to satisfy the condition (1). Let $\mathscr{U}/$ be an
open star-refinement of $\mathscr{U}_{i}$ . Since cl $ h_{i-1}(|K^{(i-1)}|)\cap A_{j}=\emptyset$ and $A_{j}$ is a strong
Z-set in $X$ , we have a map $h_{i}^{\prime}$ : $|K|\rightarrow X$ and open neighborhoods $V_{i},$ $V_{j}^{\prime}$ of $A_{j}$ in
$X$ such that

(6) $h_{i}^{\prime}$ is $\mathscr{U}$[-close to $h_{i-1}$ ,
(7) $h_{i}^{\prime}||K^{(i-1)}|=h_{i-1}||K^{(i-1)}|$ and
(8) cl $V_{i}^{\prime}\subset V_{i}\subset c1V_{i}\subset X\backslash c1h_{i}^{\prime}(|K|)$ .

Let $\mathscr{U}_{i}^{*}$ be an open refinement of $\mathscr{U}$[ such that
(9) $\mathscr{U}_{i}^{*}\prec$ { $V_{i},$ $ X\backslash (c1h_{i}^{\prime}(|K|)\cup$ cl $V_{i}^{\prime}),$ $X\backslash c1V_{i}$ }.

Since $X$ is an ANR, $\mathscr{U}_{i}^{*}$ has an open refinement $\mathscr{U}1^{\prime}$ such that two $\mathscr{U}_{i}^{\prime\prime}$ -close
maps from an arbitrary space to $X$ are $\mathscr{U}_{i}^{*}$ -homotopic.

For each i-simplex $\sigma\in K,$ $U_{\sigma}=\bigcup_{\sigma^{\prime}<\sigma}h_{i-1}^{-1}(W_{\sigma}^{\prime},)$ is an open neighborhood
of $\partial\sigma$ in $|K|$ . Choose an i-cell $c_{\sigma}$ in each i-simplex $\sigma\in K$ so that $\sigma\backslash U_{\sigma}\subset c_{\sigma}$ and
$\{c_{\sigma}|\sigma\in K^{(i)}\backslash K^{(i-1)}\}$ is discrete in $|K|$ . Since $X$ has the $\tau$-discrete i-cells property
and $A$ is a Z-set in $X$ , we have a map $h_{i}^{\prime\prime}$ : $\bigcup_{\sigma\in K(\iota)\backslash K^{(i- 1)}}c_{\sigma}\rightarrow X$ such that

(10) $ h_{i}^{\prime\prime}(\bigcup_{\sigma\in K(i)\backslash K(i- 1)}c_{\sigma})\cap A=\otimes$ ,

(11) $h_{i}^{\prime\prime}$ is $\mathscr{U}_{i}^{\prime\prime}$-close to $h_{i}^{\prime}$ and
(12) $\{h_{i}^{\prime}(c_{\sigma})|\sigma\in K^{(i)}\backslash K^{(i-I)}\}$ is discrete in $X$ .

By using the Homotopy Extension Theorem, we can obtain a map $h_{j}$ : $|K|\rightarrow X$

such that
(13) $h_{j}|\bigcup_{\sigma\in K(i)\backslash K^{(i- 1)}}c_{\sigma}=h_{i}^{\prime\prime}$ ,
(14) $h_{i}||K^{(i-1)}|=h_{i}^{\prime}||K^{(i-1)}|$ and
(15) $h_{j}$ is $\mathscr{U}_{i}^{*}$ -homotopic to $h_{i}^{\prime}$ ,

whence $h_{i}||K^{(i-1)}|=h_{i-1}||K^{(i-1)}|$ and $h_{j}$ is $\mathscr{U}_{i}$ -close to $h_{l-1}$ , that is, $h_{i}$ satisfies the
condition (2). Since $h_{i}$ is $\mathscr{U}_{i^{*}}$ -close to $h_{j}^{\prime}$ , it follows from (9) that $h_{j}(|K|)\subset X\backslash c1V_{i}$ ,
that is, cl $V\subset X\backslash h_{i}(|K|)$ . Thus, the condition (3) is satisfied.

By (12) and (13), for each i-simplex $\sigma\in K,$ $h_{j}(c_{\sigma})$ has open neighborhoods
$W_{\sigma},$ $W$ in $X$ such that cl $W_{\sigma}^{\prime}\subset W_{\sigma}\subset X\backslash A$ and $\mathscr{W}_{i}=\{W|\sigma\in K^{(l)}\backslash K^{(i-1)}\}$ is
discrete in $X$ , henoe $\mathscr{W}_{i}^{\prime}=\{W|\sigma\in K^{(i)}\backslash K^{(i-1)}\}$ is also discrete in $X$ . For each
i-simplex $\sigma\in K^{(i)}$ and $x\in\sigma\backslash c_{\sigma}\sigma\cap U_{\sigma}$ , choose $\sigma‘<\sigma$ so that $h_{i-1}(x)\in W^{\prime},$ . Since
$h_{j}$ is $\mathscr{U}_{i}$ -close to $h_{i-1}$ , it follows from (1) that $h_{i}(x)\in st(W_{\sigma}^{\prime},, \mathscr{U}_{i})\subset W_{\sigma}/$ . Therefore,
$h_{i}(\sigma)\subset\bigcup_{\sigma^{\prime}\leq\sigma}W_{\sigma}/$ . Then, the condition (4) is also satisfied.

By induction, we can obtain $\mathscr{U}_{i},$ $h_{t},$ $V_{i},$ $\mathscr{W}_{i}$ for all $i\in N$ . By the condition (2),
we can define $h:|K|\rightarrow X$ by $h||K^{(i)}|=h_{j}||K^{(i)}|$ . Then, $h$ is the uniform limit of
$h_{j}$ by (1), hence $h$ is continuous. It follows from (1) and (2) that $h$ is st $\mathscr{U}_{i+1}$ -close
to $h_{j}$ , hence $h$ is $\mathscr{U}_{i}$-close to $h_{i}$ . In particular, $h$ is $\mathscr{U}_{-1}$ -close to $h_{-1}=g$ , hence
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$hf$ is $\mathscr{U}$-close to $id_{X}$ . Since $\mathscr{U}_{i}\prec\{V_{i}, X\backslash c1V_{i}’\}$ , it follows from (3) that $ hf(X)\subset$

$h(|K|)\subset st(h_{j}(|K|, \mathscr{U}_{i})\subset st(X\backslash V_{i}, \mathscr{U}_{i})\subset X\backslash c1V_{i}’$ , hence

cl
$ hf(X)\cap\bigcup_{i\in N\cup\{0\}}V_{i}’=\emptyset$

,

which means that cl $ hf(X)\cap A=\emptyset$ because $A\subset\bigcup_{i\in N\cup\{0\}}V_{i}’$ . $\square $

By using Lemma 1.4 of [1], Corollary 1.5 of [1] was obtained. But we use
Michael’s Theorem for local properties [7] to prove the same result without
separability, that is,

PROPOSITION 3.2. A closed set $A$ in an $ANRX$ is a strong Z-set in $\chi_{l}f$ and
only if each $a\in A$ has an open neighborhood $U$ in $X$ such that $A\cap U$ is a strong
Z-set in $U$.

$PR\infty F$ . The “only if” part is trivial. To see the “if” part, let $\mathscr{P}_{A}$ be the
property of open sets $U$ in $X$ such that $A\cap U$ is a strong Z-set in $U$ . It is enough
to prove that $\mathscr{P}_{A}$ is G-hereditary, that is, (1) if an open set $U$ in $X$ has $\mathscr{P}_{A}$ then
every open set in $U$ has $\mathscr{P}_{A}$ ; (2) if two open sets $U_{1}$ and $U_{2}$ in $X$ have $\mathscr{P}_{A}$ then
$U_{1}\cup U_{2}$ has $\mathscr{P}_{A}$ ; (3) for a dicrete collection $\{U_{\lambda}\}_{\lambda\in\Lambda}$ open sets in $X$ , if each $U_{\lambda}$

has $\mathscr{P}_{A}$ , then $\bigcup_{\lambda\in\wedge}U_{\lambda}$ has $\mathscr{P}_{A}$ . Since Lemma 1.3 of [1] is valid without sepa-
rability, we have (1). And (3) is trivial.

To see (2), assume that $U_{1}$ and $U_{2}$ are open sets in $X$ such that $A\cap U_{i}$ is
a strong Z-set in $U_{i}$ . We write $A\cap(U_{1}\cup U_{2})=A_{1}\cup A_{2}$ such that $A_{l}\subset U_{i}$ and
$A_{j}$ is closed in $U_{1}\cup U_{2}$ , whence $A_{j}$ is a strong Z-set in $U_{i}$ . For each open cover
$\mathscr{U}$ of $U_{1}\cup U_{2}$ , let iif be an open star-refinement of $\mathscr{U}$. Then, we have a map
$f_{1}$ : $U_{1}\rightarrow U_{1}$ and an open neighborhood $V_{1}$ of $A_{1}$ in $U_{1}$ such that $V_{1}\cap f_{1}(U_{1})=$

$\emptyset,$ $f_{1}$ is $\mathscr{V}_{1}$ -close to id and $f_{1}$ can be extended to $\tilde{f_{1}}$ : $U_{1}\cup U_{2}\rightarrow U_{1}\cup U_{2}$ by
$\tilde{f_{1}}|U_{2}\backslash U_{1}=id$ , whence $ V_{1}\cap\tilde{f_{1}}(U_{1}\cup U_{2})=\emptyset$ . Choose an open set $W_{1}$ in $U_{1}\cup U_{2}$

so that $(U_{1}\cup U_{2})\cap$ cl $W_{1}\subset V_{1}$ . let $\mathscr{V}_{2}$ be an open cover of $U_{1}\cup U_{2}$ such that

$\mathscr{V}_{2}\prec \mathscr{V}_{1}$ and $\mathscr{V}_{2}\prec\{V_{1}, (U_{1}\cup U_{2})\backslash c1W_{1}\}$ .

Then, we have a map $f_{2}$ : $U_{2}\rightarrow U_{2}$ and an open neighborhood $V_{2}$ of $A_{2}$ in $U_{2}$

such that $V_{2}\cap f_{2}(U_{2})=\emptyset,$ $f_{2}$ is $\mathscr{V}_{2}$ -close to id and $f_{2}$ can be extended to $\tilde{f_{2}}$ :
$U_{1}\cup U_{2}\rightarrow U_{1}\cup U_{2}$ by $\tilde{f_{2}}|U_{1}\backslash U_{2}=id$ , whence $ V_{2}\cap\tilde{f_{2}}(U_{1}\cup U_{2})=\emptyset$ . Observe
that $ W_{1}\cap\tilde{f_{2}}\tilde{f_{1}}(U_{1}\cup U_{2})=\emptyset$ . Hence,

$(W_{1}\cup V_{2})\cap\tilde{f}_{2}\tilde{f_{1}}(U_{1}\cup U_{2})=\emptyset$ .

Thus, $A\cap(U_{1}\cup U_{2})$ is a strong Z-set in $U_{1}\cup U_{2}$ . $\square $
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Note that Corollary 1.6 of [1] is proved by Curtis [3, Lemma 7.2] without
separability.

In the proof of Corolary 1.8 of [1], the following is shown without sepa-
rability:

LEMMA 3.3. Let $X$ be an $ANR$ which has the Strong Discrete Approximation
Property. Then, every compact set in $X$ is a Z-set.

This extends as follows:

PROPOSITION 3.4. Let $X\in \mathfrak{M}(\tau)$ be an $ANR$ which has the $\tau$-discrete cells
property. Then, every closed set $A$ in $X$ with $ w(A)<\tau$ is a Z-set in $X$.

PROOF. For each $n\in N$ and each map $f$ : $I^{n}\rightarrow X$ , let $f:I^{n}\times\Gamma\rightarrow X$ be the
map defined by $f(x, \gamma)=f(x)$ . For each open cover $\mathscr{U}$ of $X,\tilde{f}$ is $\mathscr{U}$-close to a
map $g:1^{n}\times\Gamma\rightarrow X$ such that $\{g_{\gamma}(I^{n})\}_{\gamma\in\Gamma}$ is discrete in $X$ by the $\tau$-discrete cells
property. Since $ w(A)<\tau$ , it is easy to see that $ A\cap g_{\gamma}(I^{n})=\emptyset$ for some $\gamma\in\Gamma$ ,
whence $g_{\gamma}$ is $\mathscr{U}$-close to $f$ . Then, $A$ is a Z-set in X. $\square $

PROBLEM 3. In Proposition 3.4 above, is $A$ a strong Z-set in $X$?

We call $X$ a $Z_{\sigma}$-space (or a strong $Z_{\sigma}$-space) if $X$ itself is a $Z_{\sigma}$-set (or a strong
$Z_{\sigma}$ -set) in $X$ . By Baire’s Theorem, any completely metrizable spaces is not a
(strong) $Z_{\sigma}$ -space. It is a problem whether Lemma 1.9 of [1] can be generalized to
non-separable spaces, that is,

PROBLEM 4. Let $X\in \mathfrak{M}(\tau)$ be an ANR which is a strong $Z_{\sigma}$-space $(\tau>\aleph_{0})$ .
Does $X$ have the $\tau$-discrete cells property?

Lemmas 1.10 and 1.11 of [1] are valid for non-separable spaces (cf. their
proofs).

3.2. Results in \S 2 of [1]. Observe that Propositions 2.1 and 2.2 of [1] are
proved whitout separability. Thus, they are valid for non-separable spaces.

In the proof of Proposition 2.3 of [1], Lemmas 1.4, 1.9 and Proposition 1.7
of [1] are applied, where separability is necessary. Moreover, separability is also
used in the proof of 2.3 of [1] itself (the last paragraph). By adding the condition
on $\mathscr{C}$ that $I^{n}\times\Gamma\in \mathscr{C}$ for each $n\in N$ , we can extend the result to ANR’s $X$ with



152 Katsuro SAKAI and Masato YAGUCHI

$ w(X)=\tau$ . The proof is basically same as [1]. Since the proof in [1] contains some
misprints and some of details are not easy to follow, we give a complete proof,
where we make some small changes in the arguments to make the proof clear.

PROPOSITION 3.5. Let $\mathscr{C}$ be a closed hereditary additive topological class of
spaces such that $I^{n}\times\Gamma\in \mathscr{C}$ for each $n\in N$ , and let $X$ be an $ANR$ with $ w(X)=\tau$ .
If $X$ is a strongly $\mathscr{C}$-universal strong $Z_{\sigma}$-space, then $X$ is strongly $\mathscr{C}_{\sigma}$-universal.

PROOF. Since $I^{n}\times\Gamma\in \mathscr{C}$ for each $n\in N$ , if $X$ is strongly $\mathscr{C}$-universal then $X$

has the $\tau$-discrete cells property. By Proposition 3.1, every Z-set in $X$ is a strong
Z-set. Then, by Proposition 2.2 of [1], it suffices to show that each open set
$ U\neq\emptyset$ in $X$ is $\mathscr{C}_{\sigma}$-universal. Note that $U$ is an ANR with $ w(U)=\tau$ . Since $U$ is
an $F_{\sigma}$-set in $X,$ $U$ is a strong $Z_{\sigma}$-space. It follows from Proposition 2.1 of [1]
that $U$ is strongly $\mathscr{C}$-universal. Thus, we may assume that $U=X$ , whence it
suffices to show that $X$ is $\mathscr{C}_{\sigma}$-universal.

Let $f$ : $C\rightarrow X$ be a map of $C\in \mathscr{C}_{\sigma}$ . In case $C$ is an open set in some member
of $\mathscr{C}$ , it is proved by the same way as [1] that $f$ can be approximated by Z-
embeddings. We now consider the general case $C\in \mathscr{C}_{\sigma}$ , that is, $C=\bigcup_{i\in N}C_{i}$ ,

where $ C_{1}\subset C_{2}\subset\cdots$ are closed in $C$ and $C_{i}\in \mathscr{C}^{2}$ We write $X=\bigcup_{i\in N}X_{i}$ , where
$ X_{1}\subset X_{2}\subset\cdots$ are strong Z-sets in $X$ . Given an admissible metric $d$ for $X$ , let
$C(I^{k}, X)$ be the space of all (continuous) maps from $I^{k}$ to $X$ with the sup-metric
induced by $d$. For each $k\in N$ , since $C(I^{k}, X)$ has the same weight as $X$ , there is
a map $gk^{;I^{k}}\times\Gamma\rightarrow X$ such that $\{gk,\gamma|\gamma\in\Gamma\}$ is dense in $C(I^{k}, X)$ , where $ gk,\gamma$ :
$I^{k}\rightarrow X$ is defined by $gk,\gamma(x)=gk(x, \gamma)$ . Given an open cover $\mathscr{U}$ of $X$ , let $\mathscr{U}_{0}$ be
an open star-refinement of $\mathscr{U}$. By induction, we shall construct maps $f_{i}$ : $C\rightarrow X$ ,
$g_{k^{i}}$ : $I^{k}\times\Gamma\rightarrow X(k\leq i)$ , and open covers $\mathscr{U}_{i}$ of $X\backslash (f_{i}(C_{i})\cup X_{i}),$ $i\in N$ , such that

(1) $f_{i}|C_{j}$ is a Z-embedding,
(2) $f_{i}|C_{i-1}=f_{i-1}|C_{i-1}$ ,
(3) $ f_{i}(C\backslash C_{l})\cap f_{i}(C_{j})=\emptyset$ ,

(4) $f_{i}$ is closed over $f_{i}(C_{i})\cup X_{i}$ ,
(5) $f_{i}|C\backslash C_{l-1}$ is $\mathscr{U}_{i-1}$ -close to $f_{i-1}|C\backslash C_{i-1}$ ,
(6) cl $ f_{i}(C\backslash C_{i-1})\cap(X_{i}\backslash (f_{i-1}(C_{i-1})\cup X_{i-1}))=\otimes$ ,
(7) st $\mathscr{U}_{i}\prec \mathscr{U}_{i-1}$ ,
(8) diam $U<\min\{2^{-i},\frac{1}{2}d(U, f_{i}(C_{i})\cup X_{i})\}$ for each $U\in \mathscr{U}_{i}$ ,

(9) $g_{k}^{i}(I^{k}\times\Gamma)$ is a Z-set in $X$ ,

2In the case $C$ is an open set in some member of 9, we can assume that $C_{i}\subset intC_{i+1}$ . However, this
assumption cannot be used in the general case.
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(10) $ f_{i}(C)\cap\bigcup_{k\leq j\leq i}g_{k}^{j}(I^{k}\times\Gamma)=\otimes$ ,
(11) $\{g_{k^{i},\gamma}|\gamma\in\Gamma\}$ is $2^{-i}$-dense in $C(I^{k}, X)$ , that is, each $g\in C(I^{k}, X)$ is $2^{-i_{-}}$

close to some $g_{k,\gamma}^{i}$ ,
where $f_{0}=f$ and $ C_{0}=X_{0}=\emptyset$ .

Assume that $f_{i-1},$ $g_{k}^{i-1}(k\leq i-1)$ and $\mathscr{U}_{i-1}$ have been obtained. Since
$f_{i-1}(C_{i-1})$ is a Z-set in $X$ by (1) and $I^{k}\times\Gamma\in \mathscr{C}$ , we can apply the strong
$\mathscr{C}$-universality of $X$ to find Z-embeddings $g_{k}^{i}$ : $I^{k}\times\Gamma\rightarrow X(k\leq i)$ such that

$ g_{k}^{i}(I^{k}\times\Gamma)\cap f_{i-1}(C_{i-1})=\emptyset$ ,

and each $g_{k^{i}}$ is $2^{-(i+1)}$ -close to $gk$ , hence it satisfies (9) and (11).
Now, we denote

$W=X\backslash (f_{i-1}(C_{i-1})\cup X_{i-1})$ .
Then, $\mathscr{U}_{i-1}$ is an open cover of $W$ . Let $\mathscr{V}$ be an open star-refinement of $\mathscr{U}_{i-1}$ .
Since $W$ is open in $X,$ $W$ is a strong $Z_{\sigma}$-space and has $\tau$-discrete cells property.
By Proposition 3.1, each Z-set in $W$ is a strong Z-set. Note that $X_{i}\cap W$ is a
strong Z-set in $W$ by Proposition 3.2 and $W$ is strongly $\mathscr{C}$-universal by Prop-
osition 2.1 of [1]. We apply the special case to the open set $C_{i}\backslash C_{i-1}$ in $C_{i}\in \mathscr{C}$ ,

and use the Homotopy Extension Theorem to construct a map $h:C\backslash C_{i-1}\rightarrow W$

such that
(12) $h|C_{i}\backslash C_{i-1}$ is a Z-embedding,
(13) $h$ is $\mathscr{V}$-close to $f_{i-1}|C\backslash C_{i-1}$ ,
(14) cl $ h(C\backslash C_{i-1})\cap W\cap(X_{i}\cup\bigcup_{k\leq j\leq i}g_{k}^{j}(I^{k}\times\Gamma))=\emptyset$ .

Since $h(C_{i}\backslash C_{i-1})\cup(X_{i}\cap W)$ is a strong Z-set in $W$ , we apply Lemma 1.1 of [1] to
obtain a map $\tilde{h}$ : $C\backslash C_{i-1}\rightarrow W$ such that

(15) $\tilde{h}$ is $\mathscr{V}$-close to $h$ , hence it is $\mathscr{U}_{i-1}$ -close to $f_{i-1}|C\backslash C_{i-1}$ by (13),
(16) cl $\tilde{h}(C\backslash C_{i-1})\cap W\cap(X_{i}\cup\bigcup_{k\leq j\leq i}g_{k}^{j}(I^{k}\times\Gamma))=\emptyset$ ,
(17) $\tilde{h}|C_{i}\backslash C_{i-1}=h|C_{i}\backslash C_{i-1}$ ,
(18) $\tilde{h}(C\backslash C_{j})\cap\tilde{h}(C_{j}\backslash C_{i-1})=\emptyset$ ,
(19) $\tilde{h}$ is closed over $\tilde{h}(C_{i}\backslash C_{i-1})\cup(X_{i}\cap W)$ .
For each $z\in C_{i-1}$ and $\epsilon>0$ , since $f_{i-1}$ is continuous, we have a neigh-

borhood $V$ of $z$ in $C$ such that $y\in V$ implies $d(f_{i-1}(y), f_{i-1}(z))<\epsilon/2$ . For
each $y\in V\backslash C_{i-1}$ , choose $U\in \mathscr{U}_{i\neg 1}$ so that $\tilde{h}(y),$ $f_{i-1}(y)\in U$ , whence we have
$d(\tilde{h}(y), f_{i-1}(y))<\frac{1}{2}d(f_{i-1}(y), f_{i-1}(z))$ by (8) for $i-1$ . Then, we have

$d(\tilde{h}(y),f_{i-1}(z))\leq d(\tilde{h}(y),f_{i-1}(y))+d(f_{i-1}(y),f_{i-1}(z))$

$<\frac{3}{2}d(f_{i-1}(y),f_{i-1}(z))<\epsilon$ .

Therefore, as an extension of $\tilde{h}$ , we can obtain the map $f_{i}$ : $C\rightarrow X$ satisfying (2),
which clearly satsfies (3), (5), (6) and (10) (cf. (18), (15), (16)).
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Since $f_{i}|C_{i-1}=f_{i-1}|C_{i-1}$ and $f_{i}|C_{l}\backslash C_{l-1}=h|C_{j}\backslash C_{i-1}$ are injective and

$ f_{i}(C_{i}\backslash C_{i-1})\cap f_{i-1}(C_{i-1})=\tilde{h}(C_{i}\backslash C_{i-1})\cap f_{i-1}(C_{i-1})=\otimes$ ,

it follows that $f_{i}|C_{i}$ is injective. If $f_{i}$ satisfies (4), that is, $f_{i}$ is closed over
$f_{i}(C_{i})\cup X_{i}$ , then $f_{i}|C_{i}$ is an embedding.

Suppose that $f_{i}$ is not closed over $f_{i}(C_{i})\cup X_{i}$ . Then, there exist $a\in f_{i}(C_{i})\cup X_{i}$ ,
a neighborhood $U$ of $f_{i}^{-1}(a)$ in $C$ (we allow $ U=f_{i}^{-1}(a)=\otimes$) and a sequence
$(z_{n})_{n\in N}$ in $C\backslash U$ with $\lim f_{i}(z_{n})=a$ . Since $f_{i}|C_{i-1}=f_{i-1}|C_{i-1}$ is a closed embed-
ding into $X$ by (1) for $i-1$ , we have $z_{n}\in C\backslash C_{i-1}$ for sufficiently large $n\in N$ .
Since $f_{i}|C\backslash C_{i-1}$ is closed over $f_{i}(C_{i}\backslash C_{i-1})\cup(X_{i}\cap W)$ by (19), it follows that
$a\not\in f_{i}(C_{i}\backslash C_{i-1})\cup(X_{i}\cap W)$ . Recall $a\in f_{i}(C_{i})\cup X_{i}$ . Then, we have

$a\in f_{i}(C_{i-1})\cup(X_{i}\backslash W)=f_{i-1}(C_{i-1})\cup X_{i-1}$ .

For suffiently large $n\in N$ , we can choose $U_{n}\in \mathscr{U}_{i-1}$ so that $f_{i}(z_{n}),$ $f_{i-1}(z_{n})\in U_{n}$ by
(5), whence

$d(f_{i-1}(z_{n}), a)\leq d(f_{i}(z_{n}),f_{i-1}(z_{n}))+d(f_{i}(z_{n}), a)<\frac{3}{2}d(f_{i}(z_{n}),a)$ .

Then, $\lim f_{i-1}(z_{n})=a$ , which implies that $ f_{i-1}^{-1}(a)\neq\emptyset$ by (4) for $i-1$ .
Since $f_{i-1}^{-1}(a)\subset C_{i-1}$ by (3) for $i-1$ , it follows from (2) that $ f_{i-1}^{-1}(a)\subset f_{i}^{-1}(a)\subset$

$U$ . Again by (4) for $i-1$ , we have a neighborhood $V$ of $a$ in $X$ such that
$f_{i-1}^{-1}(V)\subset U$ . For sufficiently large $n\in N,$ $f_{i-1}(z_{n})\in V$ , hence $z_{n}\in f_{i-1}^{-1}(V)\subset U$ .
This is a contradiction. Therefore, $f_{i}$ satisfies (4).

To see (1), it remains to show that $f_{i}(C_{j})$ is a Z-set in $X$ . Observe that

$X\backslash (f_{i}(C_{j})\cup X_{i-1})=W\backslash h(C_{i}\backslash C_{i-1})$ ,

which is open in $W$ . Then, $f_{i}(C_{j})\cup X_{i-1}$ is closed in $X$ , hence $f_{i}(C_{i})\cup X_{i}$ is also
closed in $X$ . Since $f_{i-1}(C_{i-1})\cup X_{i}$ is a Z-set in $X$ and $f_{i}(C_{j}\backslash C_{i-1})=h(C_{j}\backslash C_{i-1})$ is
a Z-set in $W=X\backslash (f_{i-1}(C_{i-1})\cup X_{i})$ , it follows that $f_{i}(C_{i})\cup X_{i}$ is a Z-set in $X$ . By
(3) and (4), we can see that $f_{i}(C_{i})$ is closed in $f_{i}(C_{i})\cup X_{i}$ . Therefore, $f_{i}(C_{i})$ is a
Z-set in $X$ .

Finally, by choosing an open cover $\mathscr{U}_{i}$ of $X\backslash (f_{i}(C_{i})\cup X_{i})$ so as to satisfy (7)
and (8), we can obtain $f_{i},$ $g_{k}^{i}(k\leq i)$ and $\mathscr{U}_{i}$ which satisfy all conditions (1) $-(11)$ .

By (2), we can define $f_{*}$ : $C\rightarrow X$ defined by $f_{*}|C_{i}=f_{i}|C_{j}$ . It follows from
(5) and (8) that $f_{*}$ is $2^{-i+1}$ -close to $f_{i}$ . Thus, $f_{*}$ is the uniform limit of $(f_{i})_{i\in N}$ ,
so $f_{*}$ is continuous. By (1) and (3), $f_{*}$ is injective. Then, to see that $f_{*}$ is a
Z-embedding, it remains to show that $f_{*}$ is a closed map and $f_{*}(C)$ is a Z-set
in $X$ .

Now, assume that $f_{*}$ is not closed. Then, we have a sequence $(z_{n})_{n\in N}$ in



Characterizing Manifolds Modeled on Certain Dense Subspaces 155

$C$ such that $(z_{n})_{n\in N}$ has no convergent subsequences but $(f_{*}(z_{n}))_{n\in N}$ converges
to some $a\in X$ . Let $a\in X_{m}\backslash X_{m-1}$ . Then, $z_{n}\in C\backslash C_{m}$ for sufficiently large $n\in N$ .
0therwise, $C_{m}$ contains a subsequence of $(z_{n})_{n\in N}$ , which is convergent because
$f_{*}|C_{m}=f_{m}|C_{m}$ is a closed embedding. From (2), (5) and (7), it follows that
$f_{*}|C\backslash C_{m}$ is st $\mathscr{U}_{m}$ -close to $f_{m}|C\backslash C_{m}$ . By (8), we have $x_{n},$ $y_{n}\in X$ for sufficiently
large $n\in N$ such that

$d(f_{*}(z_{n}), x_{n})<\frac{1}{2}d(f_{*}(z_{n}), a)$ ,

$d(x_{n}, y_{n})<\frac{1}{2}d(x_{n}, a)$ and

$d(y_{n},f_{m}(z_{n}))<\frac{1}{2}d(y_{n}, a)$ .

Then, $(f_{m}(z_{n}))_{n\in N}$ also converges to $a$ , hence

$a\in c1f_{m}(C\backslash C_{m})\subset c1f_{m}(C\backslash C_{m-1})$ ,

which implies that $a\in f_{m-1}(C_{m-1})$ by (6). By (1), (2) and (3), there is unique
$c\in C_{m-1}$ such that $f_{m}(c)=f_{m-1}(c)=a$ . Since $(z_{n})_{n\in N}$ does not converge to $c$ and
$f_{m}$ is closed over $f_{m}(C_{m})$ by (4), we have a neighborhood $V$ of $a$ in $X$ such that
infinitely many $z_{n}$ are not contained in $f_{m}^{-1}(V)$ , that is, infinitely many $f_{m}(z_{n})$ are
not contained in $V$ . This is a contradiction. Therefore, $f_{*}$ is a closed map.

To see that $f_{*}(C)$ is a Z-set in $X$ , let $g:I^{k}\rightarrow X$ be a map and $\epsilon>0$ .
Choose $j\in N$ so that $ 2^{-j}<\epsilon$ . Then, $g$ is $\epsilon$-close to some $g_{k,\gamma}^{j}$ by (11), whence
$ f_{i}(C_{j})\cap g_{k,\gamma}^{j}(1^{k})=\emptyset$ for every $i\geq j$ by (10). Since $f_{*}(C)=\bigcup_{i\geq j}f_{i}(C_{i})$ , it follows
that $ f_{*}(C)\cap g_{k,\gamma}^{j}(I^{k})=\emptyset$ . Hence, $f_{*}(C)$ is a Z-set in X. $\square $

By the above version of Proposition 2.3 of [1], Corollary 2.4 of [1] is valid
for spaces $X$ with $ w(X)=\tau$ if $I^{n}\times\Gamma\in \mathscr{C}$ for each $n\in N$ .

In this paper, the weak product of a space $X$ with a basepoint $*\in X$ is
denoted by $X_{f^{\omega}}$ intead of $W(X, *)$ . In the proof of Proposition 2.5 of $[$ 1 $]^{}$ when
$w(X)=\tau>\aleph_{0}$ , we have $\tilde{X}^{\omega}\approx\ell_{2}(\Gamma)$ by Theorem 5.1 of [16]. Then, $X^{\omega}$ and $X_{f^{\omega}}$

can be regarded as homotopy dense subsets of $l_{2}(\Gamma)$ . Hence, every Z-set in $X^{\omega}$

(or $X_{f^{\omega}}$ ) is a strong Z-set. In any other part, separability is not necessary.4 Then,
Proposition 2.5 [1] valid for a non-separable AR $X$ .

Proposition 2.6 of [1] is also valid for non-separable spaces because the proof
does not require separability.

3In Proposition 2.5 of [1], $X$ should be an AR (see the proof).
4p. 302 of [1], lines 4 and 5: $\frac{1}{\delta(f(c))}-k$ should be $\frac{2^{-k}}{\delta(f(c))}-1$ .
–, line 10: $\delta(f(c))\leq 2\delta(f^{\prime}(c))$ should be $\frac{2}{3}\delta(f^{\prime}(c))\leq\delta(f(c))\leq 2\delta(f^{\prime}(c))$ .
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In the proof of Proposition 2.7 of [1], we cannot assume that $\mathscr{U}$ is countable
when $X$ is non-separable. However, by Stone’s Theorem (cf. [5, 4.4.1]) and
Proposition 2.1 of [1], we can assume that $\mathscr{U}$ is locally finite $\sigma$-discrete, whence it
is not difficult to modify the proof to be valid for non-separable spaces. We can
also apply Michael’s Theorem for local properies [7] to prove this proposition
without separability.

3.3. Results in \S 3 of [1]. A subset $X\subset M$ is said to be homotopy dense if
there exists a deformation $h:M\times I\rightarrow M$ such that $h_{0}=id$ and $h_{t}(M)\subset X$

for $t>0$ . By [15], $X$ is homotopy dense in an ANR $M$ if and only if $M\backslash X$ is
locally homotopy negligible in $M$ . A strongly $\mathscr{C}$-universal homotopy dense $Z_{\sigma^{-}}$

set $X\subset M$ is called a $\mathscr{C}$-absorbing set in $M$ . By just replacing “s-manifold”
by $l_{2}(\Gamma)$ -manifold” in \S 3 of [1], we can obtain the non-separable version of
Theorems 3.1, 3.2 and 3.3 of [1]. In fact, all facts used in the proofs hold in the
non-separable case (cf. 2.6-2.9).

3.4. Results in \S 4 of [1]. Observe that Lemma 4.1 of [1] is valid for $l_{2}(\Gamma)-$

manifolds (cf. 2.6, 2.7 and [16, Proposition 2.1]). In Theorem 4.2 of [1], if $Y$ is
non-separable but $ w(Y)\leq\tau$ , we have an $l_{2}(\Gamma)$ -manifold $M=\tilde{Y}\times l_{2}(\Gamma)$ , where
$\tilde{Y}\in \mathfrak{M}_{1}(\tau)$ is an ANR which contains $Y$ as a homotopy dense set (cf. [15,
Proposition 4.1], [10]). Note that the projection $pr_{1}$ : $\tilde{Y}\times\ell_{2}(\Gamma)\rightarrow\tilde{Y}$ is a fine
homotopy equivalence. Thus, we have

THEOREM 3.6. For each $ANRY\in \mathfrak{M}(\tau)$ , there exists an $l_{2}(\Gamma)$ -manifold $M$

such that, for every $\mathscr{C}$-absorbing set $X\subset M$ , there is a fine homotopy equivalence
$f$ : $X\rightarrow Y$ . $\square $

Then, we have the non-separable version of Corollary 4.3 of [1], where
“s-manifold” is just replaced by ’

$\ell_{2}(\Gamma)$ -manifold”.

3.5. Results in \S 5 of [1]. In Lemma 5.2 of [1], if $M$ is an $\ell_{2}(\Gamma)$ -manifold, then
$\tilde{\Omega}$ and $\tilde{X}$ in the proof are $\ell_{2}(\Gamma)$ -manifolds by Toru\’{n}czyk characterization of
$\ell_{2}(\Gamma)$ -manifolds, and $\tilde{i}:\tilde{\Omega}\rightarrow\tilde{X}$ is a near-homeomorphism by [2, Corollary].
Thus, by just replacing “s-manifold” by $l_{2}(\Gamma)$ -manifold”, we have the non-
separable version of Lemma 5.2 of [1].

In the proof of Theorem 5.1 of [1], Theorem 2.3 of [1] is used. As saw in the
above, the condition that $I^{n}\times\Gamma\in \mathscr{C}$ for each $n\in N$ is required when $ w(X)=\tau$ .
Then, the non-seprable version of Theorem 5.1 of [1] is as follows:
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THEOREM 3.7. Let $\mathscr{C}$ be a closed hereditary additive topological class of
spaces such that $I^{n}\times\Gamma\in \mathscr{C}$ for each $n\in N$ . Suppose that $\Omega$ is a $\mathscr{C}$-absorbing set
in an $\ell_{2}(\Gamma)$ -manifold $M$ and $X$ is a strong $\mathscr{C}$-universal $ANR$ with $ w(X)=\tau$ which
is written as $X=\bigcup_{i\in N}X_{i}$ , where each $X_{i}$ is a strong Z-set in $X$ and $X_{i}\in \mathscr{C}$ . Then,
every fine homotopy equivalence $f:\Omega\rightarrow X$ is a near-homeomorphism. $\square $

Thus, we have the following non-separable version of Theorem 5.3 of [1]

THEOREM 3.8. Let $\mathscr{C}$ be a closed hereditary additive topological class of
spaces such that $I^{n}\times\Gamma\in \mathscr{C}$ for each $n\in N$ . Suppose that there exists a $\mathscr{C}$-absorbing
set $\Omega$ in $l_{2}(\Gamma)$ . Then, $X$ is homeomorphic to $\Omega lf$ and only if $X\in \mathscr{C}_{\sigma},$ $X$ is a
strongly $\mathscr{C}$-universal $AR$ which is a strong $Z_{\sigma}$-space. $\square $

The non-separable version of Corollary 5.4 of [1] is true when $s$
’ is replaced

by $\ell_{2}(\Gamma)$ and the condition $\Gamma\in \mathscr{C}$ is added. Corollary 5.5 is valid for non-
separable spaces.

THEOREM 3.9. Let $\mathscr{C}$ be a closed hereditary additive topological class of
spaces such that $\Gamma\in \mathscr{C}$ and $C\times I\in \mathscr{C}$ for each $C\in \mathscr{C}^{5}$ Suppose that there exists
$a\mathscr{C}$-absorbing set $\Omega$ in $l_{2}(\Gamma)$ . Then, the following hold:

(1) Every $\ell_{2}(\Gamma)$ -manifold contains a $\mathscr{C}$-absorbing set.
(2) (Triangulation) $X$ is a $\Omega$-mamfold $lf$ and only $\iota f$ there exists a locally

finite-dimensional simplicial complex $K$ with card $ K^{(0)}\leq\tau$ such that $ X\approx$

$|K|\times\Omega$ , where $|K|$ admits the metric topology.
(3) (Open Embedding) Every connected $\Omega$-mamfold can be embedded in $\Omega$ as

an open set.6
(4) Every $\mathscr{C}$-absorbing set in an $l_{2}(\Gamma)$ -manifold is a $\Omega$-mamfo$ld$, and every

$\Omega$-manifold can be embedded in an $\ell_{2}(\Gamma)$ -manifold as a $\mathscr{C}$-absorbing set.

The assertions (1), (2) and (3) are the non-separable versions of Cor-
ollaries 5.6 and 5.7 of [1]. For the assertion (4), the first half and the second half
are respectively the non-separable versions of the facts implicitly showed in the
proofs of Corolaries 5.7 and 5.6(ii) of [1].

As the above results are based on the existence of an $\mathscr{C}$-absorbing set in
$\ell_{2}(\Gamma)$ , the following problem is fundamental:

5 By induction, we have $ C\times I^{n}\in\varphi$ for each $ C\in\varphi$ and $n\in N$ . In particular, $I^{n}\times\Gamma\in\varphi$ for each
$n\in N$ .
6To avoid the case that $X$ has components more that $\tau$ , we have to assume that $X$ is connected or
$ w(X)=\tau$ .
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PROBLEM 5. For what class $\mathscr{C}$ , does there exist a $\mathscr{C}$-absorbing set in $\ell_{2}(\Gamma)$ ?
Or, for given a model space $E\in \mathfrak{M}(\tau)$ , let $\mathscr{C}_{E}$ be the class of spaces which can be
embedded in $E$ as closed sets. Can $E$ be embedded in $l_{2}(\Gamma)$ as a $\mathscr{C}_{E}$-absorbing set?

4. The Proof of Main Theorem
The following is the answer to Problem 5 for $\mathfrak{M}_{2}(\tau),$ $\mathfrak{M}_{3}(\tau)$ and $\mathfrak{M}_{4}(\tau)$ .

PROPOSITION 4.1. For each $i=2,3,4$ , the space $E_{j}(\Gamma)$ can be embedded in
$l_{2}(\Gamma)$ as an $\mathfrak{M}_{j}(\tau)$ -absorbing set.

PROOF. Note that $E_{i}(\Gamma)_{f^{\omega}}\approx E_{j}(\Gamma)$ (cf. [13, p. 61, Footnote () $]$ ). It follows
from [1, Proposition 2.5] that $E_{j}(\Gamma)$ is strongly $\mathfrak{M}_{i}(\tau)$ -universal. Since $E_{i}(\Gamma)$ is a
$Z_{\sigma}$-space, it follows from [17, Al] that $E_{i}(\Gamma)$ is a strong $Z_{\sigma}$-space. It remains to
show that each $E_{j}(\Gamma)$ can be embedded in $\ell_{2}(\Gamma)$ as a homotopy dense set.

First, $E_{3}(\Gamma)=l_{2}^{f}(\Gamma)$ itself is homotopy dense in $\ell_{2}(\Gamma)$ . Then, it follows
that $E_{4}(\Gamma)=\ell_{2}^{f}(\Gamma)\times Q$ is homotopy dense in $\ell_{2}(\Gamma)\times Q\approx l_{2}(\Gamma)$ . Since $l_{2}^{f}$ is
homotopy dense in $l_{2}$ , it follows that $E_{2}(\Gamma)=l_{2}(\Gamma)\times\ell_{2^{f}}$ is homotopy dense in
$l_{2}(\Gamma)\times l_{2}^{f}\approx l_{2}(\Gamma)$ . Thus, each $E_{i}(\Gamma)$ can be embedded in $l_{2}(\Gamma)$ as a homotopy
dense set. $\square $

By combining the following proposition and Proposition 3.5, we can obtain
Main Theorem.

PROPOSITION 4.2. Let $X$ be a connected metrizable space. For each $i=2,3,4$ ,
$X$ is an $E_{I}(\Gamma)$ -manifold (or $X\approx E_{j}(\Gamma)$ ) $lf$ and only if $X\in \mathfrak{M}_{i}(\tau)$ is an $ANR$ (or an
$AR)$ which is a strongly $\mathfrak{M}_{j}(\tau)$ -universal strong $Z_{\sigma}$-space.

PROOF. First, we show the “only if” part. By 2.3, $X\in \mathfrak{M}_{j}(\tau)$ is an ANR (or
an AR) and $X\approx X\times E_{i}(\Gamma)$ . Since every Z-set in $X$ is a strongly Z-set by [17,
Al] and $E_{i}(\Gamma)$ is strongly $\mathfrak{M}_{j}(\tau)$ -universal, it follows from [1, Proposition 2.6] that
$X$ is strongly $\mathfrak{M}_{i}(\tau)$ -universal. Moreover, $X$ is a strong $Z_{\sigma}$ -space because so is
$E_{j}(\Gamma)$ .

Next, we prove the “if” part. By Theorem 3.6, we have an $\ell_{2}(\Gamma)$ -manifold
$M$ such that, for every $\mathfrak{M}_{i}(\tau)$ -absorbing set $W$ in $M$ , there is a fine homotopy
equivalence $\varphi:W\rightarrow X$ . By Theorem 3.9(1), $M$ contains an $\mathfrak{M}_{i}(\tau)$ -absorbing
set $W$ . Then, we have a fine homotopy equivalence $\varphi:W\rightarrow X$ , which is a
near-homeomorphism by Theorem 3.7. Hence, $X\approx W$ is an $E_{j}(\Gamma)$ -manifold by
Theorem 3.9(4). If $X$ is an AR, $M\approx l_{2}(\Gamma)$ in the above, whence we have
$X\approx W\approx E_{i}(\Gamma)$ by [1, Theorem 3.1] and Proposition 4.1. $\square $
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Finally, the authors would like to express their thanks to the referee for his
helpful comments.
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