HOPF ALGEBRAS GENERATED BY A COALGEBRA

By

Charles B. RAGOZZINE, Jr.

Abstract. The concept of a free Hopf algebra generated by a coalgebra was introduced by Takeuchi to provide an example of a Hopf algebra with a non-bijective antipode. In general, this free Hopf algebra is not generated as an algebra by the coalgebra. In this paper, we construct a class of Hopf algebras, including $SL_q(2)$, which are generated as algebras by a coalgebra and which satisfy a useful universality condition.

Introduction

The paper is presented in three parts. First, a class of Hopf algebras which are generated as algebras by a coalgebra is constructed. Next, the universality of this class of Hopf algebras is addressed. Finally, relevant examples to this discussion are considered, including $SL_q(2)$.

Most of the important preliminaries can be found in [1] and [2]. In particular, following [1], we will use the superscripts "op" and "cop" to refer to the opposite algebra and opposite coalgebra, respectively. We will also make use of the well-known fact that the tensor algebra of a coalgebra (C, Δ, ε) , denoted $(T(C), \bar{\mu}, \bar{\eta}, \bar{\Delta}, \bar{\varepsilon})$, is a bialgebra. For a reference, see [3].

1. The Construction

LEMMA 1.1. Suppose that (C, Δ, ε) is a coalgebra, $(B, \mu_B, \eta_B, \Delta_B, \varepsilon_B)$ is a bialgebra, and $f : C \to B$ is a coalgebra map. Then, there exists a unique bialgebra map $\overline{f} : T(C) \to B$ extending f.

PROOF. By the universality of T(C), we know that f induces a unique algebra map $\overline{f}: T(C) \to B$. It remains to show that \overline{f} is a coalgebra map, which requires $\varepsilon_B \circ \overline{f} = \overline{\varepsilon}$ and $\overline{f} \otimes \overline{f} \circ \overline{\Delta} = \Delta_B \circ \overline{f}$. Identify C with its image in T(C),

Received July 18, 2001.

and we have $(\varepsilon_B \circ \bar{f})(c) = \varepsilon_B(\bar{f}(c)) = \varepsilon_B(f(c)) = \varepsilon(c) = \bar{\varepsilon}(c)$ and $(\Delta_B \circ \bar{f})(c) = \Delta_B(\bar{f}(c)) = \Delta_B(f(c)) = (f \otimes f)(\Delta(c)) = (\bar{f} \otimes \bar{f})(\Delta(c)) = (\bar{f} \otimes \bar{f})(\bar{\Delta}(c)) = (\bar{f} \otimes$

We now proceed with the construction. Let (C, Δ, ε) be a coalgebra, and let $S: C \to C^{cop}$ be any coalgebra map. In other words, S is a coalgebra antimorphism on C. Then, by Lemma 1.1, S induces a bialgebra map $\overline{S}: T(C) \to T(C)^{op \ cop}$, and we have the commutative diagram

The effect is that S has been extended to \overline{S} in such a way that $\overline{S}(xy) = \overline{S}(y)\overline{S}(x)$, for all $x, y \in T(C)$ and with the property that $\overline{\varepsilon} \circ \overline{S} = \overline{\varepsilon}$ and $\overline{S} \otimes \overline{S} \circ \overline{\Delta} = \overline{\Delta}^{op} \circ \overline{S}$.

Next, let I = I(S) be the two-sided ideal of T(C) generated by elements of the form

$$\sum_{(x)} x' \bar{S}(x'') - \bar{\varepsilon}(x) 1 \quad \text{and} \quad \sum_{(x)} \bar{S}(x') x'' - \bar{\varepsilon}(x) 1 \quad \forall x \in i(C).$$

LEMMA 1.2. I is a coideal of T(C) such that $\overline{S}(I) \subseteq I$.

PROOF. First, we prove that I is a coideal of T(C). This requires that $\overline{\Delta}(I) \subseteq I \otimes T(C) + T(C) \otimes I$ and $\overline{\epsilon}(I) = 0$. Note that $(\overline{S} \otimes \overline{S}) \circ \overline{\Delta} = \overline{\Delta}^{op} \circ \overline{S} \Leftrightarrow (\overline{S} \otimes \overline{S}) \circ \overline{\Delta}^{op} = \overline{\Delta} \circ \overline{S}$. It suffices to show the first coideal condition is true for the generators of I since $\overline{\Delta}$ is an algebra morphism. We have

$$\bar{\Delta}\left(\sum_{(x)} x'\bar{S}(x'') - \bar{\varepsilon}(x)\mathbf{1}\right)$$

$$= \sum_{(x)} \bar{\Delta}(x')\bar{\Delta}\circ\bar{S}(x'') - \bar{\varepsilon}(x)\bar{\Delta}(1)$$

$$= \sum_{(x)} \bar{\Delta}(x')\cdot\bar{S}\otimes\bar{S}\circ\bar{\Delta}^{op}(x'') - \bar{\varepsilon}(x)\mathbf{1}\otimes\mathbf{1}$$

$$= \sum_{(x)} x'\otimes x''\cdot\bar{S}(x''')\otimes\bar{S}(x''') - \bar{\varepsilon}(x)\mathbf{1}\otimes\mathbf{1}$$

$$= \sum_{(x)} x' \overline{S}(x''') \otimes x'' \overline{S}(x''') - \overline{e}(x) 1 \otimes 1$$

$$= \sum_{(x)} x' \overline{S}(x''') \otimes [x'' \overline{S}(x''') - \overline{e}(x'') 1 + \overline{e}(x'') 1] - \overline{e}(x) 1 \otimes 1$$

$$= \sum_{(x)} x' \overline{S}(x''') \otimes \underbrace{[x'' \overline{S}(x''') - \overline{e}(x'') 1]}_{eT(C) \otimes I} + \sum_{(x)} x' \overline{S}(x''') \otimes \overline{e}(x'') 1 - \overline{e}(x) 1 \otimes 1$$

$$\equiv \sum_{(x)} x' \overline{S}(x''') \otimes \overline{e}(x'') 1 - \overline{e}(x) 1 \otimes 1 \mod I \otimes T(C) + T(C) \otimes I$$

$$\equiv \sum_{(x)} x' \overline{S}(x'') \otimes \overline{e}(x'') 1 - \overline{e}(x) 1 \otimes 1 \mod I \otimes T(C) + T(C) \otimes I$$

$$\equiv \sum_{(x)} x' \overline{S}(x'') \otimes \overline{e}(x'') 1 - \overline{e}(x) 1 \otimes 1 \mod I \otimes T(C) + T(C) \otimes I$$

$$\equiv \sum_{(x)} x' \overline{S}(x'') \otimes \overline{e}(x'') 1 - \overline{e}(x) 1 \otimes 1 \mod I \otimes T(C) + T(C) \otimes I$$

$$= \sum_{(x)} x' \overline{S}(x'') \otimes 1 - \overline{e}(x) 1 \otimes 1$$

$$= \sum_{(x)} x' \overline{S}(x'') \otimes 1 - \overline{e}(x) 1 \otimes 1$$

$$= \left[\sum_{(x)} x' \overline{S}(x'') - \overline{e}(x) 1 + \overline{e}(x) 1 \right] \otimes 1 - \overline{e}(x) 1 \otimes 1$$

$$= \left[\sum_{(x)} x' \overline{S}(x'') - \overline{e}(x) 1 \right] \otimes 1 + \overline{e}(x) 1 \otimes 1 - \overline{e}(x) 1 \otimes 1$$

 $\equiv 0 \mod I \otimes T(C) + T(C) \otimes I.$

.

The proof uses the coassociative and counitary axioms and is similar for generators of the form $\sum_{(x)} \overline{S}(x')x'' - \overline{\varepsilon}(x)1$, and thus, $\overline{\Delta}(I) \subseteq I \otimes T(C) + T(C) \otimes I$. Using the fact that $\overline{\varepsilon}$ is an algebra morphism, it is easy to show that the second coideal condition holds for the generators of I and so, $\overline{\varepsilon}(I) = 0$.

Lastly, since \overline{S} is an algebra antimorphism, it is enough to show that $\overline{S}(I) \subseteq I$ for generators of I.

$$\overline{S}\left(\sum_{(x)} x'\overline{S}(x'') - \overline{\varepsilon}(x)\mathbf{1}\right) = \sum_{(x)} \overline{S}(\overline{S}(x''))\overline{S}(x') - \overline{\varepsilon}(x)\overline{S}(\mathbf{1})$$

$$= [\overline{\mu} \circ (\overline{S} \otimes id) \circ (\overline{S} \otimes \overline{S} \circ \overline{\Delta}^{op})](x) - \overline{\varepsilon}(x)\mathbf{1}$$

$$= [\overline{\mu} \circ (\overline{S} \otimes id) \circ (\overline{\Delta} \circ \overline{S})](x) - \overline{\varepsilon} \circ \overline{S}(x)\mathbf{1}$$

$$= \sum_{(\overline{S}(x))} \overline{S}(\overline{S}(x)')\overline{S}(x)'' - \overline{\varepsilon}(\overline{S}(x))\mathbf{1}$$

$$= \sum_{(y)} \overline{S}(y')y'' - \overline{\varepsilon}(y)\mathbf{1}, \quad \text{for } y = \overline{S}(x) \in i(C)$$

$$\equiv 0 \mod I.$$

Thus, $\overline{S}\left(\sum_{(x)} x' \overline{S}(x'') - \overline{\varepsilon}(x) 1\right) \in I$, and likewise for generators of the other form. Therefore, $\overline{S}(I) \subseteq I$.

We summarize the preceding results in the following theorem.

THEOREM 1.3. Let C be a coalgebra, and $S: C \to C^{cop}$ be any coalgebra map. Then, $\mathscr{H}(C,S) = T(C)/I(S)$ is a Hopf algebra with antipode \hat{S} , the unique bialgebra morphism $\hat{S}: \mathscr{H}(C,S) \to \mathscr{H}(C,S)^{op \, cop}$ induced by \bar{S} .

PROOF. As a consequence of Lemma 1.2, I(S) can be factored out of T(C), yielding a nontrivial quotient $(\mathscr{H}(C,S),\hat{\mu},\hat{\eta},\hat{\Delta},\hat{\varepsilon})$ with the structure of a bialgebra. In fact, the induced \hat{S} is the antipode for $\mathscr{H}(C,S)$. Consider the intersection of the kernels of $id * \hat{S} - \hat{\eta} \circ \hat{\varepsilon}$ and $\hat{S} * id - \hat{\eta} \circ \hat{\varepsilon}$. It is a subalgebra of $\mathscr{H}(C,S)$ which contains i(C), and since i(C) generates $\mathscr{H}(C,S)$ as an algebra, we have $id * \hat{S} = \hat{\eta} \circ \hat{\varepsilon} = \hat{S} * id$.

2. The Universality of $\mathscr{H}(C,S)$

A natural question to ask is: If we begin with a pair (C, S) and construct $\mathscr{H}(C, S)$, in what categorical sense is $\mathscr{H}(C, S)$ free? The following result characterizes the universality of $\mathscr{H}(C, S)$.

THEOREM 2.1. Given any pair (H, f), where H is a Hopf algebra and $f: C \to H$ is a coalgebra map satisfying $f \circ S = S_H \circ f$, there is a unique Hopf

algebra morphism $\hat{f} : \mathscr{H}(C, S) \to H$ such that $\hat{f} \circ \iota = f$. In other words, we have the commutative diagram

where $i = \pi \circ i$, with $i: C \to T(C)$ denoting the canonical injection and $\pi: T(C) \to \mathscr{H}(C, S)$ denoting the canonical surjection.

PROOF. We have to show that we can lift f to $\mathscr{H}(C, S)$ in the following diagram:

Beginning with the left side of (2.1), we use Lemma 1.1 to lift f to a bialgebra map $\overline{f}: T(C) \to H$. The assumption $f \circ S = S_H \circ f$ lifts to $\overline{f} \circ \overline{S} = S_H \circ \overline{f}$, where $\overline{S}: T(C) \to T(C)^{op \, cop}$ is the previously constructed bialgebra map. Thus, f induces a bialgebra map $\overline{f}: T(C) \to H$ satisfying $\overline{f} \circ \overline{S} = S_H \circ \overline{f}$.

Next, consider the right side of (2.1). We have reduced the problem to lifting the bialgebra map \overline{f} to a Hopf algebra map $\hat{f} : \mathscr{H}(C, S) \to H$. This requires that $I(S) \subseteq \ker \overline{f}$ and $\hat{f} \circ \overline{S} = S_H \circ \hat{f}$. Clearly, the former condition will hold if and only if \overline{f} annihilates the generators of I(S). Identify C with its image in T(C), and we have

$$\bar{f}\left(\sum_{(x)} x'\bar{S}(x'') - \bar{\varepsilon}(x)\mathbf{1}\right) = \sum_{(x)} \bar{f}(x')\bar{f} \circ \bar{S}(x'') - \bar{\varepsilon}(x)\bar{f}(1)$$

$$= \sum_{(x)} \bar{f}(x')S_H \circ \bar{f}(x'') - \bar{\varepsilon}(x)\mathbf{1}_H$$

$$= \sum_{(\bar{f}(x))} \bar{f}(x)'S_H(\bar{f}(x)'') - \varepsilon_H(\bar{f}(x))\mathbf{1}_H$$

$$= \sum_{(y)} y'S_H(y'') - \varepsilon_H(y)\mathbf{1}_H, \text{ for } y = \bar{f}(x) \in H$$

$$= 0$$

Similarly, $\bar{f}\left(\sum_{(x)} \bar{S}(x')x'' - \bar{\varepsilon}(x)1\right) = 0$, and so, $I(S) \subseteq \ker \bar{f}$. The latter condition is immediate. Hence, \bar{f} induces a Hopf algebra map $\hat{f} : \mathscr{H}(C, S) \to H$, and the theorem follows.

3. Examples of Hopf Algebras $\mathscr{H}(C_2, S)$

In this section, we present some examples, including $SL_q(2)$, obtained from our construction. The following definition is from [4].

DEFINITION 3.1. Let $C_n = C_n(C)$ be a coalgebra with basis $\{x_{ij}\}_{1 \le i,j \le n}$ over C and structure maps defined by

$$\Delta(x_{ij}) = \sum_{k=1}^{n} x_{ik} \otimes x_{kj}$$
 and $\varepsilon(x_{ij}) = \delta_{ij}$.

Following Takeuchi, we call C_n the $n \times n$ matric coalgebra since it is isomorphic to M_n^* , the dual of the $n \times n$ matrices with convolution product.

EXAMPLE 3.2. Consider the situation of Theorem 2.1 with $C = C_2$ and $H = SL_q(2)$:

where f is the coalgebra map defined by $f(x_{11}) = a$, $f(x_{12}) = b$, $f(x_{21}) = c$, $f(x_{22}) = d$, and $S: C_2 \to C_2^{cop}$ is the coalgebra map defined by $S(x_{11}) = x_{22}$, $S(x_{12}) = -qx_{12}$, $S(x_{21}) = -q^{-1}x_{21}$, $S(x_{22}) = x_{11}$. The hypotheses of Theorem 2.1 are easily seen to be satisfied. Thus, there is a Hopf algebra map \hat{f} : $\mathscr{H}(C_2, S) \to SL_q(2)$, which we claim is a Hopf algebra isomorphism. Now, $\mathscr{H}(C_2, S) = T(C_2)/I(S)$ where $T(C_2) \cong C\{x_{11}, x_{12}, x_{21}, x_{22}\}$, the free associative algebra on four generators. See [1] for the latter fact. In Kassel's notation, the generators of I(S) can be written in abridged matrix form as

(3.1)
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \bar{S} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} - \bar{\eta} \circ \bar{\varepsilon} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$

and

108

Hopf Algebras Generated by a Coalgebra

(3.2)
$$\overline{S}\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} - \overline{\eta} \circ \overline{\varepsilon} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}.$$

In addition, $SL_q(2)$ is defined in [1] as the quotient of the free associative algebra $C\{a, b, c, d\}$ by the two-sided ideal with generators given by

(3.3)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -qb \\ -q^{-1}c & a \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and

(3.4)
$$\begin{pmatrix} d & -qb \\ -q^{-1}c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

in abridged matrix form. We will construct a two-sided inverse for \hat{f} . There exists an algebra map $g: \mathbb{C}\{a, b, c, d\} \to \mathscr{H}(C_2, S)$ defined by $g(a) = x_{11}, g(b) = x_{12},$ $g(c) = x_{21}, \text{ and } g(d) = x_{22}.$ Notice that under g, expressions of the form (3.3) and (3.4) are mapped to (3.1) and (3.2), respectively, and these images are zero in $\mathscr{H}(C_2, S)$. Thus, g induces a Hopf algebra map $\hat{g}: SL_q(2) \to \mathscr{H}(C_2, S)$ with $\hat{f} \circ \hat{g} = id_{SL_q(2)}$ and $\hat{g} \circ \hat{f} = id_{\mathscr{H}(C_2, S)}.$ Therefore, \hat{f} is an isomorphism of Hopf algebras, and we have the following result.

THEOREM 3.3. With the coalgebra map S of Example 3.2, $\mathscr{H}(C_2, S)$ is isomorphic to $SL_q(2)$.

EXAMPLE 3.4. Now, we will turn our attention to a slightly different question involving C_2 . Example 3.2 suggests a general situation in which we can ask: Are there other coalgebra maps $S: C_2 \to C_2^{cop}$ which yield Hopf algebras $\mathscr{H}(C_2, S)$ that are not isomorphic to $SL_q(2)$? Since the dimension of C_2 is small, we can use Mathematica to search for solutions. Any coalgebra map S: $C_2 \to C_2^{cop}$ must be of the form:

$$S(x_{11}) = a_{11}x_{11} + a_{12}x_{12} + a_{13}x_{21} + a_{14}x_{22}$$

$$S(x_{12}) = a_{21}x_{11} + a_{22}x_{12} + a_{23}x_{21} + a_{24}x_{22}$$

$$S(x_{21}) = a_{31}x_{11} + a_{32}x_{12} + a_{33}x_{21} + a_{34}x_{22}$$

$$S(x_{22}) = a_{41}x_{11} + a_{42}x_{12} + a_{43}x_{21} + a_{44}x_{22}$$

where $a_{ij} \in C$ for $1 \le i, j \le 4$. Moreover, since $S : C_2 \to C_2^{cop}$ is a coalgebra map, it must satisfy the abridged matrix relations:

109

Charles B. RAGOZZINE, Jr.

(3.5)
$$S \otimes S \circ \Delta^{op} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \Delta \circ S \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$

and

(3.6)
$$\varepsilon \circ S\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \varepsilon \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}.$$

The equations from (3.5) can be expanded out and written in terms of a basis for $C_2 \otimes C_2$, namely $\{x_{ij} \otimes x_{kl}\}_{1 \le i, j, k, l \le 2}$ to yield 64 equations upon equating coefficients. From (3.6), there are 4 additional equations. We use Mathematica to solve the 68 equations in 16 unknowns a_{ij} , $1 \le i, j \le 4$. In particular, this search found the coalgebra map S of Example 3.2 and Theorem 3.3 among the solutions. It can be expressed as

(3.7)
$$S\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{22} & -qx_{12} \\ -q^{-1}x_{21} & x_{11} \end{pmatrix}.$$

In addition, there were several other families of solutions, including a simple one given in abridged matrix form by

(3.8)
$$T\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{11} & qx_{21} \\ q^{-1}x_{12} & x_{22} \end{pmatrix}.$$

Notice that S is the quantum analogue to the inverse map and that T is the quantum analogue to the transpose map.

Moreover, $\mathscr{H}(C_2, S)$ and $\mathscr{H}(C_2, T)$ are not isomorphic. This can be seen by computing S^2 and T^2 . We have

(3.9)
$$S^{2}\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} S(x_{22}) & -qS(x_{12}) \\ -q^{-1}S(x_{21}) & S(x_{11}) \end{pmatrix} = \begin{pmatrix} x_{11} & q^{2}x_{12} \\ q^{-2}x_{21} & x_{22} \end{pmatrix}$$

and

(3.10)
$$T^2\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} T(x_{11}) & qT(x_{21}) \\ q^{-1}T(x_{12}) & T(x_{22}) \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}.$$

Equations (3.9) and (3.10) imply that S is of infinite order and T is of finite order, respectively. In addition, S^2 and T^2 do not have the same set of eigenvalues because T^2 has only real eigenvalues, and S^2 has some complex eigenvalues. This guarantees that $\mathscr{H}(C_2, S)$ and $\mathscr{H}(C_2, T)$ are not isomorphic because any isomorphism between them would have to preserve the eigenvalues for the antipodes and their powers. Example 3.4 shows that the construction of $\mathscr{H}(C, S)$ depends on both C and S.

110

References

[1] Christian Kassel. Quantum Groups, Springer-Verlag: New York, 1995.

[2] Moss Sweedler. Hopf Algebras, W.A. Benjamin, Inc.: New York, 1969.

[3] M. Takeuchi. Free Hopf Algebras generated by coalgebras. J. Math. Soc. Japan 23 (1971), 561-582.

[4] M. Takeuchi. Matric Bialgebras and Quantum Groups. Israel Journal of Math ematics 72 (1990), 232-251.

Mathematical Sciences Dept. SUNY Oneonta, Oneonta, NY 13820 E-mail address: ragozzc@oneonta.edu