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THE FIRST VARIATION FORMULA FOR
WEYL STRUCTURES

By

Toshiyuki ICHIYAMA

Abstract. The purpose of this paper is to determine explicitly the
Euler Lagrange equations of our conformal gauge invariant func-
tional on the space of all Weyl structures.

1. Introduction

The geometry of Weyl stmctures has its classical roots in the work of H.
Weyl and is now a very active research area, having close connections to
conformal geometry (especially Einstein-Weyl geometry), contact geometry, gauge
theory and gravitational theory. In recent years, Alexandrov and Ivanov [1]
generalized the vanishing theorem of Bochner type on compact manifolds ad-
mitting a Weyl structure whose Ricci tensor satisfies certain positively condition.
Katagiri [16] showed that for a conformal connection, the symmetric part of the
Ricci curvature determines the full Ricci curvature. Calderbank [7] studied the
Jones-Tod correspondence between self-dual four-manifolds with symmetry and
Einstein-Weyl three-manifolds with an abelian monopole using Weyl derivatives,
Weyl-Lie derivatives and conformal submersions. And Kamada [15] showed that
a compact almost Hermitian-Einstein-Weyl four-manifold with non-negative
conformal scalar curvature must be Hermitian-Einstein-Weyl. Torres del Castillo
and P\’erez-P\’erez [23] studied that the coupled gravitational and neutrino field
perturbations of the exact solution of the Einstein-Weyl equations are determined
by a set of four first-order ordinary differential equations determines the con-
servation factors between a gravitational and neutrino waves. Since Weyl ge-
ometry and related fields are so rich, we consider some variational problem on
the space $\mathfrak{W}$ of all Weyl stmctures as follows.
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In [10] we introduced a conformal gauge invariant functional for Weyl
structures and studied some properties about it. The purpose of this paper is
to determine explicitly the Euler-Lagrange equations of our conformal gauge
invariant functional on $\mathfrak{W}$ (cf. Theorem 2.2). Especially, in dimension four, our
Euler-Lagrange equations have very simple forms which are the mixtures of a
Yang-Mills equation for a Weyl connection and a gravitational field equation
characterized by two symmetric 2-tensor fields $\check{R}^{D}$ and $g$ (Corollary 2.3). This
study leads naturally to the notion of Yang-Mills theory in affine geometry,
which is studied in [8] related to the Einstein-Weyl stmctures.

2. Statement of Main Results

In this paper, we always assume that $M$ is an n-dimensional compact
connected orientable $C^{\infty}$ manifold and $n\geq 4$ . The Weyl structure $(g, D)$ on $M$

is described by a pair $(g, \omega)\in \mathfrak{M}\times A^{1}(M)$ such that $Dg=\omega\otimes g$ . A manifold
equipped with a Weyl stmcture is called a Weyl manifold. Let $\mathfrak{M}$ be the space of
all Riemannian metrics on $M,$ $\mathfrak{C}$ , the spaoe of all torsion-free affine connections
on $M$ and $\mathfrak{W}$ , the space of all Weyl stmctures on $M$. We consider the following
conformal gauge invariant functional

$C_{n}$ : $\mathfrak{M}\times \mathfrak{C}\rightarrow R$ , $(g, D)\mapsto\int_{M}|R^{D}|_{g}^{n/2}v_{g}=\int_{M}\langle R^{D}, R^{D}\rangle_{g}^{n/4}v_{g}$ ,

where $R^{D}$ is the curvature tensor of a Weyl connection $D$ , defined by
$R^{D}(X, Y)Z:=D_{X}D_{Y}Z-D_{Y}D_{X}Z-D_{[X,Y]}Z,$ $|\bullet$ $|_{g}$ is the norm induced by $g$ and
$v_{g}$ is the volume form with respect to $g$ .

Here, we recall that there exists a natural isomorphism from $\mathfrak{M}\times A^{1}(M)$ to
$\mathfrak{W}$ (cf. [10, Lemma 2.4]). Namely, for any $(g,\omega)\in \mathfrak{M}\times A^{1}(M)$ , using the Levi-
Civita connection $\nabla$ , we can define the corresponding Weyl connection $D$ by

$D_{X}Y=\nabla_{X}Y+\frac{1}{2}\{g(X, Y)\omega^{\#}-\omega(Y)X-\omega(X)Y\}$ ,

where $\omega\#$ denotes the dual vector field of a l-form $\omega\in A^{1}(M)$ with respect to $g$ .
From this identification, we can study the restricted functional on the space of all
Weyl structures $\mathfrak{W}$ , denoted by

$C_{n}^{W}$ $:=C_{n}|_{\mathfrak{W}}$ : $\mathfrak{W}\cong \mathfrak{M}\times A^{1}(M)\rightarrow R$ .

Then, we considered the following variational problem for Weyl structures
(cf. [10]). Fix $(g, \omega)\in \mathfrak{M}\times A^{1}(M)\cong \mathfrak{W}$ and consider a smooth deformation of
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Riemannian metrics $g_{t}\in \mathfrak{M}$ and l-forms $\omega_{l}\in A^{1}(M)$ such that $go=g$ and
$\omega_{0}=\omega$ .

In this situation, we proved the following theorem.

THEOREM 2.1 (Theorem 3.7 in [10]). Let $(M, g,D)$ be an n-dimensional
compact Weyl manifold. Then, a couple $(g, D)$ in $\mathfrak{W}$ is a critical point of the
functional $C_{n^{W}}$ : $\mathfrak{W}\rightarrow R$ if and only if it satisfies

$\left\{\begin{array}{l}2|R^{D}|_{g}^{(n-4)/2}(\check{R}^{D}-\frac{1}{n}|R^{D}|_{g}^{2}g)-((\nabla-\mathfrak{d}^{\nabla})^{*}+\omega)(\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D}))\\=0,\\\langle\eta^{\#}\otimes g-Id\otimes\eta-\eta\otimes Id,\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})\rangle_{g}\\=0forany\eta\in A^{l}(M),\end{array}\right.$

$(2.2)(2.1)$

where $\check{R}^{D}(X, Y)$ $:=\sum_{i,j,k=1}^{n}g(R^{D}(X, e_{j})e_{j},$ $e_{k}$ ) $g(R^{D}(Y, e_{j})e_{j},$ $e_{k}$ )
$,$

$\{e_{i}\}_{i=1}^{n}$ is ortho-
normal local frame field with respect to $g,$

$\mathfrak{d}^{\nabla}$ denotes the Codazzi operator (cf.
Definition 3.3), $\eta$ $:=(d/dt)|_{t=0}\omega_{t}\in A^{1}(M),$ $\eta\#$ is the dual vector field of a l-form $\eta$

with respect to $g$ and Id is the identity transformation on $\Gamma(TM)$ .

Here, we use a standard notation of the codifferential $\delta^{D}$ $:=(d^{D})^{*}$ instead
of our notation $\tilde{D}^{*}=(d^{D})^{*}$ in [10], where $\tilde{D}$ $:=d^{D}$ : $A^{}$ (End$(TM)$ ) $\rightarrow$

$A^{2}(End(TM))$ is the exterior derivative induced by a connection $D$ and the
codifferential $\delta^{D}$ is defined as follows.

$\delta^{D}$ : $A^{2}(End(TM))\rightarrow A^{1}(End(TM))$ , $P\vdash\rightarrow\delta^{D}P$ ,

$(\delta^{D}P)(X)Y$ $:=-\sum_{i=1}^{n}(\overline{D}_{e_{i}}P)(e_{j}, X)Y$ ,

where $\overline{D}$ is the conjugate connection uniquely determined by $D$ as follows (cf. [8]):

$Xg(Y, Z)=g(D_{X}Y, Z)+g(Y,\overline{D}_{X}Z)$ ,

for any $C^{\infty}$ vector fields $X,$ $Y,$ $Z$ on $M$.
Our main theorem is the following. Notation used here will be explained in

the next section.

THEOREM 2.2 (cf. Theorem 4.4). Let $(M, g, D)$ be an n-dimensional compact
Weyl manifold. Then, a couple $(g, D)$ in $\mathfrak{W}$ is a critical point of the functional
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$C_{n}^{W}$ : $\mathfrak{W}\rightarrow Rlf$ and only $\iota f$ it satisfies

$\left\{\begin{array}{l}2|R^{D}|_{g}^{(n-4)/2}(\check{R}^{D}-\frac{1}{n}|R^{D}|_{g}^{2}g)-C_{3}^{l}(div_{g}\delta^{D}Q^{D})+C_{2}^{1}(\nabla\delta^{D}Q^{D})\\+C_{3}^{l}(\nabla\delta^{D}Q^{D})-\omega(\delta^{D}Q^{D})=0,\\C_{2}^{l}(\delta^{D}Q^{D})-C_{2}^{l}((\delta^{D}Q^{D})^{T})-(C_{3}^{2}(\delta^{D}Q^{D}(\bullet)))^{\#}=0,\end{array}\right.$

where $Q^{D}$ $:=|R^{D}|_{g}^{(n-4)/2}R^{D}\in A^{2}(End(TM)),$ $C_{j}^{i}$ denotes the contraction of the i-th
index and the j-th index for a $(1, 2)$-typed tensor field and $\alpha^{T}$ is the transposed map
of $\alpha\in A^{1}(End(TM))$ with respect to $g$ (cf. Definition 3.2).

Especially, in dimension four, we have the following simple form.

COROLLARY 2.3 (cf. Corollary 4.5). Let $(M, g,D)$ be a four-dimensional
compact Weyl manifold. Then, a couple $(g, D)$ in $\mathfrak{W}$ is a critical point of the

functional $C_{4}^{W}$ : $\mathfrak{W}\rightarrow R$ if and only if it satisfies

$\left\{\begin{array}{l}2(\check{R}^{D}-\frac{1}{4}|R^{D}|_{g}^{2}g)-C_{3}^{1}(div_{g}\delta^{D}R^{D})+C_{2}^{l}(\nabla\delta^{D}R^{D})\\+C_{3}^{l}(\nabla\delta^{D}R^{D})-\omega(\delta^{D}R^{D})=0,\\C_{2}^{l}(\delta^{D}R^{D})-C_{2}^{l}((\delta^{D}R^{D})^{T})-(C_{3}^{2}(\delta^{D}R^{D}(\bullet)))^{\#}=0.\end{array}\right.$

In dimension four, our conformal gauge invariant functional $C_{4^{W}}$ : $\mathfrak{W}\rightarrow R$

coincides with the functional introduced by Pedersen et al. [19]. In their paper,
they treated about the relation between Einstein-Weyl stmctures and topological
invariants. But, they did not point out the Euler-Lagrange equations explicitly.
Our result in dimension four reveals them completely. The obtained Euler-
Lagrange equations are the mixtures of a Yang-Mills equation of a Weyl
connection $D$ with respect to $g$ and a gravitational field equation characterized by
symmetric 2-tensor fields $\check{R}^{D}$ (field strength) and $g$ (gravity). In arbitrary di-
mension, the corresponding Euler-Lagrange equations are regarded as the con-
formal generalization of a four dimensional case.

3. Preminaries

In this section, we give all materials needed later. Let $(M, g)$ be a smooth,
connected, orientable, compact Riemannian manifold without boundary
$(\dim M\geq 4),$ $\mathfrak{M}$ , the space of all Riemannian metrics on $M,$ $\mathfrak{C}$ , the space of all
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torsion-free affine connections on $M$ and $\mathfrak{W}$ , the space of all Weyl stmctures on
$M$. A couple $(g, D)\in \mathfrak{M}\times \mathfrak{C}$ is a Weyl structure if there exists a l-form
$\omega\in A^{1}(M)$ such that $Dg=\omega\otimes g$ , that is, for $X,$ $Y,$ $Z\in \mathscr{X}(M)$ ,

$(D_{X}g)(Y, Z)=\omega(X)g(Y, Z)$ .

In some Lemmas, we use a global inner product on $M$ denoted by ( $\bullet$ , $\bullet$ ), that
is, $(\bullet, \bullet)$ $:=\int_{M}\langle\bullet, \bullet\rangle_{g}v_{g}$ .

For an endomorphism $f\in\Gamma(End(TM))$ , we can uniquely determine the
$(0,2)$ -tensor field $\mathring{f}\in\Gamma(T^{*}M\otimes T^{*}M)$ using a Riemannian metric $g$ as follows
(cf. [3, p. 22]).

$\mathring{f}(X, Y)$
$:=\langle X,f(Y)\rangle_{g}$ , $X,$ $Y\in \mathscr{X}(M)$ .

Here and in the sequel, we will identify an endomorphism $f$ with the corre-
sponding $(0,2)$ -tensor field ; and use the same notation $f$ for both of them.

For $\alpha\in A^{1}(End(TM))$ and $X\in \mathscr{X}(M),$ $(\alpha(X))^{T}\in\Gamma(End(TM))$ means the
transposed map of $\alpha(X)\in\Gamma(End(TM))$ with respect to $g$ , namely, for
$Y,$ $Z\in \mathscr{X}(M)$ ,

$g((\alpha(X))^{T}Y, Z)=g(Y, \alpha(X)Z)$ .

Then, we can write the equation (2.2) of Theorem 2.1 in the following form.

PROPOSITION 3.1. For $\alpha=\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})\in A^{1}(End(TM))$ , the equation
(2.2) is equivalent to the following equation:

$\sum_{i=1}^{n}\alpha(e_{l})e_{j}-\sum_{i=1}^{n}(\alpha(e_{i}))^{T}(e_{j})-\sum_{i,j=1}^{n}\langle e_{j}, \alpha(e_{i})e_{j}\rangle_{g}e_{i}=0$ . (3. 1)

PROOF. Sinoe $\eta\#=\sum_{i=1}^{n}\eta(e_{i})e_{i}\in \mathscr{X}(M)$ , we have

$\langle\eta^{\#}\otimes g-Id\otimes\eta-\eta\otimes Id, \alpha\rangle_{g}$

$=\sum_{i,j=1}\langle g(e_{i}, e_{j})\eta^{\#}-\eta(e_{j})e_{i}-\eta(e_{j})e_{j}, \alpha(e_{i})e_{j}\rangle_{g}$

$=\sum_{i=1}^{n}\langle\eta^{\#}, \alpha(e_{i})e_{j}\rangle_{g}-\sum_{i=1}^{n}\langle e_{i}, \alpha(e_{i})\eta^{\#}\rangle_{g}-\sum_{i=1}^{n}\langle e_{i}, \alpha(\eta^{\#})e_{i}\rangle_{g}$

$=\sum_{i=1}^{n}\langle\eta^{\#}, \alpha(e_{i})e_{i}\rangle_{g}-\sum_{i=1}^{n}\langle\eta^{\#}, (\alpha(e_{i}))^{T}e_{i}\rangle_{g}-\sum_{i=1}^{n}\langle e_{j}, \alpha(\eta^{\#})e_{i}\rangle_{g}$ .
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Here, we note that

$\sum_{i=1}^{n}\langle e_{i}, \alpha(\eta^{\#})e_{i}\rangle_{g}=\sum_{i,j=1}^{n}\langle e_{i}, \alpha(\eta(e_{j})e_{j})e_{i}\rangle_{g}=\sum_{i,j=1}^{n}\eta(e_{j})\langle e_{i}, \alpha(e_{j})e_{j}\rangle_{g}$ . (3.2)

On the other hand, we also have the following equation.

$\{\eta^{\#},\sum_{i,j=1}^{n}\langle e_{j}, \alpha(e_{i})e_{j}\rangle_{g}e_{i}\}_{g}=\sum_{i,j=1}^{n}\langle e_{i}, \alpha(e_{i})e_{j}\rangle_{g}\langle\eta^{\#}, e_{i}\rangle_{g}=\sum_{i,j=1}^{n}\eta(e_{i})\langle e_{j}, \alpha(e_{i})e_{j}\rangle_{g}$ .

(3.3)
By (3.2) and (3.3), we have

$\sum_{i=1}^{n}\langle e_{i}, \alpha(\eta^{\#})e_{i}\rangle_{g}=\{\eta^{\#},\sum_{i,j=1}^{n}\langle e_{j}, \alpha(e_{i})e_{j}\rangle_{g}e_{j}\}_{g}$ ,

which completes the proof. $\square $

In order to make the equation (2.1) of Theorem 2.1 in the final form, we
recall the covariant derivative of an End$(TM)$ -valued l-form. Let $\alpha$ be an
End$(TM)$ -valued l-form and V the Levi-Civita connection of $g$ . $(\nabla_{X}\alpha)(Y)\in$

$\Gamma(End(TM))$ is defined by

$(\nabla_{X}\alpha)(Y)Z:=\nabla_{X}(\alpha(Y)Z)-\alpha(\nabla_{X}Y)Z-\alpha(Y)\nabla_{X}Z$ . (3.4)

Then, we have tensorial properties of $\nabla\alpha$ as follows.
For $\alpha\in A^{1}(End(TM))$ , a map $\nabla\alpha$ : (X, $Y,$ $Z$) $\leftrightarrow(\nabla_{X}\alpha)(Y)Z$ is a tensor field.

Namely, for $X,$ $Y,$ $Z\in \mathscr{X}(M)$ and $f\in C^{\infty}(M)$ , we have

$(\nabla_{1^{X}}\alpha)(Y)Z=(\nabla_{X}\alpha)(fY)Z=(\nabla_{X}\alpha)(Y)fZ=f(\nabla_{X}\alpha)(Y)Z$ .

To state our main results, we define the following contractions for $(1, 2)-$

typed tensors $\alpha,$
$\nabla_{X}\alpha\in A^{1}(End(TM))$ .

DEFINITION 3.2. We define the contraction $C_{j^{i}}$ by, for $\alpha\in A^{1}(End(TM))$ ,

1. $C_{2^{1}}(\alpha)$ $:=\sum_{i=1}^{n}\alpha(e_{j})e_{i}\in \mathscr{X}(M)$ ,

2. $C_{2}^{1}(\alpha^{T})$ $:=\sum_{i=1}^{n}(\alpha(e_{i}))^{T}e_{i}\in \mathscr{X}(M)$ ,

3. $C_{2^{1}}(\nabla\alpha)Z:=\sum_{i=1}^{n}(\nabla_{e_{i}}\alpha)(e_{i})Z=\sum_{i=1}^{n}\{\nabla_{e_{j}}(\alpha(e_{i})Z)-\alpha(\nabla_{e_{j}}e_{i})Z-\alpha(e_{j})\nabla_{e_{j}}Z\}\in \mathscr{X}(M)$ ,

4. $C_{3^{1}}(\nabla\alpha)Y$ $:=\sum_{i=1}^{n}(\nabla_{e_{j}}\alpha)(Y)e_{i}=\sum_{i=1}^{n}\{\nabla_{e_{j}}(\alpha(Y)e_{i})-\alpha(\nabla_{e_{j}}Y)e_{j}-\alpha(Y)\nabla_{e_{j}}e_{j}\}\in \mathscr{X}(M)$ .
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These definitions are independent of the choice of basis $\{e_{l}\}_{i^{n}=1}$ . Here,
$\alpha^{T}\in A^{1}(End(TM))$ is defined by

$\alpha^{T}$ : $\mathscr{X}(M)\rightarrow End(TM)$ , X $\mapsto\alpha^{T}(X)$ $:=(\alpha(X))^{T}$ .

Then, for $f\in C^{\infty}(M)$ , we have $\alpha^{T}(fX)=f\alpha^{T}(X)$ . So, the contraction
$C_{2}^{1}(\alpha^{T})\in \mathscr{X}(M)$ is well-defined.

To prove Proposition 4.1, using the contraction of $\alpha\in A^{1}(End(TM))$ we
prepare the following l-form $C_{3}^{2}(\alpha(\bullet))\in A^{1}(M)$ defined by

$X\leftrightarrow C_{3}^{2}(\alpha(X))$
$:=\sum_{j=1}^{n}\langle\alpha(X)e_{j}, e_{j}\rangle_{g}$ , (3.5)

which is independent of the choice of basis $\{e_{j}\}_{i^{n}=1}$ .
Next, we express the formal adjoint of $\nabla-\mathfrak{d}^{\nabla}$ with respect to $g$ using the

Codazzi operator and its representation by the Levi-Civita connection of $g$ . Here,
we use the same notation in our paper [10]. This operator is significant for our
studies and its special properties lead to our main theorem. Now, we recall the
Codazzi operator $\mathfrak{d}^{\nabla}$ with respect to the Levi-Civita connection $\nabla$ (cf. [5, p. 20],
[21, p. 103], [10, p. 557, Definition 3.3]).

DEFINITION 3.3. For any symmetric 2-tensor field $h\in S^{2}(M)$ , we define the
Codazzi operator $\mathfrak{d}^{\nabla}$ as

$(\mathfrak{d}^{\nabla}h)(X, Y, Z)$ $:=(\nabla_{X}h)(Y, Z)-(\nabla_{Y}h)(X, Z)$ .

For simplicity, we set $A;=\nabla-\mathfrak{d}^{\nabla}$ . Then, for any $h\in S^{2}(M)$ , we have

$(Ah)(X, Y, Z)=-(V_{X}h)(Y, Z)+(\nabla_{Y}h)(X, Z)+(\nabla_{Z}h)(X, Y)$ .

Here, for a $(0,3)$ -tensor $Ah$ , we introduce three differential operators as follows.

$\{((A_{2}A_{3}^{1}hh))((XX,YY,ZZ\}_{=(\nabla_{Z}h)(X,Y^{Z)}\prime}^{=-(\nabla_{X}h)(Y_{Z)_{)}}}=(\nabla_{Y}h)(X,,$

.

We notice the decomposition $A=A_{1}+A_{2}+A_{3}$ and have the following
formula.

LEMMA 3.4. For any 3-tensor field $\beta\in\Gamma(T^{*}M\otimes T^{*}M\otimes T^{*}M)$ , we have



178 Toshiyuki ICHIYAMA

(1) $(A_{1}^{*}\beta)(X, Y)=\sum_{i=1}^{n}(\nabla_{e_{j}}\beta)(e_{i}, X, Y)$ ,

(2) $(A_{2}^{*}\beta)(X, Y)=-\sum_{i=1}^{n}(\nabla_{e_{j}}\beta)(X, e_{i}, Y)$ ,

(3) $(A_{3}^{*}\beta)(X, Y)=-\sum_{i=1}^{n}(\nabla_{e_{j}}\beta)(X, Y, e_{i})$ ,

where $A_{1}^{*},$ $A_{2}^{*}$ and $A_{3}^{*}$ are the formal adjoints of $A_{1},$ $A_{2}$ and $A_{3}$ with respect to $g$ ,
respectively.

$PR\infty F$ . Since the proofs of the properties (2) and (3) are similar to (1), we
prove only the property (1). For any 3-tensor field $\beta\in\Gamma(T^{*}M\otimes T^{*}M\otimes T^{*}M)$ ,
we set

$(A_{1}^{*}\beta)(X, Y)$ $:=\sum_{i=1}^{n}(\nabla_{e_{i}}\beta)(e_{i}, X, Y)$ . (3.6)

Then, we will show the following equation.

$(A_{1}h,\beta)=(h,A_{1}^{*}\beta)$ ,

where ( $\bullet$ , e) denotes a global inner product on $M$.
For this purpose, we calculate

$\langle A_{1}h,\beta\rangle_{g}-\langle h, A_{1}^{*}\beta\rangle_{g}$

$=-\sum_{i,j,k=1}^{n}(\nabla_{e_{j}}h)(e_{j}, e_{k})\beta(e_{i}, e_{j}, e_{k})-\sum_{i,j=1}^{n}h(e_{j}, e_{j})(\sum_{k=1}^{n}(\nabla_{e_{k}}\beta)(e_{k}, e_{j}, e_{j}))$

$=-\sum_{i,j,k=1}^{n}\{(e_{j}(h(e_{/}\cdot, e_{k}))-h(\nabla_{e_{j}}e_{j}, e_{k})-h(e_{j}, \nabla_{e_{j}}e_{k}))\beta(e_{j}, e_{j}, e_{k})$

$+h(e_{i}, e_{j})(e_{k}(\beta(e_{k}, e_{j}, e_{j}))-\beta(\nabla_{e_{k}}e_{k}, e_{i}, e_{j})$

$-\beta(e_{k}, \nabla_{e_{k}}e_{j}, e_{j})-\beta(e_{k}, e_{j}, \nabla_{e_{k}}e_{j}))\}$ . (3.7)

By $\nabla_{e_{j}}e_{j}=\sum_{l=1}^{n}g(\nabla_{e_{i}}e_{j}, e_{l})e_{l}$ , we have

$h(\nabla_{e_{j}}e_{j},e_{k})=\sum_{l=1}^{n}g(\nabla_{e_{l}}e_{j}, e_{l})h(e_{l}, e_{k})=-\sum_{l=1}^{n}g(e_{j}, \nabla_{e_{j}}e_{l})h(e_{l}, e_{k})$ . (3.8)

By (3.8), we have
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$\sum_{i,j,k=1}^{n}h(\nabla_{e_{j}}e_{j}, e_{k})\beta(e_{j}, e_{j}, e_{k})=-\sum_{i,k,l=1}^{n}h(e_{l}, e_{k})\beta(e_{l},$ $\sum_{j=1}^{n}g(e_{j}, \nabla_{e_{i}}e_{l})e_{j},$ $e_{k})$

$=-\sum_{i,j,k=1}^{n}h(e_{j}, e_{j})\beta(e_{k}, \nabla_{e_{k}}e_{i}, e_{j})$ . (3.9)

Similarly, we have

$\sum_{i,j,k=1}^{n}h(e_{j}, \nabla_{e_{j}}e_{k})\beta(e_{i}, e_{j}, e_{k})=-\sum_{i,j,k=1}^{n}h(e_{j}, e_{j})\beta(e_{k}, e_{j}, \nabla_{e_{k}}e_{j})$ . (3.10)

Here, we define a l-form $\kappa\in A^{1}(M)$ by the contraction of a symmetric 2-tensor
field $h\in S^{2}(M)$ and a 3-tensor field $\beta\in\Gamma(T^{*}M\otimes T^{*}M\otimes T^{*}M)$ , namely,

$\kappa(X)$ $:=\sum_{i,j=1}^{n}h(e_{i}, e_{j})\beta(X, e_{i},e_{j})$ .

Then, we have

$div_{g}\kappa^{\#}=\sum_{k=1}^{n}g(e_{k}, \nabla_{e_{k}}\kappa^{\#})$

$=\sum_{k=1}^{n}\{e_{k}(\sum_{i,j=1}^{n}h(e_{i}, e_{j})\beta(e_{k}, e_{i}, e_{j}))-\sum_{i,/=1}^{n}h(e_{j}, e_{j})\beta(\nabla_{e_{k}}e_{k}, e_{j}, e_{j})\}$

$=\sum_{i,j,k=1}^{n}e_{l}(h(e_{j}, e_{k}))\beta(e_{i}, e_{j}, e_{k})+\sum_{i,j,k=1}^{n}h(e_{j}, e_{j})e_{k}(\beta(e_{k}, e_{j}, e_{j}))$

$-\sum_{i,j,k=1}^{n}h(e_{j}, e_{j})\beta(\nabla_{e_{k}}e_{k}, e_{j}, e_{j})$ . (3.11)

By (3.6), (3.7) and (3.11), we have

$\langle A_{1}h,\beta\rangle_{g}-\langle h,A_{1}^{*}\beta\rangle_{g}=-div_{g}\kappa^{\#}$ . (3.12)

Integrating on $M$ the both hand sides of (3.12) and applying Green’s theorem, we
have

$(A_{1}h,\beta)=(h,A_{1}^{*}\beta)$ ,

which completes the proof. $\square $

From Lemma 3.4 and the decomposition of $A$ , we have the following
formula.
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PROPOSITION 3.5. For any 3-tensor field $\beta\in\Gamma(T^{*}M\otimes T^{*}M\otimes T^{*}M)$ , we
have

$(A^{*}\beta)(X, Y)=\sum_{i=1}^{n}\{(\nabla_{e_{j}}\beta)(e_{i}, X, Y)-(\nabla_{e_{j}}\beta)(X, e_{i}, Y)-(\nabla_{e_{j}}\beta)(X, Y, e_{i})\}$ ,

where $A^{*}$ is the formal adjoint of the differential operator $A:=V-b^{v}$ with respect
to $g$ .

In order to apply Proposition 3.5 to $\alpha=\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})\in A^{1}(End(TM))$ ,
we need [10, Lemma 3.4]. Then, $Ah$ is given by

$(Ah)(X, Y, Z)=((\nabla-\mathfrak{d}^{\nabla})h)(X, Y, Z)=2g(X, \gamma_{Y}Z)$ ,

where $\gamma:=(d/dt)|_{t=0}\nabla^{g_{t}}\in A^{1}(End(TM))$ and $\nabla^{g_{t}}$ is the Levi-Civita connection
corresponding to a smooth deformation of Riemannian metric $g_{t}\in \mathfrak{M}$ .

For $\alpha\in A^{1}(End(TM))$ , we can set

$\beta(X, Y, Z)=g(X, \alpha(Y)Z)$ . (3.13)

Here, we introduce the divergence of an End$(TM)$ -valued l-form to express
the formal adjoint of the Codazzi operator.

DEFINITION 3.6. For $\alpha\in A^{1}(End(TM)),$ $div_{g}\alpha\in A^{1}(End(TM))$ , the diver-
gence of $\alpha$ with respect to $g$ is defined by

$(div_{g}\alpha)(X)Y$ $:=\sum_{i=1}^{n}g(e_{i}, (\nabla_{e_{j}}\alpha)(X)Y)$ . (3.14)

PROPOSITION 3.7. Let $\beta\in\Gamma(T^{*}M\otimes T^{*}M\otimes T^{*}M)$ be a 3-tensor field and
$\alpha\in A^{1}(End(TM))$ an End$(TM)$ -valued l-form. Then, we have

$((\nabla-\mathfrak{d}^{\nabla})^{*}\beta)(X, Y)=(div_{g}\alpha)(X)Y-\sum_{i=1}^{n}g(X, \nabla_{e_{j}}(\alpha(e_{l})Y+\alpha(Y)e_{i}))$ , (3.15)

where $\alpha=\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})$ and $\beta(X, Y, Z)=g(X, \alpha(Y)Z)$ .

$PR\infty F$ . We set $A;=V-b^{\nabla}$ . From Proposition 3.5, we have

$(Ah,\beta)=(h, A^{*}\beta)$

$=\sum_{i,j,k=1}^{n}\int_{M}\langle h(e_{j}, e_{k}),$
$(\nabla_{e_{j}}\beta)(e_{j}, e_{j}, e_{k})-(\nabla_{e_{j}}\beta)(e_{j}, e_{i},e_{k})$

$-(\nabla_{e_{j}}\beta)(e_{j},e_{k}, e_{i})\rangle_{g}v_{g}$ . (3.16)
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From the definition of a covariant derivative, we have the following 3 equations.

$(\nabla_{e_{j}}\beta)(e_{i}, X, Y)=e_{l}(g(e_{i}, \alpha(X)Y))-g(e_{i}, \alpha(\nabla_{e_{j}}X)Y)-g(e_{j}, \alpha(X)\nabla_{e_{i}}Y)$

$=g(e_{j}, \nabla_{e_{i}}(\alpha(X)Y))-g(e_{j}, \alpha(\nabla_{e_{i}}X)Y)-g(e_{i}, \alpha(X)\nabla_{e_{i}}Y)$

$=g(e_{i}, \nabla_{e_{i}}(\alpha(X)Y)-\alpha(\nabla_{e_{i}}X)Y-\alpha(X)\nabla_{e_{i}}Y)$

$=g(e_{j}, (\nabla_{e_{i}}\alpha)(X)Y)$ ,
(3.17)

$(\nabla_{e_{l}}\beta)(X, e_{i}, Y)=e_{i}(g(X, \alpha(e_{i})Y))-g(\nabla_{e_{i}}X, \alpha(e_{i})Y)-g(X, \alpha(e_{i})\nabla_{e_{i}}Y)$

$=g(X, \nabla_{e_{i}}(\alpha(e_{j})Y))-g(X, \alpha(e_{j})\nabla_{e_{i}}Y)$ ,

$(\nabla_{e_{j}}\beta)(X, Y, e_{i})=e_{j}(g(X, \alpha(Y)e_{j}))-g(\nabla_{e_{j}}X, \alpha(Y)e_{i})-g(X, \alpha(\nabla_{e_{l}}Y)e_{j})$

$=g(X, \nabla_{e_{l}}(\alpha(Y)e_{j}))-g(X, \alpha(\nabla_{e_{i}}Y)e_{j})$ .

From (3.14), (3.16) and (3.17), we have

$(Ah,\beta)=(h,A^{*}\beta)$

$=\sum_{j,k=1}^{n}\int_{M}\langle h(e_{j}, e_{k}), (div_{g}\alpha)(e_{j})e_{k}\rangle_{g}v_{g}$

$-\sum_{j,k=1}^{n}\int_{M}\{h(e_{j}, e_{k}),$ $g(e_{j},$ $\sum_{i=1}^{n}\nabla_{e_{j}}(\alpha(e_{j})e_{k}))+g(e_{j},$ $\sum_{i=1}^{n}\nabla_{e_{i}}(\alpha(e_{k})e_{i}))\}_{g}v_{g}$ .

Thus, we have

$A^{*}\beta(X, Y)=(div_{g}\alpha)(X)Y-g(X,$ $\sum_{i=1}^{n}\nabla_{e_{j}}(\alpha(e_{i})Y+\alpha(Y)e_{j}))$ ,

which completes the proof. $\square $

Here, we remark that the symmetric 2-tensor $\omega(\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D}))$ is ex-
pressed as follows.

$\omega(\alpha)(X, Y)=\sum_{i=1}^{n}\omega(e_{j})g(e_{l}, \alpha(X)Y)=g(\omega^{\#}, \alpha(X)Y)$ (3.18)

where $\alpha=\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})\in A^{1}(End(TM))$ and $\omega\in A^{1}(M)$ denotes the l-form
corresponding to a Weyl connection $D$ . Thus, (3.18) means the following sym-
metric 2-tensor:

$\omega(\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D}))(X, Y)=g(\omega^{\#},\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})(X)Y)$ . (3.19)
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4. Proofs

We first give the final form of the equation (2.2) in Theorem 2.1 as follows.

PROPOSITION 4.1. For $Q^{D}:=|R^{D}|_{g}^{(n-4)/2}R^{D}\in A^{2}(End(TM))$ , the equation
(3.1) is equivalent to the following equation:

$C_{2}^{1}(\delta^{D}Q^{D})-C_{2}^{1}((\delta^{D}Q^{D})^{T})-(C_{3}^{2}(\delta^{D}Q^{D}(\bullet)))^{\#}=0$ .

$PR\infty F$ . For $\alpha=\delta^{D}Q^{D}$ and (3.5), the dual vector field of a l-form
$C_{3}^{2}(\alpha(\bullet))\in A^{1}(M)$ is given by

$(C_{3}^{2}(\alpha(\bullet)))^{\#}=\sum_{i=1}^{n}C_{3}^{2}(\alpha(e_{i}))e_{i}=\sum_{i,j=1}^{n}\langle\alpha(e_{j})e_{j}, e_{j}\rangle_{g}e_{j}$ . (4.1)

From Proposition 3.1, Definition 3.2 and the equation (4.1), we obtain the final
form of the equation (2.2) of Theorem 2.1. $\square $

We can make Proposition 3.7 in the following form.

LEMMA 4.2. For any affine connection $D$ , we have

$(\nabla-\mathfrak{d}^{\nabla})^{*}\beta(X, Y)=g(X,$ $\sum_{j=1}^{n}(div_{g}\alpha)(e_{j})Y)e_{j}-\sum_{i=1}^{n}\nabla_{e_{j}}(\alpha(e_{j})Y+\alpha(Y)e_{i}))$ ,

where $\alpha=\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})\in A^{1}(End(TM))$ and $\beta(X, Y, Z)=g(X, \alpha(Y)Z)$ .

$PR\infty F$ . We set $\mu:=(\nabla-\mathfrak{d}^{\nabla})^{*}\beta\in\Gamma(T^{*}M\otimes T^{*}M)$ and define $\theta\in$

$\Gamma(End(TM))$ by
$\mu(X, Y)=g(X, \theta(Y))$ . (4.2)

Then, we have

$\theta(Y)=\sum_{j=1}^{n}g(e_{j}, \theta(Y))e_{j}=\sum_{j=1}^{n}\mu(e_{j}, Y)e_{j}$ . (4.3)

From Proposition 3.7, we have

$\mu(e_{j}, Y)=((\nabla-\mathfrak{d}^{\nabla})^{*}\beta)(e_{j}, Y)$

$=(div_{g}\alpha)(e_{j})Y-\sum_{i=1}^{n}g(e_{j}, \nabla_{e_{j}}(\alpha(e_{i})Y+\alpha(Y)e_{i}))$ . (4.4)
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By (4.3) and (4.4), we have

$\theta(Y)=\sum_{j=1}^{n}\{(div_{g}\alpha)(e_{j})Y-\sum_{i=1}^{n}g(e_{j}, \nabla_{e_{j}}(\alpha(e_{j})Y+\alpha(Y)e_{j}))\}e_{j}$

$=\sum_{j=1}^{n}((div_{g}\alpha)(e_{j})Y)e_{j}-\sum_{i=1}^{n}\nabla_{e_{i}}(\alpha(e_{i})Y+\alpha(Y)e_{i})$ . (4.5)

By (4.2) and (4.5), we have

$((\nabla-\mathfrak{d}^{\nabla})^{*}\beta)(X, Y)=g(X, \theta(Y))$

$=g(X,$ $\sum_{j=1}^{n}((div_{g}\alpha)(e_{j})Y)e_{j}-\sum_{i=1}^{n}\nabla_{e_{i}}(\alpha(e_{j})Y+\alpha(Y)e_{i}))$ , (4.6)

which completes the proof. $\square $

From Lemma 4.2, we have

PROPOSITION 4.3.

$(\nabla-\mathfrak{d}^{\nabla})^{*}\beta(X, Y)=\langle X, C_{3}^{1}(div_{g}\alpha)Y\rangle_{g}-\langle X, C_{2}^{1}(\nabla\alpha)Y\rangle_{g}-\langle X, C_{3}^{1}(\nabla\alpha)Y\rangle$ ,
(4.7)

where $\alpha=\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})\in A^{1}$ (End$(TM)$ ) and $\beta(X, Y, Z)=g(X, \alpha(Y)Z)$ .

$PR\infty F$ . Both sides of (4.7) are a $(0,2)$ -tensor field, so taking any point
$x_{0}\in M$ and the following orthonormal local frame field $\{e_{i}\}_{i=1}^{n}$ on its neigh-
borhood $U$, it suffices to show the equation (4.7) holds at $x_{0}\in M$ . For given any
tangent vectors $X,$ $Y\in T_{x_{0}}M$ , we use the same notations $X,$ $Y$ for vector fields on
a neighborhood $U$ of $x_{0}$ . Take $X,$ $Y\in \mathscr{X}(U)$ such that $\nabla_{W}X=\nabla_{W}Y=0$ for any
vector field $W\in \mathscr{X}(U)$ at $x_{0}$ . Moreover, we take an orthonormal local frame field
$\{e_{i}\}_{i^{n}=1}$ satisfying $\nabla_{e_{i}}e_{j}=0$ at $x_{0}\in M$ .

Then, from Lemma 4.2 we have the following equation at $x_{0}\in M$ .

$(V - \mathfrak{d}^{\nabla})^{*}\beta(X, Y)=g(X, C_{3}^{1}(div_{g}\alpha)Y)$

$-g(X,$ $\sum_{i=1}^{n}\nabla_{e_{j}}(\alpha(e_{l})Y))-g(X,$ $\sum_{i=1}^{n}\nabla_{e_{i}}(\alpha(Y)e_{i}))$ . (4.8)
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By (3.4), it follows that, at $x_{0}\in M$ ,

$\nabla_{e_{j}}(\alpha(e_{j})Y)=(\nabla_{e_{j}}\alpha)(e_{i})Y+\alpha(\nabla_{e_{j}}e_{j})Y+\alpha(e_{j})\nabla_{e_{j}}Y=(\nabla_{e_{j}}\alpha)(e_{j})Y$ ,
(4.9)

$\nabla_{e_{j}}(\alpha(Y)e_{i})=(\nabla_{e_{j}}\alpha)(Y)e_{i}+\alpha(\nabla_{e_{j}}Y)e_{j}+\alpha(Y)\nabla_{e_{i}}e_{i}=(\nabla_{e_{l}}\alpha)(Y)e_{i}$ ,

since $\nabla_{e_{j}}e_{i}=\nabla_{e_{j}}Y=0$ at $x_{0}$ .
By (4.8) and (4.9), we obtain at $x_{0}$ ,

$(\nabla-\mathfrak{d}^{\nabla})^{*}\beta(X, Y)$

$=g(X, C_{3}^{1}(div_{g}\alpha)Y)-g(X,$ $\sum_{i=1}^{n}(\nabla_{e_{j}}\alpha)(e_{i})Y)-g(X,$ $\sum_{i=1}^{n}(\nabla_{e_{j}}\alpha)(Y)e_{i})$

$=\langle X, C_{3}^{1}(div_{g}\alpha)Y\rangle_{g}-\langle X, C_{2}^{1}(\nabla\alpha)Y\rangle_{g}-\langle X, C_{3}^{1}(\nabla\alpha)Y\rangle_{g}$ , (4.10)

which completes the proof. $\square $

Thus, we obtain the following results. Here, $Q^{D}$ $:=|R^{D}|_{g}^{(n-4)/2}R^{D}\in$

$A^{2}(End(TM))$ .

THEOREM 4.4. Let $(M, g, D)$ be an n-dimensional compact Weyl manifold.
Then, a couple $(g, D)$ in $\mathfrak{W}$ is a critical point of the functional $C_{n^{W}}$ : $\mathfrak{W}\rightarrow R$ if and
only if it satisfies

$\left\{\begin{array}{l}2|R^{D}|_{g}^{(n-4)/2}(\check{R}^{D}-\frac{1}{n}|R^{D}|_{g}^{2}g)-C_{3}^{l}(div_{g}\delta^{D}Q^{D})+C_{2}^{l}(\nabla\delta^{D}Q^{D})\\+C_{3}^{1}(\nabla\delta^{D}Q^{D})-\omega(\delta^{D}Q^{D})=0,\\C_{2}^{l}(\delta^{D}Q^{D})-C_{2}^{l}((\delta^{D}Q^{D})^{T})-(C_{3}^{2}(\delta^{D}Q^{D}(\bullet)))^{\#}=0.\end{array}\right.$

$PR\infty F$ . Take $\alpha=\delta^{D}(|R^{D}|_{g}^{(n-4)/2}R^{D})\in A^{1}(End(TM))$ and $\beta(X, Y, Z)=$

$g(X, \alpha(Y)Z)$ . Applying Propositions 3.1 and 4.1 to the equation (2.2) of Theorem
2.1, we have the second equation of Theorem 4.4.

Applying Proposition 4.3 to the equation (2.1) of Theorem 2.1 and iden-
tifying an endomorphism with the corresponding $(0,2)$ -tensor field, we obtain the
first equation of Theorem 4.4.

Hence, we prove our main theorem. $\square $

Especially, in dimension four, we have the following simple form.
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COROLLARY 4.5. Let $(M, g, D)$ be a four-dimensional compact Weyl mamfold.
Then, a couple $(g, D)$ in $\mathfrak{W}$ is a critical point of the functional $C_{4}^{W}$ : $\mathfrak{W}\rightarrow R_{l}f$ and
only $f$ it satisfies

$\left\{\begin{array}{l}2(\check{R}^{D}-\frac{1}{4}|R^{D}|_{g}^{2}g)-C_{3}^{l}(div_{g}\delta^{D}R^{D})+C_{2}^{l}(\nabla\delta^{D}R^{D})\\+C_{3}^{l}(\nabla\delta^{D}R^{D})-\omega(\delta^{D}R^{D})=0,\\C_{2}^{1}(\delta^{D}R^{D})-C_{2}^{l}((\delta^{D}R^{D})^{T})-(C_{3}^{2}(\delta^{D}R^{D}(\bullet)))^{\#}=0.\end{array}\right.$

To explain the meaning of our results, we recall the following property of
Einstein metrics (cf. [4, p. 134,4.72]).

PROPOSITION 4.6. Let $\nabla$ be the Levi-Civita connection and $SR|_{\mathfrak{M}_{1}}$ , a quadratic

functional defined by $SR(g)$ $:=\int_{M}|R^{\nabla}|_{g}^{2}v_{g}$ restricted to $\mathfrak{M}_{1}$ $:=\{g\in \mathfrak{M};\int_{M}v_{g}=1\}$ .
An Einstein metric $g$ (or more generally, a Riemannian metric with parallel

Ricci tensor) is critical for the quadratic functional $SR|_{\mathfrak{M}_{1}}lf$ and only if the cur-
vature $R^{\nabla}$ of $\nabla$ satisfies

$\check{R}^{\nabla}-\frac{1}{n}|R^{\nabla}|_{g}^{2}g=0$ . (4.11)

In dimension four, if $R^{D}$ is a Yang-Mills field, namely, $\delta^{D}R^{D}=0$ in our
sense (see [8]), then we have

COROLLARY 4.7. Let $(M, g, D)$ be a four-dimensional compact Weyl manifold
and $R^{D}$ a Yang-Mills field determined by a torsion-free affine connection D. Then,
a couple $(g, D)\in \mathfrak{W}$ is critical for our conformal gauge invariant functional
$C_{4}^{W}$ : $\mathfrak{W}\rightarrow R$ if and only $\iota f$ it satisfies

$\check{R}^{D}-\frac{1}{4}|R^{D}|_{g}^{2}g=0$ . (4.12)

Due to this result, in dimension four, the equation (4.12) can be regarded
as a conformal generalization of a gravitational field equation characterized by
the equation (4.11). Moreover, we would like to study the following system of
equations on a four dimensional compact Weyl manifold;

$\left\{\begin{array}{l}\delta^{D}R^{D}=0,\\\check{R}^{D}-\frac{1}{4}|R^{D}|_{g}^{2}g=0.\end{array}\right.$ (4.13)
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According to [10, p. 560, Example 4.1], we have

EXAMPLE 4.8. Let $(M, g)$ be a four-dimensional Einstein manifold and $\nabla$ the
Levi-Civita connection of $g$ . Then, $(g, \nabla)\in \mathfrak{W}$ is a critical point of the functional
$C_{4}^{W}$ : $\mathfrak{W}\rightarrow R$ and a solution of the system of equations (4.13).

In the case of dimension $n\geq 4$ , we have the following [10, p. 560, Example
4.2].

EXAMPLE 4.9. Let $(M, g)$ be an n-dimensional isotropy irreducible homoge-
neous space with its canonical metric and $\nabla$ the Levi-Civita connection. Then, $(g, \nabla)$

is a critical point of the functional $C_{n}^{W}$ : $\mathfrak{W}\rightarrow R$ and a solution of the following
system of equations;

$\left\{\begin{array}{l}\delta^{D}R^{D}=0,\\\check{R}^{D}-\frac{l}{n}|R^{D}|_{g}^{2}g=0.\end{array}\right.$

It would be an interesting problem for us to constmct a Yang-Mills-Einstein
theory in a category of Weyl geometry (cf. [11]).
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