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THE CAUCHY PROBLEM FOR STRICTLY HYPERBOLIC
OPERATORS WITH NON-ABSOLUTELY CONTINUOUS
COEFFICIENTS

By

Massimo CICOGNANI

Introduction

Let us consider the Cauchy problem

(1) Pu(t,x) =0 1in [0,T] x R”
u(0,x) = up(x), 0m(0,x) =u;(x) in R"

for a strictly hyperbolic operator

(2) P=0] = ax(t,x)0x,0x + Y _ bj(t,x)0x, + buy1(t, X)
k=1 j=1
with (a;x) a real symmetric matrix, b; € C([0, T']; Z(R")), #(R") the space of all
C® functions which are bounded together with all their derivatives in R".
It is well known that if 0.a;x € L'([0, T']; Z(R")) then problem (1) is well
posed in Sobolev spaces: for every ug € HS(R"), u; € H*"!(R") there is a unique
solution u e C([0, T); HS(R")) N CY([0, T]; H*~1(R™)) which satisfies

(3) el + 10Dy < Clluoll + luilly—r), 0<t<T.

By the finite speed of propagation one obtains the well posedness in C®.
Our aim is to consider non-absolutely continuous coefficients assuming a; i €
C'(0, T]; #(R")) and

(4) |0aj k(t,x)| < Ct 4, g>1,t>0,xeR"

as it is done by Colombini, Del Santo and Kinoshita in [3] for coefficients of P
depending only on the time variable . Here we treat the general case and, beside
(4), we permit:
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(5) 108a; 1 (1,x)] < Cst™, pe[0,1[,|B] > 0,>0,xe R".
For g=1 in (4) and any p € [0,1] in (5), we prove the inequality
(6) Nully—p + N0u(D)lls—1—p < C(lu(O)|l; + [10(0)[|s—y), C,h>0,0<:<T

for every ue C([0, T); H*1(R™) N C([0, T]; H*(R")) such that Pu = 0. In par-
ticular, we obtain the well posedness in C* of the Cauchy problem (1) with a loss
of h derivatives.

In the case ¢ > 1 in (4), we assume boundness and Gevrey regularity »* for
the coefficients, that is we take p = 0 and Cg = CAPI(B!)* in (5). Then we prove
the well posedness of problem (1) in y©® for 1 <s < g/(g—1).

We refer to [3] for counter examples that show the sharpness of these results;
in particular C* well posedness does not hold for g > 1.

In (4) and (5) one can subsitute =7 and ¢t with |Tp — ¢ and |Tp —¢|7%,
respectively, Ty € [0, T'], t # Ty. So inequality (6) can be applied also to the study
of the blowup rate in some nonlinear equations. Consider, for istance, a smooth
solution u for t < T of

t
du — oc(J Oxu(s, x) ds) Pu=0, a(y)=a >0
0

such that
108u(t,x)| < Co(T —1)™', t<T.

If o' is bounded and |a®)(y)| < Are#M, u<1/Ci, k=2, then a(t,x):=
oc(f(; Oxu(s, x) ds) satisfies (4) with ¢ =1 and (5) with p e JuCy, 1[, (T — 7)~! and
(T — )™ in place of ¢r~! and P respectively. So inequality (6) implies u € C®
also for t = T. This means that (T — )" is not a sufficient breakdown rate of the
derivatives 0%u to have blowup of u at ¢t =T, cf. [I].

1. Main Results

Let

h
P=0} =Y aji(t,x)0x,0x + Y bj(t,X)0x, + buya (2, %)

n
Jrk=1 Jj=1

be a linear differential operator in [0, 7] x R", with (aj ) a symmetric matrix of
real valued functions, a; x € C'(]0, T]; C*(R")), bj € C([0,T]; C*(R")). We con-
sider the Cauchy problem for the equation
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(1.1) . Pu(t,x) =0 in [0,T] x R"
with initial data at 1 =0
(1.2) u(0,x) = up(x), 0u(0,x) =u(x) in R"

under the hypothesis of strict hyperbolicity

(1.3) a(t,x,&) ==Y ai(t,x)E& = colél®, ¢ >0

J k=1

and we deal with its well posedness according to the behaviour of d,a as t — 0.
Our first result is the following:

THEOREM 1. Assume that there exist p,re[0,1] and positive constants Cg
such that

(14) |88aja(t,x)| < Cpr?, 1B > 05 |0Loai(r, )| < Cpr ' =W, 1B > 0.

Then, for every ug,u; € C*(R") the Cauchy problem (1.1), (1.2) has a unique
solution ue C'([0, T]; C*(R™)).

REMARK. A consequence of (1.4) is the finite speed of propagation. So it is
not restrective to consider ug,u; € Cg°(R") and to assume

(1.5) |62b;(1,%)] < Cp,  (1,%) €[0, T] x R™.

In Section 2 we shall prove an estimate in Sobolev spaces that implies

Theorem I

THEOREM 2. Under the hypotheses of Theorem 1 there are positive constants
C,h such that for every ue C([0,T]; H**'(R™))N C!([0, T); H(R")) which sat-
isfies Pu=0 we have

(1.6)  uDll,_p + 10(®) -1y < CUuO)]l, + 10a(O)ll,_y), 0<1<T.

When 13,a(t, x, £|€| %) is not bounded, problem (1.1}, may not be well
posed in C®.
For s > 1, 4 > 0, we denote by yf) = yﬁf) (R"™) the space of all functions f
satisfying
1f 15, 1= SUPpezn cerr A7P(B) T IOLS ()] < o0

so 99 := )y is a Gevrey space.
A>0
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THEOREM 3. Assume a; i, b; € C([0, T];yﬁf)(R")) and
(1.7) [0fawa;i(t,x)| < CridP(B)°,  (1,x)€]0,T] xR", ¢>1,5<q/(g—1).

Then there exists Ay > A such that for every up,u; € yf;) (R") the Cauchy problem

(1.1), has a unique solution ue C'(|0, T];yﬁfg(R”)).

As [Theorem 1, we shall obtain from an a priori estimate; so we
introduce Gevrey-Sobolev spaces adapted to our problem. We fix J € |0, 1[ such
that 1/s = (¢ — 1 +J)/q then for k > 0, t € [0, T|, u € R we denote by H*"**(R")
the space of all functions f such that:

< 00,
U

exp (5 (1° = A)(D ) 1

1 Wt 5=

llgll, the norm of g in the usual Sobolev space H#(R").
From Paley-Wiener theorem it follows that

1l ew < Clflls . fEPPRINCE(RY), 0<kT?/5<Ty

with Ty and C positive constants depending on A. Conversely, for every T < T
and k£ > 0 there is A4; > 0 such that

H5#(R™) <y (R™), t€[0,T1),4 > Ay, u> n/2.

For functions u(¢,x) we define the space

CL(H*"#) := {u; t — exp (IEC(T‘s — t‘s)<Dx>1/s) d"u(t,-) is continuous from
[0,T] to H*™*(R"),h = O,...,j}.

THEOREM 4. Under the hypotheses of Theorem 3 there are positive constants
ko, To, C such that for every ue CL(H*"#1), kT?/6 < To, k = ko, which satisfies
Pu =0 we have

(1.8) Nu(®llk, e, + 10m(D)li g, -1 < CU(O)k 0, + 10:4(0)]Ig 0,0-1), O =<t<T.

We shall prove in Section 3. From estimate (1.8) we can solve
problem (1.1}, in [0,T4], T\ = ((5T0/k0)1/6. This is sufficient to prove
since we have a; ;e C!([T),T);7%(R")) that ensures 7 well
posedness in [T}, T).



The Cauchy Problem for Strictly Hyperbolic Operators 5

2. C® Well Posedness
In this section we prove which implies Theorem 1.
Writing

P=af+a(t,x,Dx)+b(t,x,Dx), Dx:%ax (,-2./—_1),

a(t,x, &) = Za,ktx)g,ck, b(t,x,&) =1 bj(t,x)& + bpya (2, %),
j=1

Jj k=1

the assumptions on P are the following:

(2.1) a(t, x,&) = colé|®, co >0,

(2:2) |0802a(t, x,&)| < Capt™<EY* M, o] 2 0,(8 >0,
(2.3) 08020:a(t, x,&)| < Copt T BIEY M, o 20,18 2 0,
(2:4) |0882b(1, x, &) < Ca g™, ol 2 0,]8] 2 0,

prel0,1], (6,x,8) €]0,T] x R" x R", (& = (1+1¢°)2.
In particular gives also

(2.5) |0%a(t, x,&)| < Cy log(1 + 1/0<E* ™, o] > 0.
We modify the symbol a for (&) <2/t defining
ao(t, x, &) = p(KKEN)E + (1 — p(KE))a(t, x, ),
peC®(R), 0<¢p<l1, ¢=1in [0,1], ¢=0 in 2,400

Then A(?) = +/ao(t), 0<t<T, is a family of symbols of pseudodifferential
operators in R” which satisfies

(2.6) At,x, &) =c<&, ¢>0
(27)  1080¢A(t,x,&)| < Cap<E1[L + H(1KE)r PPl (log(1 + 1/8)) 1],
H(y)=0 for y<1, H(y)=1 for y > 1.

In particular, if we denote as usual by S”; the class of all symbols g(x,¢)
such that laﬂaéq(x E)| < Cy pl&ym PR 0 <5 <p<1, we have that {i(¢);
0<t<T} is bounded in S)** and {A“l(t) 0 <t<T} is bounded in S, for
every ¢ > 0 and every pe|p,1].

Another consequence is that the symbol r(z,x,&) of the operator ag — A°
verifies t'~*r e C([0, T}; S| ,) for every £€]0,1 — p].
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From [2.2), and we get:
(2.8)  |08080,(1, x, &) < Cy gl M H(1¢ED) Pl (log(1 + 1/1)) 1%,
6 = max{p,r},

which implies the boundness in Sllfgs' of {¢!729,A(¢);0 <t < T} for any given
e€]0,1], & €le, 1], by using r~4(log(1 + 1/t))1+|°" < Cut™® < C,KED® on the sup-
port of H(t{&)).

Now we factorize the principal part of the operator P = 6,2 +a+b:
(2.9) P=(0,—iA)(0:+il)+a—ay+a,

a = —i[at,l] +ag — A2 + b.

Obviously #7(a(t) — ap(t)), 0 <t<T, is a bounded and continuous family
in S7¢™ for any m > 0 while ¢'~a;(f), 0 < ¢ < T is bounded and continuous in
Sll}'sl for every e€]0,1 — [, & €]¢,1[. Hereafter we fix 0 <e<é&' <1-4.

We have not a — ao + a; € L' ([0, T];Sl}y s) that by Gronwall’s method would
give the classical energy inequality

lu(lls + 10m@Dl;-1 < C([«(0)ls + 10:4(0)]l;-1), C€>0,0<:<T

for every ue C([0, T); H**'(R")) N C'([0, T]; H(R")) such that Pu = 0.

Anyway a weaker condition in this direction holds true: a—aqy =
o(1{&>)(a — (&)?) is bounded by C{&)? log(1 + 1/¢) and vanishes for (&> > 2 so
we can find a smooth function ,(z,£) such that

la — aol<&Y™ <y,  (log(1+1/0)~"yg € C([0, T]; S1 o)

and

T 2/K&>
JO 1880 (2, &)| dt < Co &Y™ jo log(1 + 1/2) dt < h,<&>~ log(1 + <&).

Concerning a; we have that
0k = (22) (P (KE)({EY? = a) + (1 — (<)) dyd]

is bounded by C{&)? log(1 + 1/1) for t{&) <2 and by t~1(&) for t{&) > 2 while
the symbol of ay — 42 + b is bounded by Cr~'*¢(&>. So we can find ¥, (2, &) such
that '

a1 <& <y, 70, € C([0, T); S )
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and

d 2/¢® T
J 08w, (£, €)| dr < C(E)™™ [1 +4& J log(1 +1/1) dt+J - dt}
° 0 2/<ey ¢

< &> Tog(1 + (&D).

Now we use the factorization to reduce the equation Pu =0 to a first
order system. For ue C([0, T]; H**'(R")) N CL([0, T|; H*(R")) let us define

U="u,u), w =(0,+iMu, uy=<{Dydu—mu,

(1 —p(£&>/3))<&>
2iA(t, x, &)
for t{{> > 6 and (supp m) N (supp a —ap) = &.
Then it is easy to see that the equation Pu = 0 is equivalent to a first order
2 x 2 system LU =0,

m the operator with symbol m(¢, x,&) = to have (&> = 2iim

(2.10) L=208,+K(t,x,D,), K=D+A, A=A+ A,
where

—7 0
(2.11) D:( (;’l M), P Ag € C([0, T}; S} o),

Ao(t,x,&) =0 for (&) >6,. t17¢4; e C([0,T]; S} )
and there are two positive functions ¥,(z, &), ¥, (¢, &) such that:
(2.12) ol <y, (log(l+1/0) ' € C(10, T); S} ),

41l <y, 1%, e C([0, T]§Sf',l0),

T
|| 10200.0)1 dr < hac> M tog(1 + <), ¥ = o+,
Since it is
CH (@)l + N0u(D)];=) < NUDIs < CNu®lgsry, + 10(D)]l,), 0<t<T,
we prove by the following result:

THEOREM 2.1. There are positive constants C,h such that for every U e
C([0, T]; HSYY(R™)) N CY([0, T]; H*(R™)) which satisfies LU =0 we have

(2.13) IO, < CIUO)]l, 0<<T.

s
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Proor. It is sufficient to prove for s = 0 since (D, >°*L{D,)>"* satisfies
the same hypotheses as L.

We look for lower bounds of the operator K = D + 4 in [2.10). As it con-
cerns the diagonal part D, from (2.7) we have that the symbol d(z,x, &) of the
operator D(t) + D*(1) satisfies 1'~*d e C([0, T]; S} ;) so it follows

(2.14) 2Re(DU(), U()) = —Cr ' U(1), U(r)), C>0
for every U e C([0, T); H'(R")).
Next we make the change of variable

V= w(6,0)U, wit,&) = exp - w0 &),

¥ =y, + ¥, the function in [2.12). We have
(2.15) NN, <201V(Ollg, UO)=V(0),h>0,0<t<T
and LU =0 if and only if L;V =0 with
(2.16) Ly =wLw™! =0, + K (¢, x,Dy),
Ki =D+ (yI+ A4)+ Ry,
t'~*(log(1 + <)) R € C((0, T}; S7,)
Now the symbol of I + A satisfies
£ (ol + Ag) € C([0, T); S1 o), Wol + (Ao+A5)/2=0 for large |&],
£y I + A1) € C([0, T); ST 5), Wil + (A1 +47)/2>0 for large ||,
e<ée <1-6, J=max{p,r},
so the sharp Garding inequality gives
(2.17) 2Re{(WI + AV (1), V()Y = —Ct 1TV (e), V(£)), C>0

for every ¥V e C([0, T); H'(R")).
For the operator R; we have

(2.18) 2Re(R V(2), V(1)) = —mt " og(1 + <D:x))V(2), V(8)», k1 >0
that leads us to make the further change of variable (cf. [2]):
W = (1+<D:>)" OV = (1 + D)) Ow(t, DU, a(t) = hit°/e,

h, the constant in (2.18). It is
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(2.19)
1@ <22 W ()lly, U©) = W(0), h=hy+mT/e, 0<t<T,

ho the constant in [2.15), and LU =0 if and only if LW =0 with

(2.20) Ly = (1+<Dx>) L1+ {D:))™ = 8, + Ka(t,x, D),
Ky =D+ (YI + A) + (hit7 ' log(1 + <Dy>) + Ry) + Ry,
7Ry € C([0, T}; S0 ).

Now h1t71*¢ log(1 4+ {D,)) + Ry is a positive operator by (2.18) while t!=¢R,(¢) is
uniformly bounded in L2(R") for 0 < ¢ < T. From this, (2.14) and (2.17) we get

2ReCKW(8), W(8)y = —Ct W (6), W(2)y, C>0

for every W e C([0, T]; H'(R")), hence

d 2 lie 2

SN < e+ wl;
for every W e C([0,T]; H/(R"))NC([0, T]; H°(R")) such that L,W = 0. This
gives

1w (1)llg < exp(C* /)| W (O)l
that is with s =0 by (2.19).

3. 7 Well Posedness
In this section we prove which implies Theorem 3.

We need to introduce a class pseudodifferential operators in Gevrey spaces:

DErFINITION 3.1. Forme R, s > 1, A > 0 we denote by I”, the space of all
symbols a(x, &) such that

(3-1)  lalgm , = SUD(, &) R, gl <1, pe 22 [0£0F a6, )| ATV () 7T
1s finite for every /e Z,.
Set ap(x,Dy) = eMa(x,Dy)e™®, A = k{D>'/*, and denote by

|a]s;" = SUDP(x &) e R?, |at-f| Sllagafa(x, )| <é>—m+|al

the usual norms in S7%,. In [4] Kajitani proved the following result:
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PrROPOSITION 3.2. For every A >0 there is Ty > 0 such that
(3.2) k| < To, aelly=aneSly, arn=a+r, resyy'™’
and for every | € Z" there are C; >0 and I' € Z such that

(3.3) IrlSIm-Hl/s < CIIalI;’”AJ,'

In particular we have that a(x,Dy), ael’,, is a continuous operator from

H*“#(R") to H*"#~m(R"), HE"#(R") = exp<—§(T‘5 - z5)<Dx>1/S) H*(R"), for
0<kT’/6<T,, 0<t<T.
Now we can begin the proof of Theorem 4. In this section the assumptions
on the operator
P = 0%+ a(t,x,Dy) + b(t, x, Dy)

are the following:
(34)  a(t,x,Q) = clél’, >0
35) aeC(0,T}T?,)

(3.6) t79,a,0 < t < T, is a continuous and bounded family in Iff 4>

q>1,5<q/(g—1)
(37)  beC([0,T);I; ).
Here we define
(3.8) ao(t, x,&) = p(tICENKE? + (1 — p(19¢EY))al(t, x, &),
peC*(R), 0<¢p<l, ¢=1in[0,1], ¢=0in [2,+00[
and take 6 > 0 so that 1/s=(¢—1+J)/q to have
(3.9) t'=(a — ao) € C(I0, THT, ;")

using <& < 2t77 in the support of ¢(17(&)).
We have also

A= \ase C([0,TI;T},), 47'eC(0,T)T))
and from (3.6) we get
(3.10) 1'a,4e C([0, T); T, 4°)

by <& <277 in supp ¢'(¢7¢£)) and 177 < (&) in supp(l — ¢(17<5))).
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So we can write
P=(8,—id)(6,+i2)+r, t70rec(o,T);T")
and define
U= "u,w), wu = (0 +ilu, u=Dxu—mu,

m(t,x, &) = {&>/2iA(t,x,&) to have that the equation Pu =0 is equivalent to a
first order 2 x 2 system LU =0,

(3.11) L=06,+K(t,x,D;), K=D+R,

_ (-4 0 -5 /s
b= (7' ) fUReCrO.TIEY).

Denoting by ||u|| ,, the norm of u in H*“#(R"), it is

CH ()i, it + 10Ol ) < WU, < CUD i 1,01 + N04(D) Ik 1,1)5

0<t<T, 0<kT?/5 <Ty, Ty the constant in [Proposition 3.2, thus we prove
by the following result:

THEOREM 3.3. There are positive constants ko, C such that for every U e
Cr(HR 41 kT% /6 < Ty, k > ko, which satisfies LU =0 we have

(3.12) IU@ e < CIUO) o, 01T,

Proor. It is sufficient to prove for =0 since (D Y*L{D,>"* sat-
isfies the same hypotheses as L and this is equivalent to prove
(3.13) IV (©)llo < CIVO)llp, 0<t<T
for every V e C([0,T]; H'(R™))NC'([0, T]; H*(R™)) such that LAV =0, Ls =
eMLe ™, A = ]g(T‘s — t‘s)<Dx>1/S.

From [Proposition 3.2 and we have

La =0+ k(DY + D+ Ry, 1R € C([0,T); S, kT°/5 < T,

so we can take k large enough, say k > ko, to make kt (D >V + R (¢)
a positive operator while D(7) + D*(f) is uniformly bounded in L?(R") for
0 <t<T. This gives

LI ld < clvoll, 0<t<T <ET/k)"



12 Massimo CICOGNANI

for every V e C([0,T); H'(R"))NC'([0, T); H°(R")) such that L,V =0 which
proves (3.13).

REMARK. It is possible to prove also for the critical index s =
q/(q — 1). This needs the use of the Sharp Garding inequality as in the proof
of after an ad hoc version of [Proposition 3.2 for more general
functions A.
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