
TSUKUBA J. MATH.
Vol. 26 No. 1 (2002), 1-13

REPRESENTATION TYPE OF ONE POINT EXTENSIONS
OF TILTED EUCLIDEAN ALGEBRAS

By

Gladys CHALOM and Hector MERKLEN

Abstract. We know, after [P1], that, given a tame algebra $\Lambda$ , the
Tits form $ q\Lambda$ is weakly non negative. Moreover, the converse has
been shown for some families of algebras, but it is not true in gen-
eral. In the same article [P1], De la $Pe\tilde{n}a$ proved that if $\Lambda$ is a tame
concealed algebra, not of type $\tilde{A}_{n}$ and $M$ is an indecomposable $\Lambda-$

module then $\Lambda[M]$ is tame if and only if $q_{\Lambda[M]}$ is weakly non neg-
ative. The purpose of this work is to show the same result for $\Lambda$ a
strongly simply connected tilted algebra of euclidean type.

1. Prelminaries

Throughout this paper, $k$ denotes an algebraically closed field. By an alge-
bra $\Lambda$ we mean a finuite-dimensional, basic and connected k-algebra of the form
$\Lambda\cong kQ/I$ where $Q$ is a finite quiver and $I$ an admissible ideal. We assume that
$Q$ has no oriented cycles. Let $\Lambda$-mod denote the category of finite-dimensional
left $\Lambda$-modules, and $\Lambda$-ind a full subcategory of $\Lambda$-mod consisting of a complete
set of non-isomorphic indecomposable objects of $\Lambda- mod$ .

We shall use freely the known properties of the Auslander-Reiten translations,
$\tau$ and $\tau^{-1}$ , and the Auslander-Reiten quiver of $\Lambda- mod,$ $\Gamma_{\Lambda}$ . For basic notions we
refer to [R2] and [ARS]. See also [A] and [CB].

Tame algebras have the Tits form weakly non negative and for some classes
of algebras, as for instance tilted or quasi-tilted algebras, this fact is determinant,
that is, if $\Lambda$ is tilted or quasi-tilted, then $\Lambda$ is tame if and only if the Tits quadratic
form is weakly non negative. Also, we have

THEOREM 1.1 (De la $Pe\tilde{n}a$) [P1]. Let $\Lambda=B[M]$ be $a$ one point extension,
where $B$ is a tame concealed algebra, not of type $\tilde{A}_{n}$ , and $M$ an indecomposable
B-module. Then $\Lambda$ is tame if and only if $ q\Lambda$ is weakly non negative.
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It is natural to ask when a similar result extends to tilted algebras. In this
work we will give a partial answer, that is, we prove the following:

Let $B$ be a strongly simply connected tilted algebra of euclidean type and $M$

an indecomposable B-module, then the one point extension $B[M]$ is tame if and
only if $q_{B[M]}$ is weakly non negative.

Modules over a one point extension $B[M]$ can be identified with triples
(X, $U,$ $\varphi$ ) where $X\in B- mod,$ $U$ is a k-vectorspace and $\varphi:U\rightarrow Hom(M, X)$ is k-
linear.

See [R1] for other notions and notations related to vectorspace categories.
We assume that $B$ is such that gldim $B\leq 2$ . Then for any B-module $M$ we

have gldim $B[M]\leq 3$ . Hence we would be able to relate the Euler and the Tits
form for $A=B[M]$ .

DEFINITION 1.2 [R2]. Let $C_{B}$ be the Cartan matrix of $B$ and let $x$ and $y$

vectors in $K_{0}(B)$ . Then we have a bilinear form $\langle, \rangle=xC_{B}^{-T}y^{T}$ , where the corre-
sponding quadratic form $\chi_{B}(x)=\langle x, x\rangle$ is called the Euler form of $B$ .

DEFINITION 1.3 [Bo]. The Tits quadratic form is given by:

$q_{B}(x_{1}, x_{2}, \ldots, x_{l})=\sum_{i\in Q_{0}}x_{i}^{2}-\sum_{i,j\in Q_{0}}x_{j}.x_{j}.dim_{k}Ext_{B}^{1}(S_{i}, S_{j})$

$+\sum_{i,j\in Q_{0}}x_{i}.x_{j}.dim_{k}Ext_{B}^{2}(S_{i}, S_{j})$ .

By [R2] the Euler form of $A=B[M]$ can be calculated in terms of $\chi_{B}$ : Let $X$

be a A-module and let:
$\underline{dim}_{A}(X)=\underline{dim}_{B}(Y)+n.\underline{dim}_{A}(S_{e})$ ,

where $e$ is the new vertex. Then

$\chi_{A}(\underline{dim}X)=\chi_{B}(\underline{dim}Y)+n^{2}-n(dim_{k}Hom_{B}(M, Y)$

$-dim_{k}Ext_{B}^{1}(M, Y)+dim_{k}Ext_{B}^{2}(M, Y))$

On the other hand, as gldim $B\leq 2$ then $\chi_{B}=q_{B}$ , its Tits form is computed in
following:

$q_{A}(x_{1}, x_{2}, \ldots,x_{l},n)=qB(x_{1}, x_{2}, \ldots, x_{l})+n^{2}$

$-\sum_{j\in Q_{0}}n.x_{j}(dim_{k}Ext_{A}^{1}(S_{e}, S_{j})+dim_{k}Ext_{A}^{1}(S_{j}, S_{e}))$

$+\sum_{j\in Q_{0}}n.x_{j}(dim_{k}Ext_{A}^{2}(S_{e}, S_{j})+dim_{k}Ext_{A}^{2}(S_{j}, S_{e}))$
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Comparing, we have:

PROPOSITION 1.4. With the above notation:

$\chi_{A}(\underline{dim}X)=q_{A}(\underline{dim}X)-n.dim_{k}Ext_{B}^{2}(M, Y)$

THEOREM 1.5 (De la $Pe\tilde{n}a$) [P1].

If $B$ is a tame algebra, then $q_{B}$ is weakly non negative.

An algebra $\Lambda$ is tilted of type $\Delta$ if there exists a tilting module $T$ over a path
algebra $ k\Delta$ such that $\Lambda=End_{k\Delta}(T)$ . Tilted algebras are characterized by the
existence of complete slices in a component of their Auslander-Reiten quiver,
called the connecting component. The structure of the Auslander-Reiten quiver of a
tilted algebra is given in [R2] and in [K]. Other facts about this subject can be
seen in the survey of Assem, [A].

THEOREM 1.6 [K]. Let $B$ be a tilted algebra of infinite representation type.
The following conditions are equivalent:

(1) $B$ is tame
(2) $\chi_{B}$ is weakly non negative

2. Modules of the Separating Tubular Family

Let us assume that $B$ is a tilted algebra of euclidean type, and that $M$ is an
indecomposable B-module. We begin studying the case that $M$ is not directed. We
observe that 2.1 is very similar to [T], but we do not assume that $B$ is a good
algebra, but that the preinjective component of $B$ be of tree type.

Let $B$ be a tilted tame algebra of euclidean type with
1) the complete slice in the preinjective component.
2) the preinjective component of tree type.
Let $M$ be an indecomposable module, in the separating tubular family.

PROPOSITION 2.1. In the above conditions, if $B[M]$ is wild then $q_{B[M]}$ is strongly
indefinite.

To prove this proposition, we need some preliminar results, conceming de-
rived categories. We refer to Happel ([H]) and Keller ([Ke]) for definitions and
basic results.
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LEMMA 2.2 [T]. Let $B=End_{A}(T)$ with $T$ an A-tilting module and $M=$

$Hom(T, R)$ with $R\in \mathscr{G}(T)$ . Then there exists a $A[R]$ -tilting module $T^{\prime}$ such that
$B[M]=End_{A[R]}$ $(T$

‘
$)$ .

$PR\infty F$ OF Tffl PROPOSITION. Let $B[M]$ be of wild type. Suppose that $H[R]$

is tame, in this case we have the possibilities: $H[R]$ is domestic tubular, tubular
algebra or $H[R]$ is a 2-tubular algebra. But, in any case, $H[R]$ is derived tame (by
[P5]) and $H[R]$ and $B[M]$ are derived equivalent (by [H], pag. 110), and so, $B[M]$

is also derived tame, and therefore tame, a contradiction. So, we have $H[R]$ wild.
Since $B$ is tilted of euclidean type and the preinjective component of $B$ is of

tree type, $H$ is tame, euclidean and $\tilde{A}_{n}$ -free so, by [P1], there exist $V_{1},$ $V_{2},$ $\ldots V_{n}$ ,

preinjective H-modules with $q_{H[R]}(dim(\oplus V_{i}\oplus nS^{\prime}e))<0$ and each $V_{i}\in \mathscr{G}(T)$ , in
this case let $W_{i}=Hom(T, V_{i}),$ $W_{i}$ is a preinjective B-module that belongs to $\mathscr{Y}(T)$ .
So, we have: $\chi_{B[M]}(\underline{dim}\oplus W_{i}\oplus nSe)=\chi_{B}(\underline{dim}\oplus W_{i})+n^{2}-n\langle\underline{dim}M,\underline{dim}\oplus W_{i}\rangle_{B}$ .

By [R2], pag. 175, there is an isometry $\sigma_{T}=K_{0}(H)\rightarrow K_{0}(B)$ such that:
$\sigma_{T}(\underline{dim}V_{i})=\underline{dim}W_{i}$ and $\sigma_{T}(\underline{dim}R)=\underline{dim}M$ so: $\chi_{H}(\underline{dim}\oplus V_{i})=\chi_{B}(\underline{dim}\oplus W_{i})$

and $\langle\underline{dim}M,\underline{dim}\oplus W_{i}\rangle_{B}=\langle\underline{dim}R,\underline{dim}\oplus V_{i}\rangle_{H}$ then: $\chi_{H[R]}(\underline{dim}(\oplus V_{i}\oplus nS^{\prime}e))=$

$\chi_{B[M]}(\underline{dim}(\oplus W_{i}\oplus nSe))<0$ by [P1]. But $ q_{B[M]}(\underline{dim}(\oplus W_{i}+nSe))=\chi_{B[M]}(\underline{dim}(\oplus$

$W_{i}\oplus nSe)+ndim_{k}Ext_{B}^{2}(M, \oplus W_{i})$ and again, since $Hom(M, W_{i})\neq 0\forall i$ and $W_{i}$

is a directed module, we have: $Ext^{2}(M,\oplus W_{i})=0$ so $q_{B[M]}(\underline{dim}(\oplus W_{i}\oplus nSe))<$

$0$ . Clearly, $\underline{dim}(\oplus W_{i}\oplus nSe)$ is a vector of positive coordenates. $\square $

We will see now that the same result see in 2.1 is true for algebras of eucli-
dean type, with a complete slice in the postprojective component.

THEOREM 2.3. Let $B$ be a tilted algebra of euclidean type whose preinjective
component is of tree type and let $M$ be $a$ indecomposable B-module in the separat-
ing tubular family such that the one-point extension $B[M]$ is wild.

Then $q_{B[M]}$ is strongly indefinite.

PROOF. Since $B$ is of euclidean type, either $B$ has a complete slice in the
preinjective component, and the result follows from 2.1, or $B$ has a complete slice
in the postprojective component. Let us see the case when

1) there is a complete slice of $B$ in the postprojective component, and
2) the preinjective component of $B$ is of tree type.
By [R2], $B$ is a branch coextension of a tame concealed algebra $B_{0}$ and the

preinjective component of $B$ is the same preinjective component of $B_{0}$ , and so $B_{0}$

is $\tilde{A}_{n}$ -free. Assume that $B=i^{l}=1[E_{i}, R_{j}]B_{0}$ where $E_{j}$ is a $B_{0}$-ray module and $R_{i}$ is a
branch, for all $i$ . Let us consider separately the following situations: A) $M_{0}=M|_{B_{0}}$

is such that $M_{0}=0$ ;
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B) $M_{0}=M|_{B_{0}}$ is such that $M_{0}\neq 0$ .
In case $A$ , supp $M$ is contained in a branch $R$ and the vectorspace category

$Hom$ ($M$ , B-mod) is the same as $Hom$ ($M$ , R-mod). By [MP], if $Hom$ ($M$ , R-mod)
is wild then $q_{R[M]}$ is strongly indefinite. As $R[M]$ is a convex subcategory of $B[M]$ ,
if $q_{R[M]}$ is strongly indefinite then $q_{B[M]}$ is strongly indefinite.

In case $B$ , we can distinguish two situations:
Bl: $B_{0}[M_{0}]$ is wild;
B2: $B_{0}[M_{0}]$ is tame.
We begin by Bl. If $B_{0}[M_{0}]$ is wild, since the preinjective component of $B$

is the same preinjective component of $B_{0},$ $B_{0}$ is tame concealed and $\tilde{A}_{n}$ -free. So,
by [P1], $q_{B_{0}[M_{0}]}$ is strongly indefinite. But $B_{0}[M_{0}]$ is a convex subcategory of $B[M]$

and so $q_{B[M]}$ is strongly indefinite.
Let us see B2, that is $B_{0}[M_{0}]$ is tame, but $B[M]$ wild.
Again, since $B_{0}[M_{0}]$ is tame, we have two possibilities:
B2.1 $M_{0}$ is a ray module.
B2.2 $M_{0}$ is a module of regular length two in the tube of rank $n-2$ and $B_{0}$

is tame concealed of type $\tilde{D}_{n}$ . In the case B.2.1, we have that if $M$ is a ray
module over $B$, by [R2] 4.5 and 4.6, the component $\mathscr{T}[M]$ is a standard inserted-
co-inserted tube. Moreover, all indecomposable projectives of $B[M]$ lie in $\mathscr{P}$ , the
postprojective component, or on $\mathscr{T}[M]$ (where is the unique projective that is
outside of $\mathscr{P}$) therefore, $B[M]$ is an algebra with acceptable projectives (see [PT])
and in this case, $B[M]$ , it is wild if and only if $q_{B[M]}$ is strongly indefinite. On
the other hand, if $M=M_{0}$ and therefore, $M$ is a ray module over $B_{0}$ , then
$B[M]=B[M_{0}]$ is an iterated tubular algebra and in this case, $B[M]$ is tame, a
contradiction. So, we can assume that $M$ is not a ray module over $B$ and more-
over that $M\neq M_{0}$ and, therefore, that there exists an indecomposable injective $I$

in $\mathscr{T}$ , the tube where $M$ lies, such that $Hom(M, I)\neq 0$ and that there are two
arrows starting in $M$. Also, we can assume that $i$, the coextension vertex belongs
to supp $M$, so that there exists a morphism $M\rightarrow I_{i}$ .

Let $E$ be the ray module which is the root of the branch.
Let $B_{I}=[E]B_{0}$ and $M_{i}=M|_{B_{i}}$ . Then we have: $Hom_{B_{j}}(M_{i}, M_{0})\neq 0$ , but

$Hom_{B_{j}}(M_{0}, M_{i})=0$ , and again we have two cases:
B.2.1.1 The branch is co-inserted in $E,$ $E\neq M_{0}$ ;
B.2.1.2 The branch is co-inserted in $E=M_{0}$ .
In the first case, sinoe $M$ is not a ray module over $B$, we can assume

that there exists an arrow that start in $M$ and points to the mouth of the tube,
say $M\rightarrow Y$ . Moreover, by $[[R2], 4.5]$ there exists a sectional path $ M\rightarrow M_{t}\rightarrow$

$M_{t-1}\rightarrow\cdots M_{0}$ that does not contain injectives. So, we can consider that all of
these modules $\tau^{-1}M_{i}$ , and in particular $\tau^{-1}M_{1}$ , are non zero.
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Since $M_{0}$ is a $B_{0}$-ray module, then $\tau^{-1}M_{1}$ cannot be a $B_{0}$-module. But in this
case, it is a co-ray module and therefore $M_{0}$ is a co-ray module, contradiction.
So, the situation B.2.1.1 does not occur.

If the branch is co-inserted in $E=M_{0},$ $M_{0}=M|_{B_{0}},$ $M$ is not a ray module.

Again, we can assume that there exists an arrow starting in $M$ and pointing to the

mouth of the tube. Moreover, sinoe the branch is co-inserted in $M_{0}$ , there is a
sectional path $M\rightarrow I$ the injective of the co-insertion. Let us look at the category
$Hom$ ( $M$ , B-mod). This category has three pieces. Sinoe $B$ is tilted, $ Hom(M, X)\neq$

$0$ only for modules $X$ that are preinjective or in the same tube $\mathscr{T}$ where $M$ lies.

Let $X$ be a $B_{0}$-module. Since $M$ is a co-inserted module, $Hom_{B}(M, X)\neq 0$ and,

hence, $Hom_{B_{0}}(M_{0}, X)\neq 0$ . Since $B_{0}$ is a tame concealed algebra and $M_{0}$ is a ray
module over $B_{0},$ $Hom$ ( $M$ , B–mod) contains the following subcategories: the ray
of $F$ that starts in $M_{0},$ $Hom(M_{0}, J(B_{0})$ where $J(B_{0})$ is the preinjective compo-
nent of $B_{0}$ and the subcategory given by the sucessors of $M$ in the tube, that are
not $B_{0}$-modules. Sinoe $B_{0}[M_{0}]$ is tame, $Hom(M_{0}, J(B_{0}))$ is given by some of the

pattems given in [ $[R1]$ , pag. 254]. Let us assume that one of the following two
situations occur:

Either $M$ is injective and so the vectorspace category restricted to the tube
is given by two sectional paths: one, finite, pointing to the mouth of the tube and
one, infinite, (the ray) or $M$ is not injective but the vectorspace category restricted
to the tube is given by two parallel paths. We will see that in this situation, since
$B_{0}[M_{0}]$ is tame, $B[M]$ is tame, in contradiction to the hypothesis, because $A=B[M]$

is a coil enlargement of $B_{0}$ , by [AS] because $A^{+}=B_{0}[M_{0}],$ $A^{-}=B$ , are both tame.

As that $A=B[M]$ is tame.
Let us assume then that $M$ is not injective and that there exists a sectional

path $M\rightarrow Y_{t}$ with $t\geq 1$ . In first place, we observe that $Hom_{B}(Y_{i}, X)=0$ for all
preinjective $X$. But $Y_{i}$ being on the coray, and to the right of $M_{0}$ , there does not

exist an infinite path coming out of it, and similarly $Hom(\tau^{-1}M, X)=0$ for all
preinjective $X$.

In particular, $Hom(Y_{i}, X)=Hom(\tau^{-1}M, X)=0$ for all $X$ such that
$Hom(M_{0}, X)\neq 0$ with $X$ in the preinjective component. Moreover $Hom(Y_{i}, \tau^{-1}M)=$

$0=Hom(\tau^{-1}M, Y_{j})$ for $\forall j\geq 1$ . Hence, by $[[R1](3.1)]$ we can find one of the
following path-incomparable (see [Ch]) subcategories in $J(B_{0})$ , with the only

exception of the case $(\tilde{D}_{n},n-2):K_{1}=\{A, B, C\}$ , (in cases: $(\tilde{D}_{4},1),$ $(\tilde{D}_{6},2)$ ,
$(\tilde{D}_{7},2),$ $(\tilde{D}_{8},2),$ $(\tilde{E}_{6},2),$ $(\tilde{E}_{7},3),$ $(\tilde{E}_{7},4),$ $(\tilde{E}_{8},5)$ and $K_{2}=\{A, B\rightarrow C\}$ in cases
$(\tilde{D}_{5},2)$ and $(\tilde{E}_{6},3)$ . So, in each case, adding the objects $Y_{1},$ $\tau^{-1}M$ to the cat-

egories $K_{1}$ or $K_{2}$ we have that $Hom$ ($M$ , B-mod) is wild and that $q_{B[M]}$ is
strongly indefinite.
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Let us calculate the quadratic form for the case $(\tilde{D}_{5},2)$ , the other cases
are similar. Let $\tilde{L}$ be the B-module $\tilde{L}=2Y_{1}\oplus 2\tau^{-1}M\oplus 2A\oplus B\oplus C$ and $L=$
$\tilde{L}\oplus 4S_{e}$ , then $q_{B[M]}(\underline{dim}L)=\chi_{B[M]}(\underline{dim}L)+4dim_{k}Ext^{2}(M,\tilde{L})=\chi_{B[M]}(\underline{dim}L)=$

$\chi_{B[M]}(\underline{dim}\tilde{L})+4^{2}-4(8)=15+16-32=-1$ . Let us see the case $(\tilde{D}_{n}, n-2)$ . In
this case, the pattem is given by:

$A$

$\nearrow$ $\searrow$

$\circ\rightarrow\cdots 0\rightarrow$ $0$ $\circ$ $\rightarrow$

$\searrow$ $\nearrow$

$B$

If $t>1$ , considering that $K=\{A, B, \tau^{-1}M, Y_{1}\rightarrow Y_{2}\}$ is wild, again the quadratic
form is strongly indefinite. On the other hand, if $t=1$ we have two possibilities:

Case 1
$Y_{1}$

$\nearrow$

$Y_{0}$

$\nearrow$ $\searrow$

$M$ $\tau^{-1}M$

$\searrow$ $\nearrow$ $\searrow$

$z_{1}$ $\tau^{-1}Z_{1}$

$\searrow$ $\nearrow$

$z_{2}$

$\searrow$

$I$

$\searrow$

$M_{0}$

and case 2
$Y_{1}$

$\nearrow$

$Y_{0}$

$\nearrow$ $\searrow$

$M$ $r^{-1}M$

$\searrow$ $\nearrow$

$\searrow$

$M_{0}$

In case 1, we can again consider the wild subcategory $\{Y_{1}, \tau^{-1}M\rightarrow\tau^{-1}Z_{1}, A, B\}$

and the quadratic form is strongly indefinite. On the other hand, in case 2, we
have a vectorspace category which is in fact tame, by Nazarova Theorem, so that
$B[M]$ is tame.
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Let us examine now B.2.2, $M_{0}$ is a module of regular length 2 in a tube of
rank $n-2$ and $B_{0}$ is tame concealed of type $\tilde{D}_{n}$ . If $M=M_{0}$ lies in a stable tube,
then $Hom$ ( $M$ , B–mod) $=Hom$ ( $M_{0},$ $B_{0}$ -mod) and therefore both are tame or
wild simultaneosly. So, we can assume that $M$ belongs to a co-inserted tube. Since
$M_{0}$ has regular length 2, there exist $E_{1}$ and $E_{0}$ ray-modules over $B_{0}$ such that
$\tau E_{0}=E_{1}\rightarrow M_{0}\rightarrow E_{0}$ is the ARS for $E_{0}$ . Let $E_{0},$ $E_{1},$ $\ldots E_{n-3}$ be the ray-modules
over $B_{0}$ of the tube where $M$ lies. Again, we divide in possibilities.

B.2.2.1 The branch is co-inserted in $E_{0}$ .
B.2.2.2 The branch is co-inserted in $E_{1}$ .
B.2.2.3 The branch is co-inserted in $E_{j}$ for $j\neq 0$ or 1.
Let us observe that if $M=M_{0}$ , then $Hom$ ( $M$ , B–mod) has the same pattem

as $Hom$ ( $M_{0},$ $B_{0}$ –mod). If $M$ is a $B_{0}$-module, then $Hom_{B}(M, N)\neq 0$ for modules
$N$ in the same tube as $M$ or for modules $N$ in the preinjective component. Hence,
being $Hom(M, N)=Hom(M_{0}, N_{0})$ it has the following pattem

$\nearrow$ $\searrow$

$\blacksquare$

$\rightarrow$

$\searrow$ $\nearrow$ $\searrow$

$\searrow$ $\nearrow$

$\searrow$ $\nearrow$ $\searrow$ $\nearrow$ $\searrow$ $\nearrow$

$\rightarrow$

$\blacksquare$

$\rightarrow$ $\rightarrow$

$\searrow$ $\nearrow$ $\searrow$ $\nearrow$

which is tame, by [R1]. (In this picture we indicate the non zero modules in the
category with $\blacksquare$ indicating the objects of dimension 2.) We can assume that $M$

belongs to the co-ray and that there exists an injective $I$ in the tube $/$ such that
$Hom(M, I)\neq 0$ .

Let us consider B.2.2.1. We have a co-inserted branch in $E_{0}$ , and

$Y_{1}$

$\nearrow$

$Y_{0}$

$\nearrow$

$M$

$\searrow$

$I$

$\searrow$ $\nearrow$ $\searrow$

$rB_{0}$ $E_{O}$

$\searrow$ $\nearrow$

$M_{O}$

If there exists a sectional path $M\rightarrow Y_{0}\rightarrow Y_{1}$ , then, $Hom(M, Y_{1})\neq 0$ .
Let us observe that $Y_{1}|_{B_{0}}=0$ and $Hom(Y_{1}, X)=0$ for all preinjective module
$X$ and in particular, $Hom(Y_{1}, X_{j})=0$ for each of the preinjective $X_{i}^{\prime}s$ such that
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$Hom(M_{0}, X_{i})$ has dimension 2. Hence $q_{B[M]}$ is strongly indefinite. Let us assume
that the longest sectional path starting at $M$ in the direction of the mouth of the
tube has length 1. In this case, again, $Hom$ ( $M$ , B–mod) has the same pattem than
$Hom$ ( $M_{0},$ $B_{0}$ –mod) and so it is tame.

Let us consider B.2.2.2. Since $Hom(E_{1}, E_{0})=0$ , the morphisms from $M$ to $X$,
for $X$ preinjective, are just the ones that factor through the successor of $M_{0},$ $M_{1}$ ,
and those that factor through $E_{0}$ are equal to zero and the vectorspaoe category
$Hom$ ($M$ , B–mod) is of the form:

$M$

$\searrow$

$I$
$\nearrow$ $\searrow$

$\nearrow$ $\searrow$

$\searrow$
$\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$

$B_{0}$
$\searrow$ $\nearrow$ $\searrow$ $\nearrow$

$\searrow$

$M_{O}$

and we can repeat the arguments of the case B.2.1.2.
Finally, let us look at B.2.2.3. The branch is inserted in $E_{j}$ with $j\neq 0$ or 1.

But, in this case, $M=M_{0},$ $Hom(M_{0}, I)=0$ for any $I$ injective in $F$ and we fall
again in a already examined case. $\square $

EXAMPLE 2.4. Let us see an example.
Let $B$ be given by:

$1\backslash _{3-4--}\angle^{5}\backslash _{-7}\nearrow 8|^{1^{1}}$

$ 2\nearrow$ $\backslash _{6}\nearrow\backslash _{9}|^{1}|$

$B$ is tilted of type $\tilde{D}_{8}$ , with a complete slice in the postprojective com-
ponent. Let us consider $M_{1}$ a module of the separating tubular family, such
that the ordinary quiver of $\Lambda_{1}=B[M_{1}]$ , is given below. Then $\Lambda_{1}$ is wild and
$q\Lambda_{1}(I_{3}\oplus I_{3}\oplus I_{8}\oplus 2S_{e})=-1$ .
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3. Directed Modules

PROPOSITION 3.1. Let $B$ be a tilted algebra of euclidean type, with the post-

projective component of tree type and $M$ an indecomposable B-module in this com-
ponent. Then, if $B[M]$ is wild, the Tits form $q_{B[M]}$ is strongly indefinite.

PROOF. Sinoe $B$ is of euclidean type we have two possibilities
1) $B$ has a complete slioe in the preinjective component, or
2) $B$ has a complete slioe in the postprojective component.

In the first case, all injectives are in the preinjective component, so for any $I$ such
that $Hom(M, I)\neq 0,$ $M$ and $I$ are separated by a separating tubular family and
the result follows from [PT].

In case 2 all projectives are in the postprojective component.
Let us consider C’ the component in the Auslander-Reiten quiver of

$B[M]$ that contains the new projective module $P_{e}$ , we will see that $\mathscr{C}^{\prime}$ is a $\pi-$

component (as in [Co]). For this, it is enough to prove that $ l(Hom(-, B[M])<\infty$ ,

but as $B[M]=B\oplus P_{e}$ and the number of indecomposable modules that are pre-
decessors of $B[M]$ is finite, so, $\mathscr{C}^{\prime}$ is a $\pi$-component. Again two situations can
occur:

1) The new simple injective $I_{e}$ belongs to $\mathscr{C}^{\prime}$ , or
2) The new simple injective $I_{e}$ does not belong to $\mathscr{C}^{\prime}$ .

Recall that the $B[M]$ -indecomposable injectives are of the form $\overline{I}_{i}=$

$(I_{i}, Hom(M, I_{i}), id.)$ when $Hom(M, I_{i})\neq 0,$ $(I_{i}, 0,0)$ when $Hom(M,I_{i})=0$ , where
$I_{i}$ are the indecomposable injectives of $B$ and the new injective $I_{e}$ is equal to
$(0,k, 0)$ .

Let us consider 1), so $I_{e}\in \mathscr{C}^{\prime}$ , again by [Co], sinoe $\mathscr{C}^{\prime}$ contains a projective
module then $1(Hom(-, I_{e}))<\infty$ . But in this case the number of $B[M]$ -modules
that are not B-modules is finite and so $B[M]$ is tame.

Let us consider 2). The new injective $I_{e}$ does not belong to $\mathscr{C}^{\prime}$ . If no other
injective belongs to $\mathscr{C}^{\prime}$ , by [Co] $\mathscr{C}^{\prime}$ is a postprojective component that contains all
projectives and no injectives. In this case $B[M]$ is a tilted algebra and the repre-
sentation type is given by the corresponding quadratic form. Let us see that no
injective belongs to $\mathscr{C}^{\prime}$ . Let $I$ be a B-indecomposable injective, if $Hom(M, I)\neq 0$ ,

there exists a non zero morphism (I, 0, $0$ ) $\rightarrow(I, Hom(M, I), id.)$ Consider $P$ the
B-indecomposable projective associated to $I$, then $(P, 0,0)$ is the $B[M]$ -projective
associated to (I, $Hom(M,$ $I),$ $id.$ ) and $Hom((P, 0,0), (I, 0,0))\neq 0$ . As in B-mod, $P$

and $I$ are in different components, there exists infinite B-modules $X_{i}$ such that
$Hom(X_{i},I)\neq 0$ but in this case, $Hom_{B[M]}((X_{i}, 0,0), (I, 0,0))\neq 0$ for infinite mod-
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ules, a contradiction to the fact that ($ l(Hom(-, (I, 0,0))<\infty$ . So $\mathscr{C}$ does not
contain any injective. $\square $

We have been assuming that some of the directed components of $B$ are of
tree type. In general these hypothesis does not imply that the algebra is a good
algebra or is strongly simply connected (see [S3] for definitions). But for tilted
tame algebras, this is the case.

THEOREM 3.2 [ALP]. Let $B$ be a tame tilted algebra. Then $B$ is strongly
simply connected $lf$ and only if the orbit quiver of each directed component of
$\Gamma(modB)$ is a tree.

COROLLARY 3.3. Let $B$ be a strongly simply connected tilted algebra of eu-
clidean type and $M$ an indecomposable B-module. If $B[M]$ is wild then $q_{B[M]}$ is
strongly indefinite.

PROOF. If $M$ is a postprojective module, we have the result by 3.1. If $M$ is
a module of the tubular family, the result follows by 2.3. Let us assume that $M$

is preinjective. If $B$ has a complete slice in the postprojective component the result
follows from [P1]. Let us assume that $B$ has a complete slice in the preinjective
component, we are going to use the same argument used by De la $Pe\tilde{n}a$ in [P4].
Let $\mathscr{S}(M\rightarrow)=$ { $Y\in B$ -mod such that there exist a sectional path $M\rightarrow Y$ } and
let $P_{e}$ denote the new projective in $B[M]$ . Let us call $\mathscr{S}=\mathscr{S}(M\rightarrow)\cup\{P_{e}\}$ . Then
$\mathscr{S}$ is a slice (in general not complete) in $B[M]$ , and we can consider $C$ the full
subcategory of $B[M]$ determined by the vertices $i$ such that $Y(i)\neq 0$ for $Y\in \mathscr{S}$ .
In this case, $C$ is a convex subcategory of $B[M]$ , and $\mathscr{S}$ is a complete slice in $C$,
so $C$ is tilted. Moreover all $B[M]$ -modules are B-modules or are C-modules. If
$B[M]$ is wild, then $C$ is wild, and as $C$ is convex in $B[M]q_{B[M]}$ is strongly in-
definite. $\square $
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