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HOPF ALGEBRAS GENERATED BY A COALGEBRA

By

Charles B. RAGOZZINE, Jr.

Abstract. The concept of a free Hopf algebra generated by a coal-
gebra was introduced by Takeuchi to provide an example of a Hopf
algebra with a non-bijective antipode. In general, this free Hopf
algebra is not generated as an algebra by the coalgebra. In this
paper, we construct a class of Hopf algebras, including $SL_{q}(2)$ ,

which are generated as algebras by a coalgebra and which satisfy a
useful universality condition.

Introduction

The paper is presented in three parts. First, a class of Hopf algebras which
are generated as algebras by a coalgebra is constructed. Next, the universality of
this class of Hopf algebras is addressed. Finally, relevant examples to this discus-
sion are considered, including $SL_{q}(2)$ .

Most of the important preliminaries can be found in [1] and [2]. In particular,
following [1], we will use the superscripts $op$

’ and $cop$
’ to refer to the opposite

algebra and opposite coalgebra, respectively. We will also make use of the well-
known fact that the tensor algebra of a coalgebra $(C, \Delta, \epsilon)$ , denoted $(T(C),\overline{\mu}$ ,
$\overline{\eta},\overline{\Delta},\overline{\epsilon})$ , is a bialgebra. For a reference, see [3].

1. The Construction

LEMMA 1.1. Suppose that $(C, \Delta, \epsilon)$ is a coalgebra, $(B,\mu_{B}, \eta_{B}, \Delta_{B}, \epsilon_{B})$ is a
bialgebra, and $f$ : $C\rightarrow B$ is a coalgebra map. Then, there exists a unique bialgebra
map $\overline{f}$ : $T(C)\rightarrow B$ extending $f$ .

PROOF. By the universality of $T(C)$ , we know that $f$ induces a unique
algebra map $\overline{f}:T(C)\rightarrow B$ . It remains to show that $\overline{f}$ is a coalgebra map, which
requires $\epsilon_{B}\circ\overline{f}=\overline{\epsilon}$ and $\overline{f}\otimes\overline{f}\circ$ A $=\Delta_{B}\circ\overline{f}$ . Identify $C$ with its image in $T(C)$ ,
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and we have $(\epsilon_{B}\circ f)(c)=\epsilon_{B}(\overline{f}(c))=\epsilon_{B}(f(c))=\epsilon(c)=\overline{\epsilon}(c)$ and $(\Delta_{B}\circ f)(c)=$

$\Delta_{B}(\overline{f}(c))=\Delta_{B}(f(c))=(f\otimes f)(\Delta(c))=(\overline{f}\otimes\overline{f})(\Delta(c))=(\overline{f}\otimes\overline{f})(\overline{\Delta}(c))=(\overline{f}\otimes$

$\overline{f}\circ\overline{\Delta})(c)$ . $\square $

We now proceed with the constmction. Let $(C, \Delta,\epsilon)$ be a coalgebra, and let
$S:C\rightarrow C^{cop}$ be any coalgebra map. In other words, $S$ is a coalgebra antimor-
phism on $C$. Then, by Lemma 1.1, $S$ induces a bialgebra map $\overline{S}:T(C)\rightarrow$

$T(C)^{opcop}$ , and we have the commutative diagram

$s^{C...........T(C)}\downarrow A\downarrow\overline{s}\underline{i}............$

.
$C^{cop}\underline{i}T(C)^{opcop}$ .

The effect is that $S$ has been extended to $\overline{S}$ in such a way that $\overline{S}(xy)=\overline{S}(y)\overline{S}(x)$ ,

for all $x,$ $y\in T(C)$ and with the property that $\overline{\epsilon}\circ\overline{S}=\overline{\epsilon}$ and $\overline{S}\otimes\overline{S}\circ\overline{\Delta}=\overline{\Delta}^{op}\circ\overline{S}$ .
Next, let $I=I(S)$ be the two-sided ideal of $T(C)$ generated by elements of

the form

$\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)1$
and

$\sum_{(x)}\overline{S}(x^{\prime})x^{\prime/}-\overline{\epsilon}(x)1$

$\forall x\in i(C)$ .

LEMMA 1.2. I is a coideal of $T(C)$ such that $\overline{S}(I)\subseteq I$ .

PROOF. First, we prove that $I$ is a coideal of $T(C)$ . This requires that
$\overline{\Delta}(I)\subseteq I\otimes T(C)+T(C)\otimes I$ and $\overline{\epsilon}(I)=0$ . Note that $(\overline{S}\otimes\overline{S})\circ$ A $=\overline{\Delta}^{op}\circ\overline{S}\Leftrightarrow$

$(\overline{S}\otimes\overline{S})\circ\overline{\Delta}^{op}=\overline{\Delta}\circ\overline{S}$ . It suffices to show the first coideal condition is tme for the
generators of $I$ since A is an algebra morphism. We have

$\overline{\Delta}(\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)1)$

$=\sum_{(x)}\overline{\Delta}(x^{\prime})\overline{\Delta}\circ\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)\overline{\Delta}(1)$

$=\sum_{(x)}\overline{\Delta}(x^{\prime})\cdot\overline{S}\otimes\overline{S}\circ\overline{\Delta}^{op}(x^{\prime\prime})-\overline{\epsilon}(x)1\otimes 1$

$=\sum_{(x)}x^{\prime}\otimes x^{\prime\prime}\cdot\overline{S}(x^{\prime\prime\prime\prime})\otimes\overline{S}(x^{\prime\prime\prime})-\overline{\epsilon}(x)1\otimes 1$
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$=\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime\prime\prime})\otimes x^{\prime\prime}\overline{S}(x^{\prime\prime\prime})-\overline{\epsilon}(x)1\otimes 1$

$=\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime\prime\prime})\otimes[x^{\prime\prime}\overline{S}(x^{\prime\prime\prime})-\overline{\epsilon}(x^{\prime\prime})1+\overline{\epsilon}(x^{\prime\prime})1]-\overline{\epsilon}(x)1\otimes 1$

$\equiv\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime\prime\prime})\otimes\overline{\epsilon}(x^{\prime\prime})1-\overline{\epsilon}(x)1\otimes 1$

$mod I\otimes T(C)+T(C)\otimes I$

$\equiv\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime\prime})\otimes\overline{\epsilon}(x^{\prime\prime})1-\overline{\epsilon}(x)1\otimes 1$

$mod I\otimes T(C)+T(C)\otimes I$

$\equiv\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})\otimes\overline{\epsilon}(x^{\prime\prime})1-\overline{\epsilon}(x)1\otimes 1$

$mod I\otimes T(C)+T(C)\otimes I$

$=\sum_{(x)}x^{\prime}\overline{\epsilon}(x^{\prime\prime})\overline{S}(x^{\prime\prime})\otimes 1-\overline{\epsilon}(x)1\otimes 1$

$=\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})\otimes 1-\overline{\epsilon}(x)1\otimes 1$

$=[\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)1+\overline{\epsilon}(x)1]\otimes 1-\overline{\epsilon}(x)1\otimes 1$

$\equiv 0$ $mod I\otimes T(C)+T(C)\otimes I$ .

The proof uses the coassociative and counitary axioms and is similar for
generators of the form $\sum_{(x)}\overline{S}(x^{\prime})x^{\prime\prime}-\overline{\epsilon}(x)1$ , and thus, $\overline{\Delta}(I)\subseteq I\otimes T(C)+$

$T(C)\otimes I$ . Using the fact that $\overline{\epsilon}$ is an algebra morphism, it is easy to show
that the second coideal condition holds for the generators of $I$ and so,
$\overline{\epsilon}(I)=0$ .

Lastly, since $\overline{S}$ is an algebra antimorphism, it is enough to show that
$\overline{S}(I)\subseteq I$ for generators of $I$.
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$\overline{S}(\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)1)=\sum_{(x)}\overline{S}(\overline{S}(x^{\prime\prime}))\overline{S}(x^{\prime})-\overline{\epsilon}(x)\overline{S}(1)$

$=$ [ $\overline{\mu}o(\overline{S}\otimes id)\circ(\overline{S}\otimes\overline{S}\circ$ A $op)$ ] $(x)-\overline{\epsilon}(x)1$

$=$ [ $\overline{\mu}o(\overline{S}\otimes id)\circ$ (A $0\overline{S})$ ] $(x)-\overline{\epsilon}\circ\overline{S}(x)1$

$=\sum_{(\overline{S}(x))}\overline{S}(\overline{S}(x)^{\prime})\overline{S}(x)^{\prime\prime}-\overline{\epsilon}(\overline{S}(x))1$

$=\sum_{(y)}\overline{S}(y^{\prime})y^{\prime\prime}-\overline{\epsilon}(y)1$
, for $y=\overline{S}(x)\in i(C)$

$\equiv 0$ $mod I$ .

Thus, $\overline{S}(\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)1)\in I$ , and likewise for generators of the other form.

Therefore, $\overline{S}(I)\subseteq I$ . $\square $

We summarize the preceding results in the following theorem.

THEOREM 1.3. Let $C$ be a coalgebra, and $S:C\rightarrow C^{cop}$ be any coalgebra
map. Then, $\mathscr{H}(C, S)=T(C)/I(S)$ is a Hopf algebra with antipode $\hat{S}$ , the unique
bialgebra morphism $\hat{S}$ : $\mathscr{H}(C, S)\rightarrow \mathscr{H}(C, S)^{opcop}$ induced by $\overline{S}$ .

PROOF. As a consequence of Lemma 1.2, $I(S)$ can be factored out of $T(C)$ ,

yielding a nontrivial quotient $(\mathscr{H}(C, S),\hat{\mu},\hat{\eta},\hat{\Delta},\hat{\epsilon})$ with the structure of a bial-
gebra. In fact, the induced $\hat{S}$ is the antipode for $\mathscr{H}(C, S)$ . Consider the inter-
section of the kemels of $id*\hat{S}-\hat{\eta}\circ\hat{\epsilon}$ and $\hat{S}*id-\hat{\eta}\circ\hat{\epsilon}$ . It is a subalgebra of
$\mathscr{H}(C, S)$ which contains $i(C)$ , and since $i(C)$ generates $\mathscr{H}(C, S)$ as an algebra,
we have $id*\hat{S}=\hat{\eta}\circ\hat{\epsilon}=\hat{S}*id$ . $\square $

2. The Universality of $\mathscr{H}(C, S)$

A natural question to ask is: If we begin with a pair $(C, S)$ and construct
$\mathscr{H}(C, S)$ , in what categorical sense is $\mathscr{H}(C, S)$ free? The following result char-
acterizes the universality of $\mathscr{H}(C, S)$ .

THEOREM 2.1. Given any pair $(H, f)$ , where $H$ is a Hopf algebra and
$f:C\rightarrow H$ is a coalgebra map satisfying $f\circ S=S_{H}\circ f$ , there is a unique Hopf
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algebra morphism $\hat{f}$ : $\mathscr{H}(C, S)-*H$ such that $f\circ l=f$ . In other words, we have
the commutative diagram

where $l=\pi oi$ , with $i:C\rightarrow T(C)$ denoting the canonical injection and $\pi$ :
$T(C)\rightarrow \mathscr{H}(C, S)$ denoting the canonical surjection.

PROOF. We have to show that we can lift $f$ to $\mathscr{H}(C, S)$ in the following
diagram:

(2.1)

Beginning with the left side of (2.1), we use Lemma 1.1 to lift $f$ to a bial-
gebra map $\overline{f}$ : $T(C)\rightarrow H$ . The assumption $f\circ S=S_{H}\circ f$ lifts to $\overline{f}\circ\overline{S}=S_{H}\circ\overline{f}$ ,

where $\overline{S}:T(C)\rightarrow T(C)^{opcop}$ is the previously constructed bialgebra map. Thus,
$f$ induces a bialgebra map $\overline{f}:T(C)\rightarrow H$ satisfying $f\circ\overline{S}=S_{H}\circ\overline{f}$ .

Next, consider the right side of (2.1). We have reduced the problem to lifting
the bialgebra map $\overline{f}$ to a Hopf algebra map $\hat{f}$ : $\mathscr{H}(C, S)\rightarrow H$ . This requires that
$I(S)\subseteq ker\overline{f}$ and $f\circ\overline{S}=S_{H}\circ f$ . Clearly, the former condition will hold if and
only if $\overline{f}$ annihilates the generators of $I(S)$ . Identify $C$ with its image in $T(C)$ ,
and we have

$\overline{f}(\sum_{(x)}x^{\prime}\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)1)=\sum_{(x)}\overline{f}(x^{\prime})\overline{f}\circ\overline{S}(x^{\prime\prime})-\overline{\epsilon}(x)\overline{f}(1)$

$=\sum_{(x)}\overline{f}(x^{\prime})S_{H}\circ\overline{f}(x^{\prime\prime})-\overline{\epsilon}(x)1_{H}$

$=\sum_{(\overline{f}(x))}\overline{f}(x)^{\prime}S_{H}(\overline{f}(x)^{\prime\prime})-\epsilon_{H}(\overline{f}(x))1_{H}$

$=\sum_{(y)}y^{\prime}S_{H}(y^{\prime\prime})-\epsilon_{H}(y)1_{H}$
, for $y=\overline{f}(x)\in H$

$=0$
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Similarly, $f(\sum_{(x)}\overline{S}(x^{\prime})x^{\prime\prime}-\overline{\epsilon}(x)1)=0$ , and so, $I(S)\subseteq kerf$ . The latter condition

is immediate. Hence, $f$ induces a Hopf algebra map $\int:\mathscr{H}(C, S)\rightarrow H$ , and the
theorem follows. $\square $

3. Examples of Hopf Algebras $\mathscr{H}(C_{2}, S)$

In this section, we present some examples, including $SL_{q}(2)$ , obtained from
our constmction. The following definition is from [4].

DEFINITION 3.1. Let $C_{n}=C_{n}(C)$ be a coalgebra with basis $\{x_{ij}\}_{1\leq i,j\leq n}$ over
$C$ and stmcture maps defined by

$\Delta(x_{ij})=\sum_{k=1}^{n}x_{ik}\otimes x_{kj}$ and $\epsilon(x_{ij})=\delta_{ij}$ .

Following Takeuchi, we call $C_{n}$ the $n\times n$ matric coalgebra since it is isomorphic
to $M_{n^{*}}$ , the dual of the $n\times n$ matrices with convolution product.

EXAMPLE 3.2. Consider the situation of Theorem 2.1 with $C=C_{2}$ and
$H=SL_{q}(2)$ :

where $f$ is the coalgebra map defined by $f(x_{11})=a,$ $f(x_{12})=b,$ $f(x_{21})=c$ ,
$f(x_{22})=d$ , and $S:C_{2}\rightarrow C_{2}^{cop}$ is the coalgebra map defined by $S(x_{11})=x_{22}$ ,
$S(x_{12})=-qx_{12},$ $S(x_{21})=-\mathcal{T}^{-1_{\chi_{21}}},$ $S(x_{22})=x_{11}$ . The hypotheses of Theorem 2.1
are easily seen to be satisfied. Thus, there is a Hopf algebra map $f$ ;

$\mathscr{H}(C_{2}, S)\rightarrow SL_{q}(2)$ , which we claim is a Hopf algebra isomorphism. Now,
$\mathscr{H}(C_{2}, S)=T(C_{2})/I(S)$ where $T(C_{2})\cong C\{x_{11}, x_{12}, x_{21}, x_{22}\}$ , the free associative
algebra on four generators. See [1] for the latter fact. In Kassel’s notation, the
generators of $I(S)$ can be written in abridged matrix form as

(3.1) $\left(\begin{array}{ll}x_{ll} & x_{12}\\x_{2l} & x_{22}\end{array}\right)$ . $\overline{S}\left(\begin{array}{ll}x_{11} & x_{l2}\\x_{2l} & x_{22}\end{array}\right)-\overline{\eta}\circ\overline{\epsilon}\left(\begin{array}{ll}x_{ll} & x_{12}\\x_{21} & x_{22}\end{array}\right)$

and



Hopf Algebras Generated by a Coalgebra 109

(3.2) $\overline{s}\left(\begin{array}{ll}x_{11} & x_{l2}\\x_{21} & x_{22}\end{array}\right)$ . $\left(\begin{array}{ll}x_{11} & x_{12}\\x_{2l} & x_{22}\end{array}\right)-\overline{\eta}\circ\overline{\epsilon}\left(\begin{array}{ll}x_{11} & x_{l2}\\x_{21} & x_{22}\end{array}\right)$ .

In addition, $SL_{q}(2)$ is defined in [1] as the quotient of the free associative algebra
$C\{a, b, c, d\}$ by the two-sided ideal with generators given by

(3.3) $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\left(\begin{array}{ll}d & -qb\\-q^{-1}c & a\end{array}\right)-\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$

and

(3.4) $\left(\begin{array}{ll}d & -qb\\-q^{-1}c & a\end{array}\right)\left(\begin{array}{ll}a & b\\c & d\end{array}\right)-\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$

in abridged matrix form. We will construct a two-sided inverse for $f$ . There exists
an algebra map $g:C\{a, b, c, d\}\rightarrow \mathscr{H}(C_{2}, S)$ defined by $g(a)=x_{11},$ $g(b)=x_{12}$ ,
$g(c)=x_{21}$ , and $g(d)=x_{22}$ . Notice that under $g$ , expressions of the form (3.3)
and (3.4) are mapped to (3.1) and (3.2), respectively, and these images are zero
in $\mathscr{H}(C_{2}, S)$ . Thus, $g$ induces a Hopf algebra map $\hat{g}$ : $SL_{q}(2)\rightarrow \mathscr{H}(C_{2}, S)$ with
$f\circ\hat{g}=id_{SL_{q}(2)}$ and $\hat{g}\circ f=id_{\mathscr{J}(C_{2},S)}$ . Therefore, $\int$ is an isomorphism of Hopf
algebras, and we have the following result.

THEOREM 3.3. With the coalgebra map $S$ of Example 3.2, $\mathscr{H}(C_{2}, S)$ is
isomorphic to $SL_{q}(2)$ .

EXAMPLE 3.4. Now, we will tum our attention to a slightly different ques-
tion involving $C_{2}$ . Example 3.2 suggests a general situation in which we can
ask: Are there other coalgebra maps $S:C_{2}\rightarrow C_{2}^{cop}$ which yield Hopf algebras
$\mathscr{H}(C_{2}, S)$ that are not isomorphic to $SL_{q}(2)$? Since the dimension of $C_{2}$ is
small, we can use Mathematica to search for solutions. Any coalgebra map $S$ :
$C_{2}\rightarrow C_{2}^{cop}$ must be of the form:

$S(x_{11})=a_{11}x_{11}+a_{12}x_{12}+a_{13}x_{21}+a_{14}x_{22}$

$S(x_{12})=a_{21}x_{11}+a_{22}x_{12}+a_{23}x_{21}+a_{24}x_{22}$

$S(x_{21})=a_{31}x_{11}+a_{32}x_{12}+a_{33}x_{21}+a_{34}x_{22}$

$S(x_{22})=a_{41}x_{11}+a_{42}x_{12}+a_{43}x_{21}+a_{44}x_{22}$

where $a_{ij}\in C$ for $1\leq i,$ $j\leq 4$ . Moreover, since $S:C_{2}\rightarrow C_{2}^{cop}$ is a coalgebra map,
it must satisfy the abridged matrix relations:
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(3.5) $S\otimes S\circ\Delta^{op}\left(\begin{array}{ll}x_{ll} & x_{12}\\x_{2l} & x_{22}\end{array}\right)=\Delta\circ S\left(\begin{array}{ll}x_{1l} & x_{12}\\x_{21} & x_{22}\end{array}\right)$

and

(3.6) $\epsilon\circ S(x_{21}^{11}x$ $x_{12}x_{22}$
$=\epsilon(xx_{21}^{11}$ $x_{22}x^{12}$

The equations from (3.5) can be expanded out and written in terms of a basis
for $C_{2}\otimes C_{2}$ , namely $\{x_{ij}\otimes x_{kl}\}_{1\leq i,j,k,l\leq 2}$ to yield 64 equations upon equating
coefficients. From (3.6), there are 4 additional equations. We use Mathematica to
solve the 68 equations in 16 unknowns $a_{ij},$ $1\leq i,j\leq 4$ . In particular, this search
found the coalgebra map $S$ of Example 3.2 and Theorem 3.3 among the solu-
tions. It can be expressed as

(3.7) $S(x_{11}x_{21}$ $x_{12}x_{22}$
$=(_{-\tau^{x_{-\iota_{x_{21}}}}}22$ $-qx_{12}x_{11}$

In addition, there were several other families of solutions, including a simple one
given in abridged matrix form by

(3.8) $T(x_{11}x_{21}$ $x_{22}^{12}x$
$=(\mathcal{T}^{x_{1_{X_{12}^{1}}}}-1$ $q_{x_{22}^{X_{21}}}$

Notice that $S$ is the quantum analogue to the inverse map and that $T$ is the
quantum analogue to the transpose map.

Moreover, $\mathscr{H}(C_{2}, S)$ and $\mathscr{H}(C_{2}, T)$ are not isomorphic. This can be seen by
computing $S^{2}$ and $T^{2}$ . We have

(3.9) $S^{2}\left(\begin{array}{ll}x_{ll} & x_{l2}\\x_{2l} & x_{22}\end{array}\right)=\left(\begin{array}{ll}S(x_{22}) & -qS(x_{l2})\\-q^{-l}S(x_{2l}) & S(x_{1l})\end{array}\right)=\left(\begin{array}{ll}x_{ll} & q^{2_{\chi_{l2}}}\\q^{-2}x_{21} & x_{22}\end{array}\right)$

and

(3.10) $T^{2}(_{x_{21}^{11}}^{x}$ $x_{22}^{12}x$
$=\left(\begin{array}{ll}T(x_{11}) & qT(x_{2l})\\\tau^{-l}\tau(x_{12}) & T(x_{22})\end{array}\right)=\left(\begin{array}{ll}x_{ll} & x_{l2}\\x_{21} & x_{22}\end{array}\right)$ .

Equations (3.9) and (3.10) imply that $S$ is of infinite order and $T$ is of finite
order, respectively. In addition, $S^{2}$ and $T^{2}$ do not have the same set of eigen-
values because $T^{2}$ has only real eigenvalues, and $S^{2}$ has some complex eigen-
values. This guarantees that $\mathscr{H}(C_{2}, S)$ and $\mathscr{H}(C_{2}, T)$ are not isomorphic because
any isomorphism between them would have to preserve the eigenvalues for the
antipodes and their powers. Example 3.4 shows that the construction of $\mathscr{H}(C, S)$

depends on both $C$ and $S$ .
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