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ON CHEN INVARIANT OF CR-SUBMANIFOLDS IN A
COMPLEX HYPERBOLIC SPACE
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1. Introduction

One of the very basic problems in submanifold theory is to find relations
between extrinsic and intrinsic invariants of submanifolds. Many famous results
in differential geometry, such as isoperimetric inequality, Chem-Lashof’s theorem
among others, are regarded as results in this respect.

Recently, Bang-Yen Chen has introduced new type of Riemannian curvature
invariants and obtained sharp inequalities involving these invariants and the
square mean curvature for arbitrary submanifolds in real and complex space
forms ([5], [6]). Roughly speaking, an isometric immersion of a Riemannian
manifold into a space form satisfying an equality case of the inequalities is an
immersion which produces the least possible amount of tension from the ambient
space at each point of the submanifold. It is natural and interesting to investigate
such submanifolds, from both geometric and physical point of views.

Let $M$ be an n-dimensional Riemannian manifold. Denote by $K(\pi)$ the
sectional curvature of $M$ associated with a plane section $\pi\subset T_{p}M,$ $p\in M$ . For
any orthonormal basis $e_{1},$

$\ldots,$
$e_{n}$ of the tangent space $T_{p}M$ , the scalar curvature

$\tau$ at $p$ is defined to be $\tau(p)=\sum_{i<j}K(e_{i}\wedge e_{j})$ . Let $L$ be a subspace of $T_{p}M$ of
dimension $r\geq 2$ and $\{e_{1}, \ldots, e_{r}\}$ an orthonormal basis of $L$ . We define the scalar
curvature $\tau(L)$ of the r-plane section $L$ by $\tau(L)=\sum_{\alpha<\beta}K(e_{\alpha}\wedge e_{\beta}),$ $1\leq\alpha,\beta\leq r$ .

For an integer $k\geq 0$ , denote by $\mathscr{S}(n,k)$ the finite set consisting of unordered
k-tuples $(n_{1}, \ldots,n_{k})$ of integers $\geq 2$ satisfying $n_{1}<n$ and $n_{1}+\cdots+n_{k}\leq n$ . De-
note by $\mathscr{S}(n)$ the set of k-tuples with $k\geq 0$ for a fixed $n$ .

For each k-tuple $(n_{1}, \ldots, n_{k})\in \mathscr{S}(n)$ , Chen’s curvature invariant $\delta(n_{1}, \ldots,n_{k})$

introduced in $[5, 6]$ are given by

$\delta(n_{1}, \ldots,n_{k})(p)=\tau(p)-\inf\{\tau(L_{1})+\cdots+\tau(L_{k})\}$ , (1.1)
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where $L_{1},$
$\ldots,$

$L_{k}$ run over all $k$ mutually orthogonal subspaces of $T_{p}M$ such that
$\dim L_{j}=n_{j},$ $j=1,$

$\ldots,$
$k$ .

In [6] Chen proved that, for every n-dimensional submanifold $M^{n}$ in a real
space form $R^{m}(\epsilon)$ of constant sectional curvature $\epsilon$ , the invariant $\delta(n_{1}, \ldots,n_{k})$ and
the square mean curvature $H^{2}$ of $M^{n}$ satisfy the following sharp inequality:

$\delta(n_{1}, \ldots,n_{k})\leq c(n_{1}, \ldots,n_{k})H^{2}+b(n_{1}, \ldots,n_{k})\epsilon$ , (1.2)

where $c(n_{1}, \ldots,n_{k})$ and $b(n_{1}, \ldots,n_{k})$ are positive constants defined by

$c(n_{1}, \ldots,n_{k})=\frac{n^{2}(n+k-1-\sum n_{j})}{2(n+k-\sum n_{j})}$ , (1.3)

$b(n_{1}, \ldots,n_{k})=\frac{1}{2}(n(n-1)-\sum_{j=1}^{k}n_{j}(n_{j}-1))$ . (1.4)

It was proved in [6] that the same inequality holds for totally real sub-
manifolds in a complex space form of constant holomorphic sectional curvature
$ 4\epsilon$ , too.

Let $M$ be a submanifold in a Kaehler manifold $\tilde{M}$ . A subspace $V\subset T_{p}M$ is
called totally real if $JV\subset T_{p}^{\perp}M$ , where $T_{p}^{\perp}M$ denote the normal space of $M$ at $p$ .
$M$ is called totally real if each tangent space of $M$ is totally real. A submanifold
$M$ of $\tilde{M}$ is called a CR-submanifold if there exists on $M$ a differentiable holo-
morphic distribution $\mathscr{H}$ such that its orthogonal complement $\mathscr{H}^{\perp}\subset TM$ is a
totally real distribution ([2]).

For a $(2n+p)$ -dimensional CR-submanifolds with $2n$-dimensional maximal
holomorphic tangent subspace (i.e, $\dim \mathscr{H}^{\perp}=p$) in a complex hyperbolic space
$CH^{m}(-4)$ of constant holomorphic sectional curvature-4, we have the following
sharp inequality:

$\delta(n_{1}, \ldots, n_{k})\leq c(n_{1}, \ldots, n_{k})H^{2}-b(n_{1}, \ldots,n_{k})-3n+\frac{3}{2}\sum_{i=1}^{k}n_{i}$ . (1.5)

Let $M$ be a real $2n$-dimensional Kaehler manifold. For a k-tuple
$(2n_{1}, \ldots, 2n_{k})\in \mathscr{S}(2n)$ , Chen has also introduced the complex $\delta$-invariants
$\delta^{c}(2n_{1}, \ldots, 2n_{k})$ by

$\delta^{c}(2n_{1}, \ldots, 2n_{k})=\tau-\inf\{\tau(L_{1}^{c})+\cdots+\tau(L_{k}^{c})\}$ ,

where $L_{1}^{c},$
$\ldots,$

$L_{k}^{c}$ mn over all $k$ mutually orthogonal complex subspaces of $T_{p}M$ ,
$p\in M$ , with dimensions $2n_{1},$

$\ldots,$
$2n_{k}$ , respectively.
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For $\delta_{n}^{c}$ $:=\delta^{c}(2, \ldots, 2)$ ( $2$ appears $n$ times) of a $2n$-dimensional Kaehler sub-
manifold in the complex Euclidean space, we have the following result from [5].

$\delta_{n}^{c}\leq 0$ . (1.6)

In [9] the author investigated CR-submanifolds with $\dim \mathscr{H}^{\perp}=1$ in a com-
plex hyperbolic space satisfying the equality case of (1.5) with $\delta(2, \ldots, 2)(2$

appears $k$ times) and established the explicit representation of such submanifolds
in an anti-de Sitter space-time via Hopf’s fibration, in terms of Kaehler sub-
manifolds of the complex Euclidean $(m-1)$ -space which satisfying the equality
case of (1.6). This result is a generalization of Chen and Vrancken’s result with
$n=1$ and $k=1$ ([7]).

CR-submanifolds we constructed in [9] have the following properties:
(1) The shape operator $A_{\eta}$ with respect to the unit vector field $\eta\in \mathscr{H}^{\perp}has$ two

constant principal curvatures.
(2) The mean curvature vector field is parallel.
A submanifold is said to be linearly full in $CH^{m}(-4)$ if it does not lie in

any totally geodesic complex hypersurface of $CH^{m}(-4)$ .
The purpose of this paper is to determine linearly full CR-submanifolds with

$\dim \mathscr{H}^{\perp}=1$ in $CH^{m}(-4)(m>n+1)$ satisfying the equality case of (1.5) with a
general k-tuple $(n_{1}, \ldots,n_{k})$ , under the condition that the shape operator $A_{\eta}$ with
respect to $\eta\in \mathscr{H}^{\perp}$ has constant principal curvatures.
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2. Preliminaries

For a submanifold $M^{n}$ of a complex space form $\tilde{M}^{n}(4\epsilon)$ , we denote by $\nabla$

and $\tilde{\nabla}$ the Levi-Civita connection on $M$ and $\tilde{M}^{n}(4\epsilon)$ , respectively. The formulas
of Gauss and Weingarten are given respectively by

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+h(X, Y)$ , (2.1)

$\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$ , (2.2)

where $h,$ $A$ and $D$ are the second fundamental form, the shape operator and
the normal connection. Denote by $R$ and $\tilde{R}$ the Riemann curvature tensors of
$M^{n}$ and $\tilde{M}^{n}(4\epsilon)$ . Then the equations of Gauss, Codazzi and Ricci are given
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respectively by

$\langle R(X, Y)Z, W\rangle=\langle A_{h(Y,Z)}X, W\rangle-\langle A_{h(X,Z)}Y, W\rangle$

$+\epsilon\{\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle JY, Z\rangle JX-\langle JX, Z\rangle JY+2\langle X,JY\rangle JZ\}$ , (2.3)

$(\tilde{R}(X, Y)Z)^{\perp}=(\overline{\nabla}_{X}h)(Y, Z)-(\overline{\nabla}_{Y}h)(X, Z)$ , (2.4)

$ R^{D}(X, Y;\xi, \eta)=\tilde{R}(X, Y;\xi, \eta)+\langle[A_{\xi}, A_{\eta}](X), Y\rangle$ , (2.5)

where $X,$ $Y,$ $Z,$ $W$ (respectively, $\eta$ and $\xi$) are vector tangent (respectively, normal)
to $M,$ $R^{D}(X, Y)=[D_{X}, D_{Y}]-D_{[X,Y]}$ , and $\overline{\nabla}h$ is defined by

$(\overline{\nabla}_{X}h)(Y, Z)=D_{X}h(Y, Z)-h(\nabla_{X}Y, Z)-h(Y, \nabla_{X}Z)$ . (2.6)

Let $M$ be a CR-submanifold. Denote by $T^{\perp}M=J\mathscr{H}^{\perp}\oplus v$ the orthogonal
decomposition of the normal bundle, where $\mathscr{H}^{\perp}$ is the totally real distribution
and $v$ a complex subbundle of $T^{\perp}M$ . We have from [4]

$A_{JZ}W=A_{JW}Z$ , $A_{J\xi}X=-A_{\xi}JX$ , (2.7)

for vector fields $Z,$ $W$ in $\mathscr{H}^{\perp},$ $\xi$ in $v,$ $U$ in $TM$ and vector field $X$ in the hol-
omorphic distribution $\mathscr{H}$ .

3. Main Results

Consider the complex number $(m+1)$ -space $C_{1}^{m+1}$ endowed with the pseudo-
Euclidean metric go given by (for the details, cf. [8]) $go=-dz_{0}d\overline{z}_{0}+\sum_{j=1}^{m}dz_{j}d\overline{z}_{j}$ , where
$\overline{z}_{k}$ denotes the complex conjugate of $z_{k}$ . On $C_{1}^{m+1}$ we define $(z, w)=$

$-z_{0}\overline{w}_{0}+\sum_{k=1}^{m}z_{k}\overline{w}_{k}$ . Put $H_{1}^{2m+1}(-1)=\{z=(z_{0}.z_{1}\ldots..z_{m})\in C_{1}^{m+1} : (z, z)=-1\}$ .
Then $H_{1}^{2m+1}(-1)$ is a real hypersurface of $C_{1}^{m+1}$ whose tangent space at $ z\in$

$H_{1}^{2m+1}(-1)$ is given by $T_{z}H_{1}^{2m+1}(-1)=\{w\in C_{1}^{m+1} : {\rm Re}(z, w)=0\}$ . It is known
that $H_{1}^{2m+1}(-1)$ together with the induced metric $g$ is a pseudo-Riemannian mani-
fold of constant sectional curvature $-1$ , which is known as an anti-de Sitter space
time.

We put $H_{1}^{1}=\{\lambda\in C:\lambda\overline{\lambda}=1\}$ . Then we have an $H_{1}^{1}$ -action on $H_{1}^{2m+1}(-1)$

given by $z\mapsto\lambda z$ . At each point $z$ in $H_{1}^{2m+1}(-1)$ , the vector $iz$ is tangent to
the flow of the action. Since $(, )$ is Hermitian, we have $(iz, iz)=-1$ . Note that
the orbit is given by $x(t)=e^{il}z$ and $dx(t)/dt=ix(t)$ . Thus the orbit lies in the
negative definite plane spanned by $z$ and $iz$ . The quotient space $ H_{1}^{2m+1}(-1)/\sim$ ,
under the identification induced from the action, is the complex hyperbolic
space $CH^{m}(-4)$ with constant holomorphic sectional curvature $-4$ . The almost
complex stmcture $J$ on $CH^{m}(-4)$ is induced from the canonical almost com-
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plex structure $J$ on $C_{1}^{m+1}$ , the multiplication by $i$, via the totally geodesic fibration:
$\pi$ : $H_{1}^{2m+1}(-1)\rightarrow CH^{m}(-4)$ .

The main result is the following.

THEOREM 1. Let $M$ be a linearly full $(2n+1)$ -dimensional CR-submanifolds
with $\dim \mathscr{H}^{\perp}=1$ in $CH^{m}(-4)(m>n+1)$ satisfying the equality case of (1.5).
Then the shape operator $A_{\eta}$ with respect to the unit vector field $\eta\in \mathscr{H}^{\perp}has$ con-
stant principal curvatures if and only if up to rigid motions, the immersion is the
composition $\pi\circ z$ , where $z$ is locally, one of the following.

(1) $z:\hat{M}=R^{2}\times U\rightarrow C_{1}^{m+1}$ is given by

$z(u, t, w_{1}, \ldots, w_{n})=e^{i}$
‘
$(-1-\frac{1}{2}|\Psi|^{2}+iu,$ $-\frac{1}{2}|\Psi|^{2}+iu,$ $\Psi)$ , (3.1)

where $U$ is a domain of $C^{n}$ and $\Psi$ : $U\rightarrow C^{m-1}$ is a holomorphic isometric im-
mersion in $C^{m-1}$ satisfying the equality case of (1.6).

(2) $z:R^{2n+2}\supset U\rightarrow C_{1}^{m+1}$ is given by

$z(s, t, x_{1}, x_{2}, \ldots, y_{1}, y_{2})$

$=(g(x, y)e^{-(1-\alpha^{2})is},\frac{\alpha\sqrt{(1-\alpha^{2})}}{1-\alpha^{2}}e^{((1-\alpha^{2})/\alpha)it},$ $\phi(x, y)e^{-(1-\alpha^{2})is})$ , (3.2)

where $\alpha=\sqrt{k/(2n-k)},$ $-|g|^{2}+|\phi|^{2}=-1/(1-\alpha^{2})$ and $z_{1}=(g(x, y)e^{-(1-\alpha^{2})is}$ ,
$O,$ $\phi(x, y)e^{-(1-\alpha^{2})is})$ is a CR-submanifold with pseudo-Riemannian metric in $C_{1}^{m}$

which satisfies the following conditions:
There exists an orthonormal basis $\{E_{1}, \ldots, E_{2n},\tilde{E}_{2n+1}\}$ such that $E_{2l}=iE_{2l-1}$

$(l=1, \ldots, n),\tilde{E}_{2n+1}=(1/\sqrt{1-\alpha^{2}})\partial/\partial s$ and the second fundamental form $\tilde{h}$ takes
the following form.

$\tilde{h}(E_{2r-1}, E_{2r-1})^{\sqrt{1-\alpha^{2}}}=i\tilde{E}_{2n+1}+\phi_{r}\tilde{\xi}_{r}$ , (3.3)

$\tilde{h}(E_{2r}, E_{2r})=\sqrt{1-\alpha^{2}}i\tilde{E}_{2n+1}-\phi_{r}\tilde{\xi}_{r}$ , (3.4)

$\tilde{h}(E_{2r-1},E_{2r})=i\phi\tilde{\xi}_{r}$ , $\tilde{h}(X_{i}, X_{j})=\tilde{h}(X_{i},\tilde{E}_{2n+1})=0$ , $(i\neq j)$ (3.5)

$\tilde{h}(\tilde{E}_{2n+1},\tilde{E}_{2n+1})=-\sqrt{1-\alpha^{2}}i\tilde{E}_{2n+1}$ (3.6)

where $X_{j}\in\tilde{L}_{j}:=Span\{E_{n_{1}+\cdots+n_{j- 1+1}}, \ldots, E_{n_{1}+\cdots+n_{j}}\}(j=1, \ldots, n),$ $n_{1}=\cdots=n_{n}=$

$2n/k,$ $\phi_{r}$ are functions and $\tilde{\xi}_{r}$ are unit normal vector fields perpendicular to $i\tilde{E}_{2n+1}$ .

Another purpose is to prove the following general property.
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THEOREM 2. Let $M$ be a $(2n+p)$ -dimensional CR-submamfolds with
$\dim \mathscr{H}^{\perp}=p$ in $CH^{m}(-4)$ satisfying the equality case of (1.5). Then $M$ has
parallel mean curvature vector fields $\vec{H}i.e.,$ $D\vec{H}=0$ and, moreover, $M$ is foliated
by geodesics or circles of $CH^{m}(-4)$ . In particular, $\iota fm>n+1,$ $p=1$ and $M$ is
linearly full, then $M$ is non-minimal and foliated by circles of $CH^{m}(-4)$ . If
$p>1$ , then $M$ is minimal and foliated by geodesics of $CH^{m}(-4)$ .

4. Proof of Theorem 1

For a subspace $L\in T_{p}M$ of dimension $r$ we put $\Psi(L)=\sum_{i<j}\langle Jv_{i}, v_{j}\rangle^{2}$ ,
$1\leq i,$ $j\leq r$ , where $\{v_{1}, \ldots, v_{r}\}$ is an orthonormal basis of $L$ .

We have the following general inequalities from [6].

LEMMA 3. Let $x:M\rightarrow CH^{m}(-4)$ be a $(2n+p)$ -dimensional CR-submanifold
with $\dim \mathscr{H}^{\perp}=p$ . Then

$\delta(n_{1}, \ldots,n_{k})\leq c(n_{1}, \ldots,n_{k})H^{2}-b(n_{1}, \ldots,n_{k})-3n+\frac{3}{2}\sum_{i=1}^{k}n_{i}$ (4.1)

Equality sign of (4.1) holds for some $(n_{1}, \ldots,n_{k})\in \mathscr{S}(2n+p)$ if and only if, there
exists an orthonormal basis $e_{1},$ $\ldots$ , $e_{2m}$ at $p$ , such that

(a) $L_{j}$ $:=Span\{e_{n_{1}+\cdots+n_{j}- 1+1}, \ldots,e_{n_{1}+\cdots+n_{/}}\}$ satisfy $\Psi(L_{j})=n_{j}/2$ ,
(b) the shape operators of $M$ in $CH^{m}(-4)$ at $p$ take the following forms:

$A_{r}=\left(\begin{array}{llllll}A_{l}^{r} & & 0 & 0 & & 0\\| & . & | & | & \ddots & |\\0 & & A_{k}^{r} & 0 & & 0\\0 & & 0 & \mu_{r} & & 0\\| & & | & | & & |\\0 & & 0 & 0 & & \mu_{r}\end{array}\right)$ ,

$r=2n+2,$ $\ldots,$
$2m$ ,

where $A_{r}:=A_{e_{r}}$ and each $Af$ is a symmetric $n_{j}\times n_{j}$ submatrix such that

trace $(A_{1}^{r})=\cdots=traoe(A_{k}^{r})=\mu_{r}$ . (4.2)

In the rest of this paper we shall assume that $M$ is a $(2n+1)$-dimensional
CR-submanifolds with $\dim \mathscr{H}^{\perp}=1$ in a complex hyperbolic space satisfying the
equality case of (4.1). Under the hypothesis, we have $\vec{H}\in J\mathscr{D}^{\perp}$ in the same way
as [9]. Let $\{e_{1}, \ldots, e_{2m}\}$ be an orthonormal frame field on $M$ mentioned in
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Lemma 3 such that $e_{2n+2}$ is parallel to the mean curvature vector field and
$\{e_{1}, \ldots, e_{2n+1}\}$ diagonalize the shape operator $A_{2n+2}$ . Without loss of generality
we may assume that $Je_{2n+1}=e_{2n+2}$ . In the same way as [9] we have $Je_{2n+1}$ is a
parallel normal vector field, i.e., $D(Je_{2n+1})=0$ . Then we get

$ 2\langle PX, Y\rangle+2\langle A_{2n+2}PA_{2n+2}X, Y\rangle=(X\mu_{2n+2})\langle e_{2n+1}, Y\rangle$

$-(Y\mu_{2n+2})\langle e_{2n+1}, X\rangle+\mu_{2n+2}\langle PA_{2n+2}X, Y\rangle-\mu_{2n+2}\langle PA_{2n+2}Y, X\rangle$ , (4.3)

where $PX$ is tangential components of $JX$.
From now on we shall assume that all principal curvatures of $A_{2n+2}$ are

constant. Then we have the following lemmas.

LEMMA 4. Let $\{e_{1}, \ldots, e_{2n}\}$ be an orthonormal frame field of $\mathscr{H}$ with
$A_{2n+2}e_{j}=\lambda_{j}e_{i}$ as above. Then for any $i\in\{1, \ldots, 2n\}$ we get,

$\sum_{j=1,\lambda_{j}\neq\lambda_{j}}^{2n}(\frac{-1+\lambda_{i}\lambda_{j}}{\lambda_{i}-\lambda_{j}}(1+2\langle Pe_{l}, e_{j}\rangle)^{2}+\frac{1}{\lambda_{i}-\lambda_{j}}\sum_{2n+3}^{m}(h_{ii}^{r}h_{jj}^{r}-(h_{ij}^{r})^{2}))=0$ . (4.4)

where $ h_{ij}^{r}=\langle A_{r}e_{i}, e_{j}\rangle$ .

PROOF. The proof is given in the same way as the proof of lemma 2 in
[3]. $\square $

LEMMA 5. $If\mu_{2n+2}^{2}=4$ , then $A_{2n+2}$ has exactly two distinct principal curvatures.

$PR\infty F$ . Let $\sigma(\mathscr{H})$ be the spectrum of $A_{2n+2}|\mathscr{H}$ For $\lambda\in\sigma(\mathscr{H})$ we denote by
$T_{\lambda}$ the sub-bundle of $\mathscr{H}$ formed by the eigenspaces corresponding to the
eigenvalue $\lambda$ . By using (4.3) for $\lambda\in\sigma(\mathscr{H}),$ $X\in T_{\lambda}$ we have

$(2\lambda-\mu_{2n+2})A_{2n+2}PX=(-2+\lambda\mu_{2n+2})PX$ . (4.5)

Assume that there exists $\lambda\in\sigma(\mathscr{H})$ with $\lambda\neq\alpha/2$ . We obtain from (4.5) that
$A_{2n+2}PX=(\alpha/2)PX$ for $X\in T_{\lambda}$ . Hence $\alpha/2$ is an eigenvalue. Let $E_{j}$ be the
eigenvectors corresponding to $\lambda_{j}\neq\alpha/2$ .

By the way, we have $\tilde{R}(X, Y;Je_{2n+1}, \xi)=R^{D}(X, Y;Je_{2n+1}, \xi)=0$ for any
$\xi\in v$ by virtue of $D(Je_{2n+2})=0$ . Hence, Ricci equation implies

$[A_{2n+2},A_{\xi}]=0$ . (4.6)

It follows from (2.7) and (4.6) that $\langle A_{r}E_{j}, E_{j}\rangle\langle A_{r}X, X\rangle-\langle A_{r}E_{j}, X\rangle^{2}=0$ , for
eigenvector $X\in T_{\alpha/2}$ . Hence we have
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$\sum_{j=1,\lambda_{j}\neq\alpha/2}^{2n}\frac{-1+(\alpha/2)\lambda_{j}}{\alpha/2-\lambda_{j}}(1+2\langle PX, E_{j}\rangle^{2})=-\frac{\alpha}{2}\sum_{j=1,\lambda_{j}\neq\alpha/2}^{2n}(1+2\langle PX,E_{/}\rangle^{2})\neq 0$ ,

(4.7)

which contradicts (4.4). Therefore we obtain that $\sigma(\mathscr{H})=\{\alpha/2\}$ . $\square $

LEMMA 6. If $\mu_{2n+2}^{2}\neq 4,$ $A_{2n+2}$ has at most three distinct principal curvatures.

PROOF. If $\#\sigma(\mathscr{H})\geq 2$ , then we have the following orthogonal decomposition:

$\mathscr{H}=T_{\alpha_{\mathfrak{l}}}\oplus JT_{\alpha_{1}}\oplus\cdots T_{\alpha_{s}}\oplus JT_{\alpha_{s}}\oplus T_{\lambda}\oplus T_{\mu_{2n+2}-\lambda}$ , (4.8)

where $\lambda=(\mu_{n+2}+\sqrt{\mu_{n+2}^{2}-4}/2),$ $T_{\lambda}$ and $T_{\mu_{2n+2}-\lambda}$ are J-invariant, and $\lambda\neq\alpha_{j}$

from (4.5). We may assume that we can choose the eigenvalue $\beta\in\sigma(\mathscr{H})$ with
$\beta>0$ and that there are no further eigenvalues between $\beta$ and $ 1/\beta$ . Hence, for all
eigenvalues $\gamma\in\sigma(\mathscr{H})$ , we have

$\frac{-1+\beta\gamma}{\beta-\gamma}\leq 0$ . (4.9)

On the other hand by virtue of (2.7) and (4.6), we have $\langle A_{r}e_{i}, e_{j}\rangle=0$ for
$r\geq 2n+2$ and $(e_{j}, e_{j})\not\in T_{\lambda}\oplus T_{\mu_{2n+2}-\lambda}\times T_{\lambda}\oplus T_{\mu_{2n+2}-\lambda}$ . Hence we obtain

$\sum_{j=1,\lambda_{j}\neq\alpha_{l}r}^{2n}\sum_{=2n+3}^{m}\frac{1}{\alpha_{l}-\lambda_{j}}(\langle A_{r}X, X\rangle\langle A_{r}e_{j}, e_{j}\rangle-\langle A_{r}e_{j}, X\rangle^{2})=0$ (4.10)

for each eigenvector $X$ corresponding to $\alpha_{l}(l=1, \ldots, s)$ . Further, for each eigen-
vector $Y$ corresponding to $\lambda$ , we have

$\sum_{j=1,\lambda_{j}\neq\lambda r}^{2n}\sum_{=2n+3}^{m}\frac{1}{\lambda-\lambda_{j}}(\langle A_{r}Y, Y\rangle\langle A_{r}e_{j}, e_{j}\rangle-\langle A_{r}Y, e_{j}\rangle^{2})$

$=\sum_{r=2n+3}^{m}(\frac{1}{2\lambda-\mu_{2n+2}}\langle A_{r}Y, Y\rangle\sum_{j=1,\lambda_{j}\neq\lambda}^{l}\langle A_{r}\tilde{E}_{j},\tilde{E}_{j}\rangle)=0$ , (4.11)

where $\tilde{E}_{j}$ are eigenvectors corresponding to $\mu_{2n+2}-\lambda$ and $t=\dim T_{\mu_{2n+2}-\lambda}$ . It
follows from (4.4), (4.9), (4.10) and (4.11) that $-1+\beta\gamma=0$ . Hence we obtain
that $T_{\lambda}=\phi,$ $ T_{\mu_{2n+2}-\lambda}=\phi$ and $s=2$ . Therefore $\#\sigma(\mathscr{H})=2$ . $\square $

LEMMA 7. If $m>n+1$ and $M$ is linearly full, then $n_{1}=\cdots=n_{k},$ $n_{1}+\cdots+$

$n_{k}=2n$ and, moreover, with respect to some suitable orthonormal frame field
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$\{e_{1}, \ldots, e_{2m}\}$ , the second fundamental form of $M$ in $CH^{m}(-4)$ satisfies

$h(e_{2r-1}, e_{2r-1})=\sqrt{\frac{k}{2n-k}}Je_{2n+1}+\phi_{r}\xi_{r}$ , (4. 12)

$h(e_{2r}, e_{2r})=\sqrt{\frac{k}{2n-k}}Je_{2n+1}-\phi_{r}\xi_{r}$ , (4.13)

$h(e_{2r-1}, e_{2r})=\phi_{r}J\xi_{r}$ , $h(e_{2n+1}, e_{2n+1})=\frac{2n}{\sqrt{k(2n-k)}}Je_{2n+1}$ (4.14)

$h(f_{i},f_{j})=h(f_{i}, e_{2n+1})=0$ $(i\neq j)$ , (4.15)

where $r=1,$
$\ldots,$ $n,$ $\phi_{r}$ are functions, $\xi_{r}\in v$ and $f_{j}\in L_{j}:=Span\{e_{n_{1}+\cdots+n_{j- 1}+1},$ $\ldots$ ,

$e_{n_{1}+\cdots+n_{j}}\}$ .

$PR\infty F$ . If $n_{1}+\cdots+n_{k}<2n$ , then we have $A_{2n+2}e_{2n-1}=\mu_{2n+2}e_{2n-1}$ ,
$A_{2n+2}Je_{2n-1}=\mu_{2n+2}Je_{2n-1}$ . We obtain from (4.3) that $2+2\mu_{2n+2}^{2}=2\mu_{2n+2}^{2}$ . It is a
contradiction. Therefore $n_{1}+\cdots+n_{k}=2n$ .

Suppose that $A_{2n+2}$ has exactly three distinct principal curvatures, $\mu_{2n+2}$ ,
$(\mu_{n+2}+\sqrt{\mu_{n+2}^{2}-4})/2$ and $(\mu_{n+2}-\sqrt{\mu_{n+2}^{2}-4})/2$ . If each submatrix $A_{2^{i}n+2}$ has
only one eigenvalue $\lambda_{i}$ , then we have $n_{j}\lambda_{j}=n_{i}/\sqrt{n_{i}-1}=\mu_{2n+2}$ for any $i$. Hence
$\#\sigma(\mathscr{H})=1$ . But it is a contradiction. If there exists a submatrix $A_{2n+2}^{j}$ which has
two eigenvalues $(\mu_{n+2}+\sqrt{\mu_{n+2}^{2}-4})/2$ and $(\mu_{n+2}-\sqrt{\mu_{n+2}^{2}-4})/2$ whose multi-
plicities are $l$ and $m(l>m)$ respectively. Then we get $(l-m)\sqrt{\mu_{2n+2}^{2}-4}=$

$(2-1-m)\mu_{2n+2}$ . But it does not hold, since $l,$ $m>2$ . If $\mathscr{H}=T_{\alpha_{1}}\oplus JT_{\alpha_{1}}$ , where
$\alpha_{1}\neq\mu_{2n+2},$ $(\mu_{n+2}\pm\sqrt{\mu_{n+2}^{2}-4})/2$ , then it follows from (2.7) and (4.6) that $M$ is
contained in a totally geodesic complex hyperbolic space $CH^{n+1}(-4)$ , since
$Je_{2n+1}$ is parallel. This is a contradiction. Therefore, $A_{2n+2}$ has exactly two
distinct eigenvalues.

Let $X$ be the eigenvector corresponding to the second eigenvalue $\alpha\neq\mu_{2n+2}$ .
From (4.5) we obtain that $PX$ is also an eigenvector corresponding to the
eigenvalue $\beta=(-2+\alpha\mu_{2n+2})/(2\alpha-\mu_{2n+2})$ . Since $A_{2n+2}$ has exactly two distinct
eigenvalues, we have $\beta=\mu_{2n+2}$ or $\beta=\alpha$ .

Suppose that $A_{2n+2}$ has two distinct eigenvalues $\mu_{2n+2}$ and $(-2+\mu_{2n+2}^{2})/$

$\mu_{2n+2}$ , i.e. $\mu_{2n+2}=\beta$ . Then, using (2.7) and (4.6), we obtain that $M$ is contained in
a totally geodesic complex hyperbolic space $CH^{n+1}(-4)$ . This is a contradiction.

Hence $A_{2n+2}$ has two distinct eigenvalues $\mu_{2n+2}$ and $\alpha=\beta$ . Then from (4.3)
we obtain that $\alpha^{2}-\mu_{2n+2}\alpha=-1$ . Moreover, using (4.5), we obtain that $T_{\alpha}$ is
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J-invariant. Further, let us suppose that the multiplicity of $\mu_{2n+2}$ is greater
than one. Let $X\in T_{\mu_{2n+2}}$ and \langle X, $ e_{2n+1}\rangle$ $=0$ . Then it follows from (4.5) that
$A_{2n+2}PX=((-2+\mu_{2n+2}^{2})/\mu_{2n+2})PX=\alpha PX$ . Hence, $PX\in T_{\alpha}$ . Therefore we ob-
tain that $A_{2n+2}P^{2}X=\alpha P^{2}X$ , i.e. $A_{2n+2}X=\alpha X$ . But it is a contradiction, since
$\mu_{2n+2}\neq\alpha$ . Therefore, the multiplicity of $\mu_{2n+2}$ is one. Moreover $n_{1}=\cdots=n_{k}$ by
virtue of lemma 3.

Consequently, from lemma 3, replace $e_{2n+1}$ by $-e_{2n+1}$ if necessary, we obtain
that $\alpha=1/\sqrt{n_{1}-1}$ and $\mu_{2n+2}=n_{1}/\sqrt{n_{1}-1}$ . $\square $

Let $\hat{M}=\pi^{-1}(M)$ denote the inverse image of $M$ via the Hopf fibration
$\pi$ : $H_{1}^{2m+1}\rightarrow CH^{m}(-4)$ . Then $\hat{M}$ is a principal circle bundle over $M$ with time-
like totally geodesic fibers. Let $z:\hat{M}\rightarrow H_{1}^{2m+1}(-1)\subset C_{1}^{m+1}$ denote the immer-
sion of $\hat{M}$ in $C_{1}^{m+1}$ . Let $\tilde{\nabla}$ and $\hat{\nabla}$ denote the metric connections of $C_{1}^{m+1}$ and $\hat{M}$ ,
respectively. We denote by $\chi*$ the horizontal lift of a tangent vector $X$ of
$CH^{m}(-4)$ . Then we have (cf. [8])

$\tilde{\nabla}_{X^{r}}Y^{*}=(\nabla_{X}Y)^{*}+(h(X, Y))^{*}+\langle JX, Y\rangle V+\langle X, Y\rangle z$ , (4.16)

$\tilde{\nabla}_{X^{r}}V=\tilde{\nabla}_{V}X^{*}=(JX)^{*}$ , (4.17)

$\tilde{\nabla}_{V}V=-z$ , (4.18)

for vector fields $X,$ $Y$ tangent to $M$, where $z$ is the position vector of $\hat{M}$ in $C_{1}^{2m+1}$

and $V=iz\in T_{z}H_{1}^{2m+1}(-1)$ .
Let $E_{1},$

$\ldots,$
$E_{2n+1},$ $\xi_{r}^{*}$ be the horizontal lifts of $e_{1},$

$\ldots,$ $e_{2n+1},$ $\xi_{r}$ , respectively and
let $E_{2n+2}=iz$ , and let $\{\omega_{i}^{j}\}$ be connection forms of $\hat{M}$ . Then, in the same way as
$[7, 9]$ , from lemma 7, (4.16), (4.17) and (4.18), we obtain

$\tilde{\nabla}_{E_{2r- 1}}E_{2r-1}=\sum_{j=1}^{2n}\omega_{2r-1}^{j}(E_{2r-1})E_{j}+\alpha iE_{2n+1}+\phi_{r}\xi_{r}^{*}-iE_{2n+2}$ , (4.19)

$\tilde{\nabla}_{E_{2r- 1}}E_{2r}=\sum_{j=1}^{2n}\omega_{2r}^{j}(E_{2r-1})E_{j}-\alpha E_{2n+1}+i\phi_{r}\xi_{r}^{*}+E_{2n+2}$ , (4.20)

$\tilde{\nabla}_{E_{2r}}E_{2r-1}=\sum_{j=1}^{2n}\omega_{2r-1}^{j}(E_{2r})E_{j}+\alpha E_{2n+1}+i\phi_{r}\xi_{r}^{*}-E_{2n+2}$ , (4.21)

$\tilde{\nabla}_{E_{2r}}E_{2r}=\sum_{j=1}^{2n}\omega_{2r}^{j}(E_{2r})E_{j}+i\alpha E_{2n+1}-\phi_{r}\xi_{r}^{*}-iE_{2n+2}$ , (4.22)
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$\tilde{\nabla}_{E_{2r-1}}E_{2n+1}=\alpha E_{2r}$ , (4.23)

$\tilde{\nabla}_{E_{2r}}E_{2n+1}=-\alpha E_{2r-1}$ , (4.24)

$\tilde{\nabla}_{E_{2n+1}}E_{2n+1}=\frac{2n}{k}\alpha iE_{2n+1}-iE_{2n+2}$ , (4.25)

$\tilde{\nabla}_{E_{2r-1}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2r-1}=E_{2r}$ , (4.26)

$\tilde{\nabla}_{E_{2r}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2r}=-E_{2r-1}$ , (4.27)

$\tilde{\nabla}_{E_{2n+1}}E_{2n+2}=\tilde{\nabla}_{E_{2n+2}}E_{2n+1}=iE_{2n+1}$ , (4.28)

$\tilde{\nabla}_{E_{2n+2}}E_{2n+2}=iE_{2n+2}$ , (4.29)

$\tilde{\nabla}_{X_{i}}X_{j}\in Span\{E_{1}, \ldots,E_{2n}\}$ $(i\neq j)$ , (4.30)

where $r=1,$ $\ldots,n$ , $\alpha=\sqrt{k/(2n-k)}$ and $X_{j}\in L_{j}:=Span\{E_{n_{1}+\cdots+n_{j- 1}+1},$ $\ldots$ ,
$E_{n_{1}+\cdots+n_{j}}\}$ .

By using the above equations, we obtain the following lemmas.

LEMMA 8. $\hat{\nabla}_{E_{2n+1}-\alpha E_{2n+2}}(E_{2n+1}-\alpha E_{2n+2})=0$ , $\hat{\nabla}_{X^{\prime}}Y^{\prime}\in \mathscr{D}_{1}$ for $X^{\prime},$ $Y^{\prime}\in \mathscr{D}_{1}$ ,
where $\mathscr{D}_{1}$ $:=Span\{E_{1},E_{2}, \ldots, E_{2n}, \alpha E_{2n+1}-E_{2n+2}\}$ .

LEMMA 9. Let $\chi/\in \mathscr{D}_{1}$ . Then $\hat{\nabla}_{E_{2n+1}-\alpha E_{2n+2}}X^{\prime}\in \mathscr{D}_{1},\hat{\nabla}_{X}/(E_{2n+1}-\alpha E_{2n+2})=0$ .

LEMMA 10. $Z:=E_{2n+1}-\alpha E_{2n+2}$ is a constant vector in $C_{1}^{m+1}$ along each
integral manifold of $\mathscr{D}_{1}$ .

PROOF. If follows from (4.23), (4.24), (4.26) and (4.27) that
$\tilde{\nabla}_{E_{2r- 1}}(E_{2n+1}-\alpha E_{2n+2})=\tilde{\nabla}_{E_{2r}}(E_{2n+1}-\alpha E_{2n+2})=0$ . Using (4.25), (4.28) and (4.29),
we get $\tilde{\nabla}_{\alpha E_{2n+1}-E_{2n+2}}(E_{2n+1}-\alpha E_{2n+2})=((2n/k)\alpha^{2}-\alpha^{2}-1)iE_{2n+1}=0$ . $\square $

If $\alpha=1$ , we have $k=n$ and $n_{1}=\cdots=n_{n}=2$ . In this case, $\hat{M}$ is represented
by (1) of Theorem 1 by virtue of main theorem in [9].

Suppose that $\alpha\neq 1$ . Then from lemma 8, 9, there exist coordinates
$\{s, t, x_{1}, y1\cdots, x_{n}, y_{n}\}$ such that $\partial/\partial s,$ $\partial/\partial x_{1},$

$\ldots,$
$\partial/\partial y_{n}$ are tangent to integral

manifolds of $\mathscr{D}_{1},$ $\partial/\partial s=\alpha E_{2n+1}-E_{2n+2}$ and $\partial/\partial t=E_{2n+1}-\alpha E_{2n+2}$ . Then $\hat{M}$ is
locally a Riemannian product $\hat{M}_{1}\times\hat{M}_{2}$ , where $\hat{M}_{1}$ is a integral manifold of $\mathscr{D}_{1}$

and $\hat{M}_{2}$ is a integral curve of $E_{2n+1}-\alpha E_{2n+2}$ . Moreover, $z:\hat{M}\rightarrow C_{1}^{m+1}$ is a prod-
uct immersion. We put $Z_{0}:=Z|_{t=0}$ .

We may assume $Z_{0}=(0, \sqrt{1-\alpha^{2}},0, \ldots, 0)$ , up to rigid motions. In the same
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way as $[7, 9]$ , since $(z, Z_{0})$ is constant, we have

$z(s, 0, x_{1}, y1, \ldots, x_{n}, y_{n})=(f, c, \Psi_{1}, \ldots, \Psi_{m-1})$ , (4.31)

where $c$ is a constant determined by the initial conditions and $f,$ $\Psi_{1},$
$\ldots,$

$\Psi_{m-1}$

are functions.
Since $z_{s}+(1-\alpha^{2})iz=\alpha E_{2n+1}-E_{2n+2}+(1-\alpha^{2})E_{2n+2}=\alpha(E_{2n+1}-\alpha E_{2n+2})=$

$\alpha Z$ , we have

$\frac{\partial f}{\partial s}+(1-\alpha^{2})if=0$ , $\frac{\partial\Psi_{j}}{\partial s}+(1-\alpha^{2})i\Psi_{j}=0$ , (4.32)

$c(1-\alpha^{2})i=\alpha\sqrt{1-\alpha^{2}}$ , $(1-\alpha^{2})iz_{2}=\alpha\frac{\partial z_{2}}{\partial t}$ , (4.33)

where, $z_{2}$ is a position vector of $\hat{M}_{2}$ in $C_{1}^{m+1}$ . By solving differential equations
(4.32) and (4.33), we have

$z(s, t, x_{1}, \ldots, y_{n})$

$=(g(x_{1}, \ldots,y_{n})e^{-(1-\alpha^{2})is},\frac{\alpha\sqrt{1-\alpha^{2}}}{\alpha^{2}-1}ie^{((1-\alpha^{2})/\alpha)it},$ $\phi(x_{1}, \ldots, y_{n})e^{-(1-\alpha^{2})is})$ . (4.34)

Since $(z, z)=-1$ , we have

$-|g|^{2}+\frac{\alpha^{2}}{1-\alpha^{2}}+|\phi|^{2}=-1$ . (4.35)

We put $\tilde{E}_{2n+1}=1/\sqrt{1-\alpha^{2}}(\alpha E_{2n+1}-E_{2n+2})$ and $\tilde{E}_{2n+2}=(1/\sqrt{1-\alpha^{2}})$ .
$(E_{2n+1}-\alpha E_{2n+2})$ . It follows from $(4.19)-(4.29)$ that the second fundamental
form of $\hat{M}_{1}$ in $C_{1}^{m}$ satisfies $(3.3)-(3.6)$ .

Conversely, suppose that $\hat{M}$ satisfies the conditions in (2) of Theorem 1.
Let $\tilde{E}_{2n+2}$ be a unit vector field of $\hat{M}_{2}$ . We put $E_{2n+1}=(\alpha\sqrt{1-\alpha^{2}}/(\alpha^{2}-1))$ .
$\tilde{E}_{2n+1}-(\sqrt{1-\alpha^{2}}/(\alpha^{2}-1))\tilde{E}_{2n+2}$ and $E_{2n+2}=(\sqrt{1-\alpha^{2}}/(\alpha^{2}-1))\tilde{E}_{2n+1}-$

$(\alpha\sqrt{1-\alpha^{2}}/(\alpha^{2}-1))\tilde{E}_{2n+2}$ . Then, $\{E_{1}, \ldots, E_{2n}, E_{2n+1}, E_{2n+2}\}$ is an orthonormal
basis $\hat{M}$ and the second fundamental form of $\hat{M}$ in $C_{1}^{m+1}$ satisfies

$\tilde{h}(E_{2r-1}, E_{2r-1})=\alpha iE_{2n+1}-iE_{2n+2}+\phi_{r}\tilde{\xi}_{r}$ , (4.36)

$\tilde{h}(E_{2r}, E_{2r})=\alpha iE_{2n+1}-iE_{2n+2}-\phi_{r}\tilde{\xi}_{r}$ , (4.37)

$\tilde{h}(E_{2r-1},E_{2r})=i\phi_{r}\tilde{\xi}_{r}$ , $\tilde{h}(X_{i}, X_{j})=h(X_{i}, E_{2n+1})=0$ , $(i\neq j)$ , (4.38)

$\tilde{h}(E_{2n+1}, E_{2n+1})=\frac{2n}{k}\alpha iE_{2n+1}-iE_{2n+2}$ , (4.39)
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$X_{i}\in L_{j},$ $\phi_{r}$ are functions and $\tilde{\xi}_{r}$ are unit normal vector fields perpendicular to
$iE_{2n+1},$ $iE_{2n+2}$ . Therefore, we obtain that $e_{1}=\pi_{*}(E_{1}),$

$\ldots,$
$e_{n}=2\pi_{*}(E_{2n}),$ $e_{2n+1}=$

$\pi_{*}(E_{2n+1})$ satisfy $(4.12)-(4.15)$ . This completes the proof of Theorem 1.
In the rest of this section we shall determine normal CR-submanifolds with

$\dim \mathscr{H}^{\perp}=1$ in a complex hyperbolic space satisfying the equality case of (1.7).
$(P, e_{2n+1}, \omega^{1}, g)$ defines an almost contact metric stmcture on $(M, g)$ , where

$\omega^{1}(X):=\langle e_{2n+1}, X\rangle$ and $g$ is an induced metric ([10]). $M$ is said to be normal
if the tensor field $S$ defined by

$S(X, Y)=[PX, PY]+P^{2}[X, Y]-P[X, PY]$

$-P[PX, Y]+2d\omega_{1}(X, Y)e_{2n+1}$ (4.40)

vanishes ([1]).

THEOREM 11. Let $M$ be a linearly full $(2n+1)$ -dimensional CR-submanifolds
with $\dim \mathscr{H}^{\perp}=1$ in $CH^{m}(-4)(m>n+1)$ satisfying the equality case of (15).
Then $M$ is normal if and only if $\hat{M}$ is represented by (1) or (2) of Theorem 1.

$PR\infty F$ . It is known that $M$ is normal if and only if $PA_{2n+2}=A_{2n+2}P$ ([10]).
From (4.3) we obtain that the shape operator $A_{2n+2}$ has at most three distinct
constant eigenvalues $\mu_{2n+2},$ $(\mu_{n+2}+\sqrt{\mu_{n+2}^{2}-4})/2$ and $(\mu_{n+2}-\sqrt{\mu_{n+2}^{2}-4})/2$ .
The assertion follows immediately from Theorem 1. $\square $

5. Proof of Theorem 2

CASE 1. $p=1$ . In this case, in the same way as [9] we obtain that $Je_{2n+1}$ is
a parallel normal vector field, i.e., $D(Je_{2n+1})=0$ . Putting $Y=e_{2n+1}$ in (4.3), we
get $X\mu_{2n+1}=\omega^{1}(X)e_{2n+1}\mu_{2n+2}$ .

Differentiating this relation covariantly and using relation $(\nabla_{Y}\omega^{1})(X)=$

$\langle PA_{2n+2}Y, X\rangle$ , we obtain

$Y(e_{2n+1}\mu_{2n+2})\omega^{1}(X)-X(e_{2n+1}\mu_{2n+2})\omega^{1}(Y)$

$+e_{2n+1}\mu_{2n+2}\langle(PA_{2n+2}+A_{2n+2}P)Y, X\rangle=0$ . (5. 1)

Putting $Y=e_{2n+1}$ in (5.1), we get $X(e_{2n+1}\mu_{2n+2})=e_{2n+1}(e_{2n+1}\mu_{2n+2})\omega^{1}(X)$ . Com-
bining this and (5.2) yields $(e_{2n+1}\mu_{2n+2})\langle(PA_{2n+2}+A_{2n+2}P)Y, X\rangle=0$ .

Putting $X=\sum_{l=1}^{l=n_{1}/2}Je_{2l-1}$ and $Y=\sum_{l=1}^{l=nl/2}e_{2l-1}$ in this relation, we have
$e_{2n+1}\mu_{2n+1}trace(A_{1}^{2n+1})=0$ . If $M$ is nonminimal, then $e_{2n+1}\mu_{2n+2}=0$ , since
$trace(A_{1}^{2n+1})\neq 0$ from Lemma 3. Since $X\mu_{2n+1}=0$ for any vector $X$ perpen-
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dicular to $e_{2n+1}$ , we obtain that $\mu_{2n+2}$ is constant and hence $D\vec{H}=0$ . If $M$ is
minimal, then $M$ is is contained in a totally geodesic complex hyperbolic space
$CH^{n+1}(-4)$ by (2.7), (4.3) and (4.6).

CASE 2. $p\geq 2$ . In this case, by applying (2.7) we have $\mu_{2n+2}e_{2n+2}=$

$A_{Je_{2n+1}}e_{2n+2}=A_{Je_{2J\prime+2}}e_{2n+1}=0$ . Therefore, in this case $M$ is minimal.
Finally, we obtain from (2.1) and (2.2) that

$\tilde{\nabla}_{e_{2n+1}}e_{2n+1}=\mu_{2n+2}Je_{2n+1}$ , $\tilde{\nabla}_{e_{2n+1}}Je_{2n+1}=-\mu_{2n+2}e_{2n+1}$ . (5.2)

Hence the integral curve of $\mathscr{H}^{\perp}$ are geodesic or circle of $CH^{m}(-4)$ . This com-
pletes the proof of Theorem 2. $\square $
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