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RECOGNIZING SPECIAL METRICS BY
TOPOLOGICAL PROPERTIES OF THE
“METRIC”-PROXIMAL HYPERSPACE

By

Camillo COSTANTINI and Valentin GUTEV

Abstract. In this paper, we first characterize those compatible
metrics $d$ on a metrizable space $X$ which give rise to a connected d-
proximal hyperspace. We show that the space of irrational numbers,
in particular, admits a complete metric with this property and, as a
consequence, we get a negative answer to a question of [11] about
selections for hyperspace topologies. Next, we characterize the com-
patible metrics on $X$ which are uniformly equivalent to ultrametrics
showing that this is equivalent to the zero-dimensionality of the
corresponding proximal hyperspaces. Applications and related results
about other disconnectedness-like properties of proximal hyperspaces
are obtained.

1. Introduction

Let $X$ be a $T_{1}$ -space, and let $\mathscr{F}(X)$ be the family of all non-empty closed
subsets of $X$. Identifying the points of $X$ with the corresponding singletons, we
may consider $\mathscr{F}(X)$ as a set-theoretical extension of the set $X$. From this point of
view, a topology $\tau$ on $\mathscr{F}(X)$ is admissible [14] if $(\mathscr{F}(X), \tau)$ is also a topological
extension of the topological space $X$. Here, in effect, “admissible” means ad-
missible with respect to the topological structure on $X$ which is the terminology
we will adopt for this particular paper. It should be said that “admissible” may
regard also some additional structures on $X$ (see [14]).
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The two best known examples of admissible topologies on $\mathscr{F}(X)$ are the
Vietoris and Hausdorff topologies. The Vietoris topology $\tau_{V}$ depends only on the
topology of $X$, and a base for this topology is given by all collections of the form

$\langle \mathscr{V}\rangle=$ { $ S\in \mathscr{F}(X):S\subset\cup\gamma$ and $ S\cap V\neq\emptyset$ , whenever $ V\in\gamma$ },

where $\gamma$ runs over the finite families of open subsets of $X$.
Let (X, $d$ ) be a metric space. The Hausdorff topology $\tau_{H(d)}$ on $\mathscr{F}(X)$ is gen-

erated by the Hausdorff distance $H(d)$ associated to $d$, hence it depends essen-
tially on the metric $d$. Let us recall that $H(d)$ defines as

$H(d)(S, T)=\sup\{d(S,x)+d(x, T) : x\in S\cup T\}$ , $S,$ $T\in \mathscr{F}(X)$ .

It is well-known that $\tau_{V}$ coincides with $\tau_{H(d)}$ if and only if $X$ is compact [14],
while, in general, these two topologies are not comparable.

There are many interesting investigations about properties of the Vietoris ex-
tension $(\mathscr{F}(X), \tau_{V})$ of a topological space $X$, most of them related to the follow-
ing general question: Do there exist properties $\mathscr{P}$ and $\mathscr{F}_{V}(\mathscr{P})$ such that $X\in \mathscr{P}$

if and only if $(\mathscr{F}(X), \tau_{V})\in \mathscr{F}_{V}(\mathscr{P})$ ?
Here are two particular results in this direction which will be important for

the proper understanding of this paper. The first one is related to disconnectedness-
like properties of $\tau_{V}$ and states that a space $X$ is strongly zero-dimensional if and
only if $(\mathscr{F}(X), \tau_{V})$ is zero-dimensional, see [14]. Here, a spaoe $Z$ is strongly zero-
dimensional if dim(Z) $=0$ , and $Z$ is zero-dimensional if it has a base of clopen
sets (i.e., if $ind(Z)=0$).

The second result gives that a strongly zero-dimensional metrizable space $X$

is \v{C}ech complete if and only if $\mathscr{F}(X)$ has a $\tau_{V}$ -continuous selection [8, 10, 15].
Here, a map $f:\mathscr{F}(X)\rightarrow X$ is a selection for $\mathscr{F}(X)$ if $f(S)\in S$ for every
$S\in \mathscr{F}(X)$ . In case $\tau$ is a topology on $\mathscr{F}(X)$ , a selection $f$ for $\mathscr{F}(X)$ is $\tau-$

continuous if it is continuous with respect to $\tau$ .
In the present paper we deal with similar problems, but this time about

relations between topological properties of hyperspaces and compatible metrics
on the base space. Briefly, let $\mathscr{D}(X)$ be the set of all compatible metrics on a
metrizable spaoe $X$, and let, for every $d\in \mathscr{D}(X)$ , a topology $\tau_{9(d)}$ on $\mathscr{F}(X)$ be
defined (i.e., $\tau_{9}$

’ stands for a generic class of metric-generated hyperspace top-
ologies on $\mathscr{F}(X))$ . Do there exist $\mathscr{M}\subset \mathscr{D}(X)$ and a topological property $\mathscr{F}_{9}(\mathscr{M})$

such that $d\in \mathscr{M}$ if and only if $(\mathscr{F}(X), \tau_{\Omega(d)})\in \mathscr{F}_{9}(\mathscr{M})$ ?
The collection of all Hausdorff topologies $\tau_{H(d)},$ $d\in \mathscr{D}(X)$ , provides an

example of a generic class $\tau_{H}$

’ of metric-generated hyperspace topologies on
$\mathscr{F}(X)$ . Note that $(\mathscr{F}(X), \tau_{H(d)})$ is metrizable for every $d\in \mathscr{D}(X)$ .
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A central place in the present paper is occupied by another collection of
admissible metric-generated hyperspace topologies $\tau_{\delta(d)},$

$d\in \mathscr{D}(X)$ , on $\mathscr{F}(X)$ which
is, in fact, intermediate between the Vietoris hyperspace and the corresponding
Hausdorff hyperspaces (actually, it is obtained by “mixing” these hypertopologies
in a suitable way). For a given metric $d\in \mathscr{D}(X)$ , the topology $\tau_{\delta(d)}$ is known as
the d-proximal topology on $\mathscr{F}(X)[5]$ , and is generated by all d-modifications of
the basic $\tau_{V}$-neighbourhoods, i.e. by all collections of the form

$\ll r\gg d=\{S\in\langle \mathscr{V}\rangle : D_{d}(S, X\backslash \cup\gamma)>0\}$ ,

where $\mathscr{V}$ is a finite family of open subsets of $X$ and

$D_{d}(S, T)=\inf\{d(x, y) : x\in S, y\in T\}$ , whenever $S,$ $T\subset X$ .

In what follows, for technical reasons only, let us agree that $ D_{d}(S, \otimes)=+\infty$ for
every non-empty $S\subset X$ .

Let us mention that a d-proximal topology $\tau_{\delta(d)}$ is metrizable if and only
if (X, $d$ ) is totally bounded [5], which is in tum equivalent to the normality of
$(\mathscr{F}(X), \tau_{\delta(d)})[12]$ . Also, for metrics $d,\rho\in \mathscr{D}(X)$ , we have that $\tau_{\delta(d)}=\tau_{\delta(\rho)}$ if and
only if $d$ and $\rho$ are uniformly equivalent [5]. Finally, we always have the following
(usually strong) inclusion:

$\tau_{\delta(d)}\subset\tau_{V}\cap\tau_{H(d)}$ .

We are now ready to state more precisely the main purpose of this paper. In
the first place, we characterize those compatible metrics $d\in \mathscr{D}(X)$ on a metrizable
space $X$ which give rise to a connected d-proximal hyperspace topology (Theorem
2.1). Further, we demonstrate that the space of the irrational numbers $P$ has
a complete compatible metric $p\in \mathscr{D}(P)$ such that $(\mathscr{F}(P), \tau_{\delta(p)})$ is connected
(Example 2.6). In particular, this implies that $\mathscr{F}(P)$ does not admit any $\tau_{\delta(p)^{-}}$

continuous selection, which provides a negative answer to a question of [11].
In the second place, we show that a d-proximal hyperspace is zero-

dimensional if and only if $d$ is uniformly equivalent to an ultrametric (Theorem
3.3). We apply this fact to show that a zero-dimensional metrizable space $X$ is
compact if and only if any $d\in \mathscr{D}(X)$ is uniformly equivalent to an ultrametric
(Theorem 4.3). Other results in classifying metrizable spaces are provided (see
Theorems 4.1, 4.5 and 5.9).

Finally, the paper contains also results about the selection problem on
“metric”-proximal hyperspaces (see Section 5). Related to the result of [8, 10, 15]
mentioned before, we extend [11, Theorem 1.2] showing that, for a completely
metrizable space $X$ and a $d\in \mathscr{D}(X)$ , if (X, $d$ ) has a base of d-clopen sets, then
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$\mathscr{F}(X)$ has a $\tau_{\delta(d)}$ -continuous selection (Theorem 5.1). We also show that the
assumption above can be weakened to requiring the subspace $X\backslash \{z\}$ , obtained by
removing some single point $z$ , to have a base of d-clopen sets (Corollary 5.7).

2. Which Mehics Do Give Rise to a Connected Proximal Topology?

Let (X, $d$ ) be a metric space. We shall say that a subset $A$ of a metric space
(X, $d$ ) is d-clopen if $D_{d}(A, X\backslash A)>0$ . Note that every d-clopen set is clopen but
the converse is not tme (see, for instance, Examples 2.5 and 2.6). On the other
hand, by the definition of $D_{d}$ , the subsets $X$ and $\emptyset$ are always d-clopen. Now,
we shall say that a metric space (X, $d$ ) is d-connected if $X$ and $\emptyset$ are the only
d-clopen subsets of (X, $d$ ).

The following theorem will be proven in this section.

THEOREM 2.1. A metric space (X, $d$ ) is d-connected if and only $lf(\mathscr{F}(X), \tau_{\delta(d)})$

is connected.

To prepare for the proof of Theorem 2.1, we provide some relations between
clopen subsets of $(\mathscr{F}(X), \tau_{\delta(d)})$ and d-clopen subsets of (X, $d$ ). To this end, we
need the following property of the Vietoris hyperspace; such a property was also
stated, in a slightly weaker form, in [6].

LEMMA 2.2. Let $X$ be a topological space, $\mathscr{C}\subset \mathscr{F}(X)$ be a $\tau_{V}$ -closed set, and
let $\mathscr{M}$ be a non-empty subset of $\mathscr{C}$ which is a chain with respect to the usual set-
theoretical inclusion. Then, there exists $M\in \mathscr{C}$ such that $\cup \mathscr{M}\subset M$ .

PROOF. Let $M=\overline{\cup \mathscr{M}}$ , and let us show that $M\in \mathscr{C}$ . Take a basic $\tau_{V^{-}}$

neighbourhood $\langle \mathscr{U}\rangle$ of $M$ . For every $U\in \mathscr{U}$ there exists $M_{U}\in \mathscr{M}$ such that
$ M_{U}\cap U\neq\emptyset$ because $U$ is open and $\overline{\cup \mathscr{M}}\cap U\neq\emptyset$ . Hence, $M_{\%}=$

$\cup\{M_{U} : U\in \mathscr{U}\}\in\langle \mathscr{U}\rangle$ because $M_{\%}\subset M$ . On the other hand, $M_{\%}\in \mathscr{M}\subset \mathscr{C}$

because $\mathscr{M}$ is a chain in $\mathscr{C}$ . Therefore, $\langle \mathscr{U}\rangle\cap \mathscr{C}\neq\emptyset$ . This finally implies that
$M\in \mathscr{C}$ because $\mathscr{C}$ is $\tau_{V}$-closed in $\mathscr{F}(X)$ . $\square $

The following consequence of Lemma 2.2 regards the d-clopen subsets of
(X, $d$ ) as an indication about the possible clopen subsets of $(\mathscr{F}(X), \tau_{\delta(d)})$ .

COROLLARY 2.3. Let (X, $d$ ) be a metric space, $\mathscr{U}\subset \mathscr{F}(X)$ be a $\tau_{\delta(d)}$ -clopen
set, with $\mathscr{U}\neq\emptyset$ , and let $\mathscr{A}\subset \mathscr{U}$ be a maximal chain with respect to the usual set-
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theoretical inclusion. Then, $\mathscr{A}$ has a maximal element which is a d-clopen subset of
(X, $d$ ).

PROOF. It follows from Lemma 2.2 that $\mathscr{A}$ has a maximal element $A$ because
$\mathscr{A}\subset \mathscr{U}$ is a maximal chain and $\mathscr{U}$ is, in particular, a $\tau_{V}$-closed set. Since $\mathscr{U}$ is
also $\tau_{\delta(d)}$ -open, there now exists a basic $\tau_{\delta(d)}$ -open set $\ll \mathscr{V}\gg d$ such that $ A\in$

$\ll\gamma\gg d\subset \mathscr{U}$ . The only possibility is $ A=\cup\gamma$ . Indeed, $ x\in\cup\gamma$ implies $ A\cup\{x\}\in$

$\ll Y\gg d\subset \mathscr{U}$ because $d(x, X\backslash \cup \mathscr{V})>0$ . Since $\mathscr{A}$ is maximal, we finally get that
$A\cup\{x\}\in \mathscr{A}$ . That is, $ A=\cup\gamma$ holds and, by definition, $D_{d}(A, X\backslash A)=$

$D_{d}(A, X\backslash \cup\gamma)>0$ . $\square $

We conclude the preparation for the proof of Theorem 2.1 with the following
proposition which may read as a partial converse of Corollary 2.3. Below, and
in the sequel, for a subset $A\subset X$ we set $\ll A\gg d=\ll\{A\}\gg d$ and, respectively,
$\langle A\rangle=\langle\{A\}\rangle$ .

PROPOSITION 2.4. For a clopen subset $A$ of a metric space (X, $d$ ), the $fo$ l-
lowing conditions are equivalent:

(a) $A$ is d-clopen.
(b) $\ll A\gg d$ is $\tau_{\delta(d)}$ -clopen.
(c) $\langle A\rangle$ is $\tau_{\delta(d)}$ -open.

PROOF. In case $ A=\emptyset$ , this is trivial. Suppose $ A\neq\emptyset$ . Then, $(a)\rightarrow(b)$

follows from the definition of a d-clopen set. For $(b)\rightarrow(c)$ , take a maximal chain
$\mathscr{A}$ in $\ll A\gg d$ . Then, by Corollary 2.3, $\mathscr{A}$ has a maximal element which is a d-
clopen subset of (X, $d$ ), and it is clear that such an element must be $A$ itself; thus,
$\langle A\rangle=\ll A\gg d$ . Finally, $(c)\rightarrow(a)$ is a consequence of $ A\in\langle A\rangle$ . $\square $

PROOF OF THEOREM 2.1. In case $(\mathscr{F}(X), \tau_{\delta(d)})$ is connected, by Proposition
2.4, the space (X, $d$ ) must be d-connected.

As for the inverse implication, suppose that (X, $d$ ) is d-connected but there
exists a $\tau_{\delta(d)}$ -clopen $\mathscr{A}\subset \mathscr{F}(X)$ , with $\emptyset\neq \mathscr{A}\neq \mathscr{F}(X)$ . Then $\mathscr{F}(X)\backslash \mathscr{A}$ has the
same properties, and either $\mathscr{A}$ or $\mathscr{F}(X)\backslash \mathscr{A}$ does not contain $X$. So, Corollary 2.3
gives a d-clopen set $A$ with $\emptyset\neq A\neq X$ which is impossible. $\square $

Note that every connected metric space (X, $d$ ) is certainly d-connected which,
together with Theorem 2.1, gives a list of examples of connected d-proximal
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topologies. However, the converse is not true and this is what we will establish
in the rest of the section. To this end, let us observe that (X, $d$ ) is d-connected
if and only if $D_{d}(A, X\backslash A)=0$ for every non-empty proper (closed) subset $A$ of
X. In particular, this implies the following immediate example of strongly zero-
dimensional d-connected metric spaces (X, $d$ ).

EXAMPLE 2.5. Let $X$ be a dense subset of the real line $R$ , and let $d$ be the
standard Euclidean metric on X. Then, (X, $d$ ) is d-connected.

The rational numbers $Q$ and the irrational numbers $P$ are among the most
important zero-dimensional dense subsets of the real line. Unfortunately, both the
metric spaces $(Q, d)$ and $(P, d)$ are not complete. From a topological point of
view, however, the space of the irrational numbers $P$ is \v{C}ech complete. As we
will see, this is only a part of our motivation for the next key example.

EXAMPLE 2.6. There exists a complete metric $p\in \mathscr{D}(P)$ on the irrational line
$P$ such that $(P, p)$ is p-connected.

PROOF. Let $d$ be the standard Euclidean metric on $P$ . We will describe the
metric $p$ in an explicit way. In fact, $p$ is the metric on $P$ obtained by modifying $d$

to a complete metric on $P$ by the help of the countable complement $Q$ of $P$ in $R$ .
Namely, let $\{q_{j} : i\in N\}$ be a one-to-one indexing of the rational numbers $Q$ .
Then, the formula

$p(x, y)=d(x, y)+\sum_{i=1}^{\infty}\frac{1}{2^{i}}\min\{1,$ $|\frac{1}{d(x,q_{i})}-\frac{1}{d(y,q_{i})}|\}$ , $x,$ $y\in P$ ,

certainly defines a complete compatible metric $p$ on $P$ . Tuming to the verification
that $(P, p)$ is p-connected, let $B$ be a proper non-empty closed subset of $P$ , and
let $\epsilon>0$ . What we have to show is that $ D_{p}(B, P\backslash B)<\epsilon$ . For the purpose, let
$k\in N$ be such that $1/2^{k-1}<\epsilon/3$ . It will be now sufficient to find a point $b\in B$

and a point $c\in P\backslash B$ such that

(i) $d(b, c)<\epsilon/3$ , and
(ii) $|1/d(b, q_{i})-1/d(c, q_{i})|<\epsilon/3$ for every $i\in N$ , with $1\leq i\leq k-1$ .

Indeed, let $b\in B$ and $c\in P\backslash B$ be as in (i) and (ii). Then,
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$p(b, c)=d(b, c)+\sum_{i=1}^{\infty}\frac{1}{2^{i}}\min\{1,$ $|\frac{1}{d(b,q_{i})}-\frac{1}{d(c,q_{i})}|\}$

$<\frac{\epsilon}{3}+\sum_{i=1}^{k-1}\frac{1}{2^{i}}\min\{1,$ $|\frac{1}{d(b,q_{i})}-\frac{1}{d(c,q_{i})}|\}$

$+\sum_{i=k}^{\infty}\frac{1}{2^{i}}\min\{1,$ $|\frac{1}{d(b,q_{i})}-\frac{1}{d(c,q_{i})}|\}$

$\leq\frac{\epsilon}{3}+\frac{\epsilon}{3}\sum_{i=1}^{k-1}\frac{1}{2^{i}}+\sum_{i=k}^{\infty}\frac{1}{2^{i}}<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{1}{2^{k-1}}<\epsilon$ ,

and therefore $ D_{p}(B, P\backslash B)\leq p(b, c)<\epsilon$ .
Thus, to finish the proof, it only remains to define such points $b\in B$ and

$c\in P\backslash B$ . Since there exists $x\in P\backslash B$, we may suppose that there exists $y\in B$ with
$y>x$ (the case $y<x$ is symmetric). Let $a=\sup\{z\in[x, y):[x, z]\cap B=\emptyset\}$ . We
distinguish the following two situations.

In case $a\in P$ , we have that $a\in B$ because $B$ is closed in $P$ . Then, set
$b=a$ . As for $c$ , take any point $c\in[x, b$) $\cap P$ such that $d(b, c)<\epsilon/3$ and
$|1/d(b, q_{l})-1/d(c, q_{i})|<\epsilon/3$ for every $i\in N$, with $1\leq i\leq k-1$ . Clearly, $b$ and $c$

are as required in (i) and (ii).
In case $a\in Q$, it follows that $a=q_{j}$ for some $j\in N$ . Hence, there exists

a strictly decreasing sequence $\{y_{n} : n\in N\}\subset B$ such that $\lim_{n\rightarrow\infty}y_{n}=a$ and
$(2a-y1)\in[x, a]$ . For every $n\in N$, let $x_{n}=2a-y_{n}$ be the element symmetric to
$y_{n}$ with respect to $a$ . Then, $\{x_{n} : n\in N\}\subset P\backslash B$ is a strictly increasing sequence
which is convergent to $a$ . Note that $\lim_{n\rightarrow\infty}|1/d(x_{n}, q_{i})-1/d(y_{n}, q_{i})|=0$

for every $i\in N$ . Indeed, if $i\neq j$, then this follows from the fact that
$\lim_{n\rightarrow\infty}d(x_{n}, y_{n})=0$ . 0therwise, merely note that $|1/d(x_{n}, q_{j})-1/d(y_{n}, q_{j})|=0$

for every $n\in N$ . In this way, there is now an $m\in N$ such that $d(x_{m}, y_{m})<\epsilon/3$

and $|1/d(x_{m}, q_{i})-1/d(y_{m}, q_{i})|<\epsilon/3$ for every $j\in N$ with $1\leq i\leq k-1$ . Then, in
this case, $b=y_{m}$ and $c=x_{m}$ are as required in (i) and (ii). $\square $

By Example 2.6, we have the following interesting consequence which
provides, in particular, a negative answer to a question of [11].

COROLLARY 2.7. Let $X$ be a completely metrizable space which contains a
closed copy of the irrational line P. Then, there exists a complete compatible metric
$d$ on $X$ such that $\mathscr{F}(X)$ does not admit any $\tau_{\delta(d)}$ -continuous selection.
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PROOF. Let $p\in \mathscr{D}(P)$ be as in Example 2.6. By a result of [3], $p$ extends to a
complete compatible metric $d$ on $X$. Suppose, by contradiction, that $f$ : $\mathscr{F}(X)\rightarrow$

$X$ is a $\tau_{\delta(d)}$ -continuous selection, and let $S\in \mathscr{F}(X)$ be a proper clopen subset of
$P$ . By [5, Lemma 4.1], $(\mathscr{F}(P, \tau_{\delta(p)})$ coincides with $\mathscr{F}(P)$ equipped with the relative
topology of $(\mathscr{F}(X), \tau_{\delta(d)})$ . Hence, by Theorem 2.1 and Example 2.6, $\mathscr{F}(P)$ is a
connected subset of $(\mathscr{F}(X), \tau_{\delta(d)})$ . On the other hand, the set $f^{-1}(S)\cap \mathscr{F}(P)$ is
clopen in $(\mathscr{F}(P), \tau_{\delta(p)})$ , so $\mathscr{F}(P)\subset f^{-1}(S)$ . However this is impossible because $f$

is a selection and therefore $f^{-1}(S)$ will contain all the singletons of points of $S$

but will not contain any singleton of points of $P\backslash S$ . $\square $

3. Ultrameffics and Disconnectedness-Like Properties of
Proximal Hyperspaces

In this section, we first establish an equivalence between a suitable remet-
rization property on a metrizable space $X$ and the topological property of zero-
dimensionality of the corresponding proximal hyperspaces. Let $d\in \mathscr{D}(X)$ ,
$x,$ $y\in X$ and let $\delta>0$ . We shall say that the points $x$ and $y$ are $\delta$-chainable
in (X, $d$ ), and shall write that $ch_{d}(x, y)<\delta$ , if there exists an $n\in N$ and points
$z_{0},$

$\ldots,$
$z_{n}\in X$ such that $z_{0}=x,$ $z_{n}=y$ and $ d(z_{i-1}, z_{i})<\delta$ for $i=1,$

$\ldots,$
$n$ (cf. [2]).

For a non-empty subset $A$ of $X$ and $\epsilon>0$ , we define an $\epsilon$-chain neigh-
bourhood of $A$ in (X, $d$ ) by

$\mathscr{C}\mathscr{N}_{\epsilon}^{d}(A)=$ { $y\in X:ch_{d}(x,$ $ y)<\epsilon$ for some $x\in A$ }.

Also, we will use $\mathscr{N}_{\epsilon}^{d}(A)$ to denote the open $\epsilon$-neighbourhood of $A$ in (X, $d$ ), i.e.
$\mathscr{N}_{\epsilon}^{d}(A)=\{y\in X : d(y, A)<\epsilon\}$ . In the special case of a singleton $A=\{x\}$ , we set
$\mathscr{C}\mathscr{N}_{\epsilon}^{d}(x)=\mathscr{C}\mathscr{N}_{\epsilon}^{d}(\{x\})$ and, respectively, $\mathscr{N}_{\epsilon}^{d}(x)=\mathscr{N}_{\epsilon}^{d}(\{x\})$ .

Note that $\mathscr{N}_{\delta}^{d}(A)\subset \mathscr{C}\mathscr{N}_{\delta}^{d}(A)$ is always valid but the converse is related
to special properties of the metric $d$. Let us recall that a metric $d\in \mathscr{D}(X)$

on $X$ is said to be an ultrametric, or a non-Archimedean one, if $ d(x, y)\leq$

$\max\{d(x, z), d(z, y)\}$ for every $x,$ $y,$ $z\in X$ .

PROPOSITION 3.1. Let $X$ be a metrizable space. For a metric $d\in \mathscr{D}(X)$ , the
following two conditions are equivalent:

(a) $d$ is an ultrametric.
(b) $\mathscr{C}\mathscr{N}_{\epsilon}^{d}(x)=\mathscr{N}_{\epsilon}^{d}(x)$ for every $x\in X$ and $\epsilon>0$ .

PROOF. In case $d$ is an ultrametric, we have that $\mathscr{N}_{\epsilon}^{d}(x)=$
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$\cup\{\mathscr{N}_{\epsilon}^{d}(y):y\in \mathscr{N}_{\epsilon}^{d}(x)\}$ for every $x\in X$ and $\epsilon>0$ . This easily entails, by an
inductive argument, the implication $(a)\rightarrow(b)$ . Suppose now that $d$ is as in (b).
Also, take points $x,$ $y,$ $z\in X$ , and let $\delta=\max\{d(x, z), d(z, y)\}$ . Then, for every
$\epsilon>\delta$ , we get that $y\in \mathscr{C}\mathscr{N}_{\epsilon}^{d}(x)=\mathscr{N}_{\epsilon}^{d}(x)$ which finally implies that $ d(x, y)\leq\delta$ .

$\square $

In what follows, to every subset $A$ of a metric space (X, $d$ ) we associate
a real number $\Delta_{d}(A)$ , or the infinite number $\Delta_{d}(A)=+\infty$ , defined as $\Delta_{d}(A)=$

$D_{d}(A, X\backslash A)$ . By definition, $A$ is a d-clopen subset of (X, $d$ ) if and only if
$\Delta_{d}(A)>0$ . On the other hand, $\Delta_{d}(A)=+\infty$ if and only if either $A=X$ or
$ A=\emptyset$ . The following simple observation, whose verification is left to the reader,
presents some important relations between d-clopen sets and $\delta$-chain neigh-
bourhoods.

PROPOSITION 3.2. For a non-empty subset $A$ of a metric space (X, $d$ ) and
$\delta>0$ , the following holds:

(1) $\mathscr{C}\mathscr{N}_{\delta}^{d}(A)=Alf$ and only $ lf\Delta_{d}(A)\geq\delta$ .
(2) $\mathscr{C}\mathscr{N}_{\delta}^{d}(\mathscr{C}\mathscr{N}_{\delta}^{d}(A))=\mathscr{C}\mathscr{N}_{\delta}^{d}(A)$ .

We are now ready to prove the following theorem.

THEOREM 3.3. For a metric space $(X, d)$ , the following conditions are
equivalent:

(a) There exists an ultrametric on $X$ which is uniformly equivalent to $d$.
(b) $(\mathscr{F}(X), \tau_{\delta(d)})$ is zero-dimensional.
(c) For every $A\in \mathscr{F}(X)$ and $\epsilon>0$ there exists a d-clopen subset $B$ of (X, $d$ )

with $A\subset B\subset \mathscr{N}_{\epsilon}^{d}(A)$ .
(d) For every $\epsilon>0$ there exists a $\delta>0$ such that $\mathscr{C}\mathscr{N}_{\delta}^{d}(x)\subset \mathscr{N}_{\epsilon}^{d}(x)$ for all

$x\in X$ .

PROOF. $(a)\rightarrow(b)$ . Let $\rho$ be an ultrametric on $X$ which is uniformly equiv-
alent to $d$. By a result of [5], we have that $\tau_{\delta(\rho)}=\tau_{\delta(d)}$ . Hence, it suffices to
show that $(\mathscr{F}(X), \tau_{\delta(\rho)})$ is zero-dimensional. Towards this end, let $A\in \mathscr{F}(X)$ and
let $\ll \mathscr{U}\gg\rho$ be a basic $\tau_{\delta(\rho)}$ -neighbourhood of $A$ . Then, there exists $\delta>0$ such
that $\mathscr{N}_{\delta}^{\rho}(A)\subset\cup \mathscr{U}$ . Next, for every $U\in \mathscr{U}$ pick a fixed point $x(U)\in A\cap U$

and $\delta(U)>0$ with $\mathscr{N}_{\delta(U)}^{p}(x(U))\subset U\cap \mathscr{N}_{\delta}^{\rho}(A)$ . Finally, set $\gamma=\{\mathscr{N}_{\delta}^{\rho}(A)\}\cup$

$\{\mathscr{N}_{\delta(U)}^{\rho}(x(U)):U\in \mathscr{U}\}$ . In this way, by Propositions 3.1 and 3.2, we get a family
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$\gamma$ of p-clopen subsets of (X, $\rho$). Then, by Proposition 2.4, $\ll r\gg\rho$ defines a
$\tau_{\delta(\rho)}$ -clopen neighbourhood of $A$ because

$\ll r\gg\rho=\cap\{\ll\{\mathscr{N}_{\delta}^{\rho}(A), \mathscr{N}_{\delta(U)}^{p}(x(U))\}\gg p : U\in \mathscr{U}\}$

$=\ll \mathscr{N}_{\delta}^{p}(A)\gg p\backslash \cup\{\ll X\backslash \mathscr{N}_{\delta(U)\rho}^{p}(x(U))\gg : U\in \mathscr{U}\}$ .

Since $\ll r\gg p\subset\ll \mathscr{U}\gg p’(b)$ holds.
$(b)\rightarrow(c)$ . Let $A\in \mathscr{F}(X)$ , and let $\epsilon>0$ . Note that $\gamma=\ll \mathscr{N}_{\epsilon}^{d}(A)\gg d$ defines a

$\tau_{\delta(d)}$ -neighbourhood of $A$ . Then, by (b), there exists a $\tau_{\delta(d)}$ -clopen neighbourhood
$\mathscr{U}$ of $A$ with $\mathscr{U}\subset\gamma$ . Let $\mathscr{B}$ be a maximal chain in $\mathscr{U}$ such that $A\in \mathscr{B}$ . Then, by
Corollary 2.3, there exists $B=\max \mathscr{B}$ , and it is a d-clopen subset of (X, $d$ ). In
particular, $A\subset B\subset \mathscr{N}_{\epsilon}^{d}(A)$ which is the statement of (c).

$(c)\rightarrow(d)$ . Suppose that (d) fails. Hence, there exists a $\gamma>0$ such that for
every $n\in N$ one can find points $x_{n},$ $y_{n}\in X$ with $ch_{d}(x_{n}, y_{n})<1/n$ and $ d(x_{n}, y_{n})\geq$

$ 4\gamma$ . According to the Efremovic Lemma (see [4]), there now exists a strictly
increasing sequenoe $\{n_{j} : i\in N\}\subset N$ such that $ d(x_{n_{j}}, y_{n_{j}})\geq\gamma$ for every $i,j\in N$ .
Setting then $A=\overline{\{x_{n_{i}}}$: $i\in N$ }, we get that $\mathscr{C}\mathscr{N}_{\delta}^{d}(A)\backslash \mathscr{N}_{\gamma}^{d}(A)\neq\emptyset$ for every $\delta>0$

because $y_{n_{j}}\in \mathscr{C}\mathscr{N}_{1/n_{j}}^{d}(A)\backslash \mathscr{N}_{\gamma}^{d}(A)$ for every $i\in N$ . On the other hand, by condition,
there is $B\subset X$ such that $\Delta_{d}(B)>0$ and $A\subset B\subset \mathscr{N}_{\gamma}^{d}(A)$ . Hence, by Proposition
3.2,

$\mathscr{C}\mathscr{N}_{\Delta_{d}(B)}^{d}(A)\subset \mathscr{C}\mathscr{N}_{\Delta_{d}(B)}^{d}(B)=B\subset \mathscr{N}_{\gamma}^{d}(A)$ .

A contradiction.
$(d)\rightarrow(a)$ . Let $\{\delta_{n} : n\in N\}$ be a decreasing sequence of positive real num-

bers such that, for every $n\in N$ and $x,$ $y\in X$ , we have $d(x, y)<1/n$ provided
$ch_{d}(x, y)<\delta_{n}$ . Set $\mathscr{U}_{0}=\{X\}$ and $\mathscr{U}_{n}=\{\mathscr{C}\mathscr{N}_{\delta_{n}}^{d}(x):x\in X\}$ . By Proposition 3.2,
each $\mathscr{U}_{n},$ $n>0$ , is a disjoint open cover of $X$ which refines both $\{\mathscr{N}_{1/n}^{d}(x) : x\in X\}$

and $\mathscr{U}_{n-1}$ . Also, $\cup\{\mathscr{U}_{n} : n\in N\}$ is a base for the topology $X$. Therefore,
$\{\mathscr{U}_{n} : n\in N\}$ is a discrete development in the sense of [9]. Then, according to [9,
Proposition 1.5], we may consider the compatible ultrametric $\rho$ on $X$ defined by

$\rho(x, y)=\left\{\begin{array}{l}0 ifx=y\\\frac{1}{r(x,y)} ifx\neq y,\end{array}\right.$

where $r(x, y)=\min\{n\in N:y\not\in \mathscr{C}\mathscr{N}_{\delta_{n}}^{d}(x)\}$ . If $\rho(x, y)<1/n$ for some $x,$ $y\in X$ and
$n\in N$ , then $ch_{d}(x, y)<\delta_{n}$ and, therefore, $d(x, y)<1/n$ . Thus, to prove that $\rho$

and $d$ are uniformly equivalent, it only remains to show that for every $\epsilon>0$ there
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exists a $\delta>0$ such that $\rho(x, y)<\epsilon$ provided $ d(x, y)<\delta$ . For a given $\epsilon>0$ ,
let $m\in N$ be such that $ 1/m\leq\epsilon$ . Then, $d(x, y)<\delta_{m}$ for some $x,$ $y\in X$ certainly
implies that $y\in \mathscr{C}\mathscr{N}_{\delta_{m}}^{d}(x)$ and, hence, $\rho(x, y)<1/m\leq\epsilon$ . $\square $

The rest of the section is devoted to a more precise reading of the remet-
rization condition stated in (a) of Theorem 3.3. Suppose that $X$ is a metrizable
space. We consider a relation $\preceq$ of partial order on $\mathscr{D}(X)$ by letting, for $\rho,$

$ d\in$

$\mathscr{D}(X)$ , that $\rho\preceq d$ if and only if the uniformity generated by $\rho$ is coarser than the
one generated by $d$ or, equivalently, if for every $\epsilon>0$ there exists $\eta(\epsilon)>0$ such
that, whenever $x,$ $y\in X,$ $d(x, y)<\eta(\epsilon)$ implies $\rho(x, y)<\epsilon$ . Note that two metrics
$\rho,$ $d\in \mathscr{D}(X)$ are uniformly equivalent if and only if $\rho\preceq d$ and $ d\preceq\rho$ . On the other
hand, it could be easy observed that $\rho\preceq d$ implies $\tau_{\delta(\rho)}\subset\tau_{\delta(d)}$ .

The following observation shows that the existenoe of an ultrametric $\rho$ with
$ d\preceq\rho$ is a topological property and, hence, it cannot be applied to recognize
special d-proximal hyperspaces.

PROPOSITION 3.4. For a metrizable space $X$, the following two conditions are
equivalent:

(a) For every $d\in \mathscr{D}(X)$ there exists an ultrametric $\rho\in \mathscr{D}(X)$ with $ d\preceq\rho$ .
(b) $X$ is strongly zero-dimensional.

$PR\infty F$ . The implication $(a)\rightarrow(b)$ is obvious. Suppose that $X$ is strongly
zero-dimensional. We follow the constmction in the last part of the previous
proof. Namely, we set $\mathscr{U}_{0}=\{X\}$ . Sinoe $X$ is strongly zero-dimensional, for every
$n>0$ there exists a disjoint open cover $\mathscr{U}_{n}$ of $X$ which refines both { $\mathscr{N}_{1/}^{d_{n}}(x)$ :
$x\in X\}$ and $\mathscr{U}_{n-1}$ . In this way, we get a discrete development $\{\mathscr{U}_{n} : n\in N\}$ of $X$.
Also, for every point $x\in X$ and every $n\in N$ there exists exactly one $U_{n}(x)\in \mathscr{U}_{n}$

with $x\in U_{n}(x)$ . Then, as before, we may consider the compatible ultrametric $\rho$ on
$X$ defined by

$\rho(x, y)=\left\{\begin{array}{l}0 ifx=y\\\frac{1}{r(x,y)} ifx\neq y\end{array}\right.$

where $r(x, y)=\min\{n\in N : y\not\in U_{n}(x)\}$ . If $\rho(x, y)<1/n$ for some $x,$ $y\in X$ and
$n\in N$, then $x,$ $y\in U$ for some $U\in \mathscr{U}_{n}$ . Therefore, $d(x, y)<2/n$ which finally
implies that $ d\preceq\rho$ . $\square $
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The reverse inequality certainly implies a special metric property which is
the statement of our next result. To state this, for a metrizable spaoe $X$ and
$d,p\in \mathscr{D}(X)$ , let us agree to write that $p\leq d$ if and only if $\rho(x, y)\leq d(x, y)$ for
every $x,$ $y\in X$ . Note that $\rho\leq d$ implies $\rho\preceq d$ .

THEOREM 3.5. For a metric space $(X, d)$ , the following conditions are
equivalent:

(a) There exists an ultrametric $p\in \mathscr{D}(X)$ with $\rho\leq d$ .
(b) There exists an ultrametric $\rho\in \mathscr{D}(X)$ with $p\preceq d$ .
(c) For every $x\in X$ there exists a neighbourhood $L$ of $x$ and an ultrametric

$p\in \mathscr{D}(L)$ with $p\preceq d|L\times L$ .
(d) (X, $d$ ) has a base of d-clopen sets.
(e) For every $x\in X$ and $\epsilon>0$ there is $\delta=\delta(x, \epsilon)>0$ with $\mathscr{C}\mathscr{N}_{\delta}^{d}(x)\subset \mathscr{N}_{\epsilon}^{d}(x)$ .

To prepare for the proof of Theorem 3.5, we need the following statements
about d-clopen sets and $\delta$-chain neighbourhoods.

PROPOSITION 3.6. Let (X, $d$ ) be a metric space, $x\in X,$ $L$ be a neighbourhood

of $x$ , and let $\rho\in \mathscr{D}(L)$ be an ultrametric on $L$ such that $\rho\preceq d|L\times L$ . Then, $L$

contains a d-clopen neighbourhood $G$ of $x$ .

$PR\infty F$ . Let $\gamma>0$ and $\epsilon>0$ be such that $\mathscr{N}_{\epsilon}^{\rho}(x)\subset \mathscr{N}_{\gamma}^{d}(x)\subset \mathscr{N}_{2\gamma}^{d}(x)\subset L$ .
Then, $G=\mathscr{N}_{\epsilon}^{\rho}(x)$ is a d-clopen subset of (X, $d$ ). Indeed, let $\eta(\epsilon)>0$ be as in the
definition of the relation $\rho\preceq d|L\times L$ , and let $\delta=\min\{\eta(\epsilon), \gamma\}$ . Take a point
$y\in G$ and a point $z\in X$ such that $ d(y,z)<\delta$ . Note that $\mathscr{N}_{\delta}^{d}(y)\subset \mathscr{N}_{\gamma}^{d}(y)\subset$

$\mathscr{N}_{2\gamma}^{d}(x)\subset L$ because $y\in G\subset \mathscr{N}_{\gamma}^{d}(x)$ . Therefore, $\delta\leq\eta(\epsilon)$ implies

$z\in \mathscr{N}_{\delta}^{d}(y)\subset \mathscr{N}_{\eta(\epsilon)}^{d}(y)\cap L\subset \mathscr{N}_{\epsilon}^{\rho}(y)=\mathscr{N}_{\epsilon}^{\rho}(x)=G$

because $\rho$ is an ultrametric. That is, $\Delta_{d}(G)\geq\delta>0$ . $\square $

PROPOSITION 3.7. Let (X, $d$ ) be a metric space, $x\in X$ and let $\delta>0$ . Then,
$\mathscr{C}\mathscr{N}_{\delta}^{d}(y)=\mathscr{C}\mathscr{N}_{\delta}^{d}(x)$ for every $y\in \mathscr{C}\mathscr{N}_{\delta}^{d}(x)$ .

PROOF. Follows from the definition of $\delta$-chainable points. $\square $

PROPOSITION 3.8. Let (X, $d$ ) be a metric space, $x\in X$ , and let $\delta>0$ . Also, let
$B$ be a d-clopen subset of (X, $d$ ), and let $\gamma=\min\{\delta, \Delta_{d}(B)\}$ . Then, $\mathscr{C}\mathscr{N}_{\gamma}^{d}(y)\subset$

$\mathscr{C}\mathscr{N}_{\delta}^{d}(x)\backslash B$ for every point $y\in \mathscr{C}\mathscr{N}_{\delta}^{d}(x)\backslash B$ .
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PROOF. Easy. $\square $

Now, to every family $\gamma$ of subsets of a metric space (X, $d$ ) we associate the
number $\Delta_{d}(\mathscr{V})=\inf\{\Delta_{d}(V):V\in\gamma\}$ . The following trivial property of $\Delta_{d}(\gamma)$

will be found useful in our next considerations.

PROPOSITION 3.9. Let (X, $d$ ) be a metric space, and let $\mathscr{V}$ be a family of
subsets of X. Then, $\Delta_{d}(\gamma)\leq\min\{\Delta_{d}(\cup\gamma), \Delta_{d}(\cap\gamma)\}$ .

For a metric spaoe (X, $d$ ) and $\gamma>0$ , we consider the following families of
subsets of $X$:

$\mathscr{C}\mathscr{N}[X, d]=$ { $\mathscr{C}\mathscr{N}_{\delta}^{d}(x)$ : $x\in X$ and $\delta>0$ },

and
$\mathscr{C}\mathscr{N}_{\gamma}[X, d]=$ { $\mathscr{C}\mathscr{N}_{\delta}^{d}(x)$ : $x\in X$ and $\delta\geq\gamma$ }.

Note that $\mathscr{C}\mathscr{N}[X, d]=\cup\{\mathscr{C}\mathscr{N}_{\gamma}[X, d]:\gamma>0\}$ .

PROPOSITION 3.10. Let $(X, d)$ be a metric space, $\gamma>0$ , and let $\mathscr{V}\subset$

$\mathscr{C}\mathscr{N}_{\gamma}[X, d]$ . Then, there is a disjoint refinement $\mathscr{U}$ of $\gamma$ such that $\cup \mathscr{U}=\cup \mathscr{V}$ and
$\mathscr{U}\subset \mathscr{C}\mathscr{N}_{\gamma}[X, d]$ .

PROOF. By Proposition 3.7, $\mathscr{U}=\{\mathscr{C}\mathscr{N}_{\gamma}^{d}(x):x\in\cup\gamma\}$ is as required because
for every $ V\in\gamma$ and $x\in V$ there exists $\delta\geq\gamma$ with $\mathscr{C}\mathscr{N}_{\gamma}^{d}(x)\subset \mathscr{C}\mathscr{N}_{\delta}^{d}(x)=V$ .

$\square $

LEMMA 3.11. Let (X, $d$ ) be a metric space, and let $\gamma\nearrow\subset \mathscr{C}\mathscr{N}[X, d]$ . Then,
there exists a disjoint family $\mathscr{U}\subset \mathscr{C}\mathscr{N}[X,d]$ such that $\mathscr{U}$ refines $\gamma_{and}\cup \mathscr{U}=\cup \mathscr{V}$ .

$PR\infty F$ . Whenever $n\geq 1$ , set $if_{n}=\{V\in\gamma : V\in \mathscr{C}\mathscr{N}_{1/n}[X, d]\}$ . By Prop-
osition 3.10, the family $\mathscr{V}_{1}$ is refined by a disjoint family $\mathscr{U}_{1}\subset \mathscr{C}\mathscr{N}_{1}[X, d]$ such
that $\cup \mathscr{U}_{1}=\cup \mathscr{V}_{1}$ . By Propositions 3.2 and 3.9, $\cup \mathscr{U}_{1}$ is a d-clopen set with
$\Delta_{d}(\cup \mathscr{U}_{1})\geq 1$ . Hence, by Proposition 3.8, there exists a family $\mathscr{W}_{2}\subset \mathscr{C}\mathscr{N}_{1/2}[X,d]$

which refines $\gamma_{2}$ and $\cup \mathscr{W}_{2}=(\cup\gamma_{2})\backslash (\cup \mathscr{U}_{1})$ . Then, by Proposition 3.10, we
find a disjoint family $\mathscr{U}_{2}\subset \mathscr{C}\mathscr{N}_{1/2}[X, d]$ which refines $\mathscr{W}_{2}$ (and, hence, $\gamma_{2}$ ) and
$\cup \mathscr{U}_{2}=\cup \mathscr{W}_{2}$ . In this way, by induction, for every $n>1$ there exists a dis-
joint family $\mathscr{U}_{n}\subset \mathscr{C}\mathscr{N}_{1/n}[X, d]$ which refines $\mathscr{V}_{n}$ and $\cup \mathscr{U}_{n}=(\cup\gamma_{n})\backslash (\cup \mathscr{V}_{n-1})$ .
The family $\mathscr{U}=\cup\{\mathscr{U}_{n} : n\geq 1\}$ satisfies all our requirements because $\gamma=$

$\cup\{\gamma_{n^{;n\geq}}1\}$ . $\square $
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We accomplish the preparation for the proof of Theorem 3.5 by the following
consequenoe of Lemma 3.11.

PROPOSITION 3.12. Let (X, $d$ ) be a metric space for which $\mathscr{C}\mathscr{N}[X, d]$ con-
stitutes a base for the topology of X. Then, every open cover $\gamma$ of $X$ admits a
disjoint refinement $\mathscr{U}\subset \mathscr{C}\mathscr{N}[X, d]$ .

$PR\infty F$ OF THEOREM 3.5. The implications $(a)\rightarrow(b)\rightarrow(c)$ are obvious, while
the implication $(c)\rightarrow(d)$ follows by Proposition 3.6.

$(d)\rightarrow(e)$ . Suppose that $X$ is not a singleton. Also, let $x\in X$ and let $\epsilon>0$ . By
(d), there exists a proper d-clopen subset $W$ of (X, $d$ ) such that $x\in W\subset \mathscr{N}_{\epsilon}^{d}(x)$ .
We now merely set $\delta=\Delta_{d}(W)>0$ . Then, by Proposition 3.2, $\mathscr{C}\mathscr{N}_{\delta}^{d}(x)\subset$

$\mathscr{C}\mathscr{N}_{\delta}^{d}(W)=W\subset \mathscr{N}_{\epsilon}^{d}(x)$ .
$(e)\rightarrow(a)$ . Again, we suppose that $X$ is not a singleton. Note that, by (e), the

family $\mathscr{C}\mathscr{N}[X, d]$ constitutes a base for the topology of $X$. Hence, by Proposition
3.2, $X$ contains a non-empty proper d-clopen subset $A$ . Then, by Proposition 3.12,
there exists a disjoint cover $\mathscr{U}_{0}\subset \mathscr{C}\mathscr{N}[X, d]$ of $X$ which refines $\{A, X\backslash A\}$ . Relying
onoe again on Proposition 3.12, for every $n>0$ we also constmct a disjoint cover
$\mathscr{U}_{n}\subset \mathscr{C}\mathscr{N}[X, d]$ of $X$ which refines both $\{\mathscr{N}_{\iota/n}^{d}(x) : x\in X\}$ and $\mathscr{U}_{n-1}$ . Thus, we
get a family $\cup\{\mathscr{U}_{n} : n\in N\}\subset \mathscr{C}\mathscr{N}[X, d]$ which is a base for the topology of
X. Hence, for every point $x\in X$ there exists exactly one decreasing sequenoe
$\{U_{n}(x)\in \mathscr{U}_{n} : n\in N\}$ such that $\{x\}=\cap\{U_{n}(x):n-\in N\}$ . Take a point $x\in X$ . For
every $n\in N$ we now have that $\Delta_{d}(U_{n}(x))\in(0, +\infty)$ because, by constmction,
$U_{n}(x)$ is a non-empty proper d-clopen subset of (X, $d$ ). Let us also note that

(1) $\mathscr{C}\mathscr{N}_{\Delta_{d}^{d}(U_{n}(x))}(x)=U_{n}(x)$ for every $n\in N$ .

Indeed, by Proposition 3.7, $U_{n}(x)\in \mathscr{C}\mathscr{N}[X, d]$ implies the existenoe of a $\delta>0$

with $U_{n}(x)=\mathscr{C}\mathscr{N}_{\delta}^{d}(x)$ . Henoe, by Proposition 3.2, we get that $\Delta_{d}(U_{n}(x))$

$\geq\delta$ . Finally, by the same proposition, we have that $\mathscr{C}\mathscr{N}_{\Delta_{d}}^{d_{(U_{n}(x))}}(x)\subset$

$\mathscr{C}\mathscr{N}_{\Delta_{d}(U_{n}(x))}^{d}(U_{n}(x))=U_{n}(x)$ .
According to (1), we get that

(2) $\{\Delta_{d}(U_{n}(x)):n\in N\}$ is a decreasing sequence,

and, more pre\v{c}isely, that

(3) $\Delta_{d}(U_{n+1}(x))\geq\Delta_{d}(U_{n}(x))$ implies $U_{n+1}(x)=U_{n}(x)$ .

Merely, if $\Delta_{d}(U_{n+1}(x))\geq\Delta_{d}(U_{n}(x))$ for some $n\in N$ , then

$U_{n}(x)=\mathscr{C}\mathscr{N}_{\Delta_{d}}^{d_{(U_{n}(X))}}(x)\subset \mathscr{C}\mathscr{N}_{\Delta_{d}^{d}(U_{n+1}(x))}(x)=U_{n+1}(x)$ .
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Whenever $x,$ $y\in X$ are different, we now set $n(x, y)=\min\{n\in N : y\not\in U_{n}(x)\}$ .
Next, we define a function $\rho$ : $X\times X\rightarrow R$ by letting for every $x,$ $y\in X$ that
$\rho(x, y)=\max\{\Delta_{d}(U_{n(x,y)}(x)), \Delta_{d}(U_{n(x,y)}(y))\}$ if $x\neq y$ and $\rho(x, y)=0$ otherwise.
Clearly, $\rho(x, y)=\rho(y, x)\geq 0$ is always valid, and $\rho(x, y)=0$ if and only if $x=y$ .
Let us check the following important property of $\rho$ . Take points $x,$ $y\in X$ and an
$n\in N$ . Then,

(4) $y\not\in U_{n}(x)$ implies $\rho(x, y)\geq\max\{\Delta_{d}(U_{n}(x)), \Delta_{d}(U_{n}(y))\}$ .

Indeed, $y\not\in U_{n}(x)$ implies $n(x, y)\leq n$ . Therefore, by (2), $\Delta_{d}(U_{n(x,y)}(x))\geq$

$\Delta_{d}(U_{n}(x))$ . According to the definition of $\rho$ , this implies that $\rho(x, y)\geq\Delta_{d}(U_{n}(x))$ .
Hence, $\rho(x, y)\geq\Delta_{d}(U_{n}(y))$ holds too because $y\not\in U_{n}(x)$ is equivalent to
$x\not\in U_{n}(y)$ .

We now complete the proof showing that $\rho$ is as required in (a). First, we
show that $\rho$ is an ultrametric on $X$. Take two different points $x,$ $y\in X$ . Then, for
a point $z\in X$ , we distinguish the following two cases. If $z\not\in U_{n(x,y)}(x)\cup U_{n(x,y)}(y)$ ,
then (4) implies that

$\rho(x, y)=\max\{\Delta_{d}(U_{n(x,y)}(x)), \Delta_{d}(U_{n(x,y)}(y))\}\leq\max\{\rho(x, z),p(z, y)\}$ .

If $z\in U_{n(x,y)}(x)\cup U_{n(x,y)}(y)$ , then either $z\not\in U_{n(x,y)}(x)$ or $z\not\in U_{n(x,y)}(y)$ . Hence,
there exists a point $t\in\{x, y\}$ such that $z\not\in U_{n(x,y)}(t)$ and $\{U_{n(x,y)}(z), U_{n(x,y)}(t)\}=$

$\{U_{n(x,y)}(x), U_{n(x,y)}(y)\}$ . Therefore, by (4), we get that

$\max\{\rho(x, z),\rho(z, y)\}\geq\rho(z, t)\geq\max\{\Delta_{d}(U_{n(x,y)}(z)), \Delta_{d}(U_{n(x,y)}(t))\}$

$=\max\{\Delta_{d}(U_{n(x,y)}(x)), \Delta_{d}(U_{n(x,y)}(y))\}$

$=\rho(x, y)$ .

Next, we show that $\rho\leq d$ . Take two different points $x,$ $y\in X$ . Then, merely note
that $d(x, y)\geq\max\{\Delta_{d}(U_{n(x,y)}(x)), \Delta_{d}(U_{n(x,y)}(y))\}=\rho(x, y)$ .

We finally show that $\rho$ is a compatible metric on $X$. Towards this end, let
$x\in X$ and let $k\in N$ . Sinoe $\cup\{\mathscr{U}_{n} : n\in N\}$ is a base for the topology of $X$, it
suffices to show that $\mathscr{N}_{\Delta_{d}^{\rho}(U_{k}(x))}(x)=U_{k}(x)$ . By (4), we get that $\mathscr{N}_{\Delta_{d}^{\rho}(U_{k}(x))}(x)\subset$

$U_{k}(x)$ . Take a point $y\in U_{k}(x)\backslash \{x\}$ . Then, $n(x, y)>n(x, y)-1\geq k$ and
$U_{n(x,y)-1}(x)=U_{n(x,y)-1}(y)$ . Therefore, by (2) and (3), this implies that

$\Delta_{d}(U_{k}(x))\geq\Delta_{d}(U_{n(x,y)-1}(x))>\max\{\Delta_{d}(U_{n(x,y)}(x)), \Delta_{d}(U_{n(x,y)}(y))\}=\rho(x, y)$ .

So, $y\in \mathscr{N}_{\Delta_{d}^{\rho}(U_{k}(x))}(x)$ . $\square $
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4. Characterizing Certain Zero-Dimensional Metrizable Spaces

The present section contains some possible applications of our previous
results. By a Polish space we mean a completely metrizable separable space. As
Example 2.6 demonstrates, there exists a zero-dimensional Polish spaoe and a
complete compatible metric on it such that the corresponding “metric”-proximal
hyperspace is connected. In effect, this is the only non-trivial example, as our first
result here states.

THEOREM 4.1. For a non-singleton zero-dimensional Polish space $X$, the fol-
lowing two conditions are equivalent:

(i) $X$ is homeomorphic to the space of irrational numbers $P$ .
(ii) $(\mathscr{F}(X), \tau_{\delta(d)})$ is connected for some $d\in \mathscr{D}(X)$ .

$PR\infty F$ . The implication $(i)\rightarrow(ii)$ follows from Example 2.6 and Theorem
2.1. Suppose that $d$ is as in (ii). Then, (X, $d$ ) has only two d-clopen subsets. This
implies that $X$ has no points of local compactness. Hence, by a result of [1], $X$ is
homeomorphic to P. $\square $

To prepare for our next application, we need the following example.

EXAMPLE 4.2. There exists a complete metric $d\in \mathscr{D}(N)$ on the set of natural
numbers $N$ which is not umformly equivalent to any ultrametric.

PROOF. For every natural $n\geq 1$ , let $Y_{n}=\{0,1/n, \ldots, (n-1)/n, 1\}$ and $X_{n}=$

$Y_{n}\times\{n\}$ . Also, let $d_{n}$ be the metric on $X_{n}$ defined by $d_{n}((y^{\prime},n),$ $(y^{\prime/},n))=$

$|y^{\prime}-y^{\prime\prime}|$ . Finally, let $X=\cup\{X_{n} : n\geq 1\}$ , and let $d$ be the metric on $X$ defined
by $d(x, y)=d_{n}(x, y)$ if $x,$ $y\in X_{n}$ for some $n\geq 1$ , and $d(x, y)=1$ otherwise.
Obviously, (X, $d$ ) is a countable discrete metric space. Therefore, it is homeo-
morphic to $N$ . Also, $d$ is clearly complete. We will show that $d$ is as required.
Suppose that $\rho$ is an ultrametric on $X$ which is uniformly equivalent to $d$. Then,
in particular, there exists $\delta>0$ such that $d(x, y)\leq 1/2$ provided $x,$ $y\in X$ and
$\rho(x, y)<\delta$ . On the other hand, there also exists a natural $m>0$ such that
$\rho(x, y)<\delta$ provided $x,$ $y\in X$ and $d(x, y)\leq 1/m$ . Sinoe $d((l/m,m),$ $((l+1)/m,m))$

$=|i/m-(i+1)/m|=1/m$ for every $l\in\{0,1, \ldots, m-1\}$ , we have that
$\rho((i/m, m),$ $((i+1)/m,m))<\delta$ . Hence,

$p((O,m),$ $(1,m))\leq\max\{\rho((0,m), (1/m, m)), \ldots,\rho((m-1)/m, m), (1,m))\}<\delta$
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and therefore $d((O, m),$ $(1,m))\leq 1/2$ . However, by definition, $d((O,m),$ $(1,m))=$

$|0-1|=1$ . A contradiction. $\square $

THEOREM 4.3. For a zero-dimensional metrizable space $X$, the following con-
ditions are equivalent:

(i) $X$ is compact.
(ii) Any $d\in \mathscr{D}(X)$ is uniformly equivalent to an ultrametric.
(iii) $(\mathscr{F}(X), \tau_{\delta(d)})$ is zero-dimensional for any $d\in \mathscr{D}(X)$ .

PROOF. If $X$ is compact, then every two compatible metrics on $X$ are
uniformly equivalent which is the implication $(i)\rightarrow(ii)$ . The implication $(ii)\rightarrow(iii)$

follows by Theorem 3.3. Suppose finally that (iii) holds but $X$ is not compact.
Then, $X$ must contain a closed copy of the natural numbers $N$ . Let $p\in \mathscr{D}(N)$

be as in Example 4.2. By the Hausdorff extension theorem (see, for example, [7,
Theorem 3.2, ch. II]), $p$ extends to a compatible metric $d$ on $X$. Then, by
Example 4.2, the metric $d$ is not uniformly equivalent to any ultrametric on $X$, so,
by Theorem 3.3, $(\mathscr{F}(X), \tau_{\delta(d)})$ is not zero-dimensional. A contradiction. $\square $

To prepare for our next result, we need an example of a special metric on
another “standard” space. Namely, we consider the hedgehog $J(\omega)$ of weight
$\omega$ . We recall here its definition: as a set, $ J(\omega)=Y/\sim$ , where $Y=\omega\times[0,1]$ and

$\sim$ is the equivalenoe relation on $Y$ defined by $(\alpha, x)\sim(\beta, y)$ iff ($x=y=0$ or
$(\alpha, x)=(\beta, y))$ . The topology of $J(\omega)$ is that induced by the metric $d$, defined as

$d(\langle\alpha,x\rangle, \langle\beta, y\rangle)=\left\{\begin{array}{l}|x-y|\\x+y\end{array}\right.$ $if\alpha\neq\beta if\alpha=\beta$

,

where $\langle\alpha, x\rangle$ and $\langle\beta, y\rangle$ are the equivalenoe classes associated to $(\alpha, x)$ , and
respectively, $(\beta, y)$ . Also, we consider the subset $J_{0}(\omega)$ of $J(\omega)$ defined by
$\langle\alpha, x\rangle\in J_{0}(\omega)$ if and only if either $x=0$ or $x=1/n$ for some natural $n>0$ , and
we put

$d’=d|J_{0}(\omega)\times J_{0}(\omega)$ .

EXAMPLE 4.4. There exists a metric $\rho\in \mathscr{D}(J_{0}(\omega))$ such that $(J_{0}(\omega),\rho)$ has no
base of $\rho$-clopen sets.

$PR\infty F$ . For every $\alpha\in\omega$ , pick a fixed sequence $\{x_{n}^{\alpha} : n\in N\}\subset[0,1]$ such that

$x_{1}^{\alpha}=1$ , $|x_{n}^{\alpha}-x_{n+1}^{\alpha}|<1/\alpha,n\geq 1$ , and $\lim_{n\rightarrow\infty}x_{n}^{\alpha}=0=x_{0^{\alpha}}$ .
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Next, define $X=$ { $\langle\alpha,$ $ x_{n}^{\alpha}\rangle$ : $\alpha\in\omega$ and $n\in N$ }, and then set $d^{\prime\prime}=d|X\times X$ .
Topologically, $X$ is a copy of $J_{0}(\omega)$ : actually, a homeomorphism may be
constmcted using, for example, the fact that for every $ n\in\omega$ , the two sets
$\mathscr{N}_{1/^{\prime}}^{d_{n}}(\langle 0,0\rangle)\backslash \mathscr{N}_{1/(n+1)}^{d^{\prime}}(\langle 0,0\rangle)$ and $\mathscr{N}_{1/n^{\prime\prime}}^{d}(\langle 0,0\rangle)\backslash \mathscr{N}_{1/(n+1)}^{d^{\prime\prime}}(\langle 0,0\rangle)$ are infinite.

Let us show that $d^{\prime\prime}$ has the properties of the metric $p$ in the statement.
Suppose $V$ is any neighbourhood of $\langle 0,0\rangle$ such that $V\subset \mathscr{N}_{1}^{d^{\prime\prime}}(\langle 0,0\rangle)$ . Note
that $\langle\alpha,x_{1}^{\alpha}\rangle\not\in V$ for every $\alpha\in\omega$ . Then, whenever $\alpha\in\omega$ , set $\alpha(V)=$

$\min\{n\geq 2:\langle\alpha,x_{n}^{\alpha}\rangle\in V\}$ . Henoe,

$ D_{d}//(V, X\backslash V)\leq|x_{\alpha(V)}^{\alpha}-x_{\alpha(V)-1}^{\alpha}|<1/\alpha$ .

So, $D_{d^{l/}}(V, X\backslash V)\leq\inf_{\alpha\in\omega}1/\alpha=0$ which completes the proof. $\square $

THEOREM 4.5. For a zero-dimensional metrizable space $X$, the following
conditions are equivalent:

(i) For every $d\in \mathscr{D}(X)$ there exists an ultrametric $\rho\in \mathscr{D}(X)$ with $\rho\preceq d$ .
(ii) (X, $d$ ) has a base of d-clopen sets for any $d\in \mathscr{D}(X)$ .
(iii) $X$ is locally compact.

$PR\infty F$ . The implication $(i)\rightarrow(ii)$ follows by Theorem 3.5. If $X$ is not locally
compact, then it contains a closed copy of $J_{0}(\omega)$ . Let $p$ be a metric on $J_{0}(\omega)$ as
that in Example 4.4. By the Hausdorff extension theorem, $p$ extends to a com-
patible metric $d$ on $X$. Then, by virtue of Example 4.4, the spaoe $X$ doesn’t admit
a base of d-clopen sets. That is, $(ii)\rightarrow(iii)$ holds. Sinoe every two metrics on a
compact spaoe are uniformly equivalent, Theorem 3.5 completes the proof. $\square $

5. On the Selection Problem for the Proximal Hyperspaces

This last section of the paper is devoted to some further results conceming
the selection problem for the proximal hyperspaces. The first one states the fol-
lowing generalization of [11, Theorem 1.2].

THEOREM 5.1. Let $X$ be a completely metrizable space, and let $d\in \mathscr{D}(X)$ be
such that (X, $d$ ) has a base of d-clopen sets. Then $\mathscr{F}(X)$ has a $\tau_{\delta(d)}$ -continuous
selection.

To prepare for the proof of Theorem 5.1, we need a result about special
approximate selections on subsets of proximal hyperspaces. For a topological
spaoe $X$ and a subset $A\subset X$ , we let $\mathscr{F}_{X}(A)=\{S\in \mathscr{F}(X):S\cap A\neq\emptyset\}$ . Suppose
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now that $X$ is metrizable, $d,\rho\in \mathscr{D}(X)$ , and $\epsilon>0$ . We shall say that a map
$f:\mathscr{F}_{X}(A)\rightarrow X$ is a $\tau_{\delta(d)}$ -continuous $(\epsilon,\rho)$ -selection for $\mathscr{F}_{X}(A)$ provided

(1) $f$ is continuous with respect to the topology on $\mathscr{F}_{X}(A)$ induced by $\tau_{\delta(d)}$ ,
(2) $\rho(f(F), F)<\epsilon$ for every $F\in \mathscr{F}_{X}(A)$ .

LEMMA 5.2. Let (X, $d$ ) be a metric space which has a base of d-clopen sets,
and let $A$ be an open subset of X. Then, for every $\rho\in \mathscr{D}(X)$ and $\epsilon>0$ there exists
a $\tau_{\delta(d)}$ -continuous $(\epsilon,\rho)$ -selection $f:\mathscr{F}_{X}(A)\rightarrow A$ for $\mathscr{F}_{X}(A)$ .

PROOF. Let $p\in \mathscr{D}(X)$ , and let $\epsilon>0$ . Sinoe $A$ is open, there is a cover $\gamma$ of
$A$ which consists of d-clopen subsets of (X, $d$ ) and $diam_{p}(V)<\epsilon,$ $ V\in\gamma$ . To
every $ V\in\gamma$ we associate a number $n(V)\in N$ by letting $n(V)=\min\{k\in N$ :
$\Delta_{d}(V)\geq 1/k\}$ . Take now a well-ordering $\ll$ on the set $\gamma$ . Next, define another
well-ordering $\prec$ on $\gamma$ by $W\prec V$ provided either $n(W)<n(V)$ or $n(W)=n(V)$

and $W\ll V$ . Finally, for every $ V\in\gamma$ we set

$\mathscr{T}_{V}=$ {$ F\in \mathscr{F}(X):F\cap V\neq\emptyset$ and $ F\cap W=\emptyset$ for every $W\prec V$}.

Obviously, this defines a disjoint cover $\{\mathscr{T}_{V} : V\in\gamma\}$ of $\mathscr{F}_{X}(A)$ . Let us show that
each $\mathscr{T}_{V}$ is $\tau_{\delta(d)}$ -open. Suppose that $C\in \mathscr{T}_{V}$ . Then, $\mathscr{C}_{1}=\{F\in \mathscr{F}(X) : F\cap V\neq\emptyset\}$

is a $\tau_{\delta(d)}$ -neighbourhood of $C$. On the other hand, $\Delta_{d}(\{W\in\gamma : W\prec V\})\geq$

$1/(n(V))$ because $W\prec V$ implies $n(W)\leq n(V)$ . Therefore, by virtue of
Proposition 3.9, $\mathscr{C}_{2}=\{F\in \mathscr{F}(X):D_{d}(\cup\{W:W\prec V\}, F)>0\}$ is also a $\tau_{\delta(d)^{-}}$

neighbourhood of $C$. This completes the verification because $C\in \mathscr{C}_{1}\cap \mathscr{C}_{2}\subset \mathscr{T}_{V}$ .
Define now a $\tau_{d(d)}$ -continuous map $f:\mathscr{F}_{X}(A)\rightarrow A$ by setting $f|\mathscr{T}_{V}$ : $\mathscr{T}_{V}\rightarrow V$ to
be a constant map whenever $\mathscr{T}_{V}$ is nonempty. This $f$ is as required. Indeed, for
every $F\in \mathscr{F}_{X}(A)$ there exists exactly one $ V(F)\in\gamma$ with $F\in \mathscr{T}_{V(F)}$ . Then,
$f(F)\in V(F)$ implies that $\rho(f(F), F)\leq diam_{\rho}(V(F))<\epsilon$ . $\square $

$PR\infty F$ OF THEOREM 5.1. Let $(X, d)$ be as in the statement. Note that,
by Theorem 3.5, $X$ is strongly zero-dimensional. Then, take a complete ultra-
metric $\rho\in \mathscr{D}(X)$ . It will be now sufficient to constmct a sequenoe $\{f_{n}\}$ of $\tau_{\delta(d)^{-}}$

continuous $(2^{-n},\rho)$ -selections $f_{n}$ for $\mathscr{F}(X)$ such that $\rho(f_{n}(F),f_{n+1}(F))<2^{-n}$ for
every $F\in \mathscr{F}(X)$ and $n\in N$ . This is what we shall do. Sinoe the existenoe of $f_{0}$

follows from Lemma 5.2, we may suppose that $f_{n}$ has already been constmcted
and we have to define $f_{n+1}$ . Sinoe $\rho$ is an ultrametric, $\mathscr{U}=\{\mathscr{N}_{2^{- n}}^{\rho}(x) : x\in X\}$

defines a disjoint open cover of $X$. Then, $f_{n}^{-1}(\mathscr{U})$ defines a disjoint $\tau_{\delta(d)}$ -open
cover of $\mathscr{F}(X)$ . On the other hand, $f_{n}^{-1}(U)\subset \mathscr{F}_{X}(U)$ for every $U\in \mathscr{U}$, and to
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every $F\in \mathscr{F}(X)$ it corresponds exactly one $U(F)\in \mathscr{U}$ such that $\mathscr{N}_{2^{- n}}^{\rho}(f_{n}(F))=$

$U(F)$ and $ F\cap U(F)\neq\emptyset$ (because $\rho$ is an ultrametric). Now, by Lemma 5.2, for
every $U\in \mathscr{U}$ there exists a $\tau_{\delta(d)}$ -continuous $(2^{-(n+1)},\rho)$ -selection $f_{U}$ : $\mathscr{F}_{X}(U)\rightarrow U$

for $\mathscr{F}_{X}(U)$ . Then, we may define a $\tau_{\delta(d)}$ -continuous $(2^{-(n+1)},\rho)$ -selection $f_{n+1}$ for
$\mathscr{F}(X)$ by letting $f_{n+1}|f_{n}^{-1}(U)=f_{U}|f_{n}^{-1}(U)$ for every $U\in \mathscr{U}_{n}$ . This $f_{n+1}$ is as
required. Indeed, $F\in \mathscr{F}(X)$ implies $f_{n+1}(F)=f_{U(F)}(F)\in U(F)=\mathscr{N}_{2^{-n}}^{p}(f_{n}(F))$ .

$\square $

By Theorems 5.1 and 4.5, we get the following consequence.

COROLLARY 5.3. Let $X$ be a zero-dimensional locally compact metrizable
space. Then, for every compatible metric $d$ on $X$ there exists a $\tau_{\delta(d)}$ -continuous
selection for $\mathscr{F}(X)$ .

Conceming the right plaoe of Theorem 5.1, a word should be said. As the
proof of this theorem shows, our approach is based on the metric generation
of proximal hyperspaces, for a natural generalization of Theorem 5.1 in terms of
“hit-and-miss” topologies on $\mathscr{F}(X)$ we refer the interested reader to [13]. Let
$\mathscr{S}_{\tau_{\delta}}(X)$ be the set of those metrics $d\in \mathscr{D}(X)$ for which $\mathscr{F}(X)$ has a $\tau_{\delta(d)^{-}}$

continuous selection. Then, by Theorem 3.5, we get the following equivalent
reading of Theorem 5.1 in terms of special relations with the compatible ultra-
metrics on a metrizable spaoe.

COROLLARY 5.4. Let $X$ be a completely metrizable space. Then, for every
ultrametric $\rho\in \mathscr{D}(X)$ we have that $\{d\in \mathscr{D}(X):\rho\preceq d\}\subset \mathscr{S}_{\tau_{\delta}}(X)$ .

Relying onoe again on Theorem 3.5 and the fact that, for $\rho,$ $d\in \mathscr{D}(X)$ , the
relation $\rho\preceq d$ implies $\tau_{\delta(p)}\subset\tau_{\delta(d)}$ , we might read Corollary 5.4 (hence, Theorem
5.1 as well) as the fact that $\mathscr{S}_{\tau_{\delta}}(X)$ contains all compatible ultrametrics on a
completely metrizable spaoe $X$. Conceming the selection problem for the proximal
hyperspaces on strongly zero-dimensional metrizable spaces, this presents a bit
more information, but related especially to the role of the metric property of
completeness. From this point of view, our next result presents an improvement in
the direction of an ultrametric condition.

THEOREM 5.5. Let $X$ be a completely metrizable space, and let $d\in \mathscr{D}(X)$ be
such that, for some point $z\in X$ , the subspace $X\backslash \{z\}$ has a base of d-clopen sets.

Then $\mathscr{F}(X)$ has a $\tau_{\delta(d)}$ -continuous selection.
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To prepare for the proof of Theorem 5.5, we need the following proposition.

PROPOSITION 5.6. Let (X, $d$ ) be a metric space, and let $Z$ be a non-empty d-
clopen subset of (X, $d$ ). Define a map $\varphi$ : $\mathscr{F}_{X}(Z)\rightarrow \mathscr{F}(Z)$ by letting $\varphi(S)=S\cap Z$

for every $S\in \mathscr{F}_{X}(Z)$ . Then, $\varphi$ is continuous with respect to the topologies induced
by $\tau_{\delta(d)}$ on $\mathscr{F}_{X}(Z)$ and $\tau_{\delta(d|Z\times Z)}$ on $\mathscr{F}(Z)$ , respectively.

PROOF. Let $p=d|Z\times Z$ . Note that, by [5, Lemma 4.1], the space
$(\mathscr{F}(Z), \tau_{\delta(p)})$ coincides with $\mathscr{F}(Z)$ equipped with the relative topology of
$(\mathscr{F}(X), \tau_{\delta(d)})$ . Then, take an $S\in \mathscr{F}_{X}(Z)$ , and let $\ll \mathscr{U}\gg p$ be a basic $\tau_{\delta(p)^{-}}$

neighbourhood of $\varphi(S)$ in $\mathscr{F}(Z)$ . Since $Z$ is a d-clopen subset of (X, $d$ ), we
now have that $\ll \mathscr{U}\gg d=\ll \mathscr{U}\gg p$ . Then, let $\gamma=\{X\backslash Z\}\cup \mathscr{U}$ if $S\neq\varphi(S)$ and
$\gamma=\mathscr{U}$ otherwise. In this way, we get a $\tau_{\delta(d)}$ -neighbourhood $\ll\gamma\gg d$ of $S$ with
$\varphi(\ll\gamma\gg d)\subset\ll \mathscr{U}\gg p$ . $\square $

PROOF OF THEOREM 5.5. Let $X$ and $d\in \mathscr{D}(X)$ be as in the statement of this
theorem. By condition, there exists a point $z\in X$ such that every $x\in Z=X\backslash \{z\}$

has a local base of d-clopen subset of (X, $d$ ). Suppose that $ Z\neq\emptyset$ . Next, for
every $x\in Z$ pick a fixed d-clopen subset $Z_{x}$ of (X, $d$ ) such that $x\in Z_{x}$ and $z\not\in Z_{x}$ ,
and then set $\ell=\min\{1, \sup\{\Delta_{d}(Z_{x}):x\in Z\}\}$ . For every $n\in N$ we now define a
non-empty set $ Z_{n}=\cup$ { $Z_{x}$ : $x\in Z$ and $\Delta_{d}(Z_{x})\geq l/2^{n}$ } which, by Proposition
3.9, is a d-clopen subset of (X, $d$ ) with $\Delta_{d}(Z_{n})\geq\ell/2^{n}$ . It is clear that $Z=$

$\cup\{Z_{n} : n\in N\}$ . Then, define a map $g:\mathscr{F}_{X}(Z)\rightarrow N$ by. $g(S)=\min\{n\in N$ :
$S\cap Z_{n}\neq\otimes\},$ $S\in \mathscr{F}_{X}(Z)$ . For every $n\in N$ , we also define a map $\varphi_{n}$ : $\mathscr{F}_{X}(Z_{n})\rightarrow$

$\mathscr{F}(Z_{n})$ by letting $\varphi_{n}(S)=S\cap Z_{n}$ for $S\in \mathscr{F}_{X}(Z_{n})$ . Finally, for every $n\in N$ we set
$d_{n}=d|Z_{n}\times Z_{n}$ . By virtue of Proposition 5.6, each $\varphi_{n}$ is continuous with respect
to the topologies induced by $\tau_{\delta(d)}$ on $\mathscr{F}_{X}(Z_{n})$ and $\tau_{\delta(d_{n})}$ on $\mathscr{F}(Z_{n})$ , respectively.
By Theorem 5.1, for every $n\in N$ there exists a $\tau_{\delta(d_{n})}$ -continuous selection $f_{n}$ for
$\mathscr{F}(Z_{n})$ because each $Z_{n}$ has a base of $d_{n}$ -clopen subsets. We now define a map
$f$ : $\mathscr{F}(X)\rightarrow X$ by $f(S)=f_{g(S)}(\varphi_{g(S)}(S))$ if $S\in \mathscr{F}_{X}(Z)$ and $f(S)=z$ otherwise. In
this way, we get a selection $f$ for $\mathscr{F}(X)$ which is $\tau_{\delta(d)}$ -continuous at $\{z\}$ (let $W$

be any neighbourhood of $z$ : then $S\in\ll W\gg d$ implies $f(S)\in S\subset W)$ . So, to finish
the proof, it only remains to show that $f$ is $\tau_{\delta(d)}$ -continuous at the points of
$\mathscr{F}_{X}(Z)$ . Take any $S\in \mathscr{F}_{X}(Z)$ and, for reasons of convenience, set $Z_{-1}=\emptyset$ . Since
$Z_{g(S)}$ and $Z_{g(S)-1}$ are d-clopen subsets of (X, $d$ ), the set

$\mathscr{T}_{S}=$ { $F\in \mathscr{F}(X)$ : $ F\cap Z_{g(S)}\neq\emptyset$ and $D_{d}(F,$ $Z_{g(S)-1})>0$}

defines a $\tau_{\delta(d)}$ -neighbourhood of $S$ in $\mathscr{F}_{X}(Z)$ . On the other hand, $F\in \mathscr{T}_{S}$ implies
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$g(F)=g(S)$ . Hence, $\mathscr{T}_{S}\subset \mathscr{F}_{X}(Z_{g(S)})$ and, therefore, $f|\mathscr{T}_{S}$ is $\tau_{\delta(d)}$ -continuous
because $f|^{o}_{S}^{-}=f_{g(S)}\circ\varphi_{g(S)}|\mathscr{T}_{S}$ . $\square $

By Theorem 5.5 (see, also, Theorem 4.5 and Example 4.4), we get the fol-
lowing interesting consequenoe. Here, a spaoe $X$ is locally compact modulo one
point if $X\backslash \{x\}$ is locally compact for some $x\in X$ ; observe that every metrizable
space, which is locally compact modulo one point, is completely metrizable.

COROLLARY 5.7. Let $X$ be a zero-dimensional space which is locally compact
modulo one point. Then, for every compatible metric $d$ on $X$ there exists a $\tau_{\delta(d)^{-}}$

$con$tinuous selection for $\mathscr{F}(X)$ , i.e. $\mathscr{S}_{\tau_{\delta}}(X)=\mathscr{D}(X)$ . In particular, $\mathscr{S}_{\tau_{\delta}}(J_{0}(\omega))=$

$\mathscr{D}(J_{0}(\omega))$ .

We conclude the paper by suggesting some possible lines of development for
the subjects we have dealt with, and pointing out related open questions. The
hypothesis on the metric $d$ in Theorem 5.5 defines the following natural class of

metric’ -disconnected spaces. Namely, one can say that a metric spaoe (X, $d$ ) is
totally disconnected with respect to $d$, or totally d-disconnected, if every singleton
of $X$ is an intersection of d-clopen subsets of (X, $d$ ). Here is an example of the
most natural (strongly) O-dimensional metrizable spaoe for which this property
fails.

EXAMPLE 5.8. There exists a compatible metric $\sigma$ on the disjoint sum
$J_{0}(\omega)\oplus J_{0}(\omega)$ such that $(J_{0}(\omega)\oplus J_{0}(\omega),\sigma)$ is not totally $\sigma$-disconnected.

$PR\infty F$ . Let $Z$ be the set $\omega\times[0,1]\times\{1,2\}$ , and introduoe on $Z$ the equiv-
alenoe relation $\approx$ defined by:

$(\alpha,x, i)\approx(\beta, y,j)\Leftrightarrow$ (($x=y=0$ and $i=j$) or ( $\alpha=\beta$ and $x=y=1$ )

or $(\alpha,x, i)=(\beta, y,j))$ .

Consider the metric $p$ on $ Z/\approx$ , defined by

$p(\langle\alpha,x, i\rangle, \langle\beta, y,j\rangle)=(1-|i-j|)\cdot d(\langle\alpha,x\rangle, \langle\beta, y\rangle)+|i-j|$

. $\min\{d(\langle\alpha,x\rangle, \langle\alpha, 1\rangle)+d(\langle\alpha, 1\rangle, \langle\beta, y\rangle),d(\langle\alpha,x\rangle, \langle\beta, 1\rangle)$

$+d(\langle\beta, 1\rangle, \langle\beta, y\rangle)\}$ ,

where $d$ is the standard metric on $J(\omega)$ .
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For $i=1,2$ , put $Z_{i}=\{\langle\alpha, x, i\rangle : \langle\alpha, x\rangle\in X\}$ , where $X$ is the subset of $J(\omega)$

defined in Example 4.4. Since, for $i=1,2$ , the function $\varphi:X\rightarrow Z_{i}$ defined by
$\varphi(\langle\alpha, x\rangle)=\langle\alpha, x, i\rangle$ is an isometry with respect to $d^{J/}=d|X\times X$ and $p_{l}=$

$p|Z_{i}\times Z_{j}$ , the spaoe $Z_{j}$ is a copy of $J_{0}(\omega)$ , and it is easy to check that $Z_{1}\cup Z_{2}$ is
homeomorphic to $J_{0}(\omega)\oplus J_{0}(\omega)$ (we may consider the points of kind $\langle\alpha, 1, i\rangle$ as
belonging, as well, to the first or second $J_{0}(\omega))$ . On the other side, by virtue of
Example 4.4, $Z_{1}\cup Z_{2}$ is not totally disconnected with respect to the metric in-
duced by $p$ . $\square $

The characterization below makes more transparent the interest to the class
of totally d-disconnected metric spaces.

THEOREM 5.9. For a zero-dimensional metrizable space $X$, the following two
conditions are equivalent:

(i) (X, $d$ ) is totally d-disconnected for any $d\in \mathscr{D}(X)$ .
(ii) $X$ is locally compact modulo one point.

PROOF. If $X$ is not locally compact modulo one point, then it has a non-
empty proper clopen subset $Z$ such that both $Z$ and $X\backslash Z$ are not locally
compact. Then, each of the spaces $Z$ and $X\backslash Z$ contains a closed copy of $J_{0}(\omega)$ .
Therefore, in this case, $X$ contains a closed copy of $J_{0}(\omega)\oplus J_{0}(\omega)$ . Let $\sigma$ be a
metric on $J_{0}(\omega)\oplus J_{0}(\omega)$ as that in Example 5.8. By the Hausdorff extension
theorem, $\sigma$ extends to a compatible metric $d$ on $X$. Then, by Example 5.8, the
metric spaoe (X, $d$ ) fails to be totally d-disconnected. This shows $(i)\rightarrow(ii)$ . Since
the inverse implication is obvious, the proof completes. $\square $

According to Theorem 5.9 and Corollary 5.7, the following question is of
certain interest.

QUESTION 1. Let $X$ be a (strongly zero-dimensional) completely metrizable
space, and let $d\in \mathscr{D}(X)$ be such that (X, $d$ ) is totally d-disconnected. Does there
exist a $\tau_{\delta(d)}$ -continuous selection for $\mathscr{F}(X)$ ?

In view Example 5.8, the following more particular question is also open.

QUESTION 2. Let $X$ be a metrizable scattered space, and let $d\in \mathscr{D}(X)$ be
such that (X, $d$ ) is totally d-disconnected. Does there exist a $\tau_{\delta(d)}$ -continuous
selection for $\mathscr{F}(X)$ ?
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Example 5.8 also suggests a problem in another direction, i.e., weighing how
important is this metric property of disconnectedness.

QUESTION 3. Let $X$ be a metrizable scattered space. Does $\mathscr{S}_{\tau_{\delta}}(X)$ coincide
with $\mathscr{D}(X)$ ?

The above question is open even in the special case of $X=J_{0}(\omega)\oplus J_{0}(\omega)$ .
Finally, a last question which naturally arises from Corollary 2.7.

QUESTION 4. Let $X$ be a metrizable spaoe which is scattered with respect to
compact subsets, i.e. every non-empty closed subset of $X$ contains a non-empty
compact and relatively open subset. Does $\mathscr{S}_{\tau_{\delta}}(X)$ coincide with $\mathscr{D}(X)$ ?

In conclusion, the authors would like to express their sincere appreciation to
the referee for many helpful suggestions and remarks.
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