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Abstract. We prove that semi-Riemannian manifolds satisfying
some curvature condition of pseudosymmetry type are semisym-
metric. We give also some inverse theorems.

1. Introduction

Recently, in [8] a curvature property of pseudosymmetry type of Einstein
manifold has been found. Namely we have

THEOREM 1.1 ([8], Theorem 3.1). On any semi-Riemannian Einstein manifold
(M,g), n >4, the following identity is fulfilled

K K

For precise definition of the symbols used we refer to Section 2 of this paper.
Recently, a review of results on curvature conditions of pseudosymmetry type was
presented in [3].

Motivated by the above theorem we introduced in a family of curvature
conditions of pseudosymmetry type. In particular, in [8] we investigated curvature
properties of non-Einstein and non-conformally flat semi-Riemannian manifolds
of dimension >4 satisfying the condition
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(x); the tensors R-C — C-R and Q(g,C) are linearly dependent at every
point of M.

It is clear that (x); is equivalent on the set ¢ = {xe M |C # 0 at x} to
R-C—-C-R=1LQ(y,0),

where L; is some function on #¢. In this paper we study curvature properties of
manifolds fulfilling the next condition

(%), the tensors R-C— C-R and Q(g,R) are linearly dependent at every
point of M.

It is clear that (x), is equivalent on g = {xe M |R — (x/(n(n — 1)))G # 0 at x}
to

RC—CR:LZQ(gaR)’ (1)

where L, is some function on %g.

The paper is organized as follows. In Section 2 we fix the notations and
present auxiliary results. Section 3 is devoted to quasi-Einstein manifolds satis-
fying (1). We prove that such a manifold always is Ricci-simple and fulfills a few
more strong curvature identities. Section 4 deals with the non-quasi-Einstein case.
It is shown that in this case (1) forces the very special form of the curvature
tensor. states that any manifold satisfying (1) is semisymmetric
(R-R=0; [1], [14]). Finally, in Section 5, basing on the inverse theorems
(Proposition 3.2 and [Proposition 4.2) we give examples of Ricci-simple as well as

non-quasi-Einstein warped products satisfying (1).

2. Preliminaries

Throughout this paper all manifolds are assumed to be connected para-
compact manifolds of class C*.

Let (M,g) be a connected n-dimensional, n > 3, semi-Riemannian manifold
of class C*. We denote by V, R, C, S and « the Levi-Civita connection, the
Riemann-Christoffel curvature tensor, the Weyl conformal curvature tensor, the
Ricci tensor and the scalar curvature of (M, g), respectively. The Ricci operator
& is defined by g(¥X,Y) = S(X,Y), where X,Y e E(M), E(M) being the Lie
algebra of vector fields on M. More detailed information on the basical notions
used in this paper we can find, for instance, in [1] and [13]. Further, we define the
endomorphisms X A4 Y, Z(X,Y) and ¥(X,Y) of E(M) by



On Some Pseudosymmetry Type Curvature Condition 15

(X AdY)Z=A(Y,2)X — A(X,2)Y,
R(X,Y)Z = [Vx,V¥|Z - Vix v Z,

GX,Y)Z =RX,Y)Z —% (X N FY +FX N Y — n—fTX Ag Y)Z,

respectively, where X,Y,Z e E(M) and 4 is a symmetric (0, 2)-tensor. Now the
Riemann-Christoffel curvature tensor R, the Weyl conformal curvature tensor C
and the (0,4)-tensor G of (M,g) are defined by

R(X\, X3, X3, X4) = g(R(X1, X2) X3, X4),
C(XlaXZ’X3aX4) = g((g(XlaX2)X3=X4)a
G(X1, X2, X3, X4) = g((X1 Ag X2) X3, X)),

respectively, where X,Y,Z, X1, X3,... € E(M).
Let #(X,Y) be a skew-symmetric endomorphism of Z(M) and let B be a
(0,4)-tensor associated with #(X,Y) by

B(X1, X2, X3, X4) = g(#(X1, X2) X2, Xa). (2)

According to [12], the tensor B is said to be a generalized curvature tensor if the
following conditions are fulfilled

B(X1, X2, X3, X4) + B(X2, X3, X1, X4) + B(X3, X1, X2, X4) = 0,
B(X17X2yX3aX4) = B(X37X4’X17X2) = 0.

Clearly, the tensors R, C and G are generalized curvature tensors. Further, for
symmetric (0,2)-tensors E and F we define their Kulkarni-Nomizu tensor E A F
by

(E A F)(X1,X2,X3,X4) = E(X1, X4)F(X2, X3) + E(X2, X3)F(X1, X4)
— E(X1, X3)F(Xo, X3) — E(X, Xa)F (X1, X3).

It is easy to see that E A F is also a generalized curvature tensor.

Let #(X,Y) be a skew-symmetric endomorphism of Z(M) and let B be
the tensor defined by (2). We extend the endomorphism #(X, Y) to derivation
A(X,Y)- of the algebra of tensor fields on M, assuming that it commutes with
contractions and #4(X,Y)- f =0 for any smooth function on M. Now for a
(0, k)-tensor field T, k > 1, we can define the (0,k + 2)-tensor B-T by
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(B T)(XlaanaXa Y)
=(#(X,Y)-T)(Xy,...,X; X, Y)
= ‘T('@(X’ Y)XlaXZa”'an) - T(Xl)"ka—l,ga(X’ Y)Xk)

In addition, if 4 is a symmetric (0, 2)-tensor field then we define the (0,k + 2)-
tensor Q(4,T) by
Q(A’ T)(Xl’ SRR 7Xk; X) Y)
=X AqY -T)( X1y ., X3 X, Y)
= _T((X A4 Y)XhXZa"'vXk) -t T(le"'>Xk—l7(X N4 Y)Xk)
In particular, in this way, we obtain the (0,6)-tensors B- B and Q(A4, B).
Setting in the above formulas Z=2Z or #=%¢, T=RorT=Cor T =S,

A=g or A=S, we get the tensors R-R, R-C, C-R, R-S, C-S, Q(g,R),

Q(S,R), Q(g,C) and Q(yg,S).
We note that the tensor C can be presented also in the following form

C=R- gnAnS+ G.

1 K
n—2 (n—1)(n—-2)

Let (M, g) be covered by a system of charts { W;x*}. We denote by g;;, Ru,
Sii, Grijk = gnkgij — 9gnjgix and

1 K
Chije = Rpje —-— (9nkSij — gnjSik + 9isShic — GikSy) + D=2 G (3)

the local components of the metric tensor g, the Riemann-Christoffel curva-
ture tensor R, the Ricci tensor S, the tensor G and the Weyl tensor C, respec-
tively. Further, we denote by S,-f = S,-,Sj’ and Sl-j = g/'S;, the local components of
the tensor S? defined by S*(X,Y) = S(¥X,Y), and of the Ricci operator &,
respectively.

Let (R: C)pjtym and (C - R)p, denote the local components of the tensors
R-C and C- R, respectively. Thus, by definition, we have

(R C)pitam = 9" (Crijk Rsnim + Chrjic Rsitm + Chirk Rsjim + Chijr Rskim) 4)
(C - R)pitam = 9" (Rrijic Cshim + Rurjic Csitm + Rirk Cojim + Ruijr Cstim), (5)

respectively. We have also the following identities
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9" 0(9, R) pysicim = IniSkm + ki Shm — GhmSki — GkmSni = Q(9, S) piim» (6)
9" Q(9, R) s = 91Sis — jtSie — (n — 1) Ry, (7)
9" O(S, R)prstcim = Atchm — Athmic — Amicht + Ampik, (8)
9" O(S, R) jipss = A — Anje — Ajie — Arijt — KRuge + StaSij — SjtSi, 9)
Apmij = S, Rsijk - (10)
Applying (3) in (4) and (5) we get
1
(R C)pijtam = (R* R)pijim — p—1 (95 (Ankim + Asenim) + Gr(Aijim + Ajitm)
— Gik(Anjim + Ajnim) — gnj(Aigim + Akitm),

1 K
(C ) R)hijklm = (R ) R)hijklm - m Q(S’ R)hijklm + (n _ 1)(71 _ 2) Q(g7 R)hijklm

1
) (GnAmike — GrmAtige — it Amhjtc + Gim Atnjk

+ gt Amihi — GimAkhi — Grat Amjni + Gim Aijni) (11)

ponents of the tensors R- R, Q(S,R), Q(g9,R) and Q(yg, C), respectively. Using
the two last identities we obtain

K
(n—-2)(R-C-C- R)hijklm = 0(S, R)hijklm T hn_1 (g, R)hijklm + gniAmik — Grm Ak

— GitAmnjk + GimAmjx + gjt Amichi — GimAwcni — Gri Amjni

+ GmAyni — i (Aniim + Aknim) — Gnic(Aijim + Ajitm)

+ gix (Anjim + Ajnim) + gnj(Aikim + Akitm)- (12)
Contracting this with g% and using (6) and (8) we obtain

g"(R-C—C-R)psm = 9uDim + gkt Dim — GkmDui — GhmDiat — Ankim — Akhim,
(13)

where D :”—15(52 —ﬁS).

Now we present some results which will be used in the next sections.

Lemma 2.1 (7], Lemma 2.2). Let (M,g), n>=3, be a semi-Riemannian
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manifold. Let a be a nonzero covector and B a generalized curvature tensor at
a point x of M satisfying the equality Q(a® a,B) =0. Then at x we have

> a(X)B(Y,Z)=0, X,Y,ZeT(M).
X,Y,Z

LemMMA 2.2 (cf. [6], Lemma 3.4). Let (M,g), n >3, be a semi-Riemannian
manifold. Let at a point x e M be given a nonzero symmetric (0,2)-tensor A and
a generalized curvature tensor # such that at x the following condition is satisfied:
Q(A4,B) = 0. Moreover, let V be a vector at x such that the scalar p = a(V) is
nonzero, where a is a covector defined by a(X) = A(X,V), X € Ty(M).

(i) If Az%a@a then at x we have >, a(X)#B(Y,Z)=0, where X,Y,
Z e T.(M). xnrz

(i) If A — ll)a ® a is nonzero then at x we have B = %A A A, y € R. Moreover,
in both cases, at x we have B- B = Q(Ric(%), B).

LEmMMA 2.3 ([6], Lemma 3.5). Let (M,g), n>=3, be a semi-Riemannian
manifold. Let at a point x € M be given a symmetric (0,2)-tensor A and two
generalized curvature tensors %, and %, such that B) = %A AAand B =g A A,
respectively. Then at x we have Q(A,G) = —Q(g, B2) and Q(A, B;) = —Q(g, B1).

THEOREM 2.1 ([6], Theorem 4.2). Let (M,g), n >3, be a semi-Riemannian
manifold. If at a point x € UsNWUc its curvature tensor R is of the form R =
%SAS+#gAS+?7G,¢,,u,?76R, then at x we have

R-R=LzQ(g,R) = O(S,R) + (LR +§) 04, C),

m0-2(a(e-5) 1)

We finish this section with two algebraic lemmas.

LEMMA 2.4. Let F, E and D be symmetric (0,2)-tensors on a semi-Riemannian
manifold (M,g), n >3, such that R-F = Q(E,D) on M. Then on M we have

R(F X1, X, X2, X3) + R(F X2, X, X3, X1) + R(F X3, X, X1, X3) =0,
where & is the (1,1)-tensor on M defined by g(#X,Y)=F(X,Y).

ProoF. In local coordinates our assumption takes the form
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Fy Ry + F/ Rypjx = EpjDig + EiiDyi — EpeDij — Ey Dy,

where Fj;, E, and Dj are local components of the tesors F, E and D,
respectively, and F] = g"Fj,. Summing the above equality cyclically in 4, j, k we
obtain

Fy Ryjjk + F/ Ryien + Fig Ryipj = 0,
completing the proof.
LEMMA 2.5. Let (M,g), n > 4, be a semi-Riemannian manifold and A be the
(0,2)-tensor at x € M defined by A =og+pw@w, we Ty (M), a,feR. If at x

the curvature tensor R is expressed by R = %A A A, vy € R, then the Weyl tensor C
vanishes at x.

PrROOF. Our assumptions imply the equality
Ruje = ap(B(gmewiw; + giiWnWi — gyWiwk — GicWnW;) + %Gk ) - (14)

Contracting with g"* we obtain

1 n—1 pw'w
oc,Byw,—wj = H_:ESU - <n — zd + n— Zr) ozygij.
Substituting this equality and into (3) we get Cpj = AGpk, for some A € R.
From the last relation, by contraction with g”** we get 4 = 0, which reduces this
relation to C =0, completing the proof.

REMARK 2.1. In the same manner we can prove that if at a point x € M we
have R=y(g Aw® w)+nG then C vanishes at Xx.

3. Quasi-Einstein Manifolds

A semi-Riemannian manifold (M, g), n > 3, is said to be an Einstein manifold
if on M we have S = %g. Einstein manifolds form a natural subclass of the class
of quasi-Einstein manifolds. A semi-Riemannian manifold (M,g), n > 3, is called
a quasi-Einstein manifold if at every point x€ M we have S =ag+ fw @ w,
we T)(M), a,f€R. Another subclass of quasi-Einstein manifolds form Ricci-
simple manifolds, i.e. semi-Riemannian manifolds having the Ricci tensor of rank
at most one ([2]).

Let (M,g), n > 3, be a non-Einstein quasi-Einstein manifold. It is easy to see
that on the set %s = {x EM|S—-%g#0 at x} we have the following decom-
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position of its Ricci tensor S = ag + fw ® w, where w is a covector field on %s
and « and f are some function on %s. Evidently, § and w are nonzero at every
point of %s. It is also easy to check that if S has on %s another decomposition
of the form S = &g + fv ® v then on %s we have o = & and v = pw, where p is
some function on %s.

Let (M,g), n>4, be a semi-Riemannian manifold. With respect to the
- [Theorem 1.1|, in the following we restrict our considerations to the subset # =
UsUc = M. Tt is clear that % < Ug.

ProPOSITION 3.1. Let (M,g), n >4, be a semi-Riemannian manifold satis-
fying on the set U < M (1) and
S=ag+pw@w, (15)
where w is a 1-form on % and a,f are some functions on %. Then w is an isotropic
1-form on %.
PrOOF. Applying to (1) the identity (12) we obtain

K
o(s, R)hijklm - (nTl +(n— 2)L2> O(g, R)hx_'jklm + gni Amijc — Ghm Al

= 9 (Ankim + Aknim) = Gie(Aijim + Ajitm) + gir(Anjtm + Ajhim)
+ gnj(Aikim + Aritm) = 0.

This, by making use of [15), yields

(2a L A 2)L2> 00, Ry + BOOW ® W, R)

n—1
+ B(griwmw’ Rsijk — GhmWiw* Ryijic — GuWmW* Ropjkc + GimWiw* Rapjxc + gjiwmW* Roini
— gimWiW’ Rgchi — GriWmW’ Rajni + GkmWiw’ Ryjni — 9ij(WaW” Rotim + Wicw’ Ry )
— Gk (Wiw’ Ryjtm + Wiw* Ryipm) + i (WhW’ Ryjtm + Wiw* Rpim)
+ gnj(Wiw’ Rgam + wiw’ Ryipm)) = 0, (16)
where w® = g™w,. Contracting with g7 we get

(n — 2)(WaW* Rytm + WiW’ Ropim) = BO(GnWiWm + GiiWhWm — GhmWikWi — JkmWhWi),
(17)
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which, by yields

_ ¢
R-5=-150(,5),

where
K 2. r
¢==20:—n——1——(n—2)L2+ﬂ ww,.
Further, transvecting (17) with w” we obtain
W Wew’ Rl = %W'Wr(wmgkl — Wigkm)-
Suppose that there exists a point x €  such that w'w, # 0 at x.

Now we see that turns into

W Rgeim = @1 (WmGki — WiGim)»

where ¢, = ¢_p2 Thus reduces to

n—

o( (22~ =212 - 55 )a+pwewR) =0

n—1

Since B is nonzero at every point of % we have two possibilities:

rank((Zcx— (n—2)L, —;1—§——I)g+,3w®w> =1
or
rank((Zoc—— (n—2)L, ——L—)g +ﬂw®w) > 1.

n—1

We suppose that holds at x. Thus we have
(Zcx— (n—2)L, —n—’i—l>g+/3w®w=pz®z,

where ze T)(M) and p e R. The last relation implies

K

2a—(n—2)L2—-n_1

=0.

Now (22) reduces to
O(w®w,R) =0,

which, in view of Lemma 2.1, gives

21

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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WiRpijk + Wi Rhigs + wi Rpijy = 0. (26)
Transvecting this with w/ and using we obtain
Rk = ¢y (W'w,) ™ (Wawigyj + Wiw;Ghi — WiWadik — WiWicdhy)-

But this, in view of Remark 2.1, implies C = 0, a contradiction. Thus the case
cannot occur and must be fulfilled at x. Now (22), in virtue of
2.2 gives

Rz'gAAA, A:(20:—(n—2)L2—%)g+ﬂW®WaP¢O-

Applying we obtain again C =0, a contradiction.

Therefore w is an isotropic 1-form on 4. This completes the proof.

THEOREM 3.1. Let (M,g), n > 4, be a semi-Riemannian manifold satisfying
(1) and (15). Then we have the following curvature identities on U:

S=pwRw, k=0,

R-R=0, C-R=0, Y wX)¥(Y,Z)=0.
X, Y, Z

Proor. To prove the first equality, in view of [15), we must show that & = 0
on %. Taking into account [Proposition 3.1 we observe that and imply

n—1

azg and ¢=(n——2)( x —L2>.

First we assert that

x K

L: =
*Th=1 n(n-1)

(27)

on %. Suppose that L, # -%; (i.e. ¢ #0) at some point x € %. From (16), by
contraction with g”™, we obtain

¢(—(n — 1) Ryjx + graSij — gjSik) + Bwiw” Ry — wiw" Ry
+ wiw" Ry + wiw" Ryiy + wi(wieSij — wiSik)) + B(wiw” Ry
— nww" Ry — gjiBik + guBij — 9ij(Ba — awiw)

— wiw" Ry — wiw" Ry + g (Bji — awjwy) + wiw" Ry + wiw" Ryug) = 0, (28)
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where B; = w'w*R,;s. Further, contracting (17) with g"” and using we get

n
By = pwewi, p=o—~ [_))¢2- (29)

Now, applying in (28) Lemma 2.4, (15) and (17) we find
(n— 1)¢Rlijk = “¢Glijk + ﬂ¢(gk1Win - gjlWiWk)
+ 2af(giiwiwi — giuwiw;) + B(=2wiw’ Ry — nww” Rk )
+ Bp(gruwiw; — gwiwk — giiwiwi + giuwiw;). (30)

This, by transvection with w’/ and making use of w,w” =0, turns into

o
'¢(W’Rrijk a1 (Wkgy — ngik)) =0,

whence

o
w' Ry = —1 (Wkgij — Wigik)-

Substituting this into (17) we get

n—‘2

= 31
n— 1 o ﬁ¢? ( )
whence it follows that « is nonzero at x. Now yields B; = —%-w;w; and

p = —-%. Applying this and to we obtain
n—1 2 ‘
Rijie = oGy + - ——= B (gywiwic + Guewiwj — Guewiwj — giwiwk ).
But this, in view of Lemma 2.3 implies C =0 at x, a contradiction.
Thus we have [27). Now (17) reduces to
WiW' Rogim + Wiw" Ry = 0

which implies w’ R, = 0. Further, applying and the above equality to
and we obtain

R-S=0, (32)
(25) and, consequently, (26). But (26), in view of Theorem 1 of [5], implies

R- R = Q(S, R) which, by [25), turns into R- R =aQ(g,R). This, by a suitable
contraction, gives R-S = aQ(g, S), whence, by [32), we get aQ(g,S) =0, and in
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a consequence, « = 0. This, in virtue of implies xk =0 and L, =0. As we
have seen in the last part of the previous proof we obtain also (26) and R- R = 0.
This equality, by L, = 0 and (1) implies C - R = 0. Finally, (26), by making use of
k=0 and S = fw ® w, leads to the last identity of our assertion. This competes
the proof.

Taking into account [Proposition 4.2 of [8] we immediately obtain the following
inverse statement

PrOPOSITION 3.2. Let (M,g), n = 4, be a semi-Riemannian manifold satisfying

S=pwRw, k=0,

> wX)8(Y,Zz)=0.

X, Y,Z

Then on the set % we have R-R=0, C-R=0, and consequently
R-C-C-R=0.

4. Non-Quasi-Einstein Manifolds

First we prove some general formula for semi-Riemannian manifolds sat-
isfying (*);. ‘

PrOPOSITION 4.1. Let (M,g), n > 4, be a semi-Riemannian manifold fulfilling
(x)2. Then on the set U the following identity is satisfied

K

0(S, R) - Q((;—_—l— Lz)g,R) + ooy Q@S AS) =0 (33

ProOF. We can write (1) in the form'
(n=2)(R- C = C: R)pygm = (n — 2)L20(g, R) pyjacim- (34)
Contracting this with g%, in virtue of (13) and (6), we get
Anidm + Akchim = GniFim + 9k Fhm — GhmErd — Giom i, (35)

where

K
F=;z_—252—((n_1)(n_2)+L2)s. (36)
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Further, summing cyclically in h,l,m we get
Apicim + Aomn + Amicnt = 0.

Contracting now (34) with g and using the above equality, (7) and (9) we
obtain

K
(n — 2)Alijk = SkISij - S[jS,‘k + G (E,J — mS,j - (n - 2)L2SU + ZEJ)

K
— gy (Eik P Sic — (n—2)LySi + 2Fik> + g (Ej — Sﬁ + 2Fy)

— g,-j(Elk — Sl%c + 2F]k) + (n — 1)(}1 — 2)L2R1,~jk.
Contracting with g"” we have E — S? = tr(F)g — nF and taking into account
we get

E— K

— 1S— (n—2)L,S +2F = tr(F)g, E—S*+2F =tr(F)g— (n—2)F.

Thus
Ay = néz (SuSy — SySik) + giiFuw — gicFy + (n — 1) Lo Ryik.. (37)
Substituting (34) into (12) we get
o(s, R)hijklm - n%l O(g, R)hz_‘jklm — (n—2)L20(y, R)hijklm

= gij(Ankim + Ankim) + Gk (Agiim + Ajitm) — Gikc(Anjim + Ajnim) — Gnj(Aiktm + Aritm)
— (GnAmik — Grm Atk — Gt Amjc + GimAmjic + Gjt Amichi — Gjm Akchi — Jxi Amjni
+ gkmAljni‘)-

In view of and the right-hand side of this equality is equal to

- 2Q<g,%S A s) ~ (n—1)L20(g, R).

But this completes the proof.
THEOREM 4.1. Let (M,g), n >4, be a non-quasi-Einstein semi-Riemannian

manifold fulfilling (1). Then at every point x € U the curvature tensor R is of the
form
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R=2SAS+ugnS+nG, $unek, (38)

where

ﬂ(ﬂ - 1 2) = . (39)

Consequently, R-R=0 on %.

ProoOF. Let x € %. We consider two cases.
(A) L, = ﬁ

Applying now [emma 2.3 we obtain Q(S,R) = — 2(n1_2) 0(g,S A S) =
- 0(S,g A S) and

1
Q(S,R—n—_—zg/\S) =0.

Taking into account and our assumption we get rank S > 1 and,
consequently, also

_? 1
R—ZS/\S+n_2

gAS. (40)

(B) X1 — L, #0.
Denoting 7 = -%5 — Ly, in view of the obvious identity Q(S,S A S) =0,
can be written in the form

1

As in the previous case, in view of [Lemma 2.2 we obtain rank(S — rg) > 1 and

1 _7
The last identity can be written in the form

1 1
=—(y+ S — + y72G.
R 2(y r(n—2)>SA y7g A S+ y1°G

It is obvious that and the last equality are of the form (38). Moreover, it is
easy to see that in both cases (39) is also satisfied. Applying now we
see that R- R = 0. This completes the proof.
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We have also the following inverse statement.

ProOPOSITION 4.2. Let (M,g), n > 4, be a semi-Riemannian manifold. If at
a point x € U the curvature tensor R is of the form (38) and (39) is satisfied then at
x we have R-R=0 and C-R=—-L,Q(g,R), Lo =5+ (n(;f)?f;;l Consequently,
R-C—-C-R=L,Q(9,R) at x.

ProoF. First we observe that (38) and (39), in view of [Theorem 2.1, imply
R-R=0. (38) in local coordinates takes the form

Rk = $(Snic Sy — SwjSic) + 1(ne Sy + 9ijSe — gniSi — g Snyi) + 1(gnk 9y — Inigic)-
(41)

Contracting (41) with g7 we get

S =aS+pg a=wt PR ﬁ:’—"i((’;_—l)”. (42)

¢

Transvecting now (41) with S/ and using (10}, and the equality au + 7 = B¢,
which is equivalent to (39), we get

A= “"5;”5/\ S+ Bdg A S + BuG.
Substituting this into [11) and using (38), R-R=0 and Lemma 2.3, after

standard but somewhat lenghty calculations, we get

_ [ (n—2),L¢—1
C-R= (n_1+ =28 )Q(g,R)-

This completes the proof.

REMARK 4.1. We note that if at x € M the curvature tensor R and the Ricci
tensor S are of the form (38) and (15), respectively, then (see Remark 2.1) the Weyl
conformal curvature tensor C vanishes at x. Therefore, if x € U then S cannot be of
the form (15).

Taking into account and we obtain

THEOREM 4.2. Let (M,g), n > 4, be a semi-Riemannian manifold fulfilling (1).
Then R-R=0 on %.
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5. Examples

We present examples of semisymmetric warped product manifolds satisfying
(%)2.
Let now (M,§) and (N,§), dim M =p, dim N =n—p, 1 <p < n, be semi-
Riemannian manifolds covered by systems of charts {U; x?} and {V; y*}, respec-
tively. Let F be a positive smooth function on M. The warped product M xz N
of (M,§) and (N, §) is the product manifold M x N with the metric g = § xr §,
defined by gxrpg=n{g+ (Fom)ng, where m:M x N—-M and m:
M x N — N are the natural projections on M and N, respectively. Let {U x V;
x!,. .., x?,xPtl = p! ... x"= y"P} be a product chart for M x N. The local
components of the metric g = § xr g with respect to this chart are the following
gk = gap if h=a and k = b, g = Fg,p if h= o and k = B, and gp = 0 other-
wise, where a,b,c,d e {1,...,p} and a,f e {p+1,...,n}. We will denote by bars
(resp., by tildes) tensors formed from g (resp., §). For more detailed information
about warped products see to [13].

ExaMPLE 5.1 (see [4], Example 4.1, Example 5.1 and Corollary 5.2). Let
(N,§), be a 1-dimensional Riemannian manifold. Let M be a non-empty open
connected subset of R?, p =n — 1 > 3, equipped with the standard metric g, §,, =
€a0ab, €a = 1. We set F = F(x',... ,xP) =k exp({,x?), where &,,...,&, and k
are constants such that & + -+ &2 > 0, §®E,E, =0 and k > 0. We consider the
warped product M xg N. Now the formulas (22)—(25) of [4] turn into

-1 1
Rapea = 0, Ryopn = — Zfaébgnm Sap = -Zéaéb, Snn = 0,
F
K= 07 Tab = Eéaéba tré(T) = 0’ AIF = 0’ (43)

respectively. The local components of the Weyl tensor Cs, of M x r N are the
Jfollowing

1
Cabed = =2 (9aalplc + gbelala — 9aclvCa — Gbatale),
n—3
Connd = — méafdgnn- (44)

Using these formulas we can check that on M xp N we have R-R=C-R=0.

ExampLE 5.2 ([11], Example 3.1). Let M be a nonempty open connected
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subset of RP, p > 2, equipped with the standard metric §, G, = €.0a, €a = *1,
where a,be {1,...,p}. We set F=F(x',...,xP) =k exp(&,x9), where k,&1,...,
¢, €R, 512 4+ 4 512, > 0 and k > 0. Further, let N be a nonempty open connected
subset of R""?, n > 4, equipped with the standard metric g, J,z = €:0ap, &2 = *1,
where a,f € {p+1,...,n}. We consider the warped product M xp N of the mani-
folds (M,3) and (N,§) with the warping function F defined above. Using again
(22)—(25) of [4] we can check that on M xr N we have

1 n-—
Ropea =0, Rupeg = —Zfbfcgaﬁ, Sap = ——4—3@51;

rT n—p-—1 - F
SaB:<"' 5~ 41;, AIF)gaﬁa Tab=54‘aéb,

MF=F&y, m(n)=teg, x= TP Dere s

where &/ = g¥¢&,. If p=1 then M xg N is a conformally flat manifold. If p > 2
then M xp N is a non-conformally flat semisymmetric manifold. Further, using the
above relations we can easily check that on M xg N we have

n—p+1
KR=—"——
2(n - p)

It is clear that there exist the constants &, &, and &, such that éf ¢r is non-

SAS. (46)

zero. Thus the scalar curvature k of M xp N is nonzero. From (46), in view of
Theorem 3.2 of [10], it follows that on M xp N we have C-R= —(p —2)x/

((n=2)(n—1)(n—p+1))Q(g, R).

We note that semisymmetric manifolds satisfying C - R = 0 as well as warped
products fulfilling R = §S A S were investigated in and [10], respectively.

References

[1] E. Boeckx, O. Kowalski, and L. Vanhecke, Riemannian Manifolds of Conullity Two, World
Scientific, Singapore, 1996.

[2] J. Deprez, W. Roter, and L. Verstraelen, Conditions on the projective curvature tensor of
conformally flat Riemannian manifolds, Kyungpook Math. J. 29 (1989), 153-165.

[3] R. Deszcz, M. Glogowska, M. Hotlo§, D. Kowalczyk, and L. Verstraelen, A review on
pseudosymmetry type manifolds, Dept. Math., Agricultural Univ. Wroctaw, Report
No. 84, 2000.

[4] R. Deszcz, M. Glogowska, M. Hotlo$, and Z. Sentiirk, On certain quasi-Einstein semisymmetric
hypersurfaces, Annales Univ. Sci. Budapest, 41 (1998), 151-164.

[5] R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, Collog.
Math. 58 (1990), 259-268.



30

[7]
(8]

[10]
(11]
[12]

(13]
(14]

Ryszard DEeszcz and Marian HoTLOS

R. Deszcz and M. Hotlo§, On a certain subclass of pseudosymmetric manifolds, Publ. Math.
Debrecen 53 (1998), 29-48.

R. Deszcz, M. Hotlos, and Z. Sentiirk, On the equivalence of the Ricci-pseudosymmetry and
pseudosymmetry, Colloq. Math. 79 (1999), 211-227.

R. Deszcz, M. Hotlo$, and Z. Sentirk, On some family of generalized Einstein metric con-
ditions, Demonstratio Math., 34 (2001), 943-954.

M. Glogowska, Semi-Riemannian manifolds whose Weyl tensor is a Kulkarni-Nomizu square,
Publ. Inst. Math. (Beograd), 72(86) (2002), in print.

D. Kowalczyk, On semi-Riemannian manifolds satisfying some curvature conditions, Soochow
J. Math., 27 (2001), 445-461.

C. Murathan, K. Arslan, R. Deszcz, R. Ezentas, and C. Ozgiir, On a certain class of
hypersurfaces of semi-Euclidean spaces, Publ. Math. Debrecen, 58 (2001), 587-604.

K. Nomizu, On the decomposition of generalized curvature tensor fields, in: Differential
Geometry in honour of K. Yano, Kinokuniya, Tokyo 1972, 335-345.

B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York, London, 1983.

Z. 1. Szabo, Structure theorems on Riemannian spaces satisfying R(X,Y) - R = 0. I. The local
version, J. Differential Geom., 17 (1982), 531-582.

Ryszard Deszcz

Department of Mathematics

Agricultural University of Wroctaw

Grunwaldzka 53, PL—50-357 Wroctaw, POLAND

Marian Hotlos

Institute of Mathematics

Wroctaw University of Technology
Wybrzeze Wyspianskiego 27
PL—50-370 Wroctaw, POLAND



	ON SOME PSEUDOSYMMETRY ...
	1. Introduction
	THEOREM 1.1 ...

	2. Preliminaries
	THEOREM 2.1 ...

	3. Quasi-Einstein Manifolds
	THEOREM 3.1. ...

	4. Non-Quasi-Einstein ...
	THEOREM 4.1. ...
	THEOREM 4.2. ...

	References


