LJUNGGREN'S TRINOMIALS AND MATRIX EQUATION $A^{x}+A^{y}=A^{z}$

By
Aleksander Grytczuk and Jarosław Grytczuk

Abstract

We give some necessary and sufficient conditions for solvability of the matrix equation $\left(^{*}\right) A^{x}+A^{y}=A^{z}$, with certain restrictions on integers x, y, z and a matrix $A \in M_{k}(\boldsymbol{Z})$, by applying Ljunggen's result on trinomials. Moreover, we obtain full solution of $\left(^{*}\right)$ for the case $k=2$ by another technique.

1. Introduction

We consider the general problem of finding necessary and sufficient conditions for the matrix $A \in M_{k}(\boldsymbol{Z})$ to satisfy the equation

$$
\begin{equation*}
A^{x}+A^{y}=A^{z} \tag{*}
\end{equation*}
$$

for some positive integers x, y and z. Le and Li [7] proved that if $A \in M_{2}(\boldsymbol{Z})$, then, for $x=m r, y=m s, z=m t$, where $m>2$ and r, s, t are positive integers, $\left(^{*}\right)$ has a solution if and only if the matrix A is nilpotent or $\operatorname{det} A=\operatorname{Tr} A=1$. Another proof of this result has been given in [5]. The restriction to multiplies of m is motivated by another matrix equation of the famous form, namely by the equation of Fermat

$$
\begin{equation*}
X^{m}+Y^{m}=Z^{m} \tag{**}
\end{equation*}
$$

In fact $\left(^{*}\right)$ is equivalent to Fermat's equation $\left({ }^{* *}\right)$ for $X=A^{r}, Y=A^{s}$ and $Z=A^{t}$. We note, that if $m=4$ the Domiaty [2] remarked that the equation (**) has infinitely many solutions in $M_{2}(\boldsymbol{Z})$ generated by Pythagorean triples. This fact is in opposition to the well-known case of ordinary integers, as proved by Wiles [13].

[^0]In this connection it is a very important problem to find a sufficient and necessary condition for solvability of Fermat's equation $\left({ }^{* *}\right)$ in the set of matrices (cf. [10], [12]). Khazanov [6] found such conditions for the matrices $X, Y, Z \in$ $S L_{2}(\boldsymbol{Z})$ and $X, Y, Z \in G L_{3}(\boldsymbol{Z})$. Further investigations connected with Khazanov's results have been given in the papers [1], [5], [7] and [9]. Some necessary condition for solvability of $\left({ }^{* *}\right)$ in the set $M_{2}(\boldsymbol{Z})$ is contained in the paper [3]. In general case, it was proved in [4] that if the matrix $A \in M_{k}(C), k \geq 2$ has at least one real eigenvalue $\alpha>\sqrt{2}$ and $\left(^{*}\right)$ is satisfied in positive integers x, y and z, then $\max \{x-z, y-z\}=-1$.

In the present paper we give an application of Ljunggren's [8] result on trinomials to find a sufficient and necessary condition for solvability of $\left(^{*}\right.$) in positive integers x, y and z under some restrictions for $A \in M_{k}(Z), k \geq 2$ concerning the set of exponents x, y and z. Moreover, we present full solution of $\left(^{*}\right)$ for the case $k=2$ without using Ljunggren's result on trinomials. In the first part of this paper we prove the following theorem.

Theorem 1. Let $A \in M_{k}(Z), k \geq 2$ be a given non-zero and non-singular matrix with the characteristic polynomial $f(t)=\operatorname{det}(t I-A)=t^{k}+a_{1} t^{k-1}+\cdots+a_{k}$. Then the matrix equation $\left({ }^{*}\right)$ has a solution in positive integers x, y and z such that $x=y$ or $x=z$ or $y=z$ if and only if
(i)

$$
A^{m}=2 I
$$

where $m=k / \alpha, \quad 1 \leq \alpha \leq k$ is a divisor of $k, \operatorname{det} A= \pm 2^{\alpha}$ and $\alpha(z-x)=$ $k \geq 2$. Moreover, if the positive integers x, y, z satisfy the conditions: $x>y>z$ and $x-z \geq 2(y-z) \geq k \geq 2$, with $(x-z, y-z)=(n, m)=d$ and $3 \nmid(x-z) / d+(y-z) / d$, then $\left(^{*}\right)$ has a solution, if and only if
(ii) $a_{i}=0$, for $i \neq m, k$, and $a_{m}=\varepsilon_{1}$ and $a_{k}=\operatorname{det} A=\varepsilon_{2}$, where $\varepsilon_{1}= \pm 1$ and $\varepsilon_{2}= \pm 1$ or if $3 \mid(x-z) / d+(y-z) / d$ then
(iii)

$$
A^{2 d}+\varepsilon_{1}^{y-z} \varepsilon_{2}^{x-z} A^{d}+I=O \quad \text { or } \quad h(A)=O
$$

where $h(t)$ is irreducible factor of the polynomial $g(t)$ given by the equality

$$
g(t)=t^{x-z}+\varepsilon_{1} t^{y-z}+\varepsilon_{2}=\left(t^{2 d}+\varepsilon_{1}^{y-z} \varepsilon_{2}^{x-z} t^{d}+1\right) h(t),
$$

where $(x-z) / d,(y-z) / d$ are both odd and $\varepsilon_{1}=1$ or $(x-z) / d$ is even and $\varepsilon_{2}=1$ or $(y-z) / d$ is even and $\varepsilon_{1}=\varepsilon_{2}$.

2. Basic Lemmas

In the proof of the Theorem 1 we use of the following Lemmas.
Lemma 1 ([11], p. 210). Let A be a $k \times k, k \geq 2$ matrix with entries in the field K. Then each polynomial $g \in K[x]$ with property $g(A)=O$ is divisible by the minimal polynomial $m \in K[x]$ of the matrix A. In particular, the minimal polynomial m divides the characteristic polynomial $f \in K[x]$ of the matrix A and the polynomial f has the same roots, but possibly with different multiplicities.

Remark 1. The minimal polynomial of the matrix A is the unique polynomial $m \in K[x]$ of minimal degree with leading coefficient equal to one and such that $m(A)=O$.

Lemma 2 (Ljunggren [8], Thm. 3, p. 69). If $n=d n_{1}, m=d m_{1}, n \geq 2 m$ where $\left(n_{1}, m_{1}\right)=1$, then the polynomial $g(x)=x^{n}+\varepsilon_{1} x^{m}+\varepsilon_{2}$, where $\varepsilon_{1}, \varepsilon_{2}= \pm 1$ is irreducible, apart from the following three cases, when $n_{1}+m_{1} \equiv 0(\bmod 3): 1^{0} n_{1}, m_{1}$ both odd and $\varepsilon_{1}=1,2^{0} n_{1}$ even and $\varepsilon_{2}=1,3^{0} m_{1}$ even and $\varepsilon_{1}=\varepsilon_{2}$ and then $g(x)=\left(x^{2 d}+\varepsilon_{1}^{m} \varepsilon_{2}^{n} x^{d}+1\right) h(x)$, where $h(x)$ is an irreducible polynomial.

3. Proof of the Theorem 1

Suppose that $\left(^{*}\right)$ has a solution in positive integers x, y and z and let the matrix $A \in M_{k}(\boldsymbol{Z})$ be a non-zero and non-singular matrix. First, we note that if $x=z$ or $y=z$ then $\left(^{*}\right)$ is impossible, since $\left(^{*}\right)$ reduces in these cases to the form $A^{y}=O$ or $A^{x}=O$. Both these equations imply $\operatorname{det} A=0$, which contradicts the assumptions. If $x=y$ then $\left(^{*}\right)$ has the form

$$
\begin{equation*}
2 A^{x}=A^{z} \tag{3.1}
\end{equation*}
$$

By (3.1) it follows that $x \neq z$ and $z>x$ and consequently we have

$$
\begin{equation*}
A^{z-x}=2 I . \tag{3.2}
\end{equation*}
$$

From (3.2) we obtain $\operatorname{det} A^{z-x}=(\operatorname{det} A)^{z-x}=2^{k}$, so $\operatorname{det} A= \pm 2^{\alpha}$, where $1 \leq \alpha \leq k$. Hence, $(\pm 2)^{\alpha(z-x)}=2^{k}$ and $\alpha(z-x)=k \geq 2$, where α or $z-x$ is even if $\operatorname{det} A=-2^{\alpha}$ and $z-x=k / \alpha=m$. Then by (3.2) it follows that $A^{m}=2 I$ and the proof of (i) is finished. Now, we can consider the case when $x \neq y \neq z$. In this case, by the equation $\left(^{*}\right)$ and the assumptions about x, y and z it follows to consider the following equation:

$$
\begin{equation*}
A^{x-z}+A^{y-z}=I \tag{3.3}
\end{equation*}
$$

Let $d=(x-z, y-z)=(n, m)$ be the greatest common divisor of n and m and let $x-z \geq 2(y-z) \geq k \geq 2$ and denote by $g(t)$ the polynomial of the form

$$
\begin{equation*}
g(t)=t^{x-z}+t^{y-z}-1 \tag{3.4}
\end{equation*}
$$

Then by (3.3) it follows that $g(A)=O$. If $3 \nmid(x-z) / d+(y-z) / d$ then from Lemma 2 it follows that the polynomial $g(t)$ is irreducible and therefore the characteristic polynomial $f(t)$ of the matrix A is equal to $g(t)$ in (3.4). Comparing the coefficients and degrees of these polynomials we obtain the condition (ii). Let $3 \mid(x-z) / d+(y-z) / d$, then by Ljunggren's result given in Lemma 2 we obtain that

$$
\begin{equation*}
g(t)=\left(t^{2 d}+\varepsilon_{1}^{m} \varepsilon_{2}^{n} t^{d}+1\right) h(t) \tag{3.5}
\end{equation*}
$$

From (3.5) in virtue of $g(A)=O$ we obtain that

$$
A^{2 d}+\varepsilon_{1}^{m} \varepsilon_{2}^{n} A^{d}+I=O \quad \text { or } \quad h(A)=O
$$

with some restrictions concerning m, n, d and the polynomial $h(t)$ given by the assumptions of the Ljunggren's Lemma 2. The proof of the Theorem 1 is complete.
4. Full Solution of the Equation (*) for the Case $A \in M_{2}(\boldsymbol{Z})$

In this part of our paper we present full solution of the equation (*) in positive integers x, y and z in the case when the matrix A belongs to $M_{2}(\boldsymbol{Z})$. In this purpose we replace Ljunggren's result on trinomials by the following Lemma.

Lemma 3 ([4]). Let A be in $M_{k}(C)$, where $k \geq 2$ and C denotes the field of complex numbers. Suppose that A has at least one real eigenvalue $\alpha>\sqrt{2}$. If the equation $\left(^{*}\right)$ has a solution in positive integers x, y and z then $\max \{x-z, y-z\}=-1$.

Now we prove the following theorem.

Theorem 2. Let $A \in M_{2}(Z)$ be a given non-zero matrix with $\operatorname{det} A=s$ and $\operatorname{Tr} A=r$. Then the matrix equation (*) has a solution in positive integers x, y and z if and only if one of the following conditions holds:
(i)

$$
A=2 I
$$

(ii)

$$
(r, s)=\{(0,0),(0,2),(0,-2),(1,1),(1,-1),(-1,-1)\}
$$

Proof. Denote by $f(t)=\operatorname{det}(t I-A)=t^{2}-(\operatorname{Tr} A) t+\operatorname{det} A$ the characteristic polynomial of the matrix $A \in M_{2}(\boldsymbol{Z})$ and let $r=\operatorname{Tr} A$ and $s=\operatorname{det} A$. Suppose that the matrix A is non-singular, so $s=\operatorname{det} A \neq 0$ and let positive integers x, y and z satisfy the equation $\left(^{*}\right)$. If $x=z$ or $y=z$ then $\left(^{*}\right)$ reduces to $A^{y}=O$ or $A^{x}=O$, which is impossible, because $s=\operatorname{det} A \neq 0$. If $x=y$ then (${ }^{*}$) has the form: $2 A^{x}=A^{z}$. We observe that if $x \geq z$ then we have $2 A^{x-z}=I$, which implies $4 \operatorname{det} A^{x-z}=4(\operatorname{det} A)^{x-z}=1$ and we get a contradiction. Hence, $x<z$ and we obtain the following equation:

$$
\begin{equation*}
A^{z-x}=2 I . \tag{4.1}
\end{equation*}
$$

From (4.1) it follows that $\operatorname{det} A^{z-x}=(\operatorname{det} A)^{z-x}=4$ and consequently $\operatorname{det} A= \pm 2$ and $z-x=2$ or $\operatorname{det} A=4$ and $z-x=1$. The case of $z-x=1$ implies by (4.1) the condition (i) of the Theorem 2. In the case of $z-x=2$ and $s=\operatorname{det} A= \pm 2$ by (4.1) it follows that

$$
\begin{equation*}
A^{2}=2 I . \tag{4.2}
\end{equation*}
$$

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a given matrix with entries $a, b, c, d \in \boldsymbol{Z}$. Then by (4.1) it follows that

$$
A^{2}=\left(\begin{array}{ll}
a & b \tag{4.3}\\
c & d
\end{array}\right)^{2}=\left(\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & d^{2}+b c
\end{array}\right)=2 I=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) .
$$

Analyzing the equation (4.3) we obtain that $b \neq 0$ and $c \neq 0$, so implies $a+d=r=0$. From this fact in virtue of $s=\operatorname{det} A= \pm 2$ we obtain $(r, s)=(0,2)$; $(0,-2)$.

Now, we can consider the case when $x \neq y \neq z$ and $s=\operatorname{det} A \neq 0, \pm 2$ and $A \neq 2 I$. In these cases the equation (*) implies:

$$
\begin{array}{ll}
A^{x-z}+A^{y-z}=I, & \text { if } \min \{x, y, z\}=z \\
A^{x-y}+I=A^{z-y}, & \text { if } \min \{x, y, z\}=y \\
I+A^{y-x}=A^{z-x}, & \text { if } \min \{x, y, z\}=x \tag{4.6}
\end{array}
$$

For the corresponding equations (4.4)-(4.6) let $g(t)$ be associated polynomial of the form:

$$
\begin{align*}
& g(t)=t^{x-z}+t^{y-z}-1, \quad \text { if }(4.4) \text { holds } \tag{P1}\\
& g(t)=t^{x-y}-t^{z-y}+1, \quad \text { if }(4.5) \text { holds } \tag{P2}\\
& g(t)=t^{y-x}-t^{z-x}+1, \quad \text { if }(4.6) \text { holds. } \tag{P3}
\end{align*}
$$

From (P1)-(P3) and (4.4)-(4.6) we obtain $g(A)=O$. Hence, by Lemma 1 it follows that if $m(t)$ is the minimal polynomial then we have $m(t) \mid g(t)$. In this connection we consider two cases: $1^{0} f(t)=t^{2}-t r+s$ is an irreducible characteristic polynomial of the matrix $A, 2^{0} f(t)$ is reducible polynomial. In the case 1^{0} we have $f(t)=m(t)$ and therefore $f(t) \mid g(t)$, which by (P1)-(P3) implies

$$
\begin{equation*}
f(t) \mid t^{x-z}+t^{y-z}-1, \text { or } f(t) \mid t^{x-y}-t^{z-y}+1, \text { or } f(t) \mid t^{y-x}-t^{z-x}+1 \tag{4.7}
\end{equation*}
$$

From (4.7) in the case of $t=0$ we get $f(0) \mid \pm 1$. Since $f(0)=s$, then $s= \pm 1$. On the other hand putting in (4.7) $t=1$ we obtain $f(1) \mid \pm 1$. Since $f(1)=$ $1-r+s$ and $s= \pm 1$ we get the following possibilities to consider:

$$
\begin{equation*}
(r, s)=\{(1,1),(3,1),(-1,-1),(1,-1)\} \tag{4.8}
\end{equation*}
$$

Consider the case when $(r, s)=(3,1)$. In this case the characteristic polynomial has the form: $f(t)=t^{2}-3 t+1$ and we have $\Delta=5$ and the characteristic roots α, β of this polynomial are equal to $\alpha=(3+\sqrt{5}) / 2$ and $\beta=(3-\sqrt{5}) / 2$. Since $\alpha>\sqrt{2}$ then by Lemma 3 it follows that $\max \{x-z, y-z\}=-1$. Suppose that $\max \{x-z, y-z\}=x-z$. Then we have $x-z=-1$, so $z=x+1$ and (*) implies

$$
\begin{equation*}
A^{x}(A-I)=A^{y} \tag{4.9}
\end{equation*}
$$

Since $s=\operatorname{det} A=1$ from (4.9) we obtain $\operatorname{det}(A-I)=1$. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then the condition $\operatorname{det}(A-I)=1$ implies $(a-1)(d-1)-b c=1$ and consequently $a d-b c-(a+d)=0$. Since $a d-b c=s=1$ and $a+d=\operatorname{Tr} A=r$, thus we obtain $r=1$, which is contrary to the fact that $r=3$. Therefore, in the case of $(r, s)=(3,1)$ the equation $\left(^{*}\right)$ has no solution. In a similar way we obtain a contradiction for the case if $\max \{x-z, y-z\}=y-z$.

It remains to consider the case 2^{0} when the characteristic polynomial $f(t)$ is reducible. In this case we have $f(t)=(t-\alpha)(t-\beta)$, where $\alpha, \beta \in Z$. From $\left(^{*}\right)$ and the assumption that A is non-singular matrix, it follows that $\operatorname{det} A= \pm 1$ and in virtue of $\operatorname{det} A=\alpha \beta$ we get $\alpha \beta= \pm 1$. Hence, $\alpha=\beta=1$ or $\alpha=1$ and $\beta=-1$ or $\alpha=-1$ and $\beta=1$. For these cases we obtain that $A=I$ or $A=-I$ and the equation (*) has no solutions in positive integers $x \neq y \neq z$. Now, we can consider the final part of the proof. If the non-zero matrix $A \in M_{2}(\boldsymbol{Z})$ is singular, then $\operatorname{det} A=0$. In this case, by simple inductive way, we get $A^{m}=(\operatorname{Tr} A)^{m-1} A$ for all positive integers m. Using this formula and the assumption that $A \neq O$ we obtain that $\left(^{*}\right)$ reduces to the form:

$$
\begin{equation*}
r^{x-1}+r^{y-1}=r^{z-1} \tag{4.10}
\end{equation*}
$$

where $r=\operatorname{Tr} A \in \boldsymbol{Z}$. It is easy to see that the equation (4.10) has a solution with positive integers $x \neq y \neq z$ and an integer r if and only if $r=0$ or $r=2$. Summarizing, we get that the condition (ii) is satisfied and the proof of the Theorem 2 is complete.

Acknowledgement 1

We would like to thank the referee for his suggestions and valuable remarks for the improvement of the exposition of this paper.

References

[1] Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2×2 integral matrices, Tsukuba J. Math. 22 (1998), 637-643.
[2] R. Z. Domiaty, Solution of $x^{4}+y^{4}=z^{4}$ in 2×2 integral matrices, Amer. Math. Monthly, 73 (1966), 631.
[3] A. Grytczuk, On Fermat's equation in the set of integral 2×2 matrices, Period. Math. Hung. 30 (1995), 65-72.
[4] A. Grytczuk, Note on Fermat's type equation in the set of $n \times n$ matrices, Discuss. Math. 17 (1997), 19-23.
[5] A. Grytczuk, On a conjecture about the equation $A^{m x}+A^{m y}=A^{m z}$, ActaAcad. Paed. Agriensis, Sectio Math. 25 (1998), 61-70.
[6] A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40.
[7] M. Le and C. Li, On Fermat's equation in integral 2×2 matrices, Period. Math. Hung. 31 (1995), 219-222.
[8] W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials, Math. Scand. 8 (1960), 65-70.
[9] H. Qin, Fermat's problem and Goldbach problem over $M_{n} Z$, Linear Algebra Appl. 236 (1996), 131-135.
[10] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer-Verlag. 1979.
[11] K. Spindler, Abstract Algebra with Applications, Marcel Dekker, New York, 1994.
[12] L. N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449.
[13] A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Math., 141 (1995), 443-551.

Institute of Mathematics, University of Zielona Góra.
Department of Algebra and Number Theory, 65-069 Zielona Góra, Poland
E-mail address: A.Grytczuk@im.uz.zgora.pl
Institute of Mathematics, University of Zielona Góra, 65-246 Zielona Góra, Poland
E-mail address: J.Grytczuk@im.uz.zgora.pl

[^0]: 1999 Mathematics Subject Classification. Primary 11C20; Secondary 11D41.
 Key words and phrases. Matrix equations, Ljunggren's trinomials.
 Received May 16, 2000.
 Revised April 15, 2002.

