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ANALYTIC REPRESENTATION OF GENERALIZED
TEMPERED DISTRIBUTIONS OF EXPONENTIAL
GROWTH BY WAVELETS

By

Byung Keun SOoHN and Dae Hyeon PAHK

Abstract. The analytic representation of the generalized tempered
distributions of eM*¥)_growth with restricted order, J; (R), is given
in terms of series of analytic wavelets. These series converge uni-
formly on compact subsets of the upper and lower half planes.

1. Introduction

The analytic representation of functions or distributions on the real line R is
usually given by a Cauchy type formula, but in some cases may also be given by
an orthogonal series. It is well-known that trigonometric series may be used for
the analytic representation of periodic functions and distributions. Also, Hermite
series and Legendre polynomials can be used for the representation of non-
periodic functions and functions with compact support, respectively. Recently a
new category of orthogonal systems has been introduced in [1]. These systems
are composed of wavelets, i.e., orthogonal functions on R consisting of dilations
and translations of a fixed function. G. G. Walter has found an expansion in
orthogonal wavelets and pointwise convergence of that expansion from L?(R) to
the tempered distributions with restricted order of derivative, &'(R), in [6] and
and has showed an analytic representation of %'(R) in terms of series of analytic
wavelets in [7]. These two results were extended by us to the case of the tem-
pered distributions of exponential growth with restricted order in [3], [5]. Also, we
have found the wavelet expansion of the tempered distributions of e™**)_growth
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with restricted order and the pointwise convergence of the wavelet expansion of
47/ (R) in [4].

In this paper, we will present an analytic representation of 24/ (R) in terms of
series of analytic wavelets. These series converge uniformly on compact subsets of
the upper and lower half planes.

2. The Generalized Tempered Distributions Space 7;,(R)

Let u(&) (0 <¢ < ) denote a continuous increasing function such that
#(0) =0, u(0) = 00. For x >0, we define

M(x) = L u(&) de.

The function M(x) is an increasing, convex and continuous function
with M(0) =0, M(o0) = oo and satisfies the fundamental convexity inequality
M(x;) + M(x;) < M(x1 + x;). Further we define M(x) for negative x by means
of the equality M(—x) = M(x). Note that since the derivative u(x) of M(x) is
unbounded in R, the function M(x) will grow faster than any linear function as
|x| — oo. Now we list some properties of M (x) which will be frequently used in
this paper.

M(x)+ M(y) <M(x+y) for all x,y>0. (1)
M(x+y) < M(2x)+ M(2y) for all x,y > 0. (2)

Using the function M(x) we define the space #j/(R) as the space of all
functions ¢ € C*(R) such that

Vi(4) = SUP,cr sk €MD ()| < 0, k=1,2,..., 3)

where D* = d*/dx*. The topology in J#(R) is defined by the family of the semi-
norms vx. Then #j3,(R) becomes a Fréchet space and the embeddings 2 —
Ay — & — & are continuous; here & denotes the space of all C*-functions, &
the space of the tempered distributions of polynomial growth and 2 the space of
C*®-functions with compact supports. By #,(R), we mean the space of con-
tinuous linear functionals on J3/(R). Pahk characterized the distributions in
Ay (R) by the growth at infinity [2, Theorem 2.3]; a distribution 7 € 2’ is in
Ay (R) if and only if there exist positive integers a, ko and a bounded continuous
function f(x) on R such that

T = D*[eM?f (x)).
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DErFINITION 1. For a natural number r, we denote by H#,;(R) the space of all
functions ¢ € C"(R) such that

vi(g) = sup eM*|D(x)| < 0, k=1,2,3,....

xeR,a<r

The topology of H#;/(R) is defined by the family of semi-norms {v;};_; , -
By 2,7 (R), we mean the space of continuous linear functionals on #,,(R). Each
S € A7 (R) is characterized by

S = D'[eM&If(x)], (4)

where f(x) is a bounded continuous function on R and r, ko € N, the set of
natural numbers, by the same method of the above #;,-case in [2, Theorem 2.3].
Similarly, we can define

%(R) = {6(2) € C"(R); |D*6(1)| < Cpe(1 + 1)) 7, pe N,k =0,1,...,r}

and its dual &%'(R). For further details, we refer to [2].

3. Multiresolution Analysis of L?(R) Associated with ¢ € #,;(R)

Let ¢ € A7 (R). In order for it to qualify as a scaling function, there must be
associated with ¢ a multiresolution analysis of L?(R), i.e., a nested sequence of
closed subspaces {V,,} for the set of integers Z such that

meZ

(i) {¢(- —n)} is an orthonormal basis of Vj,
i) ---cVycVoc Vi< L?*R),

(iii) /() € Vi & f(2:) € Vins1,

@) () Vor = {0}, 1),y Vi = LA(R).

Then ¢ has an expansion

p(1)=> V242t —n), {ci}el’1eR, (5)

where 12 = {{c,}; 3, |ca|® < 0}. Once we have the scaling function ¢ € %/ (R),
we can obtain a mother wavelet i such that {{/(t —n)} is an orthogonal basis of
the space W), given by the orthogonal complement of ¥, in V;. Also, ¥ has an
expansion

YO =) dV26(21—n), {d,} el (6)
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for d, corresponding to ¢, in (5). We will adopt the construction of a mother
wavelet defined by d, = (—1)"¢1=,. If such a ¥(z) can be found, then y,,,(f) =
2m/2y (2™t — n) is an orthogonal basis of W, which is the orthogonal complement
of Vm in Vm+1.

ExampLE. In [I], Corollary 5.5.3 states that it is impossible that y has
exponential decay and that y € C*®, with all derivatives bounded, unless y = 0.
Hence there is no mother wavelet y € #3/(R). So we will restrict our attention to
A,7(R). Daubechies’ compactly supported wavelets are examples of #,,(R), but
Battle-Lemarié’s wavelets (in the page 152 of [1]) are not #;;(R) wavelets even if
they have exponential decay and smoothness.

The reproducing kernel of V) is given by

a(x,0) =3 Fx—nm(t —n),

where ¢(x) is the scaling function. The series and its derivatives with respect
to t of order <r converge uniformly on x e R because of the regularity of
¢ € Ay (R), ie.,

169 (x)] < Cae™®) a=0,1,...,1 k=1,2,.... (7)
The reproducing kernel for ¥}, is given by
gm(x,t) =2"q(2"x,2™1).

Similarly, we can define the reproducing kernel r,(x,?) for W, by

rm(x,1) =27 Y(27x — )Y (2"t — n),

where y(¢) is the mother wavelet.
The sequence {g.(x,#)} is a delta sequence in %'(R) < H#/(R), ie.,
gm(x,t) — d(x —t). This follows from the fact that

e 0]
J gm(x,0)0(t) dt — 0(x) as m — o,
—0Q0

for each e ;) (R) < #(R), where the convergence is in the L2-sense. These
kernels have a number of interesting properties, some of which come out of the
wavelet moment theorem. Since #;;(R) = %(R), we have by [1],
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LeMMA 2. Let Y e % (R) with ,,,(x) =2"2y(2"x —n) an orthogonal
system in L*(R). Then

J xKp(x) dx=0, k=0,1,...,r

-0

DeFINITION 3. We define the spaces Ty and Uy by To={f;f(t)=
S a,d(t — n) for some sequence of complex numbers with a, = O(eM®) for
some ki€ N} and Uy = {g;9(t) =>_,anp(t —n) for some sequence of complex
numbers with a, = 0(eM%*") for some k) € N}. We denote by T,, and U, their
corresponding dilation spaces, ie., f €Ty < f(2"t)e T, and ge Uy < g(2™t) €
Un.

We may expect that a multiresolution analysis of #;; (R) exists, namely,
-CT_m'-'CT_lCTOCTl"'CTmC-'-CfA}'(R) (8)
and
Un T = %7 (R),

where the closure is in the topology of 4, (R).
Now in [3], we have found the expansion in orthogonal wavelets from L?(R)
to A,/ (R).

THEOREM 4. Let the scaling function ¢ € Ay;(R) satisfy the dilation equation
(5) with cx = O(e ™M) for all 1€ N, and have an associated multiresolution
analysis in L*(R); let y € A;;(R) be the mother wavelet given in (6). Then there
exists a multiresolution analysis (8) of closed dilation subspaces {T,,} whose union
is dense in A, (R); the closed subspace U, in Definition 3 is a complementary
subspace of T,, in Ty and

Tm:UOC_BUl@"'('BUm@TOa

where @ denotes the nonorthogonal direct sum.

4. Analytic Representation of Distributions of #;; by Wavelets

A quasi-positive delta sequence is a sequence {5, (-, y)} of functions in L!(R)
with a parameter y € R which satisfies the following:

(a) there is a C > 0 such that

J 0m(x,y)|dx < C, yeR,meN;

— 0
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(b) there is a ¢ > 0 such that

y+c
J Om(x,y) dx — 1

y—c
uniformly on compact subsets of R, as m — o0;
(c) for each y > 0,

SUP|x_y| <yl0m(x, ¥)| = 0 as m — oo.

Then since J;(R) < %(R), we have the following important lemmas as

in [8]:

LEMMA 5. Let {0,,(x, y)} be a quasi-positive delta sequence and let f € L'(R)
be continuous on (a,b). Then

Jm(y) = Jio Om(x, ) f(x)dx — f(y) as m — oo

uniformly on compact subsets of (a,b).

LEMMA 6. If the scaling function ¢ € A, (R), then the reproducing kernel

gm(x,y) and K,(x,t) = (x;!') 2 gm(x, 1) for aeN, 0 <o <r, are quasi-positive

delta sequences on R.

In order to represent an element of %,/ (R) by series of analytic wavelets,
we impose conditions on the scaling function ¢ again. Since J;;(R) = L?(R), an
analytic representation of ¢ is given by

¢t (z) = ! Jw (x) dx, Imzz20,

2ni ) _ o X — 2

where ¢i. are analytic in the upper half-plane and the lower half-plane, respec-
tively. An analytic representation of the mother wavelet is also given by

+ 1 Y(x)
T — =
v=(z) = iJ_ ; dx, Imz 20,

and the analytic wavelets t//in are obtained by dilation and translation of <.
Now, we define T = {f(z) = 3., anp*(z — n);a, = O(c*M™) for some I e N}
and we denote by the subspaces TF of T(;—r the corresponding dilation spaces.
Then the spaces T,} and 7,, are composed of analytic functions in the upper
and the lower half-planes, respectively, whose boundary functions are continuous
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functions of e®)-growth. Since (J 7,, = 5/ (R), we might expect to obtain an
analytic representation of f € %,/ (R) in terms of wavelets,

Sr@ =3t Y > b2 Y2z =),

where the first series may not converge. Since an analytic representation is a
continuous map from X%, (R) to a corresponding space of analytic functions
and fi,(x) = (f, qm(x,1)) — f(x) = D"F(x) in A,/ (R) for a continuous function
of eM™.growth F(x) [cf. (4)] by Lemmas 5 and 6, f}(z) — f*(z) uniformly
on bounded subsets of the upper half-plane. Moreover, f*(z) = DJF*(z), where
F*(z) is an analytic representation of F(z), and is given by

Ff(z) = _LJOO F(x) o~ M(kx) g M(k2) dx,
2ni)_ o x—z

for a sufficiently large k such that F(x)e~™*) ¢ L2(R). Here for z € C, we define
eM(z) as eM(|Z|)

We may express f,, as

m—1
In=Fortn=fo=Ffo+ D> o 0> " bealim
and if the inner sum converges,
m—1
Im@) 1@ =D D binlia(2) + gm(2), (9)

where g,,(z) is an entire function.

LemMMA 7. Let Y € A (R) and b, = 0(eM*)~%) for any ke N and some
e>0. Then

> bt (z—n)

n=-—-0o0

converges uniformly on compact subsets of the upper half-plane.
Proor. The proof is based on the moment property, Lemma 2,

(e 0]
J xWY(x)dx=0, 1=0,1,...,r.

—00

Hence, for any k€ N and a natural number p<r+1,
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1 [ eM(kz)
Mkz) +(\ .~
e Y (z) = i J_w " ) dx
B 1 Jroo eM(kz) Zp — xP ll/( )
2} zP X — x
ro  , M(kz) ¥4
L[e X W(x)dx

2ni)_ ZP X —z

1 (% eM(kz)

- S (xP1 P2 ... 4 gP2 p—1
= "5mi) . T (P 4 zxP 4 2P 4 2P Y (x) dx

1 [® e M (kz) xP

2riJ_ zP x—z

Y(x) dx

o ,Mkz) p
1 j e X W(x) dx

2ni j_ zp x—z

holds. By the growth condition of y € #;7(R), |eM*)y*(z)] is uniformly bounded
on compact subsets of the half-plane Im z > ¢ > 0 for any k € N and a natural
number p <r+ 1. Hence, the preceding fact holds for any ke N and any
p <r+ 1. Thus the conclusion follows.

THEOREM 8. For natural numbers s, r with s<r, let fe A (R), $, ¥ e
Ki,(R) and let by = {f, Yy, m=0,1,2,...; n=0,1+1,42,... be the wavelet
coefficients of f. Then an analytic representation of f is given by

=S5 @+ D oD ¥ (2),

where the series converges uniformly on compact subsets of the half-plane Im z > 1
and fy'(z) is an analytic representation of fy, the projection of f on Ty.

Proor. First, we will estimate |bn,|. Each f e #;;(R) is characterized
by

f —_ DS[eM(kox)‘u]
for some integer k¢ and finite measure x4 on R. Each y € /#,/(R) satisfies
WO x)] < Ge™UM, 1=1,2,...,rj20.

If we use integration by parts s-times, we have, for m > 1,
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PO o)
Tl < [ 1D M Nyl dlud < | MO0 di
J—o0 — o0
< eM(kgx) ckozm/2+sme—M(ko(2”‘x-—n)) d|,u|
-0
< [* eM(Zko(x—nZ“"‘))eM(2k0n2"'")cko2m/2+sme—M(2"'k0(x——n2"")) d|ﬂ|
J —00

< cllcozm/Z—i—smeM(ZkonZ"") )

By the fact in the proof of [Lemma 7, on every compact subset X of the half-
plane Im z > 1, there exists a constant ¢ such as |y (z)| < ce=M*?) for any ke N.
Hence if we take k sufficiently large with k > sup{ko,3 + s}, then for z € X,

© 0
Zm=0 Zn=—oo |bmn!//;;n (Z)|
_ Zm -0 Zn—_oo e(1/2+s)m M(2k0n2 m)czm/2 M(k(zmz__n))

0 o 1 (3/2+s)m  M(2kon2™™) ,— M (k2™ (n2~™—Re z—i Im z)) n—m/2
< Z o E e oo €Cho€ e e 2

(e 0] o0 —m
< Z Z CC;C e(3/2+s)meM(2kon2 )
m=0 n=—0o0 0

—M (k2™ (n2™"—Re z)) ,—M (2"~ k) p—m/2

X e e

2 o0 o o0 1 (3/2+5)m , M (2kon2~™)
= {Zm:O Zn:—oo + Zm=3 Zn:—oo }cckoe € 0

x @~ M(k2"(n2™"~Re z)) e—M(Z”’“k) n—m/2

o -m/2
<> G2 < oo,

where we use the properties (1), (2) and the inequality v/2|z| > |Re z| + |Im z| >
|Rez|+1 for |Imz| > 1. Hence the series S .o (>°% b (z) converges
uniformly on compact subsets of the half-plane Im z > 1.

Now, by taking the limit in (9) as m — oo, we have

ST@=/@+D Y bl (2) + g2 (2),

where g (z) = limy,_,» gm(z) is an entire function. Since an analytic representa-
tion plus an entire function is an analytic representation, we can drop g, in (9).

REMARK. We have only worked out the convergence for f* but proof
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for f~ is parallel. Then by the same method as in the proof of [Theorem 8§, an
analytic representation of f is given by

@O =/KE+D > bamlm(2),

where the series converges uniformly on compact subsets of the half-plane
Imz < —1 and f; (z) is an analytic representation of f;, the projection of f on
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