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SPINORS, CALIBRATIONS AND GRASSMANNIANS

By

Zhou JIANWEI

Abstract. In this paper we use Clifford algebra and spinor calculus
to study the calibrations on Riemannian manifolds and the Grass-
mann manifolds. Show that for every Grassmannian, there is a map
n: G(k,R™) — M such that every £ € M is a calibration on R™ and
n1(&) is the contact set of & In low dimensional cases, the cali-
bration sets M are manifolds or manifolds with singularities. We also
use Clifford algebra to study the isotropy groups of calibrations.

§1. Introduction

In [9], we gave a new treatment of the Clifford algebras. We represented the
pinor and spinor spaces as subspaces of the Clifford algebras, then we used these
pinors to construct isomorphisms between the Clifford algebras and the matrix
algebras. In doing these, we have developed some spinor calculus. In this paper,
we use Clifford algebra and the results of to study the calibrations and the
Grassmann manifolds.

Let £ be a closed k-form on a Riemannian manifold M. If for every
point p of M and every orthonormal vectors ej,...,ex € T,M, we have
¢p(er A -+ Aex) <1 and there are éy,...,é such that ¢p(é1 A - A &) =1, then
¢ is called a calibration. The set of such &; A --- A & is called a contact set of the
calibration ¢. The importance of the calibration is that the calibrations are closely
related with the homologically volume minimizing submanifolds (see [5], [6]).
Dadok and Harvey [2]| have shown that from squares of spinors in dimension 8k,
one can get calibrations. Their method can be phrased as follows.

Under the canonical isomorphism between the Clifford algebras and the
exterior algebras, the oriented Grassmannian G(k,R™) can be looked as a subset
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of Clifford algebra, especially, G(k,R™) < Pin(m). For any ¢&,n € C¢,, with unit
norm, Xxo,x € G(k,R™), we have

{xola(n’), x) = <{xoé, x> < 1.

These shows the k-form part of xo& - a(n’) is a calibration on R™ and the element
x is in the contact set of this calibration if and only if x& = xy#.

In this paper, we study the cases of ¢ = n being the generators of the Clifford
modules constructed in [9], see §2 of this paper. We shall also see that all
homogenous parts of ¢-a(¢') are calibrations which includes many known
important calibrations. Let M be the set of calibrations defined by k-form part
of x&-a(&'), x e G(k,R™). There is a map = : G(k,R™) — M defined naturally
and n~!(¢) is the contact set of ¢ € M. Then every Grassmann manifold can be
represented as a disjoint union of the contact sets of some calibrations. In low
dimensional cases, we can show that n~!(¢) is a totally geodesic submanifold of
G(k,R™). In some cases, 7 : G(k,R™) — M define fibre bundles. These maps are
useful for our understanding the Grassmann manifolds. In many cases, the cali-
bration sets M are manifolds or manifolds with singularities. We call M calibra-
tion manifolds.

For example, as shown in [9], A4s(1+ fg) generates a left irreducible
module space Vg = Cf; - Ag(1 + Bg) over C/;. We shall see that Ag(1+ fs) -
a(Ag(1 + Bg))" = As(1 + Bg) and ||4s(1 + Bg)|| = 1/4. Let ¢; be the 4-form part of
16e1e;As(1 + Bg), i = 1,...,8. ¢, is the Cayley calibration, the other ¢, are special
Lagrangian calibrations. The calibration manifold M defined by 4-form part
of 16xAs(1 + fg) is diffeomorphic to the unit sphere S7, that is, M = {3 vig; |
v=(vy,...,v3) € S”}. This is the content of [Proposition 3.1.

For another example, let M be the calibration manifold defined by 2-form
part of 16xAg(1 + B3), x € G(2,R®). In this case, M is diffeomorphic to S® and
n: G(2,R®) — S% is a fibre bundle with fibre CP3.

The paper is organized as follows. In §2, we study the calibrations defined by
x&-a(&") for the case of & being the generators of the Clifford modules. The
results are in [Theorem 2.4 and 2.5. In §3, we study the calibration sets in low
dimensional cases.

In §4, we study the isotropy groups of calibrations. We show that in many
cases, the contact sets of the calibrations can be viewed as subsets of the isotropy
groups of the calibrations. In § 5, we study the calibrations on Riemannian mani-
folds. Combining with a result of Lawson and Michelsohn [8], we show that there
is a Cayley calibration on a 8-dimensional Riemannian manifold if and only if
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the manifold is spin and there is a parallel pinor or spinor field on this manifold

Many notations used in this paper have been used in [9]. We write here
for easy reference. Let ey,...,e, be an orthonormal basis of R™, then C7, is
generated by {e;} with the relations: e;e; + eje; = —2J;. The homomorphism
o: Ct, — Ct, is defined by

a(@) =& if EeCLe™ aln) =-n, if neCLye.

When m=2n, let g; =3(es-1 —V—1ex), §;=%(eric1+vV—ley), i=1,...,n.
Denote Ay, = Re(g,---g,) and By, =Im(g;---g,). Let w, =eje;-- e, be the
volume element of C/,. The element 8, € CZ, is defined by

ﬁ eiez - ey_3m—1, M €Ven;
m ) e1e3- - em_nem, m odd.

§2. Pinors and Calibrations

We have shown in that every pinor or spinor space can be realized as a
subspace of Clifford algebra. Under the canonical isomorphism p : CZ,, — /\(R™)
defined by p(e;, ---e;) =e; A -+ Aej, I <---<lI, the pinor or spinor spaces
can be looked as subspaces of the exterior algebra. The inner products {,) on
C¢4,, and /\(R”’) are defined as usual. The norms of & and p(&) are

1€l =1l = V<&, &

For any x € G(k,R™), we can write X =e; A -+ A ex, Where {ej,...,er} is
an oriented orthonormal basis of x. As noted above, if ¢ e I'(/\(R™)) is a cali-
bration, we call

G(&) = {x € Gk, R™)| &(x) = 1}

the contact set of &.
As shown in [9], the irreducible modules over C¢, can be generated by the
one of the following elements:
(1) A, when m = 2,4 (mod 8);
(2) 4,,(1 +p,,), when m =0,6 (mod 8);
(3) Am-1(1+ B,,—1), when m =1 (mod 8);
(4) Am-1(1 + @), when m =3 (mod 8);
(5) Am—1(1+B,,), when m =5 (mod 8);
6) Ap—1(1 + B,,_1)(1 + @), when m =7 (mod 8).
We shall see that every homogenous part of the above generators (under the
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map p) is a calibration. It is well-known that the n-form 2"4,, is a calibration on
R?" called the special Lagrangian calibration; the 4-form part of 24A4g(1 + f) is
Cayley calibration; the 3 or 4 form parts of 234¢(1 + B¢)(1 + ) are associative
and coassociative calibrations respectively. It is easy to see that we need only to
study the cases of (1), (2) and (6). First we prove several lemmas.

Lemma 2.1. For any n, we have 4A§n=(—1)(”/2)("+1)A2,,, | A2a||* =
AABI = gk, (A is an neform.

n—

Proor. From  §,---g,g1---gngy---g1 = (-1)"g;---g, and g,---g,=
Az,(1 — v/ —leje;), one has

(—1)™20N443 (1 — Vleres) = (=1)"du(1 — V—Teyey).
This shows 443 = (—1)("/2)("+1)A2,,. O

LEMMA 2.2, When 21=0,6 (mod8), we have (Az(l+By,))%=

A2a(1+ B3,), 1 42n(1 4 Bo)II*> = %5, and p(Azn(1+ Bo,)) = W+ 3 ay, where Y;
is a j-form. k=0

PrOOF. From g, :--g, = A2,(1 — V—1eje;) and
g1 "'gnBZn =g “gng1Gn = 2A§n(1 + v —16182),
one has Ay,8,, = 243 . Then

(A2n(1 + B2))? = A2a(1 + B2y)y  (A2a(1 = B))? = —A2u(1 — Bs,).

Hence

1
[ 42n (1 + Bo)||* = {A2n(1 + B,), 1> = T

The representative p(Az,(1 + B5,)) = ¥, + 3. ¥4 follows from
Aoy = (=D"2"D Re(gig1 - Gugn). O

The proof of the next lemma is easy (wsi+7 in the center of Cfg,7).

LEMMA  2.3.  [Agirs(1 4 Borrs) (1 + 0sicr7)]> = 2Ases6(1 + Bars6) (1 + wsi17),
| 48k+6(1 + Bairs) (1 + 08is7) I = 507, P(Askr6(1 + Boers) (1 + wsi17)) = S g, +
> Wajss-
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The following theorem generalizes some important known calibrations. The
methods used in the following proof were first established by Dadok and

Harvey [2]

THEOREM 2.4. Each homogeneous part of the following differential forms is a
calibration:

(1) 2"A2m;

(2) 2" A3 (1 + Boy), 2n = 0 6 (mod 8);

(3) 2% Ay 6(1 + Bosrs) (1 + gicr7).
Furthermore,

(1) x e G(2"Ay,) if and only if XAz = AwmPons

(2) xe G2"Am(1+ ) i and only if xAwm(1+By,) = A2n(1 + Bn),
2n=0,6 (mod 8);
(3)" x e GQ2%*3 Agicy6(1 + Pyiys) (1 + wsis7)) if and only if xAsk16(1 + Baxre) -

(1 + wsr+7) = Asir6(1 + Barrs) (1 + w8k47),
where the Clifford product is used.

Proor. The theorem is an easy consequence of [Lemma 2.1-2.3, we prove
(1) and (1)’ for examples. By [Lemma 2.1, for any x € Pin(2r), we have
(p(2"A2m), p(x)) = 27245, xAzn) < 2772|| A3, || | xA2nll = 1,

and (p(2"A4s,),p(x)> =1 if and only if xA4,, =2A43. It is easy to see that
B,, is in the contact set of the special Lagrangian calibration p(2"4,,) and

PonAon = Aznfy,. O

By 24kA3k0((ﬂék) = Re(l + v —lelez) oo (1 + v —legk_legk), we have

2% Ay (1 + fyi) = 24kA8k+Z( 1)’ (21) g

where Q = eje; + - - - + egr_1eg is the kaehler form on R% =~ C*. One can show
that

G(24kA8k)nG<( 1) mﬂz") =,

G(24"A8k)UG<( 1)* % )92k> CG(24kAgk+( 1)% 20 sz)

Thus the calibration defined by 4k-form part of 24 4g; (1 + Bg;) can be viewed as
a naturally generalization of the Cayley calibration.



82 Zhou JIANWEI

The proof of following theorem is easy.

THEOREM 2.5. For any xo € G(r,R™) < Pin(m), the r-form parts of the fol-
lowing differential forms are calibrations:
(1) 2™ 1xgAz,0(AL,) = 2"x0A2m(B5,), m = 2n;
(2) 2"x0A2,(1 + B,,), m=2n=0,6 (mod 8);
(3) 24k+3ongk+6(1 +ﬂ8k+6)(1 + wgr+7), m =8k + 7.
Furthermore,
(1) x € G(2"xoAzma(B3,)) N G(r, R*™) if and only if XAy = XoAzm;
(2)" x € G(2"xoAm(1 +B)) NG(r,R*) if and only if xA(1+f2) =
onzn(l +,82,,), 2n=0,6 (mod 8),
(3) x € G2% Agi6(1 + Byirs) (1 + wsii7)) N G(r, R¥**7T), if and only i,
xAsicr6(1 + Barys) (1 + wsks7) = XoAskr6(1 + Byir6)(1 + 0sk17).-

Let U(n) be the unitary group on C" = R?". The complex structure J is
defined by gi,...,9,. The element A, is invariant under the action of
SU(n) = SO(2n). From gy ---gng1---gn = 243,(1 + V—1leiez), we know that
243 + Az.f,, is invariant under the action of U(n). In the remained of this
section we study the calibrations defined by 2"xA42,a(f;,). For more results, see § 3.

PROPOSITION 2.6. For any xe G(2,R™), represent x as v A (aJv+ bw),
where v,w are unit vectors and w L v, Jv, a®> +b* = 1. Then the 2-form part of
2"xAy,0(B5,) is one of the following,

(1) v A (aJv+ bw) + (aw — bJv) AJw + .-, if |a| <1, where --- denotes the
2-forms which can be omitted as a calibration;

(2) i—(elez +eeq+ -+ ez,,_lez,,), if a= +1.

PROOF. Since Az,x(f5,) is invariant under the action of U(n), we can
assume that v = e;, w = e3. The 2-form part of

2" x A2 (B,)
= a Re(eje; — \/———1)(1 + \/—_1e3e4) (T4 \/—_lez,,_lez,,)
+ b Re(e; — V—lez)(e3 — V—lea)(1 + v =leseg) -+ (1 + V—1ex_1€21)
1s
ei(aey + bey) + (aes — bex)es + a(eses + - - - + ean—_1€24).

If |a| < 1, the contact sets of above 2-form and e;(ae; + bes) + (ae3 — bez)es
are the same. This proves the proposition. O
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Now we compute the calibrations defined by 4-forms of 2"xA2,%(B3,),
x € G(4,R*). As pointed out in [5, p. 129], every x € G(4, R?") can be repre-
sented by

x = e1(cos ae; + sin aes)es(cos fes + sin fer),

where e, ey = Jei, ..., em_1, € = Jey,_1 is some orthonormal basis on R* and J
is the complex structure defined above, 0 <a <7/2, a < f <.

PROPOSITION 2.7. For any x € G(4,R*") represented as above, let ¢ be the
calibration defined by x as in Theorem 2.5 (1). With some new orthonormal bases
e1,e,...,exym, as a calibration, ¢ or —@d can be represented by the one of the
following forms,

(1) Kaehler calibration ¢, =1 (e1e2+---+ eam_10m)>, when a=p=0 or
x=0, f=m;

(2) Special Lagrangian calibration ¢, = 2*Ag, when o= f = n/2;

(3) @3 = (ese7 — egeg) A (e1e2 + ezeq +egerp + -+ + em—16m), when a=0,
B=n/2

(4) ¢, = (e1es + e3eq)(eses + ereg) + cos? alejerezes + eseseres) —
sin? a(eres + eze3)(eses + eger), when o= #0,m/2 or a+pB=m, a+#0, n/2;

(5) ¢s = (e1e2 + e3es)(eses + e7eg), for all other cases.

PrOOF. By simple computation, the 4-form part of 2"xA,a(f;,) can be
written as ¢+, with
¢ = (e1ex + eses)(eses + ezeg) + cos a cos ferezezeq + esegeres)

— sin a sin B(ejes + exe3)(eses + eser);
1 2
Y= 3 cos o cos fegero + -+ - + ean—1€24)

+ cos a(eseq + e7es)(egero + - - - + €m—1€21)
+ cos P(erez + ezes)(evero + - - - + ean—1€2n).

We have replaced cos ae; + sin ae; and cos oe; —sinae; by e; and es;
cos fes + sin fe; and cos fe; — sin Begs by es and e; respectively. Then the cases of
(1), (2), (3) follow directly.

Now assuming a, 8 # 0,7/2, 7, we first show that for any y € G(4,R*") with
{p+,y> =1, then (Y, y> = 0. Hence as a calibration we need only consider
the 4-form ¢. Rewrite ¢ 4+ = egejo A ' + x, where Y’ and y are the forms in
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orthogonal complement of span {eg,ejo}. For any y € G(¢ + ¢), as in the proof
of Lemma 2.1 of [3], y can be written as

y = (cos yeg + sin pv)(cos yep + sin yw)n,
where #,v,w are orthogonal to ey,e19. Then at least one of the following holds:
ey’ > =1, <y =1
<Yy = <own, ) = 1.

Since egejp(ejey + -+ - + ereg + eyje12+ -+ -+ exy-1€2,) is a calibration and
lcos & < 1, |cos B < 1 by assumption, then {y,eseioff’) =1 and <{n,y'> =1 can
not hold. Then we have

{y,x>=1 and cosy=0.

In this way we can show that if y e G(¢ + ¢), then (¢, > =0. Thus we need
only to consider the 4-form ¢. Note that ¢ is calibration for any «,f, the fol-
lowing hold,

0 0

Then

sin a cos fa + cos a sin b = 0,
cos a sin fa + sin « cos b = 0,

where a = {ejeyeses + esegeres, ¥y, b= {(e1es + ere3)(eses + ese7), y>. Then
a=b=0 if sin® a cos? § — cos? a sin? § = sin(a + B) sin(a — ) # 0. In this case,
as calibrations, ¢ and ¢; are the same. If a =f or a +f ==, ¢ has the form
Py O

§3. Calibration Manifolds

In this section we study the calibration sets defined by in low
dimensional cases. By [Theorem 2.5, we know that 8xAsx(A4;) = x(1 —w4) is a
calibration for every xe G(2,R*). x' e G(2,R*) is in the contact set of this
calibration if and only if x44 = x’Aj4, this is equivalent to x(1 — w4) = x'(1 — wa4).
On the other hand, x =1x(1— w4)+3x(1+ws) and there are unit vectors
v,w L e; such that x(1 — w4) = e;v(l1 — w4), x(1 + ws) = eyw(l + w4). The map
G(2,R*) — 8% x S? defined by sending x to (v,w) is a diffeomorphism. Then
the map 7 : G(2,R*) — S?, x — v, defines a fibre bundle. The contact set of
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the calibration ejv(1 — w4) is 7~ !(v) which is a totally geodesic submanifold of
G(2,RY).

This construction can be generalized to many cases. Let M, (r,2n) be the set
of calibrations defined by r-form parts of 2"xAna(f)), x € G(r,R*). When
2n = 0,6 (mod 8), let M;(r,2n) be the set of calibrations defined by r-form parts
of 2"xAy,(1 + B,,). By [Theorem 2.5, there are two maps:

71 . G(r,R*") — M(r,2n);
7y : G(r,R*) — My(r,2n), 2n=0,6 (mod 8).

For any ¢ € M;(r,2n), ;' (9) = G(r, R*) is the contact set of ¢. If xA2, = x' A,
we have xA43,(1 + B,,) = x'A2,(1 + B,,). Then there is a map =’ : M;(r,2n) —
M;(r,2n), if 2n = 0,6 (mod 8). This map is nontrivial in some cases. Obviously,
7t'7'£1 = 7).

We shall see that, in low dimensional cases, the calibration set M;(r,m) are
manifolds or manifolds with singularities. We call them the calibration manifolds.

We first study the sets M,(r,8). As shown in [9], there is a unit vector v € R®,
such that xAg(l + Bg) = ejvdg(l + Bg) or xAg(l + Bg) = vAs(1 + fg) for any
x € G(r, R®), according to r being even or odd. As exterior forms, xAg(1 + fs) is
selfdual for any x € G(2r, R®), anti-self dual for x € G(2r — 1,R®). Then we need
only to study M,(r,8) for r=2,3,4. As is well known the isotropy group of
Ag(1 + Bg) is Spin, = SO(8) which acts transitively on the unit sphere S7 in RS,
The exceptional Lie group G, is a subgroup of Spin; which acts transitively on
the sphere S® = {v e S7 |v L e;}. These observations are useful for the study of
M, (r, 8) . ’

In the following, we shall often use 4Ag and Agfs. By simple computation, we
have

1643 = ejezeser + ereseces — e1€3e6€3 — e2e4€5€7
— €1€e4€5€3 — €1€4€6€7 — €2e385e8 — €2€3€6€7,
16Ag,38 =1+ wg — esegeres — ejeze3e4
— €3€64€67€63 — €1€2€5€ — €1€2€7€8 — €3€4€56¢.
PROPOSITION 3.1. The calibration set M>(4,8) is a manifold diffeomorphic
to S7, the diffeomorphism is defined by sending ve S’ to 4-form part of

16e1vA45(1 + Bg). Furthermore, v = te, corresponds to the Cayley calibration, the
others are the special Lagrangian calibrations.
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ProOF. We need only to show that the 4-form part of 2%ejvAs(1 + fg) is
a calibration for any ve S’. As noted above, there is an element G € Spin;
such that G(e;) =e;, G(v) = ae; + bes, then G(ejvAs(1 + fg)) = ei1(aey + bey) -
Ag(1 + Bg). By —ejesegerAs(1 + fg) = As(1 + Bg), we have

el (ae1 + bez)Ag(l —i—ﬂg) = (ae1 — bez)e4e6e7Ag(l +ﬂ8).

By Mheorem 2.9, the 4-form part of 2%¢;vA4s(1 + Bg) is in M>(4,8). Thus M;(4,8)
is a manifold diffeomorphic to S7. The 4-form parts of +2%43(1 + fg) are the
Cayley calibrations. If v # +e;, replace ae; — bey, be; +ae; in G(eyvAg(l+fg)) =
(aey — bey)eseserAg(1 + Bg) by ei,ep, one can show that the 4-form part of
2%e1vAg(1 + Bg) is a special Lagrangian calibration. O

For any unit vector v L e;, we can define a map J, : R® - R?, Jy(e1) = v,
J,(v) = —ey; for any w Le, v, J,(w) is determined by J,(w)A4s(l +fBg) =
—ejvwAg(l + Bg). It is easy to see that J, is a complex structure on R?® and
J., = J. On the other hand, for any such v, there is G € G, such that G(e;) = ey,
G(v) = e;. It is easy to see that J, = G~1JG.

By [Proposition 3.1, there are calibrations ¢; defined by 2%e1e;A3(1 + Bg),

8
i=1,...,8 For any x = (x1,x2,...,x3) €S’, ¢ = Y x;¢; is also a calibration. ¢
y ~ i 1

i=

is Cayley calibration, the other ¢, are special Lagrangian calibrations with the
complex structures J,,. Then for every element of Vg with norm 4 determines a
calibration.

It is interesting to note that the differential equations of ¢;-submanifolds can
be determined by ¢;, where j=1,...,i—1,i+ 1,...,8 (cf. Dodak and Harvey
2]). This method of determine the differential equations for calibrations can be
applied to all calibrations studied in this paper.

PROPOSITION 3.2. The calibration set M>(2,8) is a manifold diffeomorphic to
S¢ = {ve S7|v L e}. The two form of 16e1vAg(1 + Bg) is a kaehler calibration on
R® = C* with respect to the complex structure J,. The map m; : G(2,R%) — S°
defines a fibre bundle with fibre CP>.

ProoF. Let xAg(1+ Bg) = ejvAs(1 + B3) and v =ae; + bv’, v’ L e;, where
x € G(2,R®). From

(xAs(1 + Bg), As(1 + Bg)> = <x, Ag(1 + f5)> =0

and
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% = (xAg(1 + Ps), e1vAs(1 + Bg)> = <xAs(1 + Bg), berv' As(1 + fg) ) < %|b|,

we get v L e. The two form of 16e;v45(1 + fg) is a kaehler calibration on
R® = C* with respect to the complex structure J,.

Then there is a map 7 : G(2,R%) — 8% m(x)=u, if xAg(l+fs) =
e1udg(l + fg). By [Theorem 2.3, it is not difficult to show that for any u e S°,

7y (u) = {vJ,ve G2,R®) |ve ST}

Then 7;!(u) is diffeomorphic to the complex projective space CP*. These com-
plete the proof of the proposition. O

For any G e Spin;, we have the following commutative diagram:
G2, R%) —% G(2,RY)
L,k
g6 _G S5

where G is defined by G(x)A4g(1 + Bg) = e1G(u)As(1 + Bg), u = ma(x). It is easy to
show that 7;!'(u) is a totally geodesic submanifold of G(2,R®) for any u e SS.

The proof of the following proposition is similar to that of [Proposition 3.1
and 3.2.

PROPOSITION 3.3.  The calibration sets M»(r,8) are all diffeomorphic to S7 for
r=1,3,5,7. Every element in M>(3,8) is essentially an associative calibration on
some T-dimensional subspace of R®. For each r =1,3,5,7, my : G(r, R8) — M>(r,8)
defines a fibre bundle.

Similar to the case of G(2,R?), for any G e Spin,, we have the following
commutative diagram:

G3,R%) —% G(3,R®)
J/ﬁz J(7Q
s 4, s
The group Spin, acts transitively on G(3, R®) and every fibre of G(3,R®) — S7 is
a totally geodesic submanifold of G(3,R®) and is denoted by ASSOC.

ReMARK. In [4], Gluck, Mackenzie and Morgan studied the volume-
minimizing cycles in Grassmann manifolds. We can show that 7;!(u) is a cali-
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brated submanifold of calibration Lw? on G(2, R®) for any u € S®, where w is the
kaehler form on G(2,R®) (cf. [4]) and =, : G(2,R®) — S is defined in Proposi-
tion 3.2. Let E be a vector bundle on G(2, R®), the fibre on e; A e; € G(2,R®) is
{v L e;,e2]ve R®}. Then the Euler class of E defines a calibration on G(2, R®)
and the sphere S® < G(2,R®) is a calibrated submanifold of this calibration.
These gives an answer to the problem (5) of [4]. Let dvgs be the volume element
of S6. It is interesting to note that the 6-form =} (dvgs) is also a calibration on
G(2,R®) and can be represented as a summand of Lw3. There is no calibrated
submanifold of n;(dvgs) even locally.

As is well-known, there is a Hopf fibration S7 — S* defined by quaternions.
Combining this with [Proposition 3.3, we have a map 7 : G(3,R®) — S*. We can
show that every fibre of the map 7: G(3,R®) — S* is a calibrated submanifold
of xp; the dual of the Pontryagin form p; on G(3,8) (cf. [4]). Then t=!(v) is
volume-minimizing in the holomogy class defined by t~!(v), any ve S* This
gives a partial answer to the problem (2) in [4]

PROPOSITION 3.4. The map G(r,R®) — M>(r,8) defines a fibre bundle for
each r#4,8. The bundles m,:G(r,R®) — My(r,8) and m: G(8 —rR®) —
M,(8 —r,8) are dual in the sense of the following commutative diagram:

G(r,R®) —— G(8 —r,R®)
Lo
(-1’
M;(r,8) —— M>(8 —r,8)

where x is the Hodge star operator.

Proor. The Hodge star operator x can also be defined by *x& = wsg - &, for
& e Cty = /\(R®). Hence

*xAg(1 + fg) = (—1) xcwsAs(1 + B) = (—1)"xA4s(1 + fs)

for any x € G(r,R®). This proves Proposition.  []

Now we turn to study the calibrations defined by xA44(1 + B4)(1 + w7). Let
C/s and C/; be generated by es,...,eg and ey, es,...,eg respectively. The iso-
morphism ¥ : C4; — C£5%" is defined by W(&) =& for e C4°", Y(Y) = ey,
for Y € C/;’dd. It is easy to see that 243 = e;Ag + Asw7, then

P (A6(1 + B6)(1 + 7)) = 245(1 + By).
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Then for any ¢ e C/5,
W(EA6(1 + B6)(1 + 7)) = 2e1vA4s(1 + Bs)

for some v € R®. Since the exceptional Lie group G, fixes Ag(1 + B¢)(1 + w7) and
As(1 + Bg), we can assume that v = ae; + be,. Replace —ae; + bey, —aeq — be; by
e3,eq in 2%(—a + bejey)Ag(1 + Bg), we get

e1(e3s7 — e36s — eass — eas7) + €2(ea6s — €as7 — €358 — €367)
— a(l — ese78 — €3478 — e3456) — ae1 (w7 — €234 — €256 — €278)
+b(erez + -+ - + e7es — e3ase78) — berea(ezsss + €378 + es678),

where ej.., = e;e; - - - ex. This shows
ij j

PROPOSITION 3.5. Denote M(r,7) the calibration sets defined by the r-form
part of 23xA¢(1+ Be)(1 + w7), x € G(r,R"). Then

(1) There are two forms in M(3,7) defined by 3-form parts of +23A46(1 + B) -
(1 4+ w7) which are associative calibrations. The others are special Lagrangian
calibrations. M(3,7) is a manifold diffeomorphic to S’;

(2) M(2,7)~ 8% is a set of kaehler calibrations and n: G(2,R") — S® is a
fibre bundle with fibre CP?Z;

(3) The calibration manifolds M(3,7) and M(4,7); M(2,7) and M(5,7) are
diffeomorphic respectively.

Now we turn to study the calibration sets M;(r,8). Recall that, for any
x € C£57", there are unit vectors v, w, such that xAg(1 + fg) = ejvAs(1 + Bg) and
xAg(1 — fg) = eywAg(1 — fg). Then

2xAgfs = e1(v — w)Ag + e1 (v + w) Agfyg.

The following lemma gives the necessary conditions of for which v, w € R®
there exists x € G(r,Rs) such that ejvAg + eywAgfls = xAgfls or vAgz + wAgfs =
XAgﬁs.

LemMMA 3.6. For any v,we R® if there is some xe G(r,R®), such that
e1vAg + eywAgfy = xAgfyg, for r even; vAg + wAgfy = xAsfg, for r odd. Then the
vectors v,w satisfy the following conditions:

2+ w> =1, (o,w)=<Jo,wd=0,

where J is the complex structure defined as above.
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PrOOF. Let r be an even number, x € G(r, R8), xAgfs = ejvAg + eywAgfs.
The equality [v]> + [w|?> =1 follows from 2428, = As and {ejvds,eiwdsfs) =
1{v,wdg) =0. By A3 =a(xAsfy)'-xAsfs, we have Ag(Bzowfy +wv)ds = 0.
Since Ag and Agfg are invariant under the action of SU(4), choose G € SU(4)
such that

G(U) = a e, G(W) = b1€1 + b2e2 + b3€3.

Then
G(Ag(Bsvwps + wo)As)
= Ag(—2a1b) — 2a1bse1e1) A3
= —2a1b1A82 + 2a1b2e1e2A§.
This shows
arby = {G(v), G(w)) = {v,w) =0,
a by = {JG(v), G(w)) = {Jv,w) = 0.
The case of r being odd can be proved similarly. O

PROPOSITION 3.7. The calibration set M,(2,8) is a manifold with two singu-
larities. Any element of M1(2,8) can be represented by 2-form of ejvAs + eywAgfs,

8 8
where v =73 ae;, w= > bje; satisfy the conditions of Lemma 3.6. The singu-
i=3 j=2
larities correspond to v =0, w = te;.
ProoF. For any x € G(2,R®), xAgfy = e1vds + eywAgfs, we have
2{e1vAg, Ag) = 2{xAsfs, As) = {x,Ag) =0,
2{e1vds, e1e24g ) = 2{xAsfg, e1e245) = {x,e1e243) = {x,Bg) = 0.

These show that v L e;,e,. Similarly we can show that w L e;. This shows that
the conditions of the proposition are necessary. On the contrary, suppose that the
vectors v, w satisfy the conditions of the proposition. We can assume that

v=azes, w=byey+bses, a’+bi+bl=1.

Then
e1vAs + eywAgfs = (aze7 — bres + bser)esAzfyg

and the 2-form part of ejvAg + e;wAgfy is in M (2,8).
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Finally, we show that omit two pints of M;(2,8), the remained set is a
manifold of dimension 10. Let

Fl = |U|2+|W|2’ F2=<U,W>, F3:<JU,W>.

o(F1,F, F3)
d(as,as,as,b,b3,b4,bs)

The Jacobian matrix at point v = aszes, w = bre; + bses is

as by bs
b5 as
-—b5 as

The rank of this matrix is 3 if and only if a3 # 0 or bs # 0. This completes the
proof of proposition. O

By [Proposition 2.6, we know that the singularities of M;(2,8) are kaehler
calibrations on R®, the other elements of Mj(2,8) are kaehler calibrations on
some 4-dimensional subspaces of R®. Then the fibres of the map =; : G(2, R®) —
M,(2,8) are all diffeomorphic to CP! ~ S§? expect two points. One can also show
that #7!(p) is geodesic submanifold of G(2,R®) for any p e M;(2,8).

As noted above, we have the following commutative diagram:

!

G(2,R%) —— M;(2,8)

N

M>(2,8)

For any u € S® ~ M(2,8), u # e3, n;!(u) is differemorphic to CP?. We can show
that M = n'~!(u) is differemorphic to S*. Restrict the map = on n;!(u), we get a
fibre bundle

n : CP? — §*

Every fibre of this map is S?. The map 7, : CP> — S* is just the well-known map
CP? - HP!.

By Hodge star operator, we know that M;(6,8) is also a manifold with sin-
gularities. Now we turn to study M, (4,8).

PROPOSITION 3.8. The calibration set Mi(4,8) is defined by these v,w € R®
which satisfy the conditions of Lemma 3.6 and {w,e;» = 0. M(4,8) is a mani-
fold with singularities and the singularities correspond to v = aje| + azez, w =20,
al+a3=1.
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ProOF. Let v,w € R® satisfy above conditions. We show that 4-form part of
eivAs + eywAgfs is in M;(4,8). Choose G € SU(4), such that

G(v) = aje;, G(w) = bses.

We can also assume that G(e;) is a linear combination of the vectors ey, ez, e3, es.
Then

G(e1vAs + eywAsfy)
= G(e1)(a1e1f5 + bzes) Agfg
= G(e1)(—ajejee3ece7 — byesejezereg) Agfy
= G(ey)erezezer(ares — bieg) Agfg
= —G(e1)eser(ares — bieg) Agfg.
These shows that there is x € G(4, R®) such that

xAgfs = ejvAg + eywAgfy.

As in the proof of [Proposition 3.7, we can show that if ejvA4g + eywAgfs =
xAgfs, for some x e G(4,R?), then w L e,. O

It is easy to see that the singularities of M, (4,8) defined by +e;e;Asf; are
kaehler calibrations and the other singularities are special Lagrangian calibrations
(cf. [Proposition 2.6).

The proof of the following proposition is similar to that of [Proposition 3.7
and 3.8.

PROPOSITION 3.9. The calibration sets M,(3,8) and M,(5,8) are both dif-
feomorphic to a submanifold of S5 < R'S defined by

> + WP =1, <v,wd = <Jo,w)=0.

It is not difficult to show that M;(3,8) is a minimal submanifold of the
sphere S'° with second fundamental form of constant length 24. There is a
natural action of SU(4) on M;(3,8) and M,(5,8), defined by (v,w) — (Gv, Gw),
for any Ge SU(4).

The calibrations defined by 23xA4e(1 + ) or 234¢f can be studied sim-
ilarly. By [9, §3.1], any elements in Vs = Cfs4e(1 + f¢) can be represented as
(a+ v+ cwg)As(l + B¢). With the action of SU(3), this can be changed into
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(a+ be; + cwe)Ae(1 + Bs)
= (—aes + bes + ces)e3 Ag(1 + Bg)
= (ae3 — beS — Ce4)eZe6A6(1 +ﬂ6)

It is easy to see that the 2-form part of 23(—ae; + bes + ceq)esAs(1 + fg) is a
calibration if and only if a = 0 and b2 + ¢ = 1; the 3-form part is a calibration
for all a,b,c with a? + b? + ¢> = 1. These prove

ProposITION 3.10. The calibration sets My(2,6) = M>(2,6) and M;(3,6) =
M;(3,6) are diffeomorphic to S® and S respectively.

§4. Isotropy Groups of Calibrations

In this section, we study the group action on the calibrations. For any
GeSO(m), G can be extended to automorphisms G:C¢, — C{, and
G: \R™) — N\(R™), p(G(&)) = G(p(&)) for any & € Cf,y,. Let ¢ be a calibration
on R™. The subgroup of SO(m) defined by {G € SO(m)| G(¢) = ¢} is called the
isotropy group of ¢. As is well known, the special Lagrangian calibration A, is
fixed by the action of elements of SU(n) = SO(2r). Moreover, we have

PROPOSITION 4.1. The isotropy group of special Lagrangian calibration A, is
SU(n), when 2n = 2,6 (mod 8).

PROOF. Assuming 2n=2,6 (mod 8), from g, ---g,wam = (V=1)"g; -8y
we have Ay,wi, = (V—1)""'By,. If G(Az,) = Aa, for some G e SO(2n), let
g € Spin(2n) be a lift of G. Then G(By,) = gBug' = Bz, hence G(g,---g,) =
g, -4, Write |

G(3) =) CsG;+ Y_ Dyg.
j 7

Denote C = (Cj), D = (Dy), they satisfy
CC'+DD'=1.
From
GGy Gn) =det(C)g, - Gp+ - +det(D)g1---gn = g1 - Gny
we have det C =1, hence D =0. This shows G e SU(n). O

PROPOSITION 4.2. SU(4k) is a subgroup of the isotropy group of the cali-
bration Agi(1 + Pg).
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* The proposition follows from Az,f3,, = 243,.

LEMMA 4.3. When 2n=0,6 (mod8), G is in the isotropy group of
Aw(1 + B,,), if and only if, G can be lifted to geSpin(2n) such that

gAZn(l +ﬁ2n) = AZn(l +ﬁ2n)'

ProOF. By Proposition 3.1.5 of [9], the equalities

G(Aan(1 + B2,)) = gA2n(1 + B2,) - a([A2n(1 + Ba)] )"
= AZ"(I +ﬂ2n) ’ O(([Azn(l +ﬂ2n)]t)

hold if and only if gA4.,(1 + B,,) = £A42(1 + B,,). O
The next lemma can be proved by using Proposition 3.2.4 of [9]

LEMMA 4.4. The element Ge SOk +7) is in the isotropy group of
Asir6(1 + Bsrig)(1 + wsky7) if and only if G can be lifted to g € Spin(8k + 7), such
that gAsii6(1 + Bairs)(1 + wsiks7) = Askys(1 + Baxie) (1 + wskt7), or equivalently,
gAsk+6(1 + BorcWsk+7) = Ask6(1 + Bayr6Wsic+7)-

Combining Lemma 4.3, 4.4 with we know that the contact sets
of some calibrations can be viewed as subsets of the isotropy groups of the
calibrations. For example, let P = SO(8k) be the isotropy group of Agi(1 + Bg)
and P < Spin(8k) is the lift of P such that P| Ag(14p,,) = 1- Hence the contact set
of 4/-form part of Ag(l+ fg,) are

p(P) N G(41, R®).
In general, the contact set of r-form part of xoAsk(1 + Bsx), xo € G(r, R%), is
p(xoP) N G(r, R%).

From Agi(1 + By )ere2 = —ejeaAsk(1 — Pgi), we know that the lift of the isotropy
group of Ag;(1 — fg;) to Spin(8k) is Ad(eje;)P. Since the isotropy group of Asg
is a subgroup of the isotropy group of Asi(1 + fg), the lift of the isotropy group
of Agi is PN Ad(eje;)P and the contact set of r-form of xoAsifg is

plxo(P N Ad(e1e2) P)] N G(r, R%),

where xo € G(r, R%).
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§5. Calibrations on Manifolds

In this section, we study calibrations on Riemannian manifolds. First we have

THEOREM 5.1. Let M be a spin manifold with dimension m <9. If there is
a parallel real pinor or spinor field ¢ on M with unit norm. Then p(o - a(c')) is a
harmonic form. Furthermore, the homogeneous parts of p(c - a(c')) are calibrations
on M. If m=1, the 3 or 4-form parts of p(c-a(c')) are associative or co-
associative calibrations respectively. If m = 8, the 4-form part of p(o - a(c')) is a
Cayley calibration.

PrOOF. Let o be a parallel real spinor field on M with ||g|| = 1. As shown
in [5], spin group Spin(m) acts on the unit sphere in spinor spaces transitively if
m < 9. Then the theorem follows from Theorem 2.4 O

The following theorems concern the conditions of existence calibrations on
Riemannian manifolds.

THEOREM 5.2. Let M be a compact Riemannian manifold with dimension 8. If
there is a Cayley calibration or a special Lagrangian calibration on M, then

(1) H¥ (M) # 0;

(2) The structure group of M can be reduced to Spin, the isotropy group of
Cayley form; '

(3) M has a spin structure;

(4) py(M)* —4py(M) + 8y(M) = 0, where p,(M) are Pontrjagin forms on M.

ProOF. It is easy to see that 16A4g(1+ fg) is a sum of Cayley form and
1 + wg. Let ¢ be a Cayley calibration on M. Then ¢ = x¢ is a harmonic form and
there is a pinor bundle defined by

S = {&(1 + w5 + §) | &, € CL(M), g € M},

where wg is the volume element on M and ¢ is viewed as a section of C/(M).
Let P be the frame bundle over M formed by all frames on M with which ¢
can be represented in canonical Cayley form. Obviously, the structure group of
P is Spin,. The existence of spin structure follows from Lemma 4.3. For (4), see
Theorem 10.7 on p. 349 in [8].

On the other hand, let  be a special Lagrangian calibration on M. Also
denote the correspond element in I'(C/(M)) by . Since Ag+2A4s-As =
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As(1 + Bg), from ¢ + -lg\// -, we can get a Cayley form on M. Notice also that ¥
is a harmonic form (ws - As = A3). O

Combining Theorem 5.1, 5.2 with Theorem 10.20 of [8, p. 356], we have

THEOREM 5.3. Let M be a Riemannian manifold with dimension 8. Then there
is a Cayley calibration on M if and only if M is spin and there is a parallel pinor
or spinor field on M.

PROPOSITION 5.4. Let M be an oriented Riemannian manifold. If there is a
special Lagrangian calibration y on M, then

(1) When 2n =2 or 6 (mod 8), the structure group of M can be reduced to
SU(n), hence there is a complex structure on M. Moreover, M is spin and there is

a pinor bundle generated by  — (V—1)"y - wa, as subbundle of C{(M);
(2) When 2n =0 or 6 (mod 8), there is a real pinor bundle over M generated

by ¥+ 5t - .
ProOF. With the notations used in previous sections, we have
Ay +V—1By, = Ay, — (V —l)nAzn cwo, If 2n=2,6 (mod 8),
 Aon(1 + B,,) = Aoy + 245, - A2n, if 2n=0,6 (mod 8).

Then the proposition follows from [Proposition 4.1, 4.2 and the results of §3

in [9]. 0

PROPOSITION 5.5. If there is an associative or coassociative calibration on a
Riemannian manifold with dimension 7. Then

(1) The structure group of the manifold can be reduced to exceptional Lie
group Gz;

(2) The manifold has a spin structure and there is a pinor bundle on it.

The proof of the proposition is similar to that of [Proposition 5.4, so we
omit it.
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