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THE ALGORITHM TO CALCULATE THE
PERIOD MATRIX OF THE CURVE x™ +y" =1 .

By

Yasuo KaMATA

Abstract. We show how to take a canonical homology basis and a
basis of the space of holomorphic 1-forms on the curve x™” + y" = 1,
and we show how to calculate its explicit period matrix.

1. Introduction

Let R be a compact Riemann surface and g be the genus of R. Let {w;},
(j=1,2,...,9) be a basis of the space of holomorphic 1-forms of R and {a, 8},
(k=1,2,...,9) be a basis of the first homology group of R over Z, the ring of
integers. Suppose that the intersection numbers of the closed paths a’s and B;’s
satisfy

I(aj’ﬁk) = —I(ﬂk1aj) = 5jka I(ajaak) = I(ﬁ],ﬁk) =0.

Such a basis {ox, S}, (k=1,2,...,9) is called a canonical homology basis.
In other words, a canonical homology basis is a set of closed paths whose in-

tersection matrix is
O I
J= ,
-1 O

where O and I are the g x g zero and identity matrices.
We denote by Q the period matrix (or Riemann matrix) of R with respect to
{w;} and {ax,p;}, that is,

o P ‘[“gwl fﬂlwl ‘[ﬁgwl

oo o [yop Jog o fp o
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We write this matrix as (4, B) by two g x g matrices. Multiplying Q by A7l
we obtain the normalized period matrix (I, T) = (I, A~'B). The matrix T, called
the theta matrix of R with respect to {w;} and {a,f\}, is non-singular symmetric
and has positive definite imaginary part.

Let L be the lattice of CY generated by the column vectors of (I,T). Then
the torus J(R) = CY9/L is an algebraic variety called the Jacobian variety of R.
One of the advantages of computing T lies in the theorem of Torelli which states
that given Riemann surfaces R; and R, are isomorphic if and only if their
Jacobian varieties J(R;) and J(R;) are isomorphic.

In general it is not so easy to give explicitly a canonical homology basis on
R.. Recently the combinatorial group theoretic method for general curves is
presented by C. L. Tretkoff and M. D. Tretkoff [2]. Unfortunately the method
needs to draw complicated figures and requires some knowledge of graph theory.
If R is a hyperelliptic curve, a general method to compute its normalized period
matrix is well-known (cf. [1], pp. 256-259).

If R is Fermat curve, only its period lattice can be known by David E.
Rohrlich ([5], p. 79). But the representation is not so simple, and the method can
not present the intersection matrix of the homology basis on R.

In the usual definition of the theta function attached to R, the period matrix
is normalized. Our method can present not only the period lattice but also the
intersection matrix and, hence, the normalized period matrix. Our method is an
extension of the method for the case of hyperelliptic curves.

Let R be the curve y" =1—x™, (n,me N), and g (=1) be the genus of R.
If we regard R as a n-ply branched covering of C =CU{x} and apply the
Riemann-Hurwitz formula, we have

g={(n—1)(m~-1)+1-d}/2, where d is the G.C.D. of m and n.

Let R be the projective imbedding of R into P2, the complex projective plane.
That is, R={[X,Y,Z]eP?|Y"=2Z"—X™"Z" ™} The points at infinity
(x = 00) of R correspond to the set E := {[X,Y,0] P2} N R. We classify R into
the following three cases:

() n=m (E={[1,p/,0] € P*|p = exp(ni/n),j=1,2,...,n}.),

(i) n>m+1and d =1 (E = {[1,0,0] € P*}. The point [1,0,0] is a branch
point of order n.),

(iii) n>m+1 and d > 1 (E = {[1,0,0] € P?}. The point [1,0,0] is a branch
point of order n/d.).

I would like to thank professor Kimio Watanabe for his instruction and
helpful advice, and the referee for his careful reading and detailed suggestions.
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2. Topological Model and Homology Basis

We regard R as a Riemann surface of n-ply branched covering of the
Riemann sphere C. Let X1, Xs,..., X, be these C’s. n/ (j=1,2,...,m) are the
branch points of R, where # is one of the primitive m-th roots of unity.

Since the ramification indices of these branch points are equal to », there is
no ambiguity to choose the branch points on Xj,...,X,. Therefore any round
trip path on R between two of these branch points is a closed path and belongs
to H\(R,Z), the first homology group. There exist dim H;(R,Z) = 2g closed
paths which are linearly independent over Z.

It is clear that any closed path on R is homologous to the union of the round
trip paths between two branch points on R. We cut open the lines between 7/ and
7, (j=1,2,...,m—1) on X1,X5,..., X,

Now we consider the minimal loop that is the union of the branch cuts
[7/,n/*), from #/ to n/*! on Xi and [y/*!,5/],,, from 7/*! to #/ on Xiy1. We
denote such loops by

%k = [0, 0 + [ 0 e

for j=1,2,...,m—1 and k=1,2,...,n, where X,;1 = Xj.

Case (i). In this case, all closed paths on R are generated by the o, ;’s. Since
the cut lines [7,7?%], [#%,7%],,..., [, 1], belong to Xi, each of the other bank
of these branch cuts belongs to another X;. We denote the path of the opposite
bank of the path [/,#/*1], by [n/,#/*!],., Xi € {X1,..., X,}. Here X; is selected
by the analytic continuation of y, n-ply valued function of x e C.

Since the union of the loops o 1,41 2,...,01,, is homologous to zero on R,
any one of them is not required to obtain a homology basis. So we discard the
loop «;,,. Because of the same reason we discard the loops 02,1y 03,1y« + + O, -

Now consider the following path on R:

l: [’7’”2]1 + [7721’73]1 +- [”m—l, 1]1 + [l,”m_l]I' +--+ [’73,772]1’ + [”Za”]l"

The path / is obviously closed and homologous to zero on X;. Since / is a sum of
the loops

[”j,”j-H]] + [”j-Ha”j]l', J = 172a v ,m - 1,

in order to get independent loops, at least one of them has to be discarded.
According to the same argument for X3, X3,...,X,, we discard the loops

™1, + L, e k=1,2,...,n.
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In other words, by the rearrangement of the branch cuts, we discard the minimal
loops
am—l,kz[ﬂm—lal]k+[17ﬂm_]]k+1, k= 1,2,...,"

Now the remaining minimal loops are ok, (j=12,...,m— 2 and
k=1,2,...,n—1). The number of them is (n—1)(m—2). Since (n—1)-
(m —2) = 2g = dim H(R, Z), these loops must be independent over Z. Therefore
they form a basis of Hi(R,Z).

Case (ii). If once we add the point at x = oo to the set of the branch points,
we can obtain a homology basis in the same way as in the case (i). From the
minimal loops

k=, + ks Ok = [1, 0] + [0, i
j=1,2,...,m—1 and k=1,2,...,n, where X, = X,
we discard the loops
011y 02,1y - -+ 5 O,y Om, 1y O, 25+« + » Olrm,n—1

to eliminate the linear dependence over Z. Then the number of the remaining
minimal loops is mn—{m+ (n—1)} = (n—1)(m—1)=2g. So the remaining

minimal loops & x, (j=1,2,...,m—1 and k=1,2,...,n—1) form a basis of
H\(R,Z).

Case (iii). As the ramification index of x = oo is n/d, there are d points at
infinity; hence, the minimal loops om, (k=1,2,... ,n) are not always closed.

Since the number of the loops corresponding to the remaining minimal loops in
the case (i) is (n—)(m—1)>2g=m-)(m-1)+1-4d, they are linearly
dependent over Z. To remove the dependent loops, we have to construct a
topological model of R by gluing Xi,..., X, together. To do so we investigate
how the branch cuts join one another. Slnce each of the branch cuts [/,7/*!],
and [1, o], belongs to only one side of X, the paths of the opposite bank to Xj
do not belong to Xi. These branch cuts are joined with the corresponding branch
cut by the analytic continuation of the branch of y.

Let X, (k=1,2,...,n) be Xx—{nn 2 ..,p™ 1 1,0} cut open all the
branch cuts [/,7/*!], and [1,00],. Let { be one of the primitive n-th roots of
unity and f be a branch of y on X;. Since the interchange of the branches of y
does not occur by the analytic continuation along any closed path on Xi, we can
assume that the branches (*7!f, (k=1,2,...,n) are assigned to X by the
analytic continuation.

In the first place, we consider the analytic continuation of f along a path
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which starts from any point on the branch cut [r7,7?%],, encircles the branch point
n counterclockwise, ends at the point on [5,7%];, opposite to the starting point.
Then the branch turns from f to {f. So the end point of the path should be on
[7,7%], and the branch cut [n,%),, is identified with the branch cut (7,72,
Similarly we see the branch cuts [5,7%],,...,[,7?], are identified with the
branch cuts [1,7%)5,...,[n,7?%],, respectively.

In the next place, we take a path which starts from any point on [;72,773]1,
encircles the branch points #? and 7 counterclockwise, ends at the point on
[72,73],, opposite to the starting point. Since this path encircles two branch
points, the branch turns from f to (?f by the analytic continuation along this
path. Therefore the branch cut [#%,4?),, is identified with the branch cut [52,7%];.
Similarly we see the branch cuts [#%,#%),,...,[#% 7%, are identified with the
branch cuts [#%,7%],,...,[n? #°],, respectively.

Successively using the same process, we see that the branch cuts [/, 4/+!] Iy
and [1, ], on each Xj/ are glued by

[ﬂj,ﬂﬂ—]]k' = [”j’”j+]]<k+j>7 [la Oo]k’ = [la OO]<k+m>
for j=1,2,...,m—1 and k=1,2,...,n, where {a> denotes the element of
{1,2,...,n} congruent to a modulo .

Xiey Xamys -+« Xer(nya—1ymy are glued together by the identification
[1, 0] ckramy = 1, Ol (ar1ymy» for k=1,2,...,n and a=0,1,...,n/d — 1.

Since any two of the numbers 1,2,...,d are not congruent each other
modulo m, the set of all

Yk = Xk UX<k+m> U--- UX<k+(n/d—-l)m>, k= 1,2, co.d

glued by the above identification is a topological model of R.
Since the sum of the loops

[’7j7’7j+1]<1+am> + [’7j+1,’7j]<1+am>', Jj=L12,....m—1and a=0,1,...,n/d — 1

is homologous to zero on Y;, we discard one of these loops. Here we discard the
loop
0% + s mly = 0™y + [P omly = .

‘ By the same reason for Y,...,Y,;_; the loops 01,2,01,3,...,0],4—] are
discarded. We can not discard «; 4 since Y, contains X, and the loop o‘q,,, 1S
already discarded.

Now the number of the remaining minimal loops is (n— 1)(m—1)—
(d — 1) = 2g. Therefore the remaining minimal loops OL,dy %1, dt1s - -+ %1 n—1, 00, ks
(j=2,3,....m—1and k=1,2,...,n—1) form a basis of H|(R, Z).
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3. Holomorphic 1-Forms

We shall find the condition that the differential 1-form w = x%y®—"+! dx,
(a,b e Z) is holomorphic. For this purpose we consider the representation of w
by a local coordinate at each point on R (cf. [6], pp. 189-192).

If x = a € C is not a branch point, then 7 := x — a is a local coordinate in a
neighbourhood of «. If « # 0, w is obviously holomorphic in this neighbourhood.
If « =0, w is holomorphic for a > 0.

In a neighbourhood of the branch point x =7/, t:={/x—#5/ is a local
coordinate. Then w = u(f)t® dt, where u(t) is a non-vanishing holomorphic
function on this neighbourhood. Hence w is holomorphic for 4 >0 in this
neighbourhood.

To describe w in a neighbourhood of x = oo, we consider w in the affine part
RN{[X,Y,Z] e P?| X #0}. We rewrite the defining equation and w:

m a. b—n+l

wht=2z"—-z""  w=x% dx = —z=7btn=3b-n+l g7

where z=Z/X =1/x, w=Y/X =y/x.

Case (i). The points at infinity x = o0 on R correspond to the points
(z,w) = (0,p/), p=exp(ni/n), j=1,2,...,n. We choose a local coordinate
t := {/w — pJ vanishing at (z,w) = (0,p/). Then w = r~*~5+"=3y(t) dt, where u(z)
is a non-vanishing holomorphic function on a neighbourhood of ¢ = 0. Hence w
is holomorphic everywhere on R if and only if a,b>0 and n—3>a+b.
Because the number of the pairs of integers (a,b) which satisfy these inequalities
is

Y n-2-)=@m-1)(n-2)/2=yg,

]

the differentials x?y®~"*! dx with a,b >0, n—3 >a+b form a basis of the
vector space of holomorphic 1-forms.

Case (ii). The unique point at infinity x = co on R corresponds to the point
(z,w) = (0,0). We choose a local coordinate ¢ := {/z vanishing at (z,w) = (0,0).
Then w = ¢~a=bm—m-ntmn=ly(4) dt with u(f) as above. Hence w is holomorphic
everywhere on R if and only if

(1) a,b>0, —an—-bm—-m—-n+mn—-120.

These inequalities are equivalent to being m—1— (m+1)/n>a+bm/n >
a>0 and n—1—{(a+1)n+1}/m=b=>0. Since 0<(m+1)/n<1, 0<a
<m-2.
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Let N be the number of the pairs of integers (a,b) that satisfy (1). Then we
have

2N = Z M= {(+Dn+ 1}/m]+2 n—{(j—!—l)n-l—l}/m]'

m

=D =G+ Dt 1)+ 37— {(m = j = D 1},

where the symbol [ ] is the Gauss’ symbol. Now suppose (j+ 1)n = gim +r,
g, ri€Z, 1 <r<m-—1. Then

=AU+ Dn+1}/m=[n—g;~ (r;+1)/m] =n—g; -1,
[n—A{m —1—-jn+1}/m] = [g;+ (r; = 1)/m] = g;.

N={3 " t—gq-1)+3 " g}/

= (n—1)(m—1)/2

Therefore

Hence the differentials x“y>~"+! dx with a, b satisfying (1) form a basis of the
vector space of holomorphic 1-forms.

Case (iii). The unique point at infinity x = 0 on R corresponds to the point
(z,w) = (0,0). Then w is equal to f(~@—bm+mn-m-n-d)/dy(f) 4t and holomorphic
everywhere on R if and only if

ab>0, —an—bm+mn—m-n—-d>0.
We rewrite this condition as follows:
(2) a,b>0, —an'—bm'+m'n'd—m'—n'-1>0,
where n' =n/d,m’' =m/d.

We denote by N the number of pairs (a,b) that satisfy (2). If m'=1
(d =m), then (2) is equivalent to the condition 0 <a<d—2 and 0<b <
n'd—n'—2—an'. So

N = Z—o (n'd—n' —1—jn')
={(n'd-n'"—1)d-1)—n'(d-2)(d—-1)/2}
=(m-1)(n-2)
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If m’ # 1, then the conditions are 0 <a<m—-2=m'd—-2 and 0<b <
n—1-{(a+)n+d}/m=n'd—1-{(a+1)n' +1}/m’. So we have

2N =25 P pd — {(j + )’ + 1} /)

d-1 (k+1)ym'-2 ]
=23 0D WA= {G+ D'+ 1}/m]

+ 22;:‘ n'd — {(jm")n' + 1}/m]

= S I v — (4 D'+ 1) /m]

j=km'
+ [n'd — {(2km' + m’ —j — )n’ + 1}/m’]}
+ 2Zji_ll(n'd —jn’ —1).
Suppose (j+ )n’ = gm’' +rj, gj,rie Z, 1 <r; <m’—1. Then
W'd —{(j+1)n' +1}/m'| = [n'd —g; — (r; + 1)/m’] =n'd — g; - 1,
[n'd — {(2km' + m' —j — D)n’ +1}/m') = [n'd — 2kn' —n' + q; + (r; — 1)/m’]
=n'd —2kn' —n' +g;.
Therefore

2N = Z:;; ;:Z;>,'"’-2(2n’d— 2kn’' —n' — 1) +2Z,:1(n'd _ = 1)
=(m' - 1){(2n'd —n' — 1)d — 2n’(d — 1)d/2}
+2{(n'd = 1)(d — 1) —n'(d — 1)d/2}
=mm-m-n+2-d
=(n-)m-1)+1-d
=29 (So N=y).

Hence the differentials x9y?="*! dx with a, b satisfying (2) form a basis of the
vector space of holomorphic 1-forms.

4. Period Lattice

In this section we compute the period lattice relative to the differential
1-forms and the homology basis obtained in the previous Sections.
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Let {,7 be one of the primitive n-th, m-th roots of unity and f be a branch of
y on Xj. Then ¢(*7'f, a branch of Y, is assigned by the analytic continuation.
The integral along a;; of the differential 1-form w; = x%y?—"+! dx is

n’

”j+l
J = J X et j X ()T dx

'I] : ;7]+]

1
= ,71'(01+1)C(k*1)(b1—n+1) J” xaszz—n+1 dx + ”j(a1+1)ck(bl—n+1) J xaszz—n+l dx
1 n

— ”j(a/+l)ck(b,—n+l)(C—(bl—n+1) _ 1) J” xa1fb1—-n+l dx.
1 .

From this equality, we find the relations

bi—n+1 k(bi—n+1
J w =" J o = (K )J wy,
%, k+1 %,k .

%,1

1 i 1
J w; = not J w; = ,71(41-*- )J .
Ojv1,k o k oy, k

We compute the period lattice for the case (i) and (ii) at the same time.
Let P, be the matrix whose (/,k)-component is falkan k=1,2,...,n—-1,
I=1,2,...,9). Then we have

J:711,1 Wy e J‘al,,,_, )
P, =
fal,l Wg - ffxl,n—l g
51 [0 1 (Cbl—n+1) (cb1—n+1)n—2
= : : : ,  Where s1=j ;.
(0] Sg 1 (Cbg—’H—]) (Cbg—n+1)n—2 1,1
Similarly the matrix P, whose (1, k)-component is fa“a)l k=1,2,...,n—1,
I=1,2,...,9) is given as follows:
S1 (o) ”(a1+1) 0 1 (Cbl—n-H) . ((bl—n+l)n—2
P = i g : f :
o Sy 1) 7@+ N (s W (Clom1yn=2

In the same way we can also obtain P;3,Py,...,P,_, for the case (i),
Py, Py, ..., P, for the case (ii). Letting
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51 o }](a‘+l) 0

(0] Sg 0 ;’(ag+1)
and
1 (Cbl—-n+1) (Cbl—n-l-l)”—z
B=|: : :
1 (Cbg—n+l) .. (Cb,—n+l)n-—2
we consider a g x 2g matrix
P'=(P\,Ps,...,Pyn_2) = S(B,AB,...,A™*B) for the case (i),
P' = (P, P,s,...,Pu_t) = S(B,AB,...,A™"*B) for the case (ii).

The set of the 2g column vectors of P’ is obviously a basis of the period lattice
relative to the holomorphic 1-forms selected in Section 3.

For the case (iii) we define S as above. Then the period lattice P’ relative to
the holomorphic 1-forms selected in Section 3 is obtained by removing the first
(d — 1) columns from the period lattice P’ of the case (ii).

In any case (i), (i), or (iii), we change the basis of the space of the
holomorphic 1-forms by multiplying S~

{@n, 2, .. .',(I)g} = {w,w,... ,cog}S"1 = {sl—lwl,s{la)z, . ,s;la)g}.

Thus we can obtain the following theorem (cf. [5], p. 79).

Turorem 1. Let S, P, and {®1,@,...,@,} be as above. Let P = S™'P'. The
period lattice of the curve defined by x™ + y" = 1 relative to the basis of the space

of the holomorphic 1-forms {1, ...,0,} is spanned by the 2g column vectors
of P.

Note that each of the components of P is just a monomial of the primitive
root of unity.

5. Intersection Matrix

In this section, we show how to obtain the intersection matrix.

Case (i). In order to read the intersection numbers between a; x’s, we deform
Gk (j=1,2,....m—-2,k=1,2,...,n—1) around the branch points like the
Appendix. If the minimal loops are chosen such a way, we have

1,0, %41) =1, T(0%,%41,%) =1, 1% k+1,%+1,6) =0, I(% k> %1,k+1) = —1.
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Clearly the other intersection numbers are I(o; 4, ) =0 for |j—j| >2 or
|k —k'| = 2.

The intersection matrix L; of the minimal loops 0,1, 04,2, - .+, 0 n—1,, Namely,
the (n—1) x (n— 1) matrix whose (s,¢)-component is I(w; ;,a;,), is given by
(0 1. 0 .- ... o\
-1 0 1 . :
0 -1
Li=| . .
0
I |
KO cee e 0 =1 0)

The matrix L, of the intersection numbers of % 1,0%,2,---,% -1 and o 1,
41,2y -+ - %+1,n—1, DAmely, the (n — 1) x (n — 1) matrix whose (s, f)-component is
I(oj5,011.:), is given by

(1 -1 0 - ... 0\
0o 1 -1 " :
L, =
: oo, .0
: . |
\0 R 1}

Then the intersection matrix of the minimal loops ok (j=1,2,...,
m-—2,k=1,2,...,n—1) can be represented by

L, L, o ... ... Io)
(boe o
K = o
: o
. . . L,
\ 0 R o B 5 o Ll)

where O is the (n — 1) x (n — 1) zero matrix. This is the (m — 2) x (m — 2) matrix
of the (n—1) x (n— 1) minor matrices.

Case (ii). The intersection matrix of the same representation is obtained in the
same way, and the matrix is the (m — 1) x (m — 1) matrix of the (n — 1) x (n — 1)
minor matrices.
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Case (iii). The intersection matrix is obtained by removing the first (d — 1)
rows and columns from the intersection matrix of the case (ii).

To get a canonical homology basis we transform the intersection matrix into
J. For the case (i), for example, this transformation is equivalent to finding a
2g x 2g unimodular matrix M which satisfies

(ala'-"ag7ﬁla---7ﬂg) = (‘xl,l,---aal,n—l,aZ,la---,a2,n—17°-~1am—2,n—l)M,

where {a;,f;} is a canonical homology basis. It is also equivalent to finding a
2g x 2g unimodular matrix M which satisfies J =’ MKM.

Finally, we obtain a normalized matrix from PM as we mentioned in In-
troduction. It is guaranteed by the theorem of Frobenius that we can transform
the intersection matrix K into J within finitely many operations (cf. [3] p. 65,
p. 156). We explain the process of finding M in the next Section.

6. Examples

(1) The curve C; defined by y*=1—x*.
This curve is of genus 3. The pairs of integers (a,b) which satisfy a,b > 0,
1>a+b>0 are (0,0),(0,1),(1,0). Therefore the set of

w =y ddx, wy=ytdx, w3= xy~3 dx

is a basis of the space of holomorphic 1-forms on C;.
Let # be one of the primitive fourth roots of unity. The matrices 4, B and P

are
7 0 0 1 773 (n7)° 1 7 7
A=10 n 0], B=|1 42 @»*|=|1 7 1],
0 0 7 1 772 (n7%)? L n
1 n n* n n* o’
P=(B,AB)=| 1 n” 1 7 n3
1 n 7% n* n* 1

The intersection matrix of the minimal loops o;; (i=1,2,j=1,2,3) is

o 1 o0 1 -1 0
(° o)

0 1 0 1
K_( L L2> o -1 0 0o o0 1
L, L 1 0 0 0 1 0
1 -1 0 -1 0 1

0o 1 -1 0 -1 0/
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Now we explain the method to find a unimodular matrix M which transform
K into J. The i-th column of the intersection matrix is called ¢; (i=1,...,6) in
each step.

Step 1.

Choose a column whose the first element is non-zero, for instance, c;.
Subtract ¢; from ¢4 and add c; to ¢s so that the first element of each column
except c; vanishes (i.e. ¢4 — ¢4 —c2, ¢s — ¢s5 +¢z). This operation substitutes
oz,1 — ay,2 for ap 1,022 + 012 for a; 2. The matrix that represents the change of
the minimal loops is

/1 00 0 O O\
01 0 -1 10
001 0 00
Mi=1o00 1 00
0 00 0 1O
\0 0 0 0 O 1)
Then the intersection matrix changes into
( 0 1 O 0 o0 o0 w
-1 0 1 0o ‘1 -1
0 -1 0 1 -1 1
_t —
B=MEKM=149 6 _1 0 o0 1
0 -1 1 0O 0 o0
\o 1 -1 -1 0 o)/

Step 2.

Choose a column whose the second element is non-zero and the first element
is zero, for instance, ¢;. Add c¢; to c3,cs and subtract ¢; from cg so that the
second element of each column except ¢; vanishes (i.e. ¢3 — ¢3 + ¢1, ¢5s — ¢5 + ¢,
. ¢ — c¢ — c1). This operation substitutes ay 3+ a;,; for ay 3,022+ oy for 02,2
and o3 — ;) for oy 3. We see the matrix that represents the change of the
minimal loops is

_1\

coco oo ~o
SO O = O -
S O = O O O
O = O O O
—-_ 0 O O O
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Then the intersection matrix changes into

(0 1 0 0 0 0\
10 0 0 0 O
0 0 0 1 -1 1

_t —
K=MKEM =17 o 1 o o 1
0 01 0 0 0
\0 0 -1 -1 0 0)

Step 3.

Choose a column whose the third element is non-zero and the first and the
second elements are zero, for instance, ¢s. Add ¢4 to ¢s and subtract ¢4 from ce
so- that the third element of each column except ¢4 vanishes (i.e. ¢s — c¢s + ¢,
ce — c6 — c4). This operation substitutes oy 2 + a1 for a 2,23 — 21 for o 3.
We see the matrix that represents the change of the minimal loops is

/1 0000 0
01000 0
00100 0

My=1o00011 -1
00 00T1 0
\000001/

The intersection matrix changes into

(0 1.0 0 0 0\‘
10 0 0 0 O
0 0 0 1 0 0

_t _
Ky =" M3 KM, 0 0 -1 0 0 1
0 0 0 0 0 1
\0 0 0 -1 -1 0/

Step 4.

Choose a column whose the fourth element is non-zero and the elements from
the first to the third are zero, for instance, c¢3. Add ¢3 to ¢¢ so that the fourth
element of each column except c3 vanishes (i.e. ¢¢ — c¢ + ¢3). This operation
substitutes oy 3 + o1 3 for a 3. We see the matrix that represents the change of the
minimal loops is

My =

O OO C O -
O OO0 O =0
SO O —= OO0
OO = O OO0
O - OO0 OO0
_—0 O = O O
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The intersection matrix changes into

( 0 1 0 o0 o O\
-1 0 0 0 0 O
0 0 0 1 o0 o0
_t -
Ke="M&Mi=1 0 6 Z1 0 0 o
0O 0 0 0 0 1
\ 0 0 0 0 -1 0)
Here each column of K; has only one nonzero element. Letting y,...,7
be the loops corresponding to the columns ci,...,cs, we have the intersection

numbers of these loops
I(?’h)’z): 17 I(}’3,Y4)=1, I(ySay6)=1'
Therefore we arrange

(P15 731 V5 ¥2> V41 ¥6) = (1, Y21 V3, Va» ¥s» V) M,
(1 0 000 0

000100
01 0000
where Ms= 0 0 0 0 1 o
001000)
\000001

Through out these steps, we have a canonical homology basis

(o1, 02, 03, By, B2, B3) = (01,1, 1,2, 01,3, 02,1, 02, 2, 02, 3) M

(1 1 1.0 0 0 \

0 001 -1 1

01 00 O 1

where M = M1M2M3M4M5 = 001 0 1 —1
0 01 0 O 0 )

\0 0 00 O 1

If we multiply P by M, then we have

1 147 14749 7 0  52+9°
PM=11 2  l+n+7* 7 7-n* n*+1
1 149> 1472+ n #*—-n n+1
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Finally using the relation 2 = —1, we obtain a normalized period matrix
1 00 n —(n+1)/2 0
Q=101 0 —(z+1)/2 2n+1)/2 (1-n)/2
0 01 0 (1—-9n)/2 n—1

The theta matrix T of Q is certainly non-singular (Det T = (=27 +1)/2 # 0),
symmetric, and has positive definite imaginary part (because of n = i).

(2) The curve C, defined by y°>=1-x’.
_ This curve is of genus 4. The pairs of integers (a,b) which satisfy a,b >0,
6 > 5a+3b >0 are (0,0),(0,1),(0,2),(1,0). Therefore the set of

w =y *tdx, w= y3dx, wy= y2dx, w4= xy~* dx

is a basis of the space of the holomorphic 1-forms on C,.
Let 7, be one of the primitive cubic, fifth roots of unity. The matrices 4, B

and P are

7 0 0 0 G () C (S & 1 ¢ ¢
070 0 G (i N (SR N 12 ¢t
A= , B= ,

007 O NG (S S (S E 1 ¢ ¢ ¢
000 » Lt et ey) e ee

1 ¢ 28 n ot nt o al

1 2t ¢ g n® ot

P=(B,AB) =
( ) 12 ¢ g n® g nt
1 ¢ &8 g2 g ¢ 9?0

Let o be one of the primitive fifteenth roots of unity. Then the components of
P can be expressed by the monomials of o:

8 11

1 o° o o o g o o

1 o6 o2 o3 o5 o' o of
P = 1 o° o o2 o5 o o o

1 ¢ ¢ & o o o o*

The intersection matrix of the minimal loops a;; (i=1,2,j = 1,2,3,4) is
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/0

L,
L,

L,
'L,

If we execute the steps as in the first example, we can obtain two unimodular

matrices

-1 0
0 O\

1
1

0

-1
0 0 0 O
1

1 0
0 0

1 0
1
0

0 0 O

0
0

1

1

1
0
1

1
0 00 0 O
0

0 0 0O

o

0 000 O

\o 0 0 0

1)

0

MI

and

(1000(1)000\

0 0O

0 000 O0TO

0 00O

1

0 00 0O
1

0

0 0

1
0 00 0O

0
0 00

0

0 0 0O

1

0 00 0 OO

0

1

\0 000000 1/

Il

MII

which satisfy

M'=1J.

\ ‘/
cocoococo~0 0o
cocooco—~0 0o
00000001_..
00000040
co—~0co0coococo
—
o ©c Toooo
— oo ocoococo
o oo ocoocoo
N— .

=t MII

M”M/KM,M”
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Then the matrix

11 0 100 —1 0)
00 -1 110 0 0

01 0 000 0 1

o Joo -1 101 -10
M=MM"=1406 1 000 0 0
00 0 100 0 0

00 0 000 1 1

\0 0 0 000 0 1/

transforms K into J and gives a canonical homology basis:

(a1, 02,23, 04, By, B2y B3y Ba) = (01,1, 01,2, 41,3, &1 4, 02,1, 02,2, 02,3, %2,4) M.
We have
PM
1 140° —g3+0°—0° 14+03+a83+0° o® d® —1-0°+o!! o%+oll4+o!*
11402 —¢3+06° —6® 1+03+0a%+0!! 0% 6> —1—03+0? o*+08+0!?
1 1403 o5 —a® — o2 1+6%+02+0M 69612 —1+6% — 612 g24ad+0
1 1+0% —63 — %400 1+03+0°+03 6 ¢® —-140-06° o+0*+a°
Using the relation % =6’ —0° +0* — 0’ +0—1, we can represent each

component of the theta matrix T by the quotient of the polynomials of degree at
most seven. The result is

T— 1
T 207 —-065-30%*—03-02-20—-1

(T T, T3 Ty),

where

—5¢7 — 0%+ 30° — 20% + 4
46" — 20° +30* + 0 -2
o’ +a+1
20—’ +a*+a—1

T) =

407 —26° +36* +0 -2
T, — —40" + 6%+ 20° - 36*+20° -0+ 4
2= 267 —a3+20% -1 ’

—0! —20* =20
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o +o+1
2067 =%+ 204 — 1

T3 = ,
3 —5¢7 +6%+36° —36* +20° -2+ 4
—0" +20°+0*+20+2
206" =’ +ot+o-1
! — 2% _
T, = e 20 20

—0'+20°+0*+20+2
20" +26°+0*+203 -02+20+4
Certainly, T is non-singular (Det T = (¢7 —20*+ ¢* — 6% —2)/(20" + 0° —
o + 203 — 1) # 0), symmetric with positive definite imaginary part (because of
o = cos(2n/15) + i sin(2n/15) = (2 + 2v/5 — 1/6(5 + V5) + /30(5 + V/3))/16 +
(2V3 + 2VT5 + 1/2(5 + V3) — /10(5 + V/5))i/16).
(3) The curve C; defined by y% =1 — x3.

This curve is of genus 4. The pairs of integers (a,b) which satisfy a,b > 0,
2>2a+b>0 are (0,0),(0,1),(0,2),(1,0). Therefore we choose

=y *dx, w,=y3dx, w;= y2dx, ws=xy*dx

for a basis of the space of holomorphic 1-forms on C;.
Let #,{ be one of the primitive cubic, sixth roots of unity. The matrices 4, B
and P are

(1 5 (9 9 ¢

n 0 0 O

VR IR I IR I B (o (S I ()
0 0 n 0 ’ 1 C—3 ({—3)2 (4—3)3 ((—3)4
000 # \1 ¢ (% ) ¢

(lcczéc“
1 2 ¢ 1
1 8 1 8 1)
\1 ¢ 2 ¢ ¢

SERSENSEE T SN SHE S
p_ | L2 on o n® ot n
1L G 1 g a8 7 9 q
SNSRI (A C4R L4l LAl e
We simplify the representation of P by using the relations
O=-1:

¢? and

<
|
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e O S T S
PO I S T <R R GRS L
1 -1 1 & -2 2
g -1 ¢ ¢ ¢ 1 ¢ ¢
The intersection matrix of the minimal loops «;; (i=1,2,j=1,2,3,4,5) is
( 0 1 0O 0 0 1 -1 0 0 O \
-1 0 1 0 0 0 1 -1 0 0
o -1 0 1 O 0 0 1 -1 0
O o0 -1 0 1 o o0 o0 1 -1
o o o0 -1 0 O O 0 o0 1
-1 0 0 0 0 O 1 0O 0 O
1 -1 06 0 O -1 0 1 0o o0
0 1 -1 0 O O -1 0 1 0
0 O 1 -1 0 0 O -1 0 1
\o 0 0 1 -1 0 0 0 -1 0)
Therefore the intersection matrix of the minimal loops o 3,0 4,015,000 1,
022,002 3,02 4,025 1S
( 0 1 o o0 0 1 -1 0 \
-1 0 1 o 0 0 1 -1
o -1 0 0 O 0 o0 1
P O 0 o0 0 1 0O 0 O
O 0 o0 -1 0 1 0 O
-1 0 0 0 -1 0 1 0
1 -1 0 0 0 -1 0 1
\o 1 -1 0 0 0 -1 0}

If we execute the steps as
matrices

—~

SO OO0 o OO —~

MI

—_

Yasuo KAMATA

in the first example, we obtain two unimodular

S O O O O O — O

SO OO O = O -

S O OO = O OO0

O O O = O O O O

SO = O = O

O, -, OO ~
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and
(1000000 0\
00001000
01000000
00100000
"_
M_00000010
00000T100
00010000
\0 0000001/
which satisfy
(0 1 0 0 0 0 0 0)
10 0 0 0 0 0 0
0 0 0 1 0 0 00
0 0 =10 0 0 00
Y Ve PRAgN _t Aql " _
MUMEMM =M T 0 0 e 1 o M=
0 0 0 00 0 01
0 0 0 0 -1 0 00
\o 0 0 0 0 -1 0 0/
Then the matrix
(11010 0 0 0)
00001 10 1
01000 0 0 1
00110 1 0 —1
— MM —
M=MM 00000 0 1 0
00010 1 0 —1
00010 0 0 0
\0 0000 0 0 1)

transforms K into J and gives a canonical homology basis:
(a1, 02, 03, 04, By, B2y B3y Ba) = (01,3, 01,4, 01,5, 82,1, 82,2, 02,3, 02,4, 02, 5) M.

Then we have
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(¢ ¢-¢ & - -1 1420 -1

2 2 2 2
M= 1C Czc gz Hﬁfczc —11 1fzc2 *ccz —CCZ
\2 2-¢ ¢ 1+ -1 2-0 ¢ 240
/C—l -1 (-1 -1 -1 0 -1 —{+1
I S IS B T B B S
1 2 (=1 ¢ -1 20-1 ={+1 —{+1
\¢—1 -1 - ¢ -1 2-¢ —L{+1 (-3

(-6 4-20 (-1 -1

4-20 -4 20-1 6{+1
(-1 2(-1 -4 3-2f
-1 6/+1 3-20 -3(-—4

T=(5-2)"

We used the relation {2 —(+1 =0 for simplification.
The theta matrix 7 is certainly non-singular (Det T = 20(48( — 61)/
(185¢ — 416) # 0), symmetric with positive definite imaginary part (because of

¢ =(1++3i)/2).
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