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SPINORS, CALIBRATIONS AND GRASSMANNIANS

By

Zhou JIANWEI

Abstract. In this paper we use Clifford algebra and spinor calculus
to study the calibrations on Riemannian manifolds and the Grass-
mann manifolds. Show that for every Grassmannian, there is a map
$\pi$ : $G(k, R^{m})\rightarrow M$ such that every $\xi\in M$ is a calibration on $R^{m}$ and
$\pi^{-1}(\xi)$ is the contact set of $\xi$ . In low dimensional cases, the cali-
bration sets $M$ are manifolds or manifolds with singularities. We also
use Clifford algebra to study the isotropy groups of calibrations.

\S 1. Introduction

In [9], we gave a new treatment of the Clifford algebras. We represented the
pinor and spinor spaces as subspaces of the Clifford algebras, then we used these
pinors to construct isomorphisms between the Clifford algebras and the matrix
algebras. In doing these, we have developed some spinor calculus. In this paper,
we use Clifford algebra and the results of [9] to study the calibrations and the
Grassmann manifolds.

Let $\xi$ be a closed k-form on a Riemannian manifold $M$. If for every
point $p$ of $M$ and every orthonormal vectors $e_{1},$

$\ldots,$
$e_{k}\in T_{p}M$ , we have

$\xi_{p}(e_{1}\wedge\cdots\wedge e_{k})\leq 1$ and there are $\overline{e}_{1},$ $\ldots,\overline{e}_{k}$ such that $\xi_{p}(\overline{e}_{1}\wedge\cdots\wedge\overline{e}_{k})=1$ , then
$\xi$ is called a calibration. The set of such $\overline{e}_{1}\wedge\cdots\wedge\overline{e}_{k}$ is called a contact set of the
calibration $\xi$ . The importance of the calibration is that the calibrations are closely
related with the homologically volume minimizing submanifolds (see [5], [6]).
Dadok and Harvey [2] have shown that from squares of spinors in dimension $8k$ ,
one can get calibrations. Their method can be phrased as follows.

Under the canonical isomorphism between the Clifford algebras and the
exterior algebras, the oriented Grassmannian $G(k, R^{m})$ can be looked as a subset
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of Clifford algebra, especially, $G(k, R^{m})\subset Pin(m)$ . For any $\xi,$ $\eta\in Cl_{m}$ with unit
norm, $x_{0},$ $x\in G(k, R^{m})$ , we have

$\langle x_{0}\xi\alpha(\eta^{l}), x\rangle=\langle x_{0}\xi, x\eta\rangle\leq 1$ .

These shows the k-form part of $x_{0}\xi\cdot\alpha(\eta^{l})$ is a calibration on $R^{m}$ and the element
$x$ is in the contact set of this calibration if and only if $ x\xi=x_{0}\eta$ .

In this paper, we study the cases of $\xi=\eta$ being the generators of the Clifford
modules constmcted in [9], see \S 2 of this paper. We shall also see that all
homogenous parts of $\xi\cdot\alpha(\xi^{l})$ are calibrations which includes many known
important calibrations. Let $M$ be the set of calibrations defined by k-form part
of $x\xi\cdot\alpha(\xi^{l}),$ $x\in G(k, R^{m})$ . There is a map $\pi$ : $G(k, R^{m})\rightarrow M$ defined naturally
and $\pi^{-1}(\phi)$ is the contact set of $\phi\in M$ . Then every Grassmann manifold can be
represented as a disjoint union of the contact sets of some calibrations. In low
dimensional cases, we can show that $\pi^{-1}(\phi)$ is a totally geodesic submanifold of
$G(k, R^{m})$ . In some cases, $\pi:G(k, R^{m})\rightarrow M$ define fibre bundles. These maps are
useful for our understanding the Grassmann manifolds. In many cases, the cali-
bration sets $M$ are manifolds or manifolds with singularities. We call $M$ calibra-
tion manifolds.

For example, as shown in [9], $A_{8}(1+\beta_{8})$ generates a left irreducible
module space $V_{8}=C\ell_{8}\cdot A_{8}(1+\beta_{8})$ over $Cl_{8}$ . We shall see that $A_{8}(1+\beta_{8})$ .
$\alpha(A_{8}(1+\beta_{8}))^{t}=A_{8}(1+\beta_{8})$ and $\Vert A_{8}(1+\beta_{8})\Vert=1/4$ . Let $\varphi_{j}$ be the 4-form part of
$16e_{1}e_{j}A_{8}(1+\beta_{8}),$ $i=1,$ $\ldots,$

$8$ . $\varphi_{1}$ is the Cayley calibration, the other $\varphi_{l}$ are special
Lagrangian calibrations. The calibration manifold $M$ defined by 4-form part
of $16xA_{8}(1+\beta_{8})$ is diffeomorphic to the unit sphere $S^{7}$ , that is, $M=\{\sum v_{l}\varphi_{i}|$

$v=(v_{1}, \ldots, v_{8})\in S^{7}\}$ . This is the content of Proposition 3.1.
For another example, let $\tilde{M}$ be the calibration manifold defined by 2-form

part of $16xA_{8}(1+\beta_{8}),$ $x\in G(2, R^{8})$ . In this case, $\tilde{M}$ is diffeomorphic to $S^{6}$ and
$\pi$ : $G(2, R^{8})\rightarrow S^{6}$ is a fibre bundle with fibre $CP^{3}$ .

The paper is organized as follows. In \S 2, we study the calibrations defined by
$x\xi\cdot\alpha(\xi^{t})$ for the case of $\xi$ being the generators of the Clifford modules. The
results are in Theorem 2.4 and 2.5. In \S 3, we study the calibration sets in low
dimensional cases.

In \S 4, we study the isotropy groups of calibrations. We show that in many
cases, the contact sets of the calibrations can be viewed as subsets of the isotropy
groups of the calibrations. In \S 5, we study the calibrations on Riemannian mani-
folds. Combining with a result of Lawson and Michelsohn [8], we show that there
is a Cayley calibration on a 8-dimensional Riemannian manifold if and only if
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the manifold is spin and there is a parallel pinor or spinor field on this manifold
(Theorem 5.3).

Many notations used in this paper have been used in [9]. We write here
for easy reference. Let $e_{1},$

$\ldots,$
$e_{m}$ be an orthonormal basis of $R^{m}$ , then $C\ell_{m}$ is

generated by $\{e_{i}\}$ with the relations: $e_{i}e_{j}+e_{j}e_{i}=-2\delta_{ij}$ . The homomorphism
$\alpha$ : $C\ell_{m}\rightarrow C\ell_{m}$ is defined by

$\alpha(\xi)=\xi$ , if $\xi\in C\ell_{m}^{even}$ ; $\alpha(\eta)=-\eta$ , if $\eta\in C\ell_{m^{odd}}$ .

When $m=2n$ , let $g_{j}=\frac{1}{2}(e_{2i-1}-\sqrt{-1}e_{2l}),\overline{g}_{i}=\frac{1}{2}(e_{2i-1}+\sqrt{-1}e_{2l}),$ $i=1,$ $\ldots,n$ .
Denote $A_{2n}={\rm Re}(\overline{g}_{1}\cdots\overline{g}_{n})$ and $B_{2n}={\rm Im}(\overline{g}_{1}\cdots\overline{g}_{n})$ . Let $\omega_{m}=e_{1}e_{2}\cdots e_{m}$ be the
volume element of $C\ell_{m}$ . The element $\beta_{m}\in C\ell_{m}$ is defined by

$\beta_{m}=\left\{\begin{array}{l}e_{1}e_{3}\cdots e_{m-3}e_{m-1}, meven\cdot.\\e_{1}e_{3}\cdots e_{m-2}e_{m}, modd.\end{array}\right.$

\S 2. Pinors and Calibrations

We have shown in [9] that every pinor or spinor space can be realized as a
subspace of Clifford algebra. Under the canonical isomorphism $\rho$ : $C\ell_{m}\rightarrow\wedge(R^{m})$

defined by $\rho(e_{i_{1}}\cdots e_{i_{k}})=e_{j_{1}}\wedge\cdots\wedge e_{i_{k}},$ $i_{1}<\cdots<i_{k}$ , the pinor or spinor spaces
can be looked as subspaces of the exterior algebra. The inner products $\langle, \rangle$ on
$C\ell_{m}$ and $\wedge(R^{m})$ are defined as usual. The norms of $\xi$ and $p(\xi)$ are

$\Vert\xi\Vert=\Vert\rho(\xi)\Vert=\sqrt{\langle\xi,\xi\rangle}$ .

For any $x\in G(k, R^{m})$ , we can write $x=e_{1}\wedge\cdots\wedge e_{k}$ , where $\{e_{1}, \ldots, e_{k}\}$ is
an oriented orthonormal basis of $x$ . As noted above, if $\xi\in\Gamma(\wedge(R^{m}))$ is a cali-
bration, we call

$G(\xi)=\{x\in G(k, R^{m})|\xi(x)=1\}$

the contact set of $\xi$ .
As shown in [9], the irreducible modules over $Cl_{m}$ can be generated by the

one of the following elements:
(1) $A_{m}$ , when $m\equiv 2,4(mod 8)$ ;
(2) $A_{m}(1+\beta_{m})$ , when $m\equiv 0,6(mod 8)$ ;
(3) $A_{m-1}(1+\beta_{m-1})$ , when $m\equiv 1(mod 8)$ ;
(4) $A_{m-1}(1\pm\omega_{m})$ , when $m\equiv 3(mod 8)$ ;
(5) $A_{m-1}(1+\beta_{m})$ , when $m\equiv 5(mod 8)$ ;
(6) $A_{m-1}(1+\beta_{m-1})(1\pm\omega_{m})$ , when $m\equiv 7(mod 8)$ .

We shall see that every homogenous part of the above generators (under the
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map p) is a calibration. It is well-known that the n-form $2^{n}A_{2n}$ is a calibration on
$R^{2n}$ called the special Lagrangian calibration; the 4-form part of $2^{4}A_{8}(1+\beta_{8})$ is
Cayley calibration; the 3 or 4 form parts of $2^{3}A_{6}(1+\beta_{6})(1+\omega_{7})$ are associative
and coassociative calibrations respectively. It is easy to see that we need only to
study the cases of (1), (2) and (6). First we prove several lemmas.

LEMMA 2.1. For any $n$ , we have $4A_{2n}^{3}=(-1)^{(n/2)(n+1)}A_{2n}$ , $\Vert A_{2n}\Vert^{2}=$

$4\Vert A_{2n}^{2}\Vert^{2}=\frac{1}{2^{n+1}},$ $\rho(A_{2n})$ is an n-form.

PROOF. From $\overline{g}_{1}\cdots\overline{g}_{n}gl$ $g_{n}\overline{g}_{n}\cdots\overline{g}_{1}=(-1)^{n}\overline{g}_{1}\cdots\overline{g}_{n}$ and $\overline{g}_{1}\cdots\overline{g}_{n}=$

$A_{2n}(1-\sqrt{-1}e_{1}e_{2})$ , one has

$(-1)^{(n/2)(n-1)}4A_{2n}^{3}(1-\sqrt{-1}e_{1}e_{2})=(-1)^{n}A_{2n}(1-\sqrt{-1}e_{1}e_{2})$ .

This shows $4A_{2n}^{3}=(-1)^{(n/2)(n+1)}A_{2n}$ . $\square $

LEMMA 2.2. When $2n\equiv 0,6(mod 8)$ , we have $(A_{2n}(1+\beta_{2n}))^{2}=$

$A_{2n}(1+\beta_{2n}),$ $\Vert A_{2n}(1+\beta_{2n})\Vert^{2}=\frac{1}{2^{n}}$ , and $p(A_{2n}(1+\beta_{2n}))=\psi_{n}+\sum_{k\geq 0}\psi_{4k}$ , where $\psi_{j}$

is a j-form.

PROOF. From $\overline{g}_{1}\cdots\overline{g}_{n}=A_{2n}(1-\sqrt{-1}e_{1}e_{2})$ and

$\overline{g}_{1}\cdots\overline{g}_{n}\beta_{2n}=\overline{g}_{1}\cdots\overline{g}_{n}gl$ $g_{n}=2A_{2n}^{3}(1+\sqrt{-1}e_{1}e_{2})$ ,

one has $A_{2n}\beta_{2n}=2A_{2n}^{2}$ . Then

$(A_{2n}(1+\beta_{2n}))^{2}=A_{2n}(1+\beta_{2n})$ , $(A_{2n}(1-\beta_{2n}))^{2}=-A_{2n}(1-\beta_{2n})$ .

Hence

$\Vert A_{2n}(1+\beta_{2n})\Vert^{2}=\langle A_{2n}(1+\beta_{2n}), 1\rangle=\frac{1}{2^{n}}$ .

The representative $\rho(A_{2n}(1+\beta_{2n}))=\psi_{n}+\sum\psi_{4k}$ follows from

$A_{2n}\beta_{2n}=(-1)^{(n/2)(n-1)}Re(\overline{g}_{1}g1 \overline{g}_{n}g_{n})$ . $\square $

The proof of the next lemma is easy ($\omega_{8k+7}$ in the center of $C\ell_{8k+7}$ ).

LEMMA 2.3. $[A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})]^{2}=2A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})$ ,
$\Vert A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})\Vert^{2}=\frac{1}{2^{4k+2}},$ $\rho(A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7}))=\sum\psi_{4l}+$

$\sum\psi_{4j+3}$ .
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The following theorem generalizes some important known calibrations. The
methods used in the following proof were first established by Dadok and
Harvey [2].

THEOREM 2.4. Each homogeneous part of the following $d\iota fferential$ forms is a
calibration:

(1) $2^{n}A_{2n}$ ;
(2) $2^{n}A_{2n}(1+\beta_{2n}),$ $2n\equiv 0,6(mod 8)$ ;
(3) $2^{4k+3}A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})$ .

Furthermore,
(1) $x\in G(2^{n}A_{2n})$ if and only if $xA_{2n}=A_{2n}\beta_{2n}$ ;
(2) $x\in G(2^{n}A_{2n}(1+\beta_{2n}))$ if and only if $xA_{2n}(1+\beta_{2n})=A_{2n}(1+\beta_{2n})$ ,

$2n\equiv 0,6(mod 8)$ ;
(3) $x\in G(2^{4k+3}A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7}))$ if and only if $xA_{8k+6}(1+\beta_{8k+6})$ .

$(1+\omega_{8k+7})=A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})$ ,

where the Clifford product is used.

PROOF. The theorem is an easy consequence of Lemma 2.1-2.3, we prove
(1) and (1) for examples. By Lemma 2.1, for any $x\in Pin(2n)$ , we have

$\langle p(2^{n}A_{2n}),\rho(x)\rangle=2^{n+2}\langle A_{2n}^{2}, xA_{2n}\rangle\leq 2^{n+2}\Vert A_{2n}^{2}\Vert\Vert xA_{2n}\Vert=1$ ,

and $\langle\rho(2^{n}A_{2n}),p(x)\rangle=1$ if and only if $xA_{2n}=2A_{2n}^{2}$ . It is easy to see that
$\beta_{2n}$ is in the contact set of the special Lagrangian calibration $\rho(2^{n}A_{2n})$ and
$\beta_{2n}A_{2n}=A_{2n}\beta_{2n}$ . $\square $

By $2^{4k}A_{8k}\alpha(\beta_{8k}^{l})=Re(1+\sqrt{-1}e_{1}e_{2})\cdots(1+\sqrt{-1}e_{8k-1}e_{8k})$ , we have

$2^{4k}A_{8k}(1+\beta_{8k})=2^{4k}A_{8k}+\sum_{l=0}^{2k}(-1)^{l}\frac{1}{(2l)!}\Omega^{2l}$ ,

where $\Omega=e_{1}e_{2}+\cdots+e_{8k-1}e_{8k}$ is the kaehler form on $R^{8k}\cong C^{4k}$ . One can show
that

$ G(2^{4k}A_{8k})\cap G((-1)^{k}\frac{1}{(2k)!}\Omega^{2k})=\emptyset$ ,

$G(2^{4k}A_{8k})\cup G((-1)^{k}\frac{1}{(2k)!}\Omega^{2k})\subset G(2^{4k}A_{8k}+(-1)^{k}\frac{1}{(2k)!}\Omega^{2k})$ .

Thus the calibration defined by $4k$-form part of $2^{4k}A_{8k}(1+\beta_{8k})$ can be viewed as
a naturally generalization of the Cayley calibration.
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The proof of following theorem is easy.

THEOREM 2.5. For any $x_{0}\in G(r, R^{m})\subset Pin(m)$ , the r-form parts of the fol-
lowing $d_{l}fferential$ forms are calibrations:

(1) 2 $n+l_{x_{0}A_{2n}\alpha(A_{2n}^{l})}=2^{n}x_{0}A_{2n}\alpha(\beta_{2n}^{l}),$ $m=2n$ ;

(2) $2^{n}x_{0}A_{2n}(1+\beta_{2n}),$ $m=2n\equiv 0,6(mod 8)$ ;
(3) $2^{4k+3}x_{0}A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7}),$ $m=8k+7$ .

Furthermore,
(1) $x\in G(2^{n}x_{0}A_{2n}\alpha(\beta_{2n}^{l}))\cap G(r, R^{2n})$ if and only if $xA_{2n}=x_{0}A_{2n}$ ;
(2) $x\in G(2^{n}x_{0}A_{2n}(1+\beta_{2n}))\cap G(r, R^{2n})$ $\iota f$ and only $\iota fxA_{2n}(1+\beta_{2n})=$

$x_{0}A_{2n}(1+\beta_{2n}),$ $2n\equiv 0,6(mod 8)$ ;
(3) $x\in G(2^{4k+3}A_{Sk+6}(1+\beta_{8k+6})(1+\omega_{Sk+7}))\cap G(r, R^{8k+7})$ , if and only $lf$,

$xA_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})=x_{0}A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})$ .

Let $U(n)$ be the unitary group on $C^{n}\cong R^{2n}$ . The complex structure $J$ is
defined by $g1,$ $\ldots,$

$g_{n}$ . The element $A_{2n}$ is invariant under the action of
$SU(n)\subset SO(2n)$ . From $\overline{g}_{1}\cdots\overline{g}_{n}g1$ $g_{n}=2A_{2n}^{2}(1+\sqrt{-1}e_{1}e_{2})$ , we know that
$2A_{2n}^{2}+A_{2n}\beta_{2n}$ is invariant under the action of $U(n)$ . In the remained of this
section we study the calibrations defined by $2^{n}xA_{2n}\alpha(\beta_{2n}^{l})$ . For more results, see \S 3.

PROPOSITION 2.6. For any $x\in G(2, R^{2n})$ , represent $x$ as $v\wedge(aJv+bw)$ ,

where $v,$ $w$ are unit vectors and $w\perp v,$ $Jv,$ $a^{2}+b^{2}=1$ . Then the 2-form part of
$2^{n}xA_{2n}\alpha(\beta_{2n}^{l})$ is one of the following,

(1) $v\wedge(aJv+bw)+(aw-bJv)\wedge Jw+\cdots,$ $lf|a|<1,$ where $\cdots$ denotes the

2-forms which can be omitted as a calibration;
(2) $\pm(e_{1}e_{2}+e_{3}e_{4}+\cdots+e_{2n-1}e_{2n})$ , if $a=\pm 1$ .

PROOF. Since $A_{2n}\alpha(\beta_{2n}^{l})$ is invariant under the action of $U(n)$ , we can
assume that $v=e_{1},$ $w=e_{3}$ . The 2-form part of

$2^{n}xA_{2n}\alpha(\beta_{2n}^{t})$

$=aRe(e_{1}e_{2}-\sqrt{-1})(1+\sqrt{-1}e_{3}e_{4})\cdots(1+\sqrt{-1}e_{2n-1}e_{2n})$

$+bRe(e_{1}-\sqrt{-1}e_{2})(e_{3}-\sqrt{-1}e_{4})(1+\sqrt{-1}e_{5}e_{6})\cdots(1+\sqrt{-1}e_{2n-1}e_{2n})$

is
$e_{1}(ae_{2}+be_{3})+(ae_{3}-be_{2})e_{4}+a(e_{5}e_{6}+\cdots+e_{2n-1}e_{2n})$ .

If $|a|<1$ , the contact sets of above 2-form and $e_{1}(ae_{2}+be_{3})+(ae_{3}-be_{2})e_{4}$

are the same. This proves the proposition. $\square $
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Now we compute the calibrations defined by 4-forms of $2^{n}xA_{2n}\alpha(\beta_{2n}^{t})$ ,
$x\in G(4, R^{2n})$ . As pointed out in [5, p. 129], every $x\in G(4, R^{2n})$ can be repre-
sented by

$x=e_{1}(\cos\alpha e_{2}+\sin\alpha e_{3})e_{5}(\cos\beta e_{6}+\sin\beta e_{7})$ ,

where $e_{1},$ $e_{2}=Je_{1},$
$\ldots,$ $e_{2n-1},$ $e_{2n}=Je_{2n-1}$ is some orthonormal basis on $R^{2n}$ and $J$

is the complex structure defined above, $0\leq\alpha\leq\pi/2,$ $\alpha\leq\beta\leq\pi$ .

PROPOSITION 2.7. For any $x\in G(4, R^{2n})$ represented as above, let $\phi$ be the

calibration defined by $x$ as in Theorem 2.5 (1). With some new orthonormal bases
$e_{1},$ $e_{2},$

$\ldots,$
$e_{2n}$ , as a calibration, $\phi$ or $-\phi$ can be represented by the one of the

following forms,
(1) Kaehler calibration $\phi_{1}=\frac{1}{2}(e_{1}e_{2}+\cdots+e_{2n-1}e_{2n})^{2}$ , when $\alpha=\beta=0$ or

$\alpha=0,$ $\beta=\pi$ ;
(2) Special Lagrangian calibration $\phi_{2}=2^{4}A_{8}$ , when $\alpha=\beta=\pi/2$ ;

(3) $\phi_{3}=(e_{5}e_{7}-e_{6}e_{8})\wedge(e_{1}e_{2}+e_{3}e_{4}+e_{9}e_{10}+\cdots+e_{2n-1}e_{2n})$ , when $\alpha=0$ ,
$\beta=\pi/2$ ;

(4) $\phi_{4}=(e_{1}e_{2}+e_{3}e_{4})(e_{5}e_{6}+e_{7}e_{8})\pm\cos^{2}\alpha(e_{1}e_{2}e_{3}e_{4}+e_{5}e_{6}e_{7}e_{8})-$

$\sin^{2}\alpha(e_{1}e_{4}+e_{2}e_{3})(e_{5}e_{8}+e_{6}e_{7})$ , when $\alpha=\beta\neq 0,$ $\pi/2$ or $\alpha+\beta=\pi,$ $\alpha\neq 0,$ $\pi/2$ ;

(5) $\phi_{5}=(e_{1}e_{2}+e_{3}e_{4})(e_{5}e_{6}+e_{7}e_{8})$ , for all other cases.

PROOF. By simple computation, the 4-form part of $2^{n}xA_{2n}\alpha(\beta_{2n}^{t})$ can be
written as $\phi+\psi$ , with

$\phi=(e_{1}e_{2}+e_{3}e_{4})(e_{5}e_{6}+e_{7}e_{8})+\cos\alpha\cos\beta(e_{1}e_{2}e_{3}e_{4}+e_{5}e_{6}e_{7}e_{8})$

$-\sin\alpha\sin\beta(e_{1}e_{4}+e_{2}e_{3})(e_{5}e_{8}+e_{6}e_{7})$ ;

$\psi=\frac{1}{2}\cos\alpha\cos\beta(e_{9}e_{10}+\cdots+e_{2n-1}e_{2n})^{2}$

$+\cos\alpha(e_{5}e_{6}+e_{7}e_{8})(e_{9}e_{10}+\cdots+e_{2n-1}e_{2n})$

$+\cos\beta(e_{1}e_{2}+e_{3}e_{4})(e_{9}e_{10}+\cdots+e_{2n-1}e_{2n})$ .

We have replaced $\cos\alpha e_{2}+\sin\alpha e_{3}$ and $\cos\alpha e_{3}-\sin\alpha e_{2}$ by $e_{2}$ and $e_{3}$ ;
$\cos\beta e_{6}+\sin\beta e_{7}$ and $\cos\beta e_{7}-\sin\beta e_{6}$ by $e_{6}$ and $e_{7}$ respectively. Then the cases of
(1), (2), (3) follow directly.

Now assuming $\alpha,\beta\neq 0,$ $\pi/2,$ $\pi$ , we first show that for any $y\in G(4, R^{2n})$ with
$\langle\phi+\psi, y\rangle=1$ , then $\langle\psi, y\rangle=0$ . Hence as a calibration we need only consider
the 4-form $\phi$ . Rewrite $\phi+\psi=e_{9}e_{10}\wedge\psi^{\prime}+\chi$ , where $\psi^{\prime}$ and $\chi$ are the forms in
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orthogonal complement of span $\{e_{9}, e_{10}\}$ . For any $y\in G(\phi+\psi)$ , as in the proof
of Lemma 2.1 of [3], $y$ can be written as

$ y=(\cos\gamma e_{9}+\sin\gamma v)(\cos\gamma e_{10}+\sin\gamma w)\eta$ ,

where $\eta,$ $v,$ $w$ are orthogonal to $e_{9},$ $e_{10}$ . Then at least one of the following holds:

$\langle y, e_{9}e_{10}\psi^{\prime}\rangle=1$ , $\langle y,\chi\rangle=1$

$\langle\eta, \psi^{\prime}\rangle=\langle vw\eta,\chi\rangle=1$ .

Since $e_{9}e_{10}(e_{1}e_{2}+\cdots+e_{7}e_{8}+e_{11}e_{12}+\cdots+e_{2n-1}e_{2n})$ is a calibration and
$|\cos\alpha|<1,$ $|\cos\beta|<1$ by assumption, then $\langle y, e_{9}e_{10}\psi^{\prime}\rangle=1$ and $\langle\eta, \psi^{\prime}\rangle=1$ can
not hold. Then we have

$\langle y,\chi\rangle=1$ and $\cos\gamma=0$ .

In this way we can show that if $y\in G(\phi+\psi)$ , then $\langle\psi, y\rangle=0$ . Thus we need
only to consider the 4-form $\phi$ . Note that $\phi$ is calibration for any $\alpha,\beta$, the fol-
lowing hold,

$\frac{\partial}{\partial\alpha}\langle y, \phi\rangle=\frac{\partial}{\partial\beta}\langle y, \phi\rangle=0$ .

Then
$\sin\alpha\cos\beta a+\cos\alpha\sin\beta b=0$ ,

$\cos\alpha\sin\beta a+\sin\alpha\cos\beta b=0$ ,

where $ a=\langle e_{1}e_{2}e_{3}e_{4}+e_{5}e_{6}e_{7}e_{8}, y\rangle$ , $ b=\langle(e_{1}e_{4}+e_{2}e_{3})(e_{5}e_{8}+e_{6}e_{7}), y\rangle$ . Then
$a=b=0$ if $\sin^{2}\alpha\cos^{2}\beta-\cos^{2}\alpha\sin^{2}\beta=\sin(\alpha+\beta)\sin(\alpha-\beta)\neq 0$ . In this case,
as calibrations, $\phi$ and $\phi_{5}$ are the same. If $\alpha=\beta$ or $\alpha+\beta=\pi,$ $\phi$ has the form
$\phi_{4}$ . $\square $

\S 3. Calibration Manifolds

In this section we study the calibration sets defined by Theorem 2.5 in low
dimensional cases. By Theorem 2.5, we know that $8xA_{4}\alpha(A_{4}^{l})=x(1-\omega_{4})$ is a
calibration for every $x\in G(2, R^{4})$ . $x^{\prime}\in G(2, R^{4})$ is in the contact set of this
calibration if and only if $xA_{4}=x^{\prime}A_{4}$ , this is equivalent to $x(1-\omega_{4})=x^{\prime}(1-\omega_{4})$ .
On the other hand, $x=\frac{1}{2}x(1-\omega_{4})+\frac{1}{2}x(1+\omega_{4})$ and there are unit vectors
$v,$ $w\perp e_{1}$ such that $x(1-\omega_{4})=e_{1}v(1-\omega_{4}),$ $x(1+\omega_{4})=e_{1}w(1+\omega_{4})$ . The map
$G(2, R^{4})\rightarrow S^{2}\times S^{2}$ defined by sending $x$ to $(v, w)$ is a diffeomorphism. Then
the map $\pi$ : $G(2, R^{4})\rightarrow S^{2},$ $x\rightarrow v$ , defines a fibre bundle. The contact set of
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the calibration $e_{1}v(1-\omega_{4})$ is $\pi^{-1}(v)$ which is a totally geodesic submanifold of
$G(2, R^{4})$ .

This construction can be generalized to many cases. Let $M_{1}(r, 2n)$ be the set
of calibrations defined by r-form parts of $2^{n}xA_{2n}\alpha(\beta_{2n}^{l}),$ $x\in G(r, R^{2n})$ . When
$2n\equiv 0,6(mod 8)$ , let $M_{2}(r, 2n)$ be the set of calibrations defined by r-form parts
of $2^{n}xA_{2n}(1+\beta_{2n})$ . By Theorem 2.5, there are two maps:

$\pi_{1}$ : $G(r, R^{2n})\rightarrow M_{1}(r, 2n)$ ;

$\pi_{2}$ : $G(r,R^{2n})\rightarrow M_{2}(r, 2n)$ , $2n\equiv 0,6(mod 8)$ .

For any $\varphi\in M_{i}(r, 2n),$ $\pi_{i}^{-1}(\varphi)\subset G(r, R^{2n})$ is the contact set of $\varphi$ . If $xA_{2n}=x^{\prime}A_{2n}$ ,

we have $xA_{2n}(1+\beta_{2n})=x^{\prime}A_{2n}(1+\beta_{2n})$ . Then there is a map $\pi^{\prime}$ : $ M_{1}(r, 2n)\rightarrow$

$M_{2}(r, 2n)$ , if $2n\equiv 0,6(mod 8)$ . This map is nontrivial in some cases. Obviously,
$\pi^{\prime}\pi_{1}=\pi_{2}$ .

We shall see that, in low dimensional cases, the calibration set $M_{i}(r, m)$ are
manifolds or manifolds with singularities. We call them the calibration manifolds.

We first study the sets $M_{2}(r, 8)$ . As shown in [9], there is a unit vector $v\in R^{8}$ ,

such that $xA_{8}(1+\beta_{8})=e_{1}vA_{8}(1+\beta_{8})$ or $xA_{8}(1+\beta_{8})=vA_{8}(1+\beta_{8})$ for any
$x\in G(r, R^{8})$ , according to $r$ being even or odd. As exterior forms, $xA_{8}(1+\beta_{8})$ is
selfdual for any $x\in G(2r, R^{8})$ , anti-self dual for $x\in G(2r-1, R^{8})$ . Then we need
only to study $M_{2}(r, 8)$ for $r=2,3,4$ . As is well known the isotropy group of
$A_{8}(1+\beta_{8})$ is $Spin_{7}\subset SO(8)$ which acts transitively on the unit sphere $S^{7}$ in $R^{8}$ .
The exceptional Lie group $G_{2}$ is a subgroup of $Spin_{7}$ which acts transitively on
the sphere $S^{6}=\{v\in S^{7}|v\perp e_{1}\}$ . These observations are useful for the study of
$M_{2}(r, 8)$ .

In the following, we shall often use $A_{8}$ and $A_{8}\beta_{8}$ . By simple computation, we
have

$16A_{8}=e_{1}e_{3}e_{5}e_{7}+e_{2}e_{4}e_{6}e_{8}-e_{1}e_{3}e_{6}e_{8}-e_{2}e_{4}e_{5}e_{7}$

$-e_{1}e_{4}e_{5}e_{8}-e_{1}e_{4}e_{6}e_{7}-e_{2}e_{3}e_{5}e_{8}-e_{2}e_{3}e_{6}e_{7}$ ,

$16A_{8}\beta_{8}=1+\omega_{8}-e_{5}e_{6}e_{7}e_{8}-e_{1}e_{2}e_{3}e_{4}$

$-e_{3}e_{4}e_{7}e_{8}-e_{1}e_{2}e_{5}e_{6}-e_{1}e_{2}e_{7}e_{8}-e_{3}e_{4}e_{5}e_{6}$ .

PROPOSITION 3.1. The calibration set $M_{2}(4,8)$ is a manifold $d_{l}ffeomorphic$

to $S^{7}$ , the $d_{l}ffeomorphism$ is defined by sending $v\in S^{7}$ to 4-form part of
$16e_{1}vA_{8}(1+\beta_{8})$ . Furthermore, $v=\pm e_{1}$ corresponds to the Cayley calibration, the
others are the special Lagrangian calibrations.



86 Zhou JIANWEI

PROOF. We need only to show that the 4-form part of $2^{4}e_{1}vA_{8}(1+\beta_{8})$ is
a calibration for any $v\in S^{7}$ . As noted above, there is an element $G\in Spin_{7}$

such that $G(e_{1})=e_{1},$ $G(v)=ae_{1}+be_{2}$ , then $G(e_{1}vA_{8}(1+\beta_{8}))=e_{1}(ae_{1}+be_{2})$ .
$A_{8}(1+\beta_{8})$ . By $-e_{1}e_{4}e_{6}e_{7}A_{8}(1+\beta_{8})=A_{8}(1+\beta_{8})$ , we have

$e_{1}(ae_{1}+be_{2})A_{8}(1+\beta_{8})=(ae_{1}-be_{2})e_{4}e_{6}e_{7}A_{8}(1+\beta_{8})$ .

By Theorem 2.5, the 4-form part of $2^{4}e_{1}vA_{8}(1+\beta_{8})$ is in $M_{2}(4,8)$ . Thus $M_{2}(4,8)$

is a manifold diffeomorphic to $S^{7}$ . The 4-form parts of $\pm 2^{4}A_{8}(1+\beta_{8})$ are the
Cayley calibrations. If $v\neq\pm e_{1}$ , replace $ae_{1}-be_{2},$ $be_{1}+ae_{2}$ in $G(e_{1}vA_{8}(1+\beta_{8}))=$

$(ae_{1}-be_{2})e_{4}e_{6}e_{7}A_{8}(1+\beta_{8})$ by $e_{1},$ $e_{2}$ , one can show that the 4-form part of
$2^{4}e_{1}vA_{8}(1+\beta_{8})$ is a special Lagrangian calibration. $\square $

For any unit vector $v\perp e_{1}$ , we can define a map $J_{v}$ : $R^{8}\rightarrow R^{8},$ $J_{v}(e_{1})=v$ ,

$J_{v}(v)=-e_{1}$ ; for any $w\perp e_{1}$ , $v,$ $J_{v}(w)$ is determined by $J_{v}(w)A_{8}(1+\beta_{8})=$

$-e_{1}vwA_{8}(1+\beta_{8})$ . It is easy to see that $J_{v}$ is a complex stmcture on $R^{8}$ and
$J_{e_{2}}=J$ . On the other hand, for any such $v$ , there is $G\in G_{2}$ such that $G(e_{1})=e_{1}$ ,

$G(v)=e_{2}$ . It is easy to see that $J_{v}=G^{-1}JG$ .
By Proposition 3.1, there are calibrations $\varphi_{j}$ defined by $2^{4}e_{1}e_{j}A_{8}(1+\beta_{8})$ ,

$i=1,$
$\ldots,$

$8$ . For any $x=(x_{1}, x_{2}, \ldots, x_{8})\in S^{7},$ $\varphi=\sum_{i=1}^{8}x_{i}\varphi_{j}$ is also a calibration. $\varphi_{1}$

is Cayley calibration, the other $\varphi_{i}$ are special Lagrangian calibrations with the
complex stmctures $J_{e_{i}}$ . Then for every element of $V_{8^{+}}$ with norm 4 determines a
calibration.

It is interesting to note that the differential equations of $\varphi_{j}$ -submanifolds can
be determined by $\varphi_{j}$ , where $j=1,$ $\ldots,$

$i-1,$ $i+1,$
$\ldots,$

$8$ (cf. Dodak and Harvey

[2]). This method of determine the differential equations for calibrations can be
applied to all calibrations studied in this paper.

PROPOSITION 3.2. The calibration set $M_{2}(2,8)$ is a manifold $d\iota ffeomorphic$ to

$S^{6}=\{v\in S^{7}|v\perp e_{1}\}$ . The two form of $16e_{1}vA_{8}(1+\beta_{8})$ is a kaehler calibration on
$R^{8}\cong C^{4}$ with respect to the complex structure $J_{v}$ . The map $\pi_{2}$ : $G(2, R^{8})\rightarrow S^{6}$

defines a fibre bundle with fibre $CP^{3}$ .

$PR\infty F$ . Let $xA_{8}(1+\beta_{8})=e_{1}vA_{8}(1+\beta_{8})$ and $v=ae_{1}+bv^{\prime},$ $v^{\prime}\perp e\mathfrak{l}$ , where
$x\in G(2, R^{8})$ . From

$\langle xA_{8}(1+\beta_{8}), A_{8}(1+\beta_{8})\rangle=\langle x, A_{8}(1+\beta_{8})\rangle=0$

and
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$\frac{1}{16}=\langle xA_{8}(1+\beta_{8}), e_{1}vA_{8}(1+\beta_{8})\rangle=\langle xA_{8}(1+\beta_{8}), be_{1}v^{\prime}A_{8}(1+\beta_{8})\rangle\leq\frac{1}{16}|b|$ ,

we get $v\perp e_{1}$ . The two form of $16e_{1}vA_{8}(1+\beta_{8})$ is a kaehler calibration on
$R^{8}=C^{4}$ with respect to the complex structure $J_{v}$ .

Then there is a map $\pi_{2}$ : $G(2, R^{8})\rightarrow S^{6}$ , $\pi_{2}(x)=u$ , if $xA_{8}(1+\beta_{8})=$

$e_{1}uA_{8}(1+\beta_{8})$ . By Theorem 2.5, it is not difficult to show that for any $u\in S^{6}$ ,

$\pi_{2}^{-1}(u)=\{vJ_{u}v\in G(2, R^{8})|v\in S^{7}\}$ .

Then $\pi_{2}^{-1}(u)$ is diffeomorphic to the complex projective space $CP^{3}$ . These com-
plete the proof of the proposition. $\square $

For any $G\in Spin_{7}$ , we have the following commutative diagram:

$G(2_{S}R_{2}^{8})\downarrow_{6^{\pi}}\underline{\rightarrow\overline{G}G}G(2_{S}R_{2}^{8})\downarrow_{6^{\pi}}$

where $\overline{G}$ is defined by $G(x)A_{8}(1+\beta_{8})=e_{1}\overline{G}(u)A_{8}(1+\beta_{8}),$ $u=\pi_{2}(x)$ . It is easy to
show that $\pi_{2}^{-1}(u)$ is a totally geodesic submanifold of $G(2, R^{8})$ for any $u\in S^{6}$ .

The proof of the following proposition is similar to that of Proposition 3.1
and 3.2.

PROPOSITION 3.3. The calibration sets $M_{2}(r, 8)$ are all $d_{l}ffeomorphic$ to $S^{7}$ for
$r=1,3,5,7$ . Every element in $M_{2}(3,8)$ is essentially an associative calibration on
some 7-dimensional subspace of $R^{8}$ . For each $r=1,3,5,7,$ $\pi_{2}$ : $G(r, R^{8})\rightarrow M_{2}(r, 8)$

defines a fibre bundle.

Similar to the case of $G(2, R^{8})$ , for any $G\in Spin_{7}$ , we have the following
commutative diagram:

$G(3, R^{8})$ $\rightarrow^{G}G(3, R^{8})$

$S\downarrow_{7^{\pi_{2}}}$

$\underline{G}$

$S\downarrow_{7^{\pi_{2}}}$

.

The group $Spin_{7}$ acts transitively on $G(3, R^{8})$ and every fibre of $G(3, R^{8})\rightarrow S^{7}$ is
a totally geodesic submanifold of $G(3, R^{8})$ and is denoted by ASSOC.

REMARK. In [4], Gluck, Mackenzie and Morgan studied the volume-
minimizing cycles in Grassmann manifolds. We can show that $\pi_{2}^{-1}(u)$ is a cali-
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brated submanifold of calibration $\frac{1}{6}\omega^{3}$ on $G(2, R^{8})$ for any $u\in S^{6}$ , where $\omega$ is the
kaehler form on $G(2, R^{8})$ (cf. [4]) and $\pi_{2}$ : $G(2, R^{8})\rightarrow S^{6}$ is defined in Proposi-
tion 3.2. Let $E$ be a vector bundle on $G(2, R^{8})$ , the fibre on $e_{1}\wedge e_{2}\in G(2, R^{8})$ is
$\{v\perp e_{1}, e_{2}|v\in R^{8}\}$ . Then the Euler class of $E$ defines a calibration on $G(2, R^{8})$

and the sphere $S^{6}\subset G(2, R^{8})$ is a calibrated submanifold of this calibration.
These gives an answer to the problem (5) of [4]. Let $dv_{S^{6}}$ be the volume element
of $S^{6}$ . It is interesting to note that the 6-form $\pi 2(dv_{S^{6}})$ is also a calibration on
$G(2, R^{8})$ and can be represented as a summand of $\frac{1}{6}\omega^{3}$ . There is no calibrated
submanifold of $\pi_{2^{*}}(dv_{S^{6}})$ even locally.

As is well-known, there is a Hopf fibration $S^{7}\rightarrow S^{4}$ defined by quatemions.
Combining this with Proposition 3.3, we have a map $\tau$ : $G(3, R^{8})\rightarrow S^{4}$ . We can
show that every fibre of the map $\tau$ : $G(3, R^{8})\rightarrow S^{4}$ is a calibrated submanifold
of $\star p1$ the dual of the Pontryagin form $p_{1}$ on $G(3,8)$ (cf. [4]). Then $\tau^{-1}(v)$ is
volume-minimizing in the holomogy class defined by $\tau^{-1}(v)$ , any $v\in S^{4}$ . This
gives a partial answer to the problem (2) in [4].

PROPOSITION 3.4. The map $G(r, R^{8})\rightarrow M_{2}(r, 8)$ defines a fibre bundle for
each $r\neq 4,8$ . The bundles $\pi_{2}$ : $G(r, R^{8})\rightarrow M_{2}(r, 8)$ and $\pi_{2}$ : $ G(8-r, R^{8})\rightarrow$

$M_{2}(8-r, 8)$ are dual in the sense of the following commutative diagram:

$G(r, R^{8})\rightarrow^{\star}G(8-r, R^{8})$

$\downarrow\pi_{2}$ $\downarrow\pi_{2}$

$M_{2}(r, 8)\rightarrow^{(-1)^{r}}M_{2}(8-r, 8)$

where $\star$ is the Hodge star operator.

$PR\infty F$ . The Hodge star operator $\star$ can also be defined by $\star\xi=\omega_{8}\cdot\xi$ , for
$\xi\in Cl_{8}\cong\wedge(R^{8})$ . Hence

$\star xA_{8}(1+\beta_{8})=(-1)^{r}x\omega_{8}A_{8}(1+\beta_{8})=(-1)^{r}xA_{8}(1+\beta_{8})$

for any $x\in G(r, R^{8})$ . This proves Proposition. $\square $

Now we tum to study the calibrations defined by $xA_{6}(1+\beta_{6})(1+\omega_{7})$ . Let
$Cl_{6}$ and $C\ell_{7}$ be generated by $e_{3},$

$\ldots,$
$e_{8}$ and $e_{2},$ $e_{3},$

$\ldots,$
$e_{8}$ respectively. The iso-

morphism $\Psi$ : $Cl_{7}\rightarrow Cl_{8}^{even}$ is defined by $\Psi(\xi)=\xi$ for $\xi\in Cl_{7}^{even},$ $\Psi(\psi)=e_{1}\psi$ ,
for $\psi\in Cl_{7}^{odd}$ . It is easy to see that $2A_{8}=e_{1}A_{6}+A_{6}\omega_{7}$ , then

$\Psi(A_{6}(1+\beta_{6})(1+\omega_{7}))=2A_{8}(1+\beta_{8})$ .
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Then for any $\xi\in Cl_{7}$ ,

$\Psi(\xi A_{6}(1+\beta_{6})(1+\omega_{7}))=2e_{1}vA_{8}(1+\beta_{8})$

for some $v\in R^{8}$ . Since the exceptional Lie group $G_{2}$ fixes $A_{6}(1+\beta_{6})(1+\omega_{7})$ and
$A_{8}(1+\beta_{8})$ , we can assume that $v=ae_{1}+be_{2}$ . $Replace-ae_{3}+be_{4},$ $-ae_{4}-be_{3}$ by
$e_{3},$ $e_{4}$ in $2^{4}(-a+be_{1}e_{2})A_{8}(1+\beta_{8})$ , we get

$e_{1}(e_{357}-e_{368}-e_{458}-e_{467})+e_{2}(e_{468}-e_{457}-e_{358}-e_{367})$

$-a(1-e_{567S}-e_{347S}-e_{3456})-ae_{1}(\omega_{7}-e_{234}-e_{256}-e_{27S})$

$+b(e_{1}e_{2}+\cdots+e_{7}e_{8}-e_{345678})-be_{1}e_{2}(e_{3456}+e_{3478}+e_{5678})$ ,

where $e_{ij\cdots k}=e_{i}e_{j}\cdots e_{k}$ . This shows

PROPOSITION 3.5. Denote $M(r, 7)$ the calibration sets defined by the r-form
part of $2^{3}xA_{6}(1+\beta_{6})(1+\omega_{7}),$ $x\in G(r, R^{7})$ . Then

(1) There are two forms in $M(3,7)$ defined by 3-form parts $of\pm 2^{3}A_{6}(1+\beta_{6})$ .
$(1+\omega_{7})$ which are associative calibrations. The others are special Lagrangian
calibrations. $M(3,7)$ is a manifold $d_{l}ffeomorphic$ to $S^{7}$ ;

(2) $M(2,7)\approx S^{6}$ is a set of kaehler calibrations and $\pi:G(2, R^{7})\rightarrow S^{6}$ is a
fibre bundle with fibre $CP^{2}$ ;

(3) The calibration manifolds $M(3,7)$ and $M(4,7);M(2,7)$ and $M(5,7)$ are
$d_{l}ffeomorphic$ respectively.

Now we tum to study the calibration sets $M_{1}(r, 8)$ . Recall that, for any
$x\in Cl_{8}^{even}$ , there are unit vectors $v,$ $w$ , such that $xA_{8}(1+\beta_{8})=e_{1}vA_{8}(1+\beta_{8})$ and
$xA_{8}(1-\beta_{8})=e_{1}wA_{8}(1-\beta_{8})$ . Then

$2xA_{8}\beta_{8}=e_{1}(v-w)A_{8}+e_{1}(v+w)A_{8}\beta_{8}$ .

The following lemma gives the necessary conditions of for which $v,$
$w\in R^{8}$

there exists $x\in G(r, R^{8})$ such that $e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}=xA_{8}\beta_{8}$ or $vA_{8}+wA_{8}\beta_{8}=$

$xA_{8}\beta_{8}$ .

LEMMA 3.6. For any $v,$
$w\in R^{8},$ $lf$ there is some $x\in G(r, R^{8})$ , such that

$e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}=xA_{8}\beta_{8}$ , for $r$ even; $vA_{8}+wA_{8}\beta_{8}=xA_{8}\beta_{8}$ , for $r$ odd. Then the
vectors $v,$ $w$ satisfy the following conditions:

$|v|^{2}+|w|^{2}=1$ , $\langle v, w\rangle=\langle Jv, w\rangle=0$ ,

where $J$ is the complex structure defined as above.
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PROOF. Let $r$ be an even number, $x\in G(r, R^{8}),$ $xA_{8}\beta_{8}=e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}$ .
The equality $|v|^{2}+|w|^{2}=1$ follows from $2A_{8}^{2}\beta_{8}=A_{8}$ and $\langle e_{1}vA_{8}, e_{1}wA_{8}\beta_{8}\rangle=$

$\frac{1}{2}\langle v, wA_{8}\rangle=0$ . By $A_{8}^{2}=\alpha(xA_{8}\beta_{8})^{l}\cdot xA_{8}\beta_{8}$ , we have $A_{8}(\beta_{8}vw\beta_{8}+wv)A_{8}=0$ .
Since $A_{8}$ and $A_{8}\beta_{8}$ are invariant under the action of $SU(4)$ , choose $G\in SU(4)$

such that
$G(v)=a_{1}e_{1}$ , $G(w)=b_{1}e_{1}+b_{2}e_{2}+b_{3}e_{3}$ .

Then
$G(A_{8}(\beta_{8}vw\beta_{8}+wv)A_{8})$

$=A_{8}(-2a_{1}b_{1}-2a_{1}b_{2}e_{1}e_{2})A_{8}$

$=-2a_{1}b_{1}A_{8}^{2}+2a_{1}b_{2}e_{1}e_{2}A_{8}^{2}$ .

This shows
$a_{1}b_{1}=\langle G(v), G(w)\rangle=\langle v, w\rangle=0$ ,

$a_{1}b_{2}=\langle JG(v), G(w)\rangle=\langle Jv, w\rangle=0$ .

The case of $r$ being odd can be proved similarly. $\square $

PROPOSITION 3.7. The calibration set $M_{1}(2,8)$ is a manifold with two singu-
larities. Any element of $M_{1}(2,8)$ can be represented by 2-form of $e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}$ ,

where $v=\sum_{i=3}^{8}a_{j}e_{j},$ $w=\sum_{j=2}^{8}b_{j}e_{j}$ satisfy the conditions of Lemma 3.6. The singu-

larities correspond to $v=0,$ $w=\pm e_{2}$ .

$PR\infty F$ . For any $x\in G(2, R^{8}),$ $xA_{8}\beta_{8}=e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}$ , we have

$2\langle e_{1}vA_{8}, A_{8}\rangle=2\langle xA_{8}\beta_{8}, A_{8}\rangle=\langle x, A_{8}\rangle=0$ ,

$2\langle e_{1}vA_{8}, e_{1}e_{2}A_{8}\rangle=2\langle xA_{8}\beta_{8}, e_{1}e_{2}A_{8}\rangle=\langle x, e_{1}e_{2}A_{8}\rangle=\langle x, B_{8}\rangle=0$ .

These show that $v\perp e_{1},$ $e_{2}$ . Similarly we can show that $w\perp e_{1}$ . This shows that
the conditions of the proposition are necessary. On the contrary, suppose that the
vectors $v,$ $w$ satisfy the conditions of the proposition. We can assume that

$v=a_{3}e_{3}$ , $w=b_{2}e_{2}+b_{5}e_{5}$ , $a_{3}^{2}+b_{2}^{2}+b_{5}^{2}=1$ .

Then
$e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}=(a_{3}e_{7}-b_{2}e_{6}+b_{5}e_{1})e_{5}A_{8}\beta_{8}$

and the 2-form part of $e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}$ is in $M_{1}(2,8)$ .
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Finally, we show that omit two pints of $M_{1}(2,8)$ , the remained set is a
manifold of dimension 10. Let

$F_{1}=|v|^{2}+|w|^{2}$ , $ F_{2}=\langle v, w\rangle$ , $ F_{3}=\langle Jv, w\rangle$ .

The Jacobian matrix $\frac{\partial(F_{1},F_{2},F_{3})}{\partial(a_{3},a_{5},a_{6},b_{2},b_{3},b_{4},b_{5})}$ at point $v=a_{3}e_{3},$ $w=b_{2}e_{2}+b_{5}e_{5}$ is

$\left(\begin{array}{lllllll}a_{3} & & & b_{2} & & & b_{5}\\ & b_{5} & -b_{5} & & a_{3} & a_{3} & \end{array}\right)$ .

The rank of this matrix is 3 if and only if $a_{3}\neq 0$ or $b_{5}\neq 0$ . This completes the
proof of proposition. $\square $

By Proposition 2.6, we know that the singularities of $M_{1}(2,8)$ are kaehler
calibrations on $R^{8}$ , the other elements of $M_{1}(2,8)$ are kaehler calibrations on
some 4-dimensional subspaces of $R^{8}$ . Then the fibres of the map $\pi_{1}$ : $ G(2, R^{8})\rightarrow$

$M_{1}(2,8)$ are all diffeomorphic to $CP^{1}\approx S^{2}$ expect two points. One can also show
that $\pi_{1}^{-1}(p)$ is geodesic submanifold of $G(2, R^{8})$ for any $p\in M_{1}(2,8)$ .

As noted above, we have the following commutative diagram:

For any $u\in S^{6}\approx M_{2}(2,8),$ $u\neq e_{2},$ $\pi_{2}^{-1}(u)$ is differemorphic to $CP^{3}$ . We can show
that $M=\pi^{\prime-1}(u)$ is differemorphic to $S^{4}$ . Restrict the map $\pi_{1}$ on $\pi_{2}^{-1}(u)$ , we get a
fibre bundle

$\pi_{1}$ : $CP^{3}\rightarrow S^{4}$ .

Every fibre of this map is $S^{2}$ . The map $\pi_{1}$ : $CP^{3}\rightarrow S^{4}$ is just the well-known map
$CP^{3}\rightarrow HP^{1}$ .

By Hodge star operator, we know that $M_{1}(6,8)$ is also a manifold with sin-
gularities. Now we tum to study $M_{1}(4,8)$ .

PROPOSITION 3.8. The calibration set $M_{1}(4,8)$ is defined by these $v,$
$w\in R^{8}$

which satisfy the conditions of Lemma 3.6 and $\langle w, e_{2}\rangle=0$ . $M_{1}(4,8)$ is a mani-

fold with singularities and the singularities correspond to $v=a_{1}e_{1}+a_{2}e_{2},$ $w=0$ ,
$a_{1}^{2}+a_{2}^{2}=1$ .
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$PR\infty F$ . Let $v,$
$w\in R^{8}$ satisfy above conditions. We show that 4-form part of

$e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}$ is in $M_{1}(4,8)$ . Choose $G\in SU(4)$ , such that

$G(v)=a_{1}e_{1}$ , $G(w)=b_{3}e_{3}$ .

We can also assume that $G(e_{1})$ is a linear combination of the vectors $e_{1},$ $e_{2},$ $e_{3},$ $e_{5}$ .
Then

$G(e_{1}vA_{8}+e_{1}wA_{8}\beta_{8})$

$=G(e_{1})(a_{1}e_{1}\beta_{8}+b_{3}e_{3})A_{8}\beta_{8}$

$=G(e_{1})(-a_{1}e_{1}e_{2}e_{3}e_{6}e_{7}-b_{3}e_{3}e_{1}e_{2}e_{7}e_{8})A_{8}\beta_{8}$

$=G(e_{1})e_{1}e_{2}e_{3}e_{7}(a_{1}e_{6}-b_{3}e_{8})A_{8}\beta_{8}$

$=-G(e_{1})e_{4}e_{7}(a_{1}e_{6}-b_{3}e_{8})A_{8}\beta_{8}$ .

These shows that there is $x\in G(4, R^{8})$ such that

$xA_{8}\beta_{8}=e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}$ .

As in the proof of Proposition 3.7, we can show that if $e_{1}vA_{8}+e_{1}wA_{8}\beta_{8}=$

$xA_{8}\beta_{8}$ , for some $x\in G(4, R^{8})$ , then $w\perp e_{2}$ . $\square $

It is easy to see that the singularities of $M_{1}(4,8)$ defined by $\pm e_{1}e_{2}A_{8}\beta_{8}$ are
kaehler calibrations and the other singularities are special Lagrangian calibrations
(cf. Proposition 2.6).

The proof of the following proposition is similar to that of Proposition 3.7
and 3.8.

PROPOSITION 3.9. The calibration sets $M_{1}(3,8)$ and $M_{1}(5,8)$ are both $d\iota f-$

feomorphic to a submamfold of $S^{15}\subset R^{16}$ defined by

$|v|^{2}+|w|^{2}=1$ , $\langle v, w\rangle=\langle Jv, w\rangle=0$ .

It is not difficult to show that $M_{1}(3,8)$ is a minimal submanifold of the
sphere $S^{15}$ with second fundamental form of constant length 24. There is a
natural action of $SU(4)$ on $M_{1}(3,8)$ and $M_{1}(5,8)$ , defined by $(v, w)\rightarrow(Gv, Gw)$ ,

for any $G\in SU(4)$ .
The calibrations defined by $2^{3}xA_{6}(1+\beta_{6})$ or $2^{3}A_{6}\beta_{6}$ can be studied sim-

ilarly. By [9, \S 3.1], any elements in $V_{6}=Cl_{6}A_{6}(1+\beta_{6})$ can be represented as
$(a+v+c\omega_{6})A_{6}(1+\beta_{6})$ . With the action of $SU(3)$ , this can be changed into
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$(a+be_{1}+c\omega_{6})A_{6}(1+\beta_{6})$

$=(-ae_{3}+be_{5}+ce_{4})e_{3}A_{6}(1+\beta_{6})$

$=(ae_{3}-be_{5}-ce_{4})e_{2}e_{6}A_{6}(1+\beta_{6})$ .

It is easy to see that the 2-form part of $2^{3}(-ae_{3}+be_{5}+ce_{4})e_{3}A_{6}(1+\beta_{6})$ is a
calibration if and only if $a=0$ and $b^{2}+c^{2}=1$ ; the 3-form part is a calibration
for all $a,$ $b,$ $c$ with $a^{2}+b^{2}+c^{2}=1$ . These prove

PROPOSITION 3.10. The calibration sets $M_{1}(2,6)=M_{2}(2,6)$ and $M_{1}(3,6)=$

$M_{2}(3,6)$ are $d_{l}ffeomorphic$ to $S^{6}$ and $S^{7}$ respectively.

\S 4. Isotropy Groups of Calibrations

In this section, we study the group action on the calibrations. For any
$G\in SO(m)$ , $G$ can be extended to automorphisms $G:C\ell_{m}\rightarrow C\ell_{m}$ and
$G:\wedge(R^{m})\rightarrow\wedge(R^{m}),$ $p(G(\xi))=G(\rho(\xi))$ for any $\xi\in C\ell_{m}$ . Let $\phi$ be a calibration
on $R^{m}$ . The subgroup of $SO(m)$ defined by $\{G\in SO(m)|G(\phi)=\phi\}$ is called the
isotropy group of $\phi$ . As is well known, the special Lagrangian calibration $A_{2n}$ is
fixed by the action of elements of $SU(n)\subset SO(2n)$ . Moreover, we have

PROPOSITION 4.1. The isotropy group of special Lagrangian calibration $A_{2n}$ is
$SU(n)$ , when $2n\equiv 2,6(mod 8)$ .

PROOF. Assuming $2n\equiv 2,6(mod 8)$ , from $\overline{g}_{1}\cdots\overline{g}_{n}\omega_{2n}=(\sqrt{-1})^{n}\overline{g}_{1}\cdots\overline{g}_{n}$ ,

we have $A_{2n}\omega_{2n}=(\sqrt{-1})^{n+1}B_{2n}$ . If $G(A_{2n})=A_{2n}$ for some $G\in SO(2n)$ , let
$g\in Spin(2n)$ be a lift of $G$ . Then $G(B_{2n})=gB_{2n}g^{t}=B_{2n}$ , hence $G(\overline{g}_{1}\cdots\overline{g}_{n})=$

$\overline{g}_{1}\cdots\overline{g}_{n}$ . Write

$G(\overline{g}_{i})=\sum_{j}C_{ij^{-}}\overline{g}_{j}+\sum_{j}D_{ij}g_{j}$
.

Denote $C=(C_{ij^{-}}),$ $D=(D_{ij})$ , they satisfy
$C\overline{C}^{t}+D\overline{D}^{t}=I$ .

From

$G(\overline{g}_{1}\cdots\overline{g}_{n})=\det(C)\overline{g}_{1}\cdots\overline{g}_{n}+\cdots+\det(D)g1$ $g_{n}=\overline{g}_{1}\cdots\overline{g}_{n}$ ,

we have $\det C=1$ , hence $D=0$ . This shows $G\in SU(n)$ . $\square $

PROPOSITION 4.2. $SU(4k)$ is a subgroup of the isotropy group of the cali-
bration $A_{8k}(1+\beta_{8k})$ .
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The proposition follows from $A_{2n}\beta_{2n}=2A_{2n}^{2}$ .

LEMMA 4.3. When $2n\equiv 0,6$ (mod8), $G$ is in the isotropy group of
$A_{2n}(1+\beta_{2n})$ , if and only if, $G$ can be $l\iota fted$ to $g\in Spin(2n)$ such that
$gA_{2n}(1+\beta_{2n})=A_{2n}(1+\beta_{2n})$ .

$PR\infty F$ . By Proposition 3.1.5 of [9], the equalities

$G(A_{2n}(1+\beta_{2n}))=gA_{2n}(1+\beta_{2n})\cdot\alpha([A_{2n}(1+\beta_{2n})]^{l})g^{t}$

$=A_{2n}(1+\beta_{2n})\cdot\alpha([A_{2n}(1+\beta_{2n})]^{l})$

hold if and only if $gA_{2n}(1+\beta_{2n})=\pm A_{2n}(1+\beta_{2n})$ . $\square $

The next lemma can be proved by using Proposition 3.2.4 of [9].

LEMMA 4.4. The element $G\in SO(8k+7)$ is in the isotropy group of
$A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})\iota f$ and only if $G$ can be lifted to $g\in Spin(8k+7)$ , such
that $gA_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})=A_{8k+6}(1+\beta_{8k+6})(1+\omega_{8k+7})$ , or equivalently,
$gA_{8k+6}(1+\beta_{8k+6}\omega_{8k+7})=A_{8k+6}(1+\beta_{8k+6}\omega_{8k+7})$ .

Combining Lemma 4.3, 4.4 with Theorem 2.4, we know that the contact sets
of some calibrations can be viewed as subsets of the isotropy groups of the
calibrations. For example, let $P\subset SO(8k)$ be the isotropy group of $A_{8k}(1+\beta_{8k})$

and $\tilde{P}\subset Spin(8k)$ is the lift of $P$ such that $\tilde{P}|_{A_{8k}(1+\beta_{8k})}=1$ . Hence the contact set
of $4l$-form part of $A_{8k}(1+\beta_{8k})$ are

$p(\tilde{P})\cap G(4l, R^{8k})$ .

In general, the contact set of r-form part of $x_{0}A_{8k}(1+\beta_{8k}),$ $x_{0}\in G(r, R^{8k})$ , is

$\rho(x_{0}\tilde{P})\cap G(r, R^{8k})$ .

From $A_{8k}(1+\beta_{8k})e_{1}e_{2}=-e_{1}e_{2}A_{8k}(1-\beta_{8k})$ , we know that the lift of the isotropy
group of $A_{8k}(1-\beta_{8k})$ to Spin $(8k)$ is $Ad(e_{1}e_{2})\tilde{P}$ . Since the isotropy group of $A_{8k}$

is a subgroup of the isotropy group of $A_{8k}(1+\beta_{8k})$ , the lift of the isotropy group
of $A_{8k}$ is $\tilde{P}\cap Ad(e_{1}e_{2})\tilde{P}$ and the contact set of r-form of $x_{0}A_{8k}\beta_{8k}$ is

$\rho[x_{0}(\tilde{P}\cap Ad(e_{1}e_{2})\tilde{P})]\cap G(r, R^{8k})$ ,

where $x_{0}\in G(r, R^{8k})$ .
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\S 5. Calibrations on Manifolds

In this section, we study calibrations on Riemannian manifolds. First we have

THEOREM 5.1. Let $M$ be a spin mamfold with dimension $m\leq 9$ . If there is

a parallel real pinor or spinor field $\sigma$ on $M$ with unit norm. Then $p(\sigma\cdot\alpha(\sigma‘))$ is a
harmonic form. Furthermore, the homogeneous parts of $\rho(\sigma\cdot\alpha(\sigma^{l}))$ are calibrations
on M. If $m=7$ , the 3 or 4-form parts of $p(\sigma\cdot\alpha(\sigma^{t}))$ are associative or co-
associative calibrations respectively. If $m=8$ , the 4-form part of $\rho(\sigma\cdot\alpha(\sigma‘))$ is a
Cayley calibration.

PROOF. Let $\sigma$ be a parallel real spinor field on $M$ with $\Vert\sigma\Vert\equiv 1$ . As shown
in [5], spin group Spin $(m)$ acts on the unit sphere in spinor spaces transitively if
$m\leq 9$ . Then the theorem follows from Theorem 2.4. $\square $

The following theorems concem the conditions of existence calibrations on
Riemannian manifolds.

THEOREM 5.2. Let $M$ be a compact Riemannian mamfo $ld$ with dimension 8. If
there is a Cayley calibration or a special Lagrangian calibration on $M$, then

(1) $H^{4}(M)\neq 0$ ;
(2) The structure group of $M$ can be reduced to $Spin_{7}$ the isotropy group of

Cayley form;
(3) $M$ has a spin structure;

(4) $p_{1}(M)^{2}-4p2(M)+8\chi(M)=0$ , where $p_{i}(M)$ are Pontrjagin forms on $M$.

PROOF. It is easy to see that $16A_{8}(1+\beta_{8})$ is a sum of Cayley form and
$1+\omega_{8}$ . Let $\phi$ be a Cayley calibration on $M$. Then $\emptyset=\star\phi$ is a harmonic form and
there is a pinor bundle defined by

$S=\{\xi_{q}(1+\omega_{8}+\phi)|\xi_{q}\in C\ell_{q}(M), q\in M\}$ ,

where $\omega_{8}$ is the volume element on $M$ and $\emptyset$ is viewed as a section of $C\ell(M)$ .
Let $P$ be the frame bundle over $M$ formed by all frames on $M$ with which $\phi$

can be represented in canonical Cayley form. Obviously, the structure group of
$P$ is $Spin_{7}$ . The existence of spin structure follows from Lemma 4.3. For (4), see
Theorem 10.7 on p. 349 in [8].

On the other hand, let $\psi$ be a special Lagrangian calibration on $M$. Also
denote the correspond element in $\Gamma(C\ell(M))$ by $\psi$ . Since $A_{8}+2A_{8}\cdot A_{8}=$
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$A_{8}(1+\beta_{8})$ , from $\psi+\frac{1}{8}\psi\cdot\psi$ , we can get a Cayley form on $M$. Notice also that $\psi$

is a harmonic form $(\omega_{8}\cdot A_{8}=A_{8})$ . $\square $

Combining Theorem 5.1, 5.2 with Theorem 10.20 of [8, p. 356], we have

THEOREM 5.3. Let $M$ be a Riemannian manifold with dimension 8. Then there
is a Cayley calibration on $M$ if and only if $M$ is spin and there is a parallel pinor
or spinor field on $M$.

PROPOSITION 5.4. Let $M$ be an oriented Riemannian manifold If there is a
special Lagrangian calibration $\psi$ on $M$, then

(1) When $2n\equiv 2$ or 6 $(mod 8)$ , the structure group of $M$ can be reduced to

$SU(n)$ , hence there is a complex structure on M. Moreover, $M$ is spin and there is

a pinor bundle generated by $\psi-(\sqrt{-1})^{n}\psi\cdot\omega_{2n}$ as subbundle of $Cl(M)$ ;

(2) When $2n\equiv 0$ or 6 $(mod 8)$ , there is a real pinor bundle over $M$ generated
by $\psi+\frac{1}{2^{n- 1}}\psi\cdot\psi$ .

$PR\infty F$ . With the notations used in previous sections, we have

$A_{2n}+\sqrt{-1}B_{2n}=A_{2n}-(\sqrt{-1})^{n}A_{2n}\cdot\omega_{2n}$ , if $2n\equiv 2,6(mod 8)$ ,

$A_{2n}(1+\beta_{2n})=A_{2n}+2A_{2n}\cdot A_{2n}$ , if $2n\equiv 0,6(mod 8)$ .

Then the proposition follows from Proposition 4.1, 4.2 and the results of \S 3
in [9]. $\square $

PROPOSITION 5.5. If there is an associative or coassociative calibration on a
Riemannian manifold with dimension 7. Then

(1) The structure group of the mamfold can be reduced to exceptional Lie
group $G_{2}$ ;

(2) The mamfold has a spin structure and there is a pinor bundle on it.

The proof of the proposition is similar to that of Proposition 5.4, so we
omit it.
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