HOPF ALGEBRAS GENERATED BY A COALGEBRA

By

Charles B. Ragozzine, Jr.

Abstract

The concept of a free Hopf algebra generated by a coalgebra was introduced by Takeuchi to provide an example of a Hopf algebra with a non-bijective antipode. In general, this free Hopf algebra is not generated as an algebra by the coalgebra. In this paper, we construct a class of Hopf algebras, including $S L_{q}(2)$, which are generated as algebras by a coalgebra and which satisfy a useful universality condition.

Introduction

The paper is presented in three parts. First, a class of Hopf algebras which are generated as algebras by a coalgebra is constructed. Next, the universality of this class of Hopf algebras is addressed. Finally, relevant examples to this discussion are considered, including $S L_{q}(2)$.

Most of the important preliminaries can be found in [1] and [2]. In particular, following [1], we will use the superscripts " $o p$ " and "cop" to refer to the opposite algebra and opposite coalgebra, respectively. We will also make use of the wellknown fact that the tensor algebra of a coalgebra (C, Δ, ε), denoted $(T(C), \bar{\mu}$, $\bar{\eta}, \bar{\Delta}, \bar{\varepsilon})$, is a bialgebra. For a reference, see [3].

1. The Construction

Lemma 1.1. Suppose that (C, Δ, ε) is a coalgebra, $\left(B, \mu_{B}, \eta_{B}, \Delta_{B}, \varepsilon_{B}\right)$ is a bialgebra, and $f: C \rightarrow B$ is a coalgebra map. Then, there exists a unique bialgebra map $\bar{f}: T(C) \rightarrow B$ extending f.

Proof. By the universality of $T(C)$, we know that f induces a unique algebra map $\bar{f}: T(C) \rightarrow B$. It remains to show that \bar{f} is a coalgebra map, which requires $\varepsilon_{B} \circ \bar{f}=\bar{\varepsilon}$ and $\bar{f} \otimes \bar{f} \circ \bar{\Delta}=\Delta_{B} \circ \bar{f}$. Identify C with its image in $T(C)$,

[^0]and we have $\left(\varepsilon_{B} \circ \bar{f}\right)(c)=\varepsilon_{B}(\bar{f}(c))=\varepsilon_{B}(f(c))=\varepsilon(c)=\bar{\varepsilon}(c)$ and $\left(\Delta_{B} \circ \bar{f}\right)(c)=$ $\Delta_{B}(\bar{f}(c))=\Delta_{B}(f(c))=(f \otimes f)(\Delta(c))=(\bar{f} \otimes \bar{f})(\Delta(c))=(\bar{f} \otimes \bar{f})(\bar{\Delta}(c))=(\bar{f} \otimes$ $\bar{f} \circ \bar{\Delta})(c)$.

We now proceed with the construction. Let (C, Δ, ε) be a coalgebra, and let $S: C \rightarrow C^{c o p}$ be any coalgebra map. In other words, S is a coalgebra antimorphism on C. Then, by Lemma 1.1, S induces a bialgebra map $\bar{S}: T(C) \rightarrow$ $T(C)^{\text {op cop }}$, and we have the commutative diagram

The effect is that S has been extended to \bar{S} in such a way that $\bar{S}(x y)=\bar{S}(y) \bar{S}(x)$, for all $x, y \in T(C)$ and with the property that $\bar{\varepsilon} \circ \bar{S}=\bar{\varepsilon}$ and $\bar{S} \otimes \bar{S} \circ \bar{\Delta}=\bar{\Delta}^{o p} \circ \bar{S}$.

Next, let $I=I(S)$ be the two-sided ideal of $T(C)$ generated by elements of the form

$$
\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1 \quad \text { and } \quad \sum_{(x)} \bar{S}\left(x^{\prime}\right) x^{\prime \prime}-\bar{\varepsilon}(x) 1 \quad \forall x \in i(C) .
$$

Lemma 1.2. I is a coideal of $T(C)$ such that $\bar{S}(I) \subseteq I$.
Proof. First, we prove that I is a coideal of $T(C)$. This requires that $\bar{\Delta}(I) \subseteq I \otimes T(C)+T(C) \otimes I$ and $\bar{\varepsilon}(I)=0$. Note that $(\bar{S} \otimes \bar{S}) \circ \bar{\Delta}=\bar{\Delta}^{o p} \circ \bar{S} \Leftrightarrow$ $(\bar{S} \otimes \bar{S}) \circ \bar{\Delta}^{o p}=\bar{\Delta} \circ \bar{S}$. It suffices to show the first coideal condition is true for the generators of I since $\bar{\Delta}$ is an algebra morphism. We have

$$
\begin{aligned}
& \bar{\Delta}\left(\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1\right) \\
& \quad=\sum_{(x)} \bar{\Delta}\left(x^{\prime}\right) \bar{\Delta} \circ \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) \bar{\Delta}(1) \\
& \quad=\sum_{(x)} \bar{\Delta}\left(x^{\prime}\right) \cdot \bar{S} \otimes \bar{S} \circ \bar{\Delta}^{o p}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1 \otimes 1 \\
& \quad=\sum_{(x)} x^{\prime} \otimes x^{\prime \prime} \cdot \bar{S}\left(x^{\prime \prime \prime \prime}\right) \otimes \bar{S}\left(x^{\prime \prime \prime}\right)-\bar{\varepsilon}(x) 1 \otimes 1
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime \prime \prime}\right) \otimes x^{\prime \prime} \bar{S}\left(x^{\prime \prime \prime}\right)-\bar{\varepsilon}(x) 1 \otimes 1 \\
& =\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime \prime \prime}\right) \otimes\left[x^{\prime \prime} \bar{S}\left(x^{\prime \prime \prime}\right)-\bar{\varepsilon}\left(x^{\prime \prime}\right) 1+\bar{\varepsilon}\left(x^{\prime \prime}\right) 1\right]-\bar{\varepsilon}(x) 1 \otimes 1 \\
& =\underbrace{\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime \prime \prime}\right) \otimes \underbrace{\left[x^{\prime \prime} \bar{S}\left(x^{\prime \prime \prime}\right)-\bar{\varepsilon}\left(x^{\prime \prime}\right) 1\right]}_{\in I}+\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime \prime \prime}\right) \otimes \bar{\varepsilon}\left(x^{\prime \prime}\right) 1-\bar{\varepsilon}(x) 1 \otimes 1}_{\in T(C) \otimes I} \\
& \equiv \sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime \prime \prime}\right) \otimes \bar{\varepsilon}\left(x^{\prime \prime}\right) 1-\bar{\varepsilon}(x) 1 \otimes 1 \bmod I \otimes T(C)+T(C) \otimes I \\
& \equiv \sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime \prime}\right) \otimes \bar{\varepsilon}\left(x^{\prime \prime}\right) 1-\bar{\varepsilon}(x) 1 \otimes 1 \bmod I \otimes T(C)+T(C) \otimes I \\
& \equiv \sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime \prime}\right) \otimes \bar{\varepsilon}\left(x^{\prime \prime}\right) 1-\bar{\varepsilon}(x) 1 \otimes 1 \bmod I \otimes T(C)+T(C) \otimes I \\
& =\sum_{(x)} x^{\prime} \bar{\varepsilon}\left(x^{\prime \prime}\right) \bar{S}\left(x^{\prime \prime}\right) \otimes 1-\bar{\varepsilon}(x) 1 \otimes 1 \\
& =\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime}\right) \otimes 1-\bar{\varepsilon}(x) 1 \otimes 1 \\
& =\left[\sum_{(x)}^{\left[x^{\prime} \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1+\bar{\varepsilon}(x) 1\right] \otimes 1-\bar{\varepsilon}(x) 1 \otimes 1}\right. \\
& =\underbrace{\left[\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1\right] \otimes 1+\bar{\varepsilon}(x) 1 \otimes 1-\bar{\varepsilon}(x) 1 \otimes 1}_{\in I \otimes T(C)} \\
& \equiv 0 \\
& \bmod I \otimes T(C)+T(C) \otimes I .
\end{aligned}
$$

The proof uses the coassociative and counitary axioms and is similar for generators of the form $\sum_{(x)} \bar{S}\left(x^{\prime}\right) x^{\prime \prime}-\bar{\varepsilon}(x) 1$, and thus, $\bar{\Delta}(I) \subseteq I \otimes T(C)+$ $T(C) \otimes I$. Using the fact that $\bar{\varepsilon}$ is an algebra morphism, it is easy to show that the second coideal condition holds for the generators of I and so, $\bar{\varepsilon}(I)=0$.

Lastly, since \bar{S} is an algebra antimorphism, it is enough to show that $\bar{S}(I) \subseteq I$ for generators of I.

$$
\begin{aligned}
\bar{S}\left(\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1\right) & =\sum_{(x)} \bar{S}\left(\bar{S}\left(x^{\prime \prime}\right)\right) \bar{S}\left(x^{\prime}\right)-\bar{\varepsilon}(x) \bar{S}(1) \\
& =\left[\bar{\mu} \circ(\bar{S} \otimes i d) \circ\left(\bar{S} \otimes \bar{S} \circ \bar{\Delta}^{o p}\right)\right](x)-\bar{\varepsilon}(x) 1 \\
& =[\bar{\mu} \circ(\bar{S} \otimes i d) \circ(\bar{\Delta} \circ \bar{S})](x)-\bar{\varepsilon} \circ \bar{S}(x) 1 \\
& =\sum_{(\bar{S}(x))} \bar{S}\left(\bar{S}(x)^{\prime}\right) \bar{S}(x)^{\prime \prime}-\bar{\varepsilon}(\bar{S}(x)) 1 \\
& =\sum_{(y)} \bar{S}\left(y^{\prime}\right) y^{\prime \prime}-\bar{\varepsilon}(y) 1, \quad \text { for } y=\bar{S}(x) \in i(C) \\
& \equiv 0 \bmod I .
\end{aligned}
$$

Thus, $\bar{S}\left(\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1\right) \in I$, and likewise for generators of the other form. Therefore, $\bar{S}(I) \subseteq I$.

We summarize the preceding results in the following theorem.

Theorem 1.3. Let C be a coalgebra, and $S: C \rightarrow C^{c o p}$ be any coalgebra map. Then, $\mathscr{H}(C, S)=T(C) / I(S)$ is a Hopf algebra with antipode \hat{S}, the unique bialgebra morphism $\hat{S}: \mathscr{H}(C, S) \rightarrow \mathscr{H}(C, S)^{\text {opcop }}$ induced by \bar{S}.

Proof. As a consequence of Lemma 1.2, $I(S)$ can be factored out of $T(C)$, yielding a nontrivial quotient $(\mathscr{H}(C, S), \hat{\mu}, \hat{\eta}, \hat{\Delta}, \hat{\varepsilon})$ with the structure of a bialgebra. In fact, the induced \hat{S} is the antipode for $\mathscr{H}(C, S)$. Consider the intersection of the kernels of id $* \hat{S}-\hat{\eta} \circ \hat{\varepsilon}$ and $\hat{S} * i d-\hat{\eta} \circ \hat{\varepsilon}$. It is a subalgebra of $\mathscr{H}(C, S)$ which contains $i(C)$, and since $i(C)$ generates $\mathscr{H}(C, S)$ as an algebra, we have id $* \hat{S}=\hat{\eta} \circ \hat{\varepsilon}=\hat{S} * i d$.

2. The Universality of $\mathscr{H}(C, S)$

A natural question to ask is: If we begin with a pair (C, S) and construct $\mathscr{H}(C, S)$, in what categorical sense is $\mathscr{H}(C, S)$ free? The following result characterizes the universality of $\mathscr{H}(C, S)$.

Theorem 2.1. Given any pair (H, f), where H is a Hopf algebra and $f: C \rightarrow H$ is a coalgebra map satisfying $f \circ S=S_{H} \circ f$, there is a unique Hopf
algebra morphism $\hat{f}: \mathscr{H}(C, S) \rightarrow H$ such that $\hat{f} \circ \imath=f$. In other words, we have the commutative diagram

where $t=\pi \circ i$, with $i: C \rightarrow T(C)$ denoting the canonical injection and π : $T(C) \rightarrow \mathscr{H}(C, S)$ denoting the canonical surjection.

Proof. We have to show that we can lift f to $\mathscr{H}(C, S)$ in the following diagram:

Beginning with the left side of (2.1), we use Lemma 1.1 to lift f to a bialgebra map $\bar{f}: T(C) \rightarrow H$. The assumption $f \circ S=S_{H} \circ f$ lifts to $\bar{f} \circ \bar{S}=S_{H} \circ \bar{f}$, where $\bar{S}: T(C) \rightarrow T(C)^{o p c o p}$ is the previously constructed bialgebra map. Thus, f induces a bialgebra map $\bar{f}: T(C) \rightarrow H$ satisfying $\bar{f} \circ \bar{S}=S_{H} \circ \bar{f}$.

Next, consider the right side of (2.1). We have reduced the problem to lifting the bialgebra map \bar{f} to a Hopf algebra map $\hat{f}: \mathscr{H}(C, S) \rightarrow H$. This requires that $I(S) \subseteq \operatorname{ker} \bar{f}$ and $\hat{f} \circ \bar{S}=S_{H} \circ \hat{f}$. Clearly, the former condition will hold if and only if \bar{f} annihilates the generators of $I(S)$. Identify C with its image in $T(C)$, and we have

$$
\begin{aligned}
\bar{f}\left(\sum_{(x)} x^{\prime} \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1\right) & =\sum_{(x)} \bar{f}\left(x^{\prime}\right) \bar{f} \circ \bar{S}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) \bar{f}(1) \\
& =\sum_{(x)} \bar{f}\left(x^{\prime}\right) S_{H} \circ \bar{f}\left(x^{\prime \prime}\right)-\bar{\varepsilon}(x) 1_{H} \\
& =\sum_{(\bar{f}(x))} \bar{f}(x)^{\prime} S_{H}\left(\bar{f}(x)^{\prime \prime}\right)-\varepsilon_{H}(\bar{f}(x)) 1_{H} \\
& =\sum_{(y)} y^{\prime} S_{H}\left(y^{\prime \prime}\right)-\varepsilon_{H}(y) 1_{H}, \quad \text { for } y=\bar{f}(x) \in H \\
& =0
\end{aligned}
$$

Similarly, $\bar{f}\left(\sum_{(x)} \bar{S}\left(x^{\prime}\right) x^{\prime \prime}-\bar{\varepsilon}(x) 1\right)=0$, and so, $I(S) \subseteq \operatorname{ker} \bar{f}$. The latter condition is immediate. Hence, \bar{f} induces a Hopf algebra map $\hat{f}: \mathscr{H}(C, S) \rightarrow H$, and the theorem follows.

3. Examples of Hopf Algebras $\mathscr{H}\left(C_{2}, S\right)$

In this section, we present some examples, including $S L_{q}(2)$, obtained from our construction. The following definition is from [4].

Definition 3.1. Let $C_{n}=C_{n}(\boldsymbol{C})$ be a coalgebra with basis $\left\{x_{i j}\right\}_{1 \leq i, j \leq n}$ over C and structure maps defined by

$$
\Delta\left(x_{i j}\right)=\sum_{k=1}^{n} x_{i k} \otimes x_{k j} \quad \text { and } \quad \varepsilon\left(x_{i j}\right)=\delta_{i j}
$$

Following Takeuchi, we call C_{n} the $n \times n$ matric coalgebra since it is isomorphic to M_{n}^{*}, the dual of the $n \times n$ matrices with convolution product.

Example 3.2. Consider the situation of Theorem 2.1 with $C=C_{2}$ and $H=S L_{q}(2)$:

where f is the coalgebra map defined by $f\left(x_{11}\right)=a, f\left(x_{12}\right)=b, f\left(x_{21}\right)=c$, $f\left(x_{22}\right)=d$, and $S: C_{2} \rightarrow C_{2}^{c o p}$ is the coalgebra map defined by $S\left(x_{11}\right)=x_{22}$, $S\left(x_{12}\right)=-q x_{12}, S\left(x_{21}\right)=-q^{-1} x_{21}, S\left(x_{22}\right)=x_{11}$. The hypotheses of Theorem 2.1 are easily seen to be satisfied. Thus, there is a Hopf algebra map \hat{f} : $\mathscr{H}\left(C_{2}, S\right) \rightarrow S L_{q}(2)$, which we claim is a Hopf algebra isomorphism. Now, $\mathscr{H}\left(C_{2}, S\right)=T\left(C_{2}\right) / I(S)$ where $T\left(C_{2}\right) \cong C\left\{x_{11}, x_{12}, x_{21}, x_{22}\right\}$, the free associative algebra on four generators. See [1] for the latter fact. In Kassel's notation, the generators of $I(S)$ can be written in abridged matrix form as

$$
\left(\begin{array}{ll}
x_{11} & x_{12} \tag{3.1}\\
x_{21} & x_{22}
\end{array}\right) \cdot \bar{S}\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)-\bar{\eta} \circ \bar{\varepsilon}\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)
$$

and

$$
\bar{S}\left(\begin{array}{ll}
x_{11} & x_{12} \tag{3.2}\\
x_{21} & x_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)-\bar{\eta} \circ \bar{\varepsilon}\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) .
$$

In addition, $S L_{q}(2)$ is defined in [1] as the quotient of the free associative algebra $\boldsymbol{C}\{a, b, c, d\}$ by the two-sided ideal with generators given by

$$
\left(\begin{array}{ll}
a & b \tag{3.3}\\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -q b \\
-q^{-1} c & a
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
d & -q b \tag{3.4}\\
-q^{-1} c & a
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

in abridged matrix form. We will construct a two-sided inverse for \hat{f}. There exists an algebra map $g: C\{a, b, c, d\} \rightarrow \mathscr{H}\left(C_{2}, S\right)$ defined by $g(a)=x_{11}, g(b)=x_{12}$, $g(c)=x_{21}$, and $g(d)=x_{22}$. Notice that under g, expressions of the form (3.3) and (3.4) are mapped to (3.1) and (3.2), respectively, and these images are zero in $\mathscr{H}\left(C_{2}, S\right)$. Thus, g induces a Hopf algebra map $\hat{g}: S L_{q}(2) \rightarrow \mathscr{H}\left(C_{2}, S\right)$ with $\hat{f} \circ \hat{g}=i d_{S L_{q}(2)}$ and $\hat{g} \circ \hat{f}=i d_{\mathscr{H}\left(C_{2}, S\right)}$. Therefore, \hat{f} is an isomorphism of Hopf algebras, and we have the following result.

Theorem 3.3. With the coalgebra map S of Example 3.2, $\mathscr{H}\left(C_{2}, S\right)$ is isomorphic to $S L_{q}(2)$.

Example 3.4. Now, we will turn our attention to a slightly different question involving C_{2}. Example 3.2 suggests a general situation in which we can ask: Are there other coalgebra maps $S: C_{2} \rightarrow C_{2}^{c o p}$ which yield Hopf algebras $\mathscr{H}\left(C_{2}, S\right)$ that are not isomorphic to $S L_{q}(2)$? Since the dimension of C_{2} is small, we can use Mathematica to search for solutions. Any coalgebra map S : $C_{2} \rightarrow C_{2}^{c o p}$ must be of the form:

$$
\begin{aligned}
& S\left(x_{11}\right)=a_{11} x_{11}+a_{12} x_{12}+a_{13} x_{21}+a_{14} x_{22} \\
& S\left(x_{12}\right)=a_{21} x_{11}+a_{22} x_{12}+a_{23} x_{21}+a_{24} x_{22} \\
& S\left(x_{21}\right)=a_{31} x_{11}+a_{32} x_{12}+a_{33} x_{21}+a_{34} x_{22} \\
& S\left(x_{22}\right)=a_{41} x_{11}+a_{42} x_{12}+a_{43} x_{21}+a_{44} x_{22}
\end{aligned}
$$

where $a_{i j} \in C$ for $1 \leq i, j \leq 4$. Moreover, since $S: C_{2} \rightarrow C_{2}^{c o p}$ is a coalgebra map, it must satisfy the abridged matrix relations:

$$
S \otimes S \circ \Delta^{o p}\left(\begin{array}{ll}
x_{11} & x_{12} \tag{3.5}\\
x_{21} & x_{22}
\end{array}\right)=\Delta \circ S\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)
$$

and

$$
\varepsilon \circ S\left(\begin{array}{ll}
x_{11} & x_{12} \tag{3.6}\\
x_{21} & x_{22}
\end{array}\right)=\varepsilon\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)
$$

The equations from (3.5) can be expanded out and written in terms of a basis for $C_{2} \otimes C_{2}$, namely $\left\{x_{i j} \otimes x_{k l}\right\}_{1 \leq i, j, k, l \leq 2}$ to yield 64 equations upon equating coefficients. From (3.6), there are 4 additional equations. We use Mathematica to solve the 68 equations in 16 unknowns $a_{i j}, 1 \leq i, j \leq 4$. In particular, this search found the coalgebra map S of Example 3.2 and Theorem 3.3 among the solutions. It can be expressed as

$$
S\left(\begin{array}{cc}
x_{11} & x_{12} \tag{3.7}\\
x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{cc}
x_{22} & -q x_{12} \\
-q^{-1} x_{21} & x_{11}
\end{array}\right)
$$

In addition, there were several other families of solutions, including a simple one given in abridged matrix form by

$$
T\left(\begin{array}{ll}
x_{11} & x_{12} \tag{3.8}\\
x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{cc}
x_{11} & q x_{21} \\
q^{-1} x_{12} & x_{22}
\end{array}\right)
$$

Notice that S is the quantum analogue to the inverse map and that T is the quantum analogue to the transpose map.

Moreover, $\mathscr{H}\left(C_{2}, S\right)$ and $\mathscr{H}\left(C_{2}, T\right)$ are not isomorphic. This can be seen by computing S^{2} and T^{2}. We have

$$
S^{2}\left(\begin{array}{ll}
x_{11} & x_{12} \tag{3.9}\\
x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{cc}
S\left(x_{22}\right) & -q S\left(x_{12}\right) \\
-q^{-1} S\left(x_{21}\right) & S\left(x_{11}\right)
\end{array}\right)=\left(\begin{array}{cc}
x_{11} & q^{2} x_{12} \\
q^{-2} x_{21} & x_{22}
\end{array}\right)
$$

and

$$
T^{2}\left(\begin{array}{ll}
x_{11} & x_{12} \tag{3.10}\\
x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{cc}
T\left(x_{11}\right) & q T\left(x_{21}\right) \\
q^{-1} T\left(x_{12}\right) & T\left(x_{22}\right)
\end{array}\right)=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) .
$$

Equations (3.9) and (3.10) imply that S is of infinite order and T is of finite order, respectively. In addition, S^{2} and T^{2} do not have the same set of eigenvalues because T^{2} has only real eigenvalues, and S^{2} has some complex eigenvalues. This guarantees that $\mathscr{H}\left(C_{2}, S\right)$ and $\mathscr{H}\left(C_{2}, T\right)$ are not isomorphic because any isomorphism between them would have to preserve the eigenvalues for the antipodes and their powers. Example 3.4 shows that the construction of $\mathscr{H}(C, S)$ depends on both C and S.

References

[1] Christian Kassel. Quantum Groups, Springer-Verlag: New York, 1995.
[2] Moss Sweedler. Hopf Algebras, W.A. Benjamin, Inc.: New York, 1969.
[3] M. Takeuchi. Free Hopf Algebras generated by coalgebras. J. Math. Soc. Japan 23 (1971), 561-582.
[4] M. Takeuchi. Matric Bialgebras and Quantum Groups. Israel Journal of Math ematics 72 (1990), 232-251.

Mathematical Sciences Dept.
SUNY Oneonta, Oneonta, NY 13820
E-mail address: ragozzc@oneonta.edu

[^0]: Received July 18, 2001.

