ON A CLASS OF EVEN-DIMENSIONAL MANIFOLDS STRUCTURED BY A \mathscr{T}-PARALLEL CONNECTION

By

Filip Defever ${ }^{1}$ and Radu Rosca

Abstract

Geometrical and structural properties are proved for a class of even-dimensional manifolds which are equiped with a \mathscr{T} parallel connection.

1. Introduction

Riemannian manifolds (M, g) structured by a \mathscr{T}-parallel connection have been defined in [12]. We recall that if M is such a manifold carrying a globally defined vector field $\mathscr{T}\left(\mathscr{T}^{a}\right)$ and θ_{b}^{a} (resp. e_{a}) are the connection forms (resp. the vectors of an orthonormal basis), the connection forms satisfy

$$
\begin{equation*}
\theta_{b}^{a}=\left\langle\mathscr{T}, e_{b} \wedge e_{a}\right\rangle \tag{1}
\end{equation*}
$$

where \wedge is the wedge product. The equations (1) imply $\nabla_{\mathscr{T}} e_{a}=0$ and this agrees with the definition of a \mathscr{T}-parallel connection.

In the present paper we assume that M is of even dimension $2 m$. In Section 3 we prove that M is a space-form with the following properties:
(i) M carries a locally conformal symplectic form Ω having $\mathscr{T}^{b}(=\alpha)$ as covector of Lee;
(ii) \mathscr{T} is closed torse forming

$$
\nabla \mathscr{T}=(c+t) d p-\alpha \otimes \mathscr{T}
$$

where $d p$ is the soldering form of M, c is a constant, $t=\|\mathscr{T}\|^{2} / 2$, and $d \alpha=0$;
(iii) \mathscr{T} defines a relative conformal transformation of Ω [14] (see also [7]), i.e.

$$
d\left(\mathscr{L}_{\mathscr{T}} \Omega\right)=4(c+f) \alpha \wedge \Omega
$$

where f is the principal scalar field on M;

[^0](iv) the components $\mathscr{T}^{a}(a=1, \ldots, 2 m)$ of \mathscr{T} are eigenfunctions of the Laplacian Δ and have all as eigenvalue f.

In Section 4 we consider the tangent bundle $T M$ of the manifold M discussed in Section 3. Let $V\left(v^{a}\right)$ be the Liouville vector field [3] on $T M$ and ψ the associated Finslerian 2-form [3]; the following properties are proved
(i) the complete lift $\Omega^{c}[18]$ of Ω defines a conformal symplectic structure on $T M$ and \mathscr{T} defines as for Ω a relative conformal transformation of Ω^{c} [14] [7]; (ii)

$$
d\left(\mathscr{L}_{\mathscr{T}} \Omega^{c}\right)=2(c+1) \alpha \wedge \Omega^{c}
$$

and since $\mathscr{L}_{V} \Omega^{c}=\Omega^{c}$, and $\mathscr{L}_{V} \psi=\psi$, both Ω^{c} and ψ are homogeneous and of class 1 ;
(iii) if X is a skew-symmetric Killing vector field [15] having \mathscr{T} as generative, then Ω^{c} is invariant by X, i.e. $\mathscr{L}_{X} \Omega^{c}=0$, and X defines also an infinitesimal conformal transformation of the canonical symplectic form $I I=f \psi$, i.e.

$$
\mathscr{L}_{X} I I=-g(X, \mathscr{T}) I I
$$

(iv) the vertical lift X^{V} of X defines a relative conformal transformation of the Finslerian form ψ, i.e.

$$
d\left(\mathscr{L}_{X^{\nu}} \psi\right)=\left(d g(X, \mathscr{T})+g(X, \mathscr{T}) X^{b}\right) \wedge \psi
$$

2. Preliminaries

Let (M, g) be a Riemannian C^{∞}-manifold and let ∇ be the covariant differential operator with respect to the metric tensor g. We assume that M is oriented and ∇ is the Levi-Civita connection of g. Let $\Gamma T M=\Xi(M)$ be the set of sections of the tangent bundle, and

$$
b: T M \xrightarrow{b} T^{*} M \quad \text { and } \quad \sharp: T M \stackrel{\sharp}{\rightleftarrows} T^{*} M
$$

the classical isomorphisms defined by g (i.e. ${ }^{b}$ is the index lowering operator, and \sharp is the index raising operator).

Following [11], we denote by

$$
A^{q}(M, T M)=\Gamma \operatorname{Hom}\left(\Lambda^{q} T M, T M\right),
$$

the set of vector valued q-forms $(q<\operatorname{dim} M)$, and we write for the covariant derivative operator with respect to ∇

$$
\begin{equation*}
d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M) \tag{2}
\end{equation*}
$$

It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^{2}=d \circ d=0$. If $p \in M$ then the vector valued 1 -form $d p \in A^{1}(M, T M)$ is the canonical vector valued 1 -form of M, and is also called the soldering form of M [2]. Since ∇ is symmetric one has that $d^{\nabla}(d p)=0$. A vector field Z which satisfies

$$
\begin{equation*}
d^{\nabla}(\nabla Z)=\nabla^{2} Z=\pi \wedge d p \in A^{2}(M, T M), \quad \pi \in \Lambda^{1} M \tag{3}
\end{equation*}
$$

is defined to be an exterior concurrent vector field [13] (see also [10]). The 1-form π in (3) is called the concurrence form and is defined by

$$
\begin{equation*}
\pi=\lambda Z^{b}, \quad \lambda \in \Lambda^{0} M . \tag{4}
\end{equation*}
$$

Let $\mathcal{O}=\left\{e_{a} \mid a=1, \ldots 2 m\right\}$ be a local field of orthonormal frames over M and let $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{a}\right\}$ be its associated coframe. Then E. Cartan's structure equations can be written in indexless manner as

$$
\begin{align*}
\nabla e & =\theta \otimes e \tag{5}\\
d \omega & =-\theta \wedge \omega \tag{6}\\
d \theta & =-\theta \wedge \theta+\Theta \tag{7}
\end{align*}
$$

In the above equations θ (resp Θ) are the local connection forms in the tangent bundle $T M$ (resp. the curvature 2-forms on M).

3. Manifolds structured by a \mathscr{T}-parallel connection

Let (M, g) be a $2 m$-dimensional oriented Riemannian C^{∞}-manifold and

$$
\begin{equation*}
\mathscr{T}=\mathscr{T}^{a} e_{a}, \quad \mathscr{T}^{b}=\alpha=\sum \mathscr{T}^{a} \omega^{a} \tag{8}
\end{equation*}
$$

be a globally defined vector field and its dual form respectively. Let $\theta_{b}^{a}(a, b \in\{1, \ldots 2 m\})$ be the local connection forms in the tangent bundle TM. Then, by reference to [12], (M, g) is structured by a \mathscr{T}-parallel connection if the connection forms θ satisfy

$$
\begin{equation*}
\theta_{b}^{a}=\left\langle\mathscr{T}, e_{b} \wedge e_{a}\right\rangle \tag{9}
\end{equation*}
$$

where \wedge means the wedge product of vector fields. Making use of Cartan's structure equations (5), we find by (8) and (9) that

$$
\begin{equation*}
\theta_{b}^{a}=\mathscr{T}^{b} \omega^{a}-\mathscr{T}^{a} \omega^{b} \tag{10}
\end{equation*}
$$

and in consequence of (10), the equations (5) take the form

$$
\begin{equation*}
\nabla e_{a}=\mathscr{T}^{a} d p-\omega^{a} \otimes \mathscr{T} \tag{11}
\end{equation*}
$$

Since one has that $\theta_{b}^{a}(\mathscr{T})=0$, then following [6] one may say that the connection forms θ_{b}^{a} are relations of integral invariance for \mathscr{T}.

From (11) it also follows that

$$
\begin{equation*}
\nabla_{\mathscr{T}} e_{a}=0, \tag{12}
\end{equation*}
$$

which expresses that all the vectors of the \mathcal{O}-basis $\mathcal{O}=\left\{e_{a}\right\}$ are \mathscr{T}-parallel and this legitimates our definition regarding the structure of M. Further, making use of E. Cartan's structure equations (6) one derives that

$$
\begin{equation*}
d \omega^{a}=\alpha \wedge \omega^{a} \tag{13}
\end{equation*}
$$

where we have set $\alpha=\mathscr{T}^{b}$. Hence, by (13) it follows that all the pfaffians ω^{a} of the covector basis \mathcal{O}^{*} are exterior recurrent forms [1]. Consequently, the pfaffian α can be seen to be in fact a closed form, i.e.

$$
\begin{equation*}
d \alpha=0 \tag{14}
\end{equation*}
$$

Since

$$
\begin{equation*}
\alpha=\mathscr{T}^{b}=\sum \mathscr{T}^{a} \omega^{a}, \tag{15}
\end{equation*}
$$

one has by (11) $d \mathscr{T}^{a} \wedge \omega^{a}=0$, and by reference to [9], one may write

$$
\begin{equation*}
d \mathscr{T}^{a}=f \omega^{a}, \quad f \in \Lambda^{0} M \tag{16}
\end{equation*}
$$

and call f the distinguished scalar on M. By (16) and (14) it can now be seen that α is also an exact form, and that one may set

$$
\begin{equation*}
\alpha=-\frac{d f}{f} \tag{17}
\end{equation*}
$$

Further, taking the covariant differential of \mathscr{T}, one finds by (11) and (16) that

$$
\begin{equation*}
\nabla \mathscr{T}=(f+2 t) d p-\alpha \otimes \mathscr{T} \tag{18}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
2 t=\|\mathscr{T}\|^{2} \tag{19}
\end{equation*}
$$

Hence, according to [17] (see also [16] [15] [9]), equation (18) expresses that \mathscr{T} is a torse forming vector field, which in addition, by (11), has the property to be closed; by (19) one may also write

$$
\begin{equation*}
d t=f \alpha \tag{20}
\end{equation*}
$$

Further, operating on (11) by the exterior covariant operator d^{∇}, one gets

$$
\begin{equation*}
d^{\nabla}\left(\nabla e_{a}\right)=\nabla^{2} e_{a}=2(f+t) \omega^{a} \wedge d p \tag{21}
\end{equation*}
$$

This reveals that all the constituents of the vector basis $\left\{e_{a}\right\}$ are exterior concurrent vector fields [13] with $2(f+t)$ as exterior concurrent scalar. Under these conditions it suffices to make use of the general formula

$$
\begin{equation*}
\nabla^{2} Z=Z^{a} \Theta_{a}^{b} \otimes e_{b} \tag{22}
\end{equation*}
$$

where $Z \in \Xi(M)$ and Θ_{a}^{b} are the curvature 2-forms on M, to derive

$$
\begin{equation*}
\Theta_{a}^{b}=2(f+t) \omega^{a} \wedge \omega^{b} \tag{23}
\end{equation*}
$$

It is well known that the equation (23) shows that the manifold M under consideration is a space form of curvature

$$
\kappa=-2(f+t)
$$

(see also [9]), and we agree to set

$$
\begin{equation*}
f+t=c=\text { const. } \tag{24}
\end{equation*}
$$

In another perspective, we agree to call the 2 -form Ω of rank $2 m$ given by

$$
\begin{equation*}
\Omega=\sum \omega^{i} \wedge \omega^{i^{*}}, \quad i=1, \ldots m, i^{*}=i+m \tag{25}
\end{equation*}
$$

the fundamental almost symplectic form of M. Taking the exterior derivative of Ω, and in view of (13), one finds that

$$
\begin{equation*}
d \Omega=2 \alpha \wedge \Omega \tag{26}
\end{equation*}
$$

This affirms the fact that M is endowed with a locally conformal symplectic structure having α as covector of Lee. Then, as is known [5], calling the mapping $Z \rightarrow-i_{Z} \Omega={ }^{b} Z$ the symplectic isomorphism, one has

$$
\begin{equation*}
{ }^{\mathrm{b}} \mathscr{T}=\sum\left(\mathscr{T}^{i^{*}} \omega^{i}-\mathscr{T}^{i} \omega^{i^{*}}\right) \tag{27}
\end{equation*}
$$

and by (16) one finds that

$$
\begin{equation*}
d\left({ }^{(} \mathscr{T}\right)=2 f \Omega . \tag{28}
\end{equation*}
$$

Taking now the Lie derivative of Ω with respect to the Lee vector field \mathscr{T}, yields

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} \Omega=2 c \Omega+2 \alpha \wedge^{\mathrm{b}} \mathscr{T}, \tag{29}
\end{equation*}
$$

and by exterior differentiation one gets

$$
\begin{equation*}
d\left(\mathscr{L}_{\mathscr{T}} \Omega\right)=4(f+c) \alpha \wedge \Omega \tag{30}
\end{equation*}
$$

Hence, following a known definition [14] (see also [7]), the above equation means that \mathscr{T} defines a relative conformal transformation of Ω.

Recall now that if $\tau \in \Lambda^{0} M$ is any scalar field, then the Laplacian of τ is expressed by

$$
\Delta \tau=\delta d f=-\operatorname{div} d f=-\operatorname{div} \nabla \mathscr{T}
$$

where $\nabla \tau$ is the gradient of τ. Coming back to the case under discussion, then with the help of (16) one derives that

$$
\begin{equation*}
\nabla \mathscr{T}^{a}=f \mathscr{T}^{a} \tag{31}
\end{equation*}
$$

This shows that \mathscr{T}^{a} is an eigenfunction of Δ corresponding to the eigenvalue f. Hence one may say that the vector field \mathscr{T} forms an eigenspace $E^{2 m}$ of eigenvalue f.

Theorem 3.1. Let M be a $2 m$-dimensional Riemannian manifold structured by $a \mathscr{T}$-parallel connection and let $\mathscr{T}\left(\mathscr{T}^{a}\right)$ be the vector field which defines this connection and \mathscr{T}^{b} the dual form of \mathscr{T}. Any such manifold is a space-form and is endowed with a locally conformal symplectic form Ω having \mathscr{T}^{b} as covector of Lee, i.e.

$$
d \Omega=2 \mathscr{T}^{b} \wedge \Omega
$$

and \mathscr{T} defines a relative conformal transformation of Ω, i.e.

$$
d\left(\mathscr{L}_{\mathscr{T}} \Omega\right)=4(c+f) \mathscr{T}^{b} \wedge \Omega
$$

where c is a constant and f is the distinguished scalar on M. The vector field \mathscr{T} is closed torse forming and its components \mathscr{T}^{a} form an eigenspace $E^{2 m}$ of eigenvalue f.

4. Geometry of the tangent bundle

Let now $T M$ be the tangent bundle of the manifold M discussed in Section 3. Denote as usual by $V\left(v^{a}\right)(a \in\{1, \ldots 2 m\})$ the Liouville vector field (or the canonical vector field [3]). Under these conditions, one may consider the set $\mathscr{B}^{*}=\left\{\omega^{a}, d v^{a}\right\}$ as an adapted cobasis in $T M$. Following [3] one denotes by i_{v} the vertical derivation (i_{v} is a derivation of degree 0 on $\Lambda T M$), i.e.

$$
\begin{equation*}
i_{v} \lambda=0, \quad i_{v} d v^{a}=\omega^{a}, \quad i_{v} \omega^{a}=0 \tag{32}
\end{equation*}
$$

Next, the complete lift of Ω is, as is known from [18], expressed by

$$
\begin{equation*}
\Omega^{c}=\sum\left(d v^{i} \wedge \omega^{i^{*}}+\omega^{i} \wedge d v^{i^{*}}\right) \tag{33}
\end{equation*}
$$

Then, on behalf of (13), the exterior differential of Ω^{c} is given by

$$
\begin{equation*}
d \Omega^{c}=\alpha \wedge \Omega^{c} \tag{34}
\end{equation*}
$$

Hence, the complete lift Ω^{c} of Ω defines on $T M$ a conformal symplectic structure, as Ω does on M. Moreover, similarly as for Ω, one can derive that

$$
\begin{equation*}
d\left(\mathscr{L}_{\mathscr{T}} \Omega^{c}\right)=2(c+1) \alpha \wedge \Omega^{c} \tag{35}
\end{equation*}
$$

which proves that \mathscr{T} defines a relative conformal transformation of Ω^{c}.
Next, as is known [4], the Liouville vector field V is expressed by

$$
\begin{equation*}
V=\sum V^{a} \frac{\partial}{\partial v^{a}} \tag{36}
\end{equation*}
$$

and the basic 1-form

$$
\begin{equation*}
\mu=\sum V^{a} \omega^{a} \tag{37}
\end{equation*}
$$

is called the Liouville 1 -form. By (33) one has that

$$
\begin{equation*}
i_{V} \Omega^{c}=\sum\left(V^{i} \omega^{i^{*}}-V^{i^{*}} \omega^{i}\right) \tag{38}
\end{equation*}
$$

and by (34) and (38) one gets

$$
\begin{equation*}
\mathscr{L}_{V} \Omega^{c}=\Omega^{c} \tag{39}
\end{equation*}
$$

Equation (39) shows that Ω^{c} is a homogeneous 2 -form of class 1 [4] on TM.
Further, taking the exterior differential of the Liouville form μ, one derives that

$$
\begin{equation*}
d \mu=\alpha \wedge \mu+\psi \tag{40}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
\psi=\sum d v^{a} \wedge \omega^{a} \tag{41}
\end{equation*}
$$

Then, since one first calculates that

$$
\begin{equation*}
i_{V} \psi=\mu, \quad \alpha(V)=0 \tag{42}
\end{equation*}
$$

one finally gets that

$$
\begin{equation*}
\mathscr{L}_{V} \psi=\psi \tag{43}
\end{equation*}
$$

which shows that, as Ω^{c}, the form ψ is also a homogeneous 2 -form of class 1 .
Moreover, by (32) one has that

$$
\begin{equation*}
i_{v} \psi=0 \tag{44}
\end{equation*}
$$

which together with (43) proves that ψ is a Finslerian form [3].
In another order of ideas, we recall that the vertical lift $Z^{V}[18]$ of any vector field Z on M with components Z^{a} is expressed by

$$
\begin{equation*}
Z^{V}=\binom{0}{Z^{a}}=Z^{a} \frac{\partial}{\partial v^{a}} \tag{45}
\end{equation*}
$$

Therefore, in the case under consideration, one has

$$
\begin{equation*}
\mathscr{T}^{V}=\sum \mathscr{T}^{a} \frac{\partial}{\partial v^{a}}, \quad a \in\{1, \ldots 2 m\} \tag{46}
\end{equation*}
$$

and by (41) and (32), one finds that

$$
\begin{equation*}
i_{v} \psi=0 . \tag{47}
\end{equation*}
$$

But, by (40) and (17), one has

$$
\begin{equation*}
i_{\mathscr{T}^{\vee}} \psi=\alpha \tag{48}
\end{equation*}
$$

and one derives

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}^{V}} \psi=0 \tag{49}
\end{equation*}
$$

which shows that ψ is invariant by \mathscr{T}^{V}.
Next, setting

$$
\begin{equation*}
I I=f \psi \tag{50}
\end{equation*}
$$

it follows from (17) and (32) that

$$
\begin{equation*}
d I I=0 \tag{51}
\end{equation*}
$$

Therefore, the exact symplectic 2 -form $I I$ can be viewed as the canonical symplectic form of the manifold $T M$. Since, as is known from [18], the Killing property for vector fields is invariant by complete liftings, we will now consider a skewsymmetric Killing vector field X [12] on M having \mathscr{T} as generative. Hence, one must write

$$
\begin{equation*}
\nabla X=X \wedge \mathscr{T} \tag{52}
\end{equation*}
$$

where \wedge denotes the wedge product of vector fields. Since by (11) one has that

$$
\begin{equation*}
\nabla X=\sum d X^{a} \otimes e_{a}+g(X, \mathscr{T}) d p-X^{b} \otimes \mathscr{T} \tag{53}
\end{equation*}
$$

one gets from (52)

$$
\begin{equation*}
d X^{a}+g(X, \mathscr{T}) \omega^{a}=X^{a} \alpha, \quad\left(\alpha=\mathscr{T}^{b}\right) \tag{54}
\end{equation*}
$$

Then, since

$$
X^{b}=\sum X^{a} \omega^{a}
$$

it follows from (13) that

$$
\begin{equation*}
d X^{b}=2 \alpha \wedge X^{b}, \tag{55}
\end{equation*}
$$

which is in agreement with Rosca's lemma [15] concerning skew-symmetric Killing en conformal skew-symmetric Killing vector fields.

Next, since a problem of current interest consists of infinitesimal transformations due to the Lie derivaties, one finds in a first step

$$
\begin{equation*}
i_{X} \Omega^{c}=\sum\left(X^{i} d v^{i^{*}}-X^{i^{*}} d v^{i}\right) \tag{56}
\end{equation*}
$$

Hence, taking the Lie derivative of the complete 2 -form Ω^{c}, one deduces that

$$
\begin{equation*}
\mathscr{L}_{X} \Omega^{c}=0 \tag{57}
\end{equation*}
$$

and this reveals that Ω^{c} is invariant by X. We also notice that taking the Lie bracket $[\mathscr{T}, X]$ one gets by (53) and (18)

$$
\begin{equation*}
[\mathscr{T}, X]=-f X, \tag{58}
\end{equation*}
$$

and this shows that \mathscr{T} defines an infinitesimal conformal transformation of X. Further, by (17), (41), (45) and (51), one calculates that

$$
\begin{equation*}
\mathscr{L}_{X} I I=-g(X, \mathscr{T}) I I, \tag{59}
\end{equation*}
$$

and this affirms that X defines an infinitesimal conformal transformation of the canonical symplectic form on $T M$. Finally, let

$$
X^{V}=\sum X^{a} \frac{\partial}{\partial v^{a}}
$$

be the vertical lift of X. By (41) one has that

$$
\begin{equation*}
i_{X^{V}} \psi=\sum X^{a} \omega^{a} \tag{60}
\end{equation*}
$$

and, taking the Lie derivative with respect to X^{V}, one derives consecutively that

$$
\begin{equation*}
L_{X^{\nu}} \psi=g(X, \mathscr{T}) \psi+3 \alpha \wedge X^{b} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(L_{X^{v}} \psi\right)=\left(d g(X, \mathscr{T})+g(X, \mathscr{T}) X^{b}\right) \wedge \psi \tag{62}
\end{equation*}
$$

Hence, (62) shows that the vertical lift X^{V} of the Killing vector field X defines a relative conformal transformation of the Finslerian form ψ.

Theorem 4.1. Let TM be the tangent bundle manifold, having as basis the $2 m$-dimensional space-form manifold $M\left(\Omega, \mathscr{T}, \mathscr{T}^{b}=\alpha\right)$ discussed in Section 3. The complete lift Ω^{c} of the conformal symplectic form Ω defines also on TM a conformal symplectic structure and the structure vector field \mathscr{T} defines also a relative conformal transformation of Ω^{c}, i.e.

$$
d\left(\mathscr{L}_{\mathscr{F}} \Omega^{c}\right)=2(c+1) \alpha \wedge \Omega^{c} .
$$

In addition, if $V(r e s p . \psi)$ means the Liouville vector field on $T M$ (resp. the Finslerian form), one has

$$
\mathscr{L}_{V} \Omega^{c}=\Omega^{c}, \quad \text { and } \quad \mathscr{L}_{V} \psi=\psi
$$

which shows that both Ω^{c} and ψ are homogeneous and of class 1 . If X is a skewsymmetric Killing vector field having \mathscr{T} as generative, then Ω^{c} is invariant by X, i.e.

$$
\mathscr{L}_{X} \Omega^{c}=0,
$$

and X defines also an infinitesimal conformal transformation of the canonical symplectic form $I I=f \psi$ on TM. Finally, the vertical lift X^{V} of X defines a relative conformal transformation of the Finslerian form ψ.

References

[1] D. K. Datta, Exterior recurrent forms on manifolds, Tensor NS 36 (1982) 115-120.
[2] J. Dieudonné, Treatise on Analysis Vol. 4, Academic Press, New York (1974).
[3] C. Godbillon, Géometrie différentielle et mécanique analytique, Herman, Paris (1969).
[4] J. Klein, Espaces variationnels et mécanique, Ann. Inst. Fourier 4 (1962) 1-124.
[5] P. Libermann, C. M. Marle, Géométrie Symplectique, Bases Théorétiques de la Mécanique, U.E.R. Math. du C.N.R.S. 7 (1986).
[6] A. Lichnerowicz, Les relations intégrales d'invariance et leurs applications a la dynamique, Bull. Sci. Math. 70 (1946) 155-169.
[7] K. Matsumoto, I. Mihai, R. Rosca, On gradient almost torse forming vector fields, Math. J. Toyama Univ. 19 (1996) 149-157.
[8] I. Mihai, R. Rosca, L. Verstraelen, Some aspects of the differential geometry of vector fields, Padge, K.U. Brussel 2 (1996).
[9] I. Mihai, R. Rosca, L. Verstraelen, On a class of exact locally conformal cosymplectic manifolds, Internat. J. Math. and Math. Sci. 19 (1996) 247-278.
[10] M. Petrovic, R. Rosca, L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math. 15 (1989) 179-187.
[11] W. A. Poor, Differential Geometric Structures, Mc Graw Hill, New York (1981).
[12] R. Rosca, On parallel conformal connections, Kodai Math. J. 2 (1979) 1-9.
[13] R. Rosca, Exterior concurrent vectorfields on a conformal cosymplectic manifold admitting a Sasakian structure, Libertas Math. (Univ. Arlington, Texas) 6 (1986) 167-174.
[14] R. Rosca, On conformal cosymplectic quasi-Sasakian manifolds, Giornate di Geometria, Univ. Messina (1988).
[15] R. Rosca, On exterior concurrent skew symmetric Killing vector fields, Rend. Mat. Messina 2 (1993) 131-145.
[16] C. Udriste, Properties of torse forming vector fields, Tensor NS 42 (1982) 134-144.
[17] K. Yano, On torse forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944) 340-345.
[18] K. Yano, S. Ishihara, Differential geometry of tangent and cotangent bundles, M. Dekker, New York (1973).

Filip Defever, Zuivere en Toegepaste
Differentiaalmeetkunde, Departement Wiskunde
K.U. Leuven, Celestijnenlaan 200 B, B-3001
Leuven, Belgium
Radu Rosca, 59 Avenue Emile Zola
75015 Paris, France

[^0]: Key words: structured manifold, \mathscr{T}-parallel connection
 Math. Subject Classification: 53B20
 ${ }^{1}$ Postdoctoral Researcher of the Research Council of the K. U. Leuven.
 Received May 16, 2000.

