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TRIGONAL GORENSTEIN CURVES AND
WEIERSTRASS POINTS

By

E. BALLICO

Abstract. In this paper we study the Weierstrass points of singular
Gorenstein curves. We need to analyze separately the cases in which
the trigonal pencil is induced by a line bundle or not, in which the
Weierstrass point, $P$, is a smooth point or not, in which $P$ is a
smooth ordinary or total ramification point or not.

0. Introduction

Let $Y$ be an integral Gorenstein projective curve. In this paper we will
say that $Y$ is trigonal if there exists a rank 1 torsion free sheaf $L$ on $Y$ with
$\deg(L)=3$ and $h^{0}(Y, L)\geq 2$ , but $Y$ is not hyperelliptic, i.e. there is no line
bundle $R$ on $Y$ with $\deg(R)=2$ and $h^{0}(Y, R)\geq 2$ . In this paper we study the
Weierstrass points of trigonal Gorenstein curves. Let $Y$ be an integral trigonal
Gorenstein curve with $g:=p_{a}(Y)\geq 5$ and let $L$ the associated trigonal pencil.
Since $Y$ is Gorenstein but not hyperelliptic, $L$ is spanned and $h^{0}(Y, L)=2([6$ ,
Th. A of the Appendix with J. Harris]). Since $g\geq 5$ the sheaf $L$ is unique (see e.g.
[1, Lemma 2.6]). Such curves were deeply studied in [17] and [18]. By [18, Th. 3.5]
the projective geometry of the canonical model of $Y$ is very different if $L$ is
locally free or not. We study the case in which $L$ is not locally free in section 1.
We need to study the “vertex” $v\in Y$ (see 1.1, 1.2 and 1.3), the other singular
points (if any) of $Y$ (see 1.4) and the smooth Weierstrass points (see 1.5 and 1.6);
1.5 and 1.6 give a complete description of the possible gap sequences of smooth
Weierstrass points which are not on the ramification of the projection from the
vertex $v$ . All the smooth ramification points of the projection from the vertex $v$

are Weierstrass points (Proposition 1.7). For an existence theorem for Gorenstein
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trigonal curves with prescribed singularities and non-locally free trigonal pencil,
see Theorem 1.10. In section 2 we study the case in which $L$ is locally free.
Among the smooth points we have to distinguish the non-ramification ones, the
ordinary ramification ones and the total ramification ones. We summarize our
results for smooth Weierstrass points in the following statement proved in 2.1, 2.2
and 2.4.

THEOREM 0.1. Assume char$(K)=0$ . Let $Y$ be an integral projective trigonal
curve with a spanned $L\in Pic^{3}(Y)$ and let $u:Y\rightarrow P^{1}$ be the associated degree 3
pencil. The possible gap sequences of a smooth Weierstrass point $P$ of $Y$ are the
same as for smooth trigonal curves of the same genus, i.e. we have:

(i) if $P\in Y_{reg}$ and $P$ is a simple ramification point of $u$ , then the possible gap
sequences of $P$ are the ones described in [5];

(ii) if $P\in Y_{reg}$ and $P$ is a total ramification point of $u$ , then there are two
possible gap sequences of $P$ (Type I and Type $\Pi$ in the terminology of [4]);

(iii) if $P\in Y_{reg}$ and $P$ is not a ramification point of $u$ , the possible gap
sequences of $P$ are the ones described in [20] for smooth curves.

In section three we give a rather complete description of all trigonal Gorenstein
curves whose associated minimal degree rational map, $u$ , onto $P^{1}$ is birational.

This research was partially supported by MURST (Italy).

1. Non Locally Free Degree 3 Pencil

Let $Y$ be an integral projective trigonal non-hyperelliptic Gorenstein curve
with $g:=p_{a}(Y)\geq 5$ . Let $\pi:X\rightarrow Y$ be the normalization. In this section we
assume that the trigonal pencil is not induced by a line bundle, i.e. that it is
induced by a spanned degree 3 torsion free but not locally free rank 1 sheaf.
By [18, Th. 3.5] these curves are exactly the trigonal Gorenstein curves whose
canonical model, say $Y\subset P^{g-1}$ , is contained in a cone, $T$, over a rational normal
curve $C$ in a hyperplane, $H$, of $P^{g-1}$ . Call $v$ the vertex of $T$. Hence $v\in(P^{g-1}\backslash H)$ .
By [18, Th. 3.5] $v\in Sing(Y)$ . Call $f:Y\backslash \{v\}\rightarrow C$ and $\phi:P^{g-1}\backslash \{v\}\rightarrow H$ the
projections from $v$ . Since $\deg(f)=2$ and $\deg(C)=g-2,$ $Y$ has multiplicity
two at $v$ . To analyze the Weierstrass points on $Y\backslash \{v\}$ we will use that $C$ is a
rational normal curve in $H$ and that a rational normal curve has no osculating
point, i.e. for every $P\in C$ the osculating hyperplane $M\subset H$ of $C$ at $P$ has order
of contact $g-2$ with $C$ at $P$ (Bezout theorem). Furthermore, since any line $D$

of $T$ through $v$ intersects $Y$, outside $v$ , in a scheme of length at most two, every
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$P\in Sing(Y)$ with $P\neq v$ has multiplicity two. Since $T\backslash \{v\}$ is a smooth surface,
every $P\in Sing(Y)$ with $P\neq v$ is a planar singularity of $Y$. We recall that a
planar curve singularity of multiplicity two is either a tacnode or a generalized
cusp. If $Y_{P}$ is the partial normalization of $Y$ at $P$ , set $\delta(P, Y)=p_{a}(Y)-p_{a}(Y_{P})$ .
Let $\alpha$ : $S\rightarrow T$ be the blowing-up of $T$ at $v$ . Set $h:=\alpha^{-1}(v)$ . $S$ is a smooth sur-
face isomorphic to the Hirzebruch surface $F_{g-2}$ and we will take as basis of
$Pic(S)\cong Z^{2}$ the curve $h\cong P^{1}$ and a fiber, $F$, of the ruling $u$ : $S\rightarrow P^{1}$ of $S$ . Hence
$h^{2}=2-g,$ $h\cdot F=1$ and $F^{2}=0$ . We will often use the additive notation for the
divisors on $S$. We have $\alpha^{*}(0_{T}(1))=h+(g-2)F$ . Let $Y$ ‘ be the strict transform
of $Y$ in $S$ . We assume that the pencil $|F|$ does not induce a degree 1 map from
$X$ onto $P^{1}$ ; this case will be studied in 3.2. We have $Y^{\prime}\in|2h+xF|$ for some $x$ ;
since $\deg(Y)=2g-2$ we obtain $x=2g-2$ . Set $v:=u|Y^{\prime}$ . Viceversa, for any
integral $Y^{\prime}\in|2h+(2g-2)F|$ the curve $\alpha(Y^{\prime})\subset T\subset P^{g-1}$ is a canonical Gor-
enstein curve by [18, Formula 3.1] (with $d$ instead of $d-1$ ), and the proof of
[18, Th. 3.2] for $m=0$ . We have $\omega_{S}\cong 0_{S}(-2h-gF)$ . Hence by the adjunction
formula we have $\omega_{Y^{\prime}}\cong 0_{S}((g-2)F)|Y^{\prime}$ . Thus $p_{a}(Y^{\prime})=g-1$ .

(1.1) Here and in 1.2 and 1.3 we will analyze the vertex $v\in T$ . Since $ Y‘\in$

$|2h+(2g-2)F|$ , we have $Y^{\prime}\cdot h=2$ . Hence either $Y^{\prime}$ intersects transversally $h$

at two points or card $(Y^{\prime}\cap h)=1$ . In the latter case either $Y^{\prime}$ is tangent to $h$

at one point, $Q$ , of $Y_{reg}^{\prime}$ or $Y^{\prime}\cap h=\{Q\},$ $Y^{\prime}$ has a planar double point at $Q$

(tacnode or cusp, perhaps not ordinary) and the tangent of $h$ at $Q$ is not in the
tangent cone of $Y$ ‘ at $Q$ . Now assume $Y^{\prime}\cap h=\{Q^{\prime}, Q^{\prime\prime}\}$ with $Q^{\prime}\neq Q^{\prime\prime}$ and set
$D^{\prime}$ $:=\alpha(u^{-1}(v(Q^{\prime}))$ and $D^{\prime\prime}$ $:=\alpha(u^{-1}(v(Q^{\prime\prime}))$ . Hence $D^{\prime}$ and $D^{\prime\prime}$ are lines. We have
$D^{\prime}\neq D^{\prime\prime},$ $v$ is an ordinary node of $Y$ and $D^{\prime}\cup D^{\prime\prime}$ is the tangent cone to $Y$ at $v$ .
Now we will analyze the situation for a general curve, i.e. for a curve $Y=\alpha(Y^{\prime})$

with $Y^{\prime}$ general element of $|2h+(2g-2)F|$ . Hence $Y$ has an ordinary node at $v$ .
By [7, Prop. 3.5], $v$ is a Weierstrass point of $Y$ with weight $w(v)\geq g(g-1)$ . The
non-negative integer $E(v):=w(v)-g(g-1)$ is called the extraweight of $v$ and it
is the real measure of how much $v$ is a Weierstrass point of $Y$, not just how
singular is $Y$ at $v$ . By [7, Prop. 5.5], it is possible to compute $E(v)$ looking at the
gap sequences of all points of $\pi^{-1}(v)$ with respect to a suitable linear system, $V$,
on $X$ with $V\cong P(\pi^{*}(H^{0}(Y, \omega_{Y})))$ . The next result will show that for every $Y$

with two ordinary branches at $v$ and such that the fibers of the ruling $\alpha$ are not
tangent to $Y^{\prime}$ at $Q^{\prime}$ or $Q^{\prime\prime}$ we have $E(v)=0$ and thus $w(v)=g(g-1)$ attains
the minimal a priori possible value. Notice that for a general $Y^{\prime}\in|2h+(2g-2)F|$

the canonical curve $\alpha(Y$
‘

$)$ has an ordinary node at $v$ and it is smooth ouside $v$ .
Furthermore, $Y^{\prime}\cong X$ , none of the branches of $Y$ at $v$ is tangent to a line of $T$

and $V\cong P(\pi^{*}(H^{0}(Y, \omega_{Y})))$ is just the restriction to $Y$ ‘ of $|h+(g-2)F|$ .



136 E. BALLICO

PROPOSITION 1.2. In the set-up of 1.1 assume $Y^{\prime}\cap h=\{Q^{\prime}, Q^{\prime\prime}\}$ with
$Q^{\prime}\neq Q^{\prime\prime}$ and that the fibers of the ruling $u:S\rightarrow P^{1}$ are not tangent to $Y^{\prime}$ at $Q^{\prime}$ or
$Q^{\prime\prime}$ . Then we have $E(v)=0$ , i.e. $w(v)=g(g-1)$ . In particular, for a general $Y^{\prime}\in$

$|2h+(2g-2)F|$ the curve $\alpha(Y^{\prime})$ has extraweight $E(v)=0$ at $v$ .

PROOF. It is sufficient to check that there is no $D\in|h+(g-2)F|$ with $D$

containing either $Q^{\prime}$ or $Q^{\prime\prime}$ with multiplicity at least $g$ . Fix $D\in|h+(g-2)F|$

with $Q^{\prime}\in D$ . Since $Q^{\prime}\in h,$ $(h+(g-2)F)\cdot h=0$ and $h$ is irreducible, $D$ contains
$h$ . Hence $D$ is union of $h$ and $g-2$ fibers. Since $Y^{\prime}$ is transversal both to $h$ and to
the fiber of the ruling through $Q^{\prime}$ , we easily conclude that for general $Y$ ‘ no such
$D$ has order of contact at least $g$ with $Y^{\prime}$ at $Q^{\prime}$ or at $Q^{\prime\prime}$ .

REMARK 1.3. Assume that $Y$ has two ordinary branches at $v$ exactly $\gamma$ of
them $(1 \leq\gamma\leq 2)$ have a line of $T$ as tangent at $v$ . The proof of 1.2 shows the
inequality $ E(v)\geq\gamma$ .

REMARK 1.4. Fix $P\in Sing(Y),$ $P\neq v$ , and set $\delta:=\delta(P, Y)>0$ . By [7, Prop.
3.5], $P$ is a Weierstrass point of $Y$ with weight $ w(P)\geq g(g-1)\delta$ .

PROPOSITION 1.5. Fix an integer $z$ with $g\leq z\leq 2g-\cdot 2,$ $P\in Y_{reg}$ and a
hyperplane $M$ with $P\in M$ and $v\not\in M$ . Assume $i(Y, M;P)=z,$ $i.e$. assume that the
scheme $M\cap Y$ contains the Cartier divisor $zP$ of $Y$ but not the Cartier divisor
$(z+1)P$ . Then $P$ is a Weierstrass point of $Y$ and the sequence of non gaps of $P$

is given by the integers $i$ with $g\leq i\leq z$ and by the integers $j\geq z+2$ .

PROOF. By construction $M$ contains an osculating linear subspace to $Y$ at
$P$ . Since $v\not\in M$ and the embedding of $C$ in $H$ has no ramification point, the
$(g-3)$ -dimensional osculating space $V(g-3)$ to $Y$ has contact order $g-2$ with
$Y$ at $P$ . Hence every integer $i$ with $1\leq i\leq g-1$ is a gap for $P$ . Hence $M$ is the
osculating hyperplane to $Y$ at $P$ . Since $z\geq g,$ $P$ is a Weierstrass point of $Y$.
The assumption on the scheme $Y\cap M$ implies that all integers $i$ with $g\leq i\leq z$

are non gaps for $P$ , while by the geometric form of Riemann-Roch we have
$h^{1}(Y, 0_{Y}((z+1)P))=0$ . Hence $z+1$ is a gap, while every integer $j\geq z+2$ is a
non gap, proving 1.5.

THEOREM 1.6. Fix integers $g,$ $z$ with $g\geq 5$ and $g\leq z\leq 2g-2$ . If char$(K)>0$
assume $z<2g-2$ . Then there exists a pair $(Y, P)$ with $Y\subset T$ an integral trigonal
curve with $p_{a}(Y)=g,$ $Sing(Y)=\{v\}$ , an ordinary double point at $v$ and $P\in Y_{reg}$ ,
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$P$ is a Weierstrass point of $Y$ and the sequence of non gaps of $P$ is given by the
integers $i$ with $g\leq i\leq z$ and by the integers $j\geq z+2$ .

PROOF. Fix $P\in(T\backslash \{v\})$ and set $Q:=\pi^{-1}(P)\in S$ . Let $F$ be the fiber of the
ruling of $S$ passing through $Q$ . Let $A$ be a zero-dimensional subscheme of $S$ with
$A_{red}=\{Q\}$ , length(A) $=z+1$ and such that the scheme-theoretical intersection
$A\cap F$ is $Q$ with its reduced structure. Thus $A$ is curvilinear and it contains a
unique length $z$ subscheme; call it Z.

Claim: We have $h^{1}(S, I_{A}(2h+(2g-2)F))=h^{1}(S, I_{Z}(2h+(2g-2)F))=0$ .
Proof of the Claim: Since $F$ is transversal to any smooth curve containing

$A$ (i.e. the scheme $A\cap F$ is reduced), $Z$ is the residual scheme of $A$ with respect
to $F$ and for every integer $u$ with $1\leq u\leq z$ the residual scheme of $A$ (resp. Z)
with respect to $uF$ has length $z+1-u$ (resp. $z-u$). Since $Q\not\in h,$ $A$ is trans-
versal to $F$ and $2g-2\geq length(A)-1$ , we obtain $h^{0}(S, I_{A}(2h+(2g-2)F))=$

$h^{0}(S, 0_{S}(2h+(2g-2)F))$ -length(A) and $h^{0}(S, I_{Z}(2h+(2g-2)F))=h^{0}$

$(S, 0_{S}(2h+(2g-2)F))-z$ . Since $h^{1}(S, 0_{S}(2h+(2g-2)F))=0$ , we obtain the
claim.

Set $W:=P(H^{0}(S,I_{Z}(2h+(2g-2)F)))$ . As in the proof of the Claim
we obtain $h^{1}(S,I_{Z}(2h+(2g-2)F))\leq 2$ , i.e. $h^{0}(S, I_{Z}(2h+(2g-3)F))<$

$h^{0}(S, I_{Z}(2h+(2g-2)F))$ . Thus the linear system $W$ has no fiber of the
ruling as a base component. Since $h^{0}(S, I_{Z}(2h+(2g-2)F))=h^{0}(S,$ $0_{S}(2h+$

$(2g-2)F))-z=3g+3-z>3g+1-z=h^{0}(S, 0_{S}(h+(2g-2)F))-z=$
$h^{0}(S, I_{Z}(h+(2g-2)F)),$ $h$ is not a base component of $W$. Take a general
$X\in W$ . Since $h^{0}(S,I_{A}(2h+(2g-2)F))<h^{0}(S, I_{Z}(2h+(2g 2)F)),$ $A$ is not
contained in $X$. Hence by 1.5 it is sufficient to show that $X$ is smooth. Since
$W$ contains the reducible element $2h+(2g-3)F,$ $W$ has no base points out-
side $h\cup F$ . Since $(2h+(2g-2)F)\cdot h=0$ and $h$ is smooth an rational, we have
$0_{h}(2h+(2g-2)F)\cong 0_{h}$ . Since $h$ is not a base component of $W$, this implies
that no point of $h$ is a base point of $W$. Since $(2h+(2g-2)F)\cdot F=2,$ $F$ is not
a component of $X$ and $Q\in F\cap X$ , either $X$ is smooth along $F$ or $X$ is singular at
$Q$ and $ X\cap(F\backslash \{Q\})=\emptyset$ . Assume $Q\in Sing(X)$ . Hence $Q\in Sing(X$ ‘

$)$ for every
$X^{\prime}\in W$ by the generality of $X$. Take a general $Q^{\prime}\in F$ . Every $X^{\prime}\in W$ with
$Q^{\prime}\in X^{\prime}$ contains $F$ because $(2h+(2g-2)F)\cdot F=2$ and $X^{\prime}$ has intersection
multiplicity at least two with $F$ at $Q^{\prime}$ . Call $Z^{\prime}$ the residual scheme of $Z$ with
respect to $F$. Since $h^{0}(S, I_{Z^{\prime}}(h+(2g-3)F))>h^{0}(S, I_{Z}(h+(2g-2)F))-1=$

$h^{0}(S, I_{Z\cup\{Q^{\prime}\}}(h+(2g-2)F))$ (remember that $F$ is not a base component of $W$ ),
we obtain a contradiction. Hence $X$ is smooth along $F$ and $W$ has no base points
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outside $F$. If char$(K)=0$ the curve $X$ is smooth by Bertini’s theorem. If
char$(K)>0$ to apply Bertini’s theorem it is necessary to check that $W$ separates
also tangent vectors outside $F$. Fix $Q^{\prime\prime}\in S\backslash (h\cup F)$ and let $F^{\prime\prime}$ be the fiber of the
mling of $S$ containing $Q^{\prime/}$ . Since $z<2g-2,2h\cup(2g-3)F\cup F^{\prime\prime}\in W$ . Hence $W$

separates the tangent vectors outside $F\cup h$ , except perhaps the “vertical” ones,
i.e. the one tangent to the fibers of the ruling. Since the morphism $\gamma$ associated to
$W$ is \’etale along $F,$ $\gamma$ is \’etale in a neighborhood $\Omega$ of $F$. Since $\dim(S\backslash \Omega)\leq 1$ , this
is sufficient to apply the classical dimensional count proof of Bertini’s theorem
and obtain the smoothness of a general $X\in W$ .

PROPOSITION 1.7. Let $P\in Y_{reg}$ be a ramification point for the projection
$u:Y\backslash \{v\}\rightarrow C\subset H\cong P^{g-2}$ . Then $P$ is a Weierstrass point.

PROOF. Set $Q:=u(P)$ . Let $M$ be the osculating hyperplane of $C$ at $Q$ . Since
$C$ is a rational normal curve of $H,$ $M$ intersects $C$ only at $Q$ and with multiplicity
$g-2$ . Set $ N:=\langle\{v\}\cup M\rangle$ . Thus $N$ is a hyperplane of $P^{g-1}$ intersecting $Y$ at $P$

with multiplicity at least $2g-4$ . By the geometric form of Riemann-Roch the
Cartier divisor $(2g-4)P$ is a special divisor on Y. Hence $P$ is a Weierstrass point
of $Y$.

(1.8) Here we consider the case of a smooth ramification point. Fix $P\in Y_{reg}$

such that the line $\langle\{v, P\}\rangle$ is the tangent line of $Y$ at $P$ . Set $Q:=\alpha^{-1}(P)$ . Since
$F\cdot Y^{\prime}=2$ , the fiber $u^{-1}(v(Q))$ intersects $Y$ ‘ at $Q$ with multiplicity 2. Thus
for every integer $t\geq 1$ the Cartier divisor $2tQ$ of $Y$ ‘ is the scheme-theoretic
intersection of $Y$ ‘ with the divisor $u^{-1}(tv(Q))$ of $S$ . Hence we see that $2t+3$ is
a gap for all integers $t$ with $0\leq t\leq g-3$ . Since also 1 and 2 are gaps and
there are exactly $g$ gaps, the semi-group of non gaps to $Y$ and $P$ is given by the
integers $2j+2,1\leq j\leq g-3$ and the integers $z\geq 2g-2$ . In full generality this
was noticed by the referee of a previous version of this paper. The same referee
continued with the following observations. This is remarkable because in the
smooth case such a gap sequence may occur only on bielliptic curves ([3]). This
may be explained in the following way, at least if $Y$ has an ordinary double point
at $v$ and hance $p_{a}(Y^{\prime})=g-1$ and the hyperelliptic pencil is induced by $|F|$ . Set
$\{Q^{\prime}, Q^{\prime\prime}\}:=Y‘\cap h$ . Consider the morphism $\phi:Y‘\rightarrow P^{3}$ induced by $|3f|$ . Hence
$\phi(Y$

‘
$)$ is a rational normal curve. Consider the line $ L:=\langle(Q^{\prime}), \phi(Q^{\prime\prime})\rangle$ and the

osculating plane $V$ of $\phi(Y^{\prime})$ at $\phi(P)$ . Set $\{Z\}:=L\cap V$ . The image of $\phi(Y^{\prime})$ by
the projection with center $Z$ defines a nodal plane cubic, $R^{\prime}$ , and we obtain a
morphism $\phi^{\prime}$ : $Y^{\prime}\rightarrow R^{\prime}$ ; this corresponds to $|6P|$ on Y. Hence this is a kind of
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bielliptic structure on $Y$. The case considered in Theorem 1.6 corresponds to case
(c) of Lemma 0.2 in [3] for the integer $z-g$ . In the case of smooth bielliptic
curves all ramification points are Weierstrass points but there are exactly two gap
sequences for such ramification points (see e.g. the introduction of [3]).

REMARK 1.9. The referee of a previous version of this paper remarked that
the arguments of 1.8 show that if $P\in Y_{reg}\backslash \{v\}$ is not a ramification point of $u$ ,
then all integers $t$ with $1\leq t\leq g-1$ are always gaps for $P$ .

Now we will prove the existence of Gorenstein trigonal curves whose trigonal
pencil is not induced by a line bundle and with prescribed singularities outside
the vertex $v$ of the minimal degree cone $T\subset P^{g-1}$ with $Y\subset T$ . By [18, Th. 3.2]
any such curve is associated to an affine curve $\{f(x, y)=0\}\subset A^{2}$ with $f(x, y)=$

$c_{2}(x)y^{2}+c_{1}(x)y+c_{0}(x)$ with $c_{0},$ $c_{1}$ and $c_{2}$ polynomials, $\deg(c_{2})\leq 2,$ $\deg(c_{1})\leq g$ ,
$\deg(c_{0})\leq 2g-2$ and such that equality holds for at least one degree and $f(x, y)$

is irreducible; if $c_{2}\equiv 0$ , then the base point has multiplicity bigger than two.
Viceversa, any such polynomial gives the canonical model of a trigonal Gor-
enstein curve $Y\subset T$ with non-locally free trigonal pencil. To obtain the following
existence theorem it will be sufficient to take the very particular case $c_{1}\equiv 0$ .

THEOREM 1.10. Fix an integer $m\geq 0$ and positive integers $g,k,\delta_{1},$ $\ldots,\delta_{k}$ with
$\sum_{1\leq i\leq k}2\delta_{j}+m\leq 2g-4$ . For every integer $i$ with $1\leq i\leq k$ take a label “tacnode
with invariant $\delta_{j}$

’ or “cusp with invariant $\delta_{j}’$ ; assume that exactly $m$ labels say
“cusp!”. Then there exists an integral genus $g$ Gorenstein canonical curve $Y\subset T$

with exactly $k$ singular points, say $P_{1},$
$\ldots,$

$P_{k}$ , each $P_{i}$ tacnode with invariant $\delta_{j}$ or
cusp with invariant $\delta_{i}$ according to its label. Furthermore, the set of all such curves,
$Y$, has an irreducible component, $\Gamma$ , of dimension at least $2g-3-\sum_{1\leq i\leq k}2\delta_{j}-m$

whose general member has an ordinary double point at the vertex $v\in T$ .

PROOF. Fix $k$ distinct numbers $x_{1},$
$\ldots,$

$x_{k}$ . We take $c_{1}\equiv 0$ , i.e. we take $Y$

corresponding to an irreducible polynomial $f(x, y)=c_{2}(x)y^{2}+c_{1}(x)y+c_{0}(x)$

and as $P_{i}$ the point corresponding to $(x_{i}, O)\in A^{2}$ . It is sufficient to take $c_{0}(x)$ of
degree $2g-2$ and with $x_{l}$ root of multiplicity $2\delta_{j}$ if $P_{i}$ has as label “tacnode
with invariant $\delta_{j}$

’ and with $x_{j}$ root of multiplicity $2\delta_{i}+1$ if $P_{j}$ has as label
“cusp with invariant $\delta_{j}’$ . For fixed $x_{1},$

$\ldots,$
$x_{k}$ and fixed $c_{1}\equiv 0$ the set of all such

$c_{0},$ $c_{2}$ has codimension $\sum_{1\leq i\leq k}2\delta_{l}+m$ in the vector space of all $(c_{0}, c_{2})$ with
$\deg(c_{0})\leq 2g-2$ and $\deg(c_{2})\leq 2$ . Since $h^{0}(P^{1},0_{P^{1}}(2))+h^{0}(P^{1},0_{P^{1}}(2g-2))-$

$1-\dim(Aut(P^{1}))=2g-3$ , moving $x_{1},$
$\ldots,$

$x_{k}$ we obtain the existence of the
component $\Gamma$ with $\dim(\Gamma)\geq 2g-3-\sum_{1\leq i\leq k}2\delta_{i}-m$ . The last assertion is easy
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taking $x_{1},$
$\ldots,$

$x_{k}$ general and then, for fixed $x_{1},$
$\ldots,$

$x_{k},$
$Y$ ‘ sufficiently general

(see 1.1); here we use $\dim(\Gamma)\neq 0$ .

2. LocaUy Free Trigonal Pencil

In this section we assume that the trigonal pencil of $Y$ is induced by a
spanned $L\in Pic^{3}(Y)$ . By [18, Th. 3.5], the canonical model of $Y$ lies on a min-
imal degree surface scroll $S\subset P^{g-1},$ $S\cong F_{e}$ , with $g-e$ even and (for $g\geq 5$ ))
$(g-4)/3\leq(g-2-e)/2\leq(g-2)/2$ , i.e. the Maroni invariant $(g-2-e)/2$ of
$Y$ is one of the Maroni invariants of smooth genus $g$ trigonal curves. We assume
$g\geq 6$ . Set $q:=p_{a}(X)$ .

(2.1) Here we study the gap sequences of an ordinary ramification point,
$P$ , of $L$ . Hence $P\in Y_{reg}$ and there exists $Q\in Y,$ $Q\neq P$ , with $2P+Q\in|L|$ . For
the case of smooth trigonal curves, see [4, 5, 13]. Here we do not make any
restriction on char $(K)$ . Since $2P$ is a Cartier divisor of $Y$ and $L\in Pic(Y),$ $Q$ is a
Cartier divisor of $Y$, i.e. $Q\in Y_{reg}$ . By [18, Th. 3.5], the canonical model of $Y$ lies
on a minimal degree surface scroll $S\subset P^{g-1}$ and the possible Maroni invariants
of $S$ are the same as in the smooth case. Hence we may copy [5, \S 6]. In particular
in our situation we have verbatim Theorem 8, Lemma 9, Lemma 10, Lemma 11,
Proposition 12, Theorem 13 and Remark 14 of [5]; for Lemma 11 it is used [4,
Notation 2.10], which in tums depends on [4, Cor. 2.7], and this is OK in our
set-up; for Theorem 13 and Remark 14 we need [4, Lemma 5], which is OK in
our set-up dropping the word “smooth”, i.e. taking $Y$ only integral.

(2.2) Here we study the gap sequences of a total ramification point, $P$, of
$L$ . Hence $P\in Y_{reg}$ and $3P\in|L|$ . Since $(g-4)/3\leq(g-2-e)/2\leq(g-2)/2$ , we
may copy [4] and obtain [4, Lemma 2.12] i.e. that the only possible gap sequences
are the ones described in the first page of [4] and called there of Type I or of
Type II. Now we assume char$(K)\neq 2,3$ . Remember that $g\geq 6$ and hence the
trigonal pencil is unique ([1, Lemma 2.6]). We will try to follow the notation
of [4]; hence $m$ is the last integer with $h^{1}(Y, L^{\otimes m})\neq 0$ and $n=g-m-1$ .
Call $t$ the number of total ramification points of $L$ and $t(II)$ the number of
total ramification points of Type II of $L$ . Since $\pi^{*}(L)$ induces a $g_{3^{1}}$ on $X$

and char$(K)\neq 2,3$ , we have $0\leq t\leq q+2$ (Riemann-Hurwitz). We have ver-
batim [4, Prop. 2.14], i.e. $P$ has Type II if and only if it is a base point of
$|\omega_{Y}\otimes L^{\otimes-m}|$ . We have [4, Remark 2.15]. Since $\deg(\omega_{Y}\otimes L^{\otimes-m})=3n-g-1$ ,
from [5, Prop. 2.14], we obtain at once that [4, Th. 2.17], holds i.e. we have the
following result.

PROPOSITION 2.3. We have $0\leq t(II)\leq 3n-g-1$ .
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(2.4) Here we study the possible gap sequences of the smooth Weierstrass
points which are not ramification points. If $Y$ is smooth the corresponding
problem was solved in [14] (if char$(K)=0$) and then in arbitrary characteristic in
[20]. Fix $P\in Y_{reg}$ . By [18, Th. 3.5], the canonical model of $Y$ lies in a minimal
degree surface scroll whose possible Maroni invariants are the same as for smooth
trigonal curves with the same genus. Hence we may copy [20]. We stress that we
consider only Weierstrass points of $Y$ which are smooth points of $Y$. The proof of
[20, Th. 2.5], works verbatim and hence we obtain in arbitrary characteristic the
possible gap sequences of the ramification points of $|L|$ . The proof of [20, Th.
3.7], works verbatim and gives not only the possible gap sequences of smooth
non-ramification Weierstrass points of $Y$, but also several geometric conditions to
determine for a given $P\in Y_{reg}$ what is its gap sequence.

(2.5) Here we consider a trigonal Gorenstein non-hyperelliptic curve $Y$ of
genus $g\geq 6$ whose trigonal pencil, $|L|$ , is induced by a line bundle and study the
singular points of $Y$ from the point of view of Weierstrass points. Since $S$ is
smooth, $Y$ has only planar singularities. Fix $P\in Sing(Y)$ . Let $F:=u^{-1}(v(P))$ be
the fiber of the mling of $S$ containing $P$ . It is easy to check that one of the
following cases must occur:

(i) $Y$ has multiplicity 2 at $P$ and $F$ is not in the tangent cone of $Y$ at $P$;
(ii) $Y$ has multiplicity 2 at $P$ and $F$ is in the tangent cone of $Y$ at $P$;
(iii) $Y$ has multiplicity 3 at $P$ and $F$ is not in the tangent cone of $Y$ at $P$ .

In cases (i) and (ii) $P$ is either a tacnode with invariant $\delta\geq 1$ or a cusp with
invariant $\delta\geq 1$ . For every integer $g\geq 5$ and every integer $e$ with $g-e$ even
and $0\leq 3e\leq g+2$ there exists an integral trigonal curve $Y\subset F_{e}\subset P^{g-1}$ with a
unique singular point of any of the types (i), (ii) and (iii).

To show that all cases discussed in 2.5 may arise we prove the following
result; we stress that much better statements may be proved with the same
method, just with more cumbersome numerical computations; for an hint of a
possible statement for more than one singular point, see 1.9.

PROPOSITION 2.6. Assume char$(K)=0$ . Fix integers $g,$ $e,$
$\delta$ with $g-e$ even,

$\delta>0,0\leq 3e\leq g+2$ , and $g\geq 3e+4\delta-1$ . Fix a label “tacnode with invariant $\delta$

and $F$ not in its tangent cone”, “cusp with invariant $\delta$ and $F$ not in its tangent
cone” $or$ “ordinary triple point”. In the latter case assume $g\geq 3e+5$ . Then there
exists an integral Gorenstein curve $Y\subset F_{e}\subset P^{g-1}$ with a unique singular point, $P$,
whose isomorphism type is the one prescribed by the label and such that $E(P)=0$ .

$PR\infty F$ . Fix $P\in F_{e}$ and a line $D$ contained in the projective tangent space
$T_{P}F_{e}\subset P^{g-1}$ with $P\in D$ and $D\neq F$ , where $F$ is the line of the ruling, $\pi$ , of $F_{e}$
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containing $P$ . If $e>0$ assume $P\not\in h$ , where $h$ is a minimal degree section of the
ruling. Take $h$ and a fiber, $f$ , of the ruling as a basis of $Pic(F_{e})\cong Z^{\oplus 2}$ . Fix germs
$C_{j},$ $1\leq i\leq 3$ , of curves on $F_{e}$ such that $C_{1}$ has a tacnode with invariant $\delta$ at
$P$ and $D$ as tangent line at $P,$ $C_{2}$ has at $P$ a cusp with invariant $\delta$ at $P$ and $D$

as tangent line at $P$ and $C_{3}$ has at $P$ an ordinary planar triple point. Fix local
(holomorphic or formal) coordinates $x,$ $y$ near $P$ such that $C_{1}$ (resp. $C_{2}$ ) has
equation $y^{2}=x^{2\delta}$ (resp. $y^{2}=x^{2\delta+1}$ ). Let $Z(1)$ be the zero-dimensional sub-
scheme of $F_{e}$ with $Z(1)_{red}=\{P\}$ and with $(y^{2}, yx^{\delta}, x^{2\delta})$ as ideal sheaf. Let $Z(2)$

be the zero-dimensional subscheme of $F_{e}$ with $Z(1)_{red}=\{P\}$ and with
$(y^{2}, yx^{\delta+1}, x^{2\delta+1})$ as ideal sheaf. Let $Z(3)$ be the second infinitesimal neigh-
borhood of $P$ in $F_{e}$ , i.e. take $(I_{P})^{3}$ as ideal sheaf of $Z(3)$ . The canonically
embedded trigonal curves contained in $F_{e}$ are in the linear system $|3h+\psi F|$ of $F_{e}$

with $\psi=g/2+(3/2)e+1$ (just use the adjunction formula).

First Claim: We have $h^{1}(F_{e}, I_{Z(i)}(3h+\psi F))=0$ for $1\leq i\leq 3$ .
Proof of the First Claim: (a) Here we handle $Z(3)$ . We have

$h^{1}(F_{e}, I_{Z(3)}(3h+\psi F))\leq h^{1}(F_{e}, 0_{F_{e}}(3h+(\psi-3)F))$ ; we have $h^{1}(F_{e},$ $0_{F_{e}}(3h+$

$(\psi-3)F))=0$ because $\psi-3\geq 3e-1$ (e.g. use that $\pi_{*}(0_{F_{e}}(3h)\cong 0_{P^{1}}\oplus$

$0_{P^{1}}(-e)\oplus 0_{P^{1}}(-2e)$ and apply the projection formula ([10, Ex. $II.5.1]$ )).
(b) Here we handle $Z(1)$ and $Z(2)$ . Notice that $Z(1)$ and $Z(2)$ are contained

in $(2\delta+1)F,$ $leght(Z(1)\cap F)=length(Z(2)\cap F)=2,$ $\deg(0_{F}(3h))=3>0$ and
that $h^{1}(F_{e}, 0_{F_{e}}(3h+(\psi-2\delta-1)F))=0$ because $ y\geq 3e+2\delta$ .

Our second claim is that a general curve $Y\in|3h+yF|$ with $Z(1)\subset Y$

(resp. $Z(2)\subset Y$ , resp. $Z(3)\subset Y$) has at $P$ a tacnode with invariant $\delta$ and
$F$ not as tangent line (resp. a cusp with invariant $\delta$ and $F$ not as tangent
line, resp. an ordinary triple point). To check the second claim we will use
$h^{1}(F_{e}, I_{Z(i)}(3h+yF))=0$ for $1\leq i\leq 3$ (First Claim) to apply [8, Th. 3.7 (ii)].
For the singularities of $C_{1},$ $C_{2}$ and $C_{3}$ the theory of equianalytic or equisingular
deformation coincide and any equisingular deformation is trivial; for instance any
germ of planar curve singularity near an ordinary triple point and with the same
topological type is an ordinary triple point. The second claim for $Z(1)$ follows
from the First Claim, [9, Examples 1 and 2 before Definition 2.12] and [8, Th.
3.7 (ii)]. The second claim for $Z(2)$ follows from the First Claim, [9, Example 3
before Definition 2.12] and [8, Th. 3.7 (ii)]. The second claim for $Z(3)$ follows
from the First Claim, [9, Example 2 after Definition 2.3], Lemma 2.4, and [8,
Th. 3.7]. For the assertion on $E(P)$ , repeat the proof of 1.2; for the tacnode
and cusp case, use that we may take $D$ general; for the triple point case use that
we may take as tangent cone to $Y$ at $P$ three lines of $T_{P}F_{e}$ each of which may be
considered as a general line of $T_{P}F_{e}$ through $P$ .
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3. Birational Trigonal Pencils

Assume $g\geq 2,$ $Y$ Gorenstein and that $Y$ has a trigonal complete pencil, $|L|$ ,
whose associated rational map, say $u:X\rightarrow P^{1}$ , is either birational or purely
inseparable. Hence $X\cong P^{1}$ . If $u$ is not separable, then either char$(K)=2$ or
char$(K)=3$ because $\deg(u)\leq 3$ . Call $L$ the associated spanned rank 1 torsion
free sheaf on $Y$ with $\deg(L)=3$ . We may assume $L$ spanned and $\deg(L)=3$ ,
because the case $\deg(L)=3$ and $L$ not spanned is reduced to the case of a
spanned $L$ ‘ with $\deg(L^{\prime})\leq 2$ which is completely described by [6, Th. A of the
Appendix with J. Harris], and [12, Prop. 1.1].

REMARK 3.1. We have $\deg(u)=\deg((\pi^{*}(L)/Tors(\pi^{*}(L)))$ . In particular
$\deg(u)=3$ if and only if $L\in Pic^{3}(Y)([6$ , Lemma 1 of the Appendix with J.
Harris].

(3.2) Here we consider the case $\deg(u)=1$ . Here we do not have any re-
striction on char $(K)$ . By [18, Th. 3.5], $Y\subset T\subset P^{g-1},$ $T$ cone with vertex $v$ and
as base a rational normal curve, $C$, of a hyperplane of $P^{g-1}$ . Since $\deg(u)=1$

and $\deg(C)=g-2,$ $Y$ has multiplicity $g$ at $v$ . Since $\deg(u)=1$ , any two divisors
of the pencil must contain $v$ with ”multiplicity” 2. With the notation of section
one for the blowing-up $\alpha$ : $S\rightarrow T$ of $T$ at $v$ , we have $S\cong F_{g-2}$ and $ Y^{\prime}\in$

$|h+(2g-2)F|$ , where $Y$ ‘ is the strict transform of $Y$ in $S$. We have $X\cong Y^{\prime}\cong P^{1}$

and $Y\backslash \{v\}$ is smooth. Viceversa, for any irreducible $Y^{\prime}\in|h+(2g-2)F|$ the curve
$\alpha(Y^{\prime})\subset P^{g-1}$ has degree $2g-2$ , multiplicity $g$ at $v$ and it is non-degenerate. By
[18, Formula 3.1] (with $d$ instead of $d-1$ ), we have $p_{a}(\alpha(Y‘))=g$ . Intersecting
$\alpha(Y$

‘
$)$ with a hyperplane we obtain a $(g-1)$ -dimensional family of rationally

equivalent Cartier divisor of degree $2g-2$ . Hence $0_{\alpha(Y^{\prime})}(1)\cong\omega_{\alpha(Y^{\prime})}$ and $\alpha(Y$
‘

$)$ is
Gorenstein, i.e. $\alpha(Y^{\prime})$ is a trigonal curve with degree 1 associated rational map.
Thus the set of all solutions (i.e. of all trigonal curve with degree 1 associated
rational map) is parametrized by an irreducible unirational variety of dimension
$\dim(|h+(2g-2)F|)$ . Two points in the parameter space differing by an element
of $Aut(P^{1})$ corresponds to isomorphic trigonal curves. We do not claim that, up
to elements of $Aut(P^{1})$ , this is a generically finite-to-one parametrization.
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