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PROPAGATION OF ANALYTICITY OF SOLUTIONS TO
THE CAUCHY PROBLEM FOR WEAKLY HYPERBOLIC
SEMI-LINEAR EQUATIONS

By

Yasuo Yuzawa

Abstract. We consider a weakly hyperbolic operator with constant
coefficients. We shall derive a priori estimates for it and by applying
the estimate we prove local existence of the solution of semi-linear
Cauchy problem and investigate the propagation of analyticity of the
solutions.

1. Introduction

We consider the linear partial differential operator of order m with constant
coefficients

P=P(D,,D,)=D"+ >  a.D{D;
JHle <m, j<m
in the n+ 1 variables (¢,x), where D, = —id/0t, Dy, = —i0/0xx and D, =
(Dyxy ..., Dy,). Let 1, ;(£) be the roots of the characteristic polynomial P(7,¢) =

A ]
"+ Zj+|°‘lsm,j<m aj,,t/'¢” for j=1,...,m.

DEFINITION 1.1.  Let s > 1. A differential operator P with a symbol P(t,¢&) is
said to be s-hyperbolic with respect to (1,0,0,...,0) if there exists a non-negative
constant C such that

IIm 7, ;(&)| < C<EYYS for all E€ R,

where (&Y = /1 + |&|*. Especially, when s = oo, that is 1/s =0, P is said to be
hyperbolic with respect to t.
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E. Larsson introduced the s-hyperbolicity in and solved the Cauchy
problem for s-hyperbolic operators in Gevrey classes by using Laplace trans-
formation. In this paper we shall obtain semi-group estimates of the solution to
the Cauchy problem for s-hyperbolic operators and moreover by applying this
estimates we can investigate propagation of analyticity of solutions to the Cauchy
problem.

We consider the following m + 1 polynomials H,,_«(7,&), k =0,...,m, which
result from m differentiation of P(z,&) with respect to 7.

o (m—k)! o¥ mk
mk(1,8) == S P(1,8) = JI:[lw — Tk, (8));
for k =0,...,m, where we number the roots 7,,_« ;j(£) to be continuous and let

each H,,_; be a pseudo-differential operator with a symbol H,,_(z,¢). Put Hu =
(Hou,H\u, . ..,H,_u). We note that H,_; is s-hyperbolic if P is s-hyperbolic.
From each polynomial H,, x(7,£) we now create m —k new polynomials

P"{_k_l(r, &), j=1,...,m —k, of degree m — k — 1, by crossing out one factor at
a time.
m—k
Bl (5,8 = HT—ka1 (€))-
I=1,1#j

From elementary considerations it follows that

1 m—k+1

Hm—k(f,f)-:m > BI_(5,9)

j=1
for k=1,....m

We introduce some function spaces, called Gevrey classes, and their norms.
For p>0, s> 1, and m e R, we define

H"(R") = {u e LX(R"); (&>™eO" () e LA(R™)},

where 4(£) stands for a Fourier transform of u(x) and for p < 0 define H)” (R")
as the dual space of H™7! (R"). If p > 0, H"(R") is a Hilbert space with a ‘norm
el g = [1<E>™ ep<f>”“( &)||;2. Put Lf(R") =50 HY(R").

For a topological space X we denote by C*([0, T], X) the set of functions
which are k times differentiable in X with respect to ¢ in [0, T.

THEOREM 1.1. Let 1 <5 <59 < 0. Assume that P is so-hyperbolic of order
m. Then for arbitrary T > 0 there are p, > 0, p; <0 and C > 0 such that to any
te(0,T) and 1 =0,
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m m—k+1 t
: < J : Pu(t’, - dr’
| Hu(, >\|H;(t),s-c{; JZ_]: | B0, >u,,,,;,_?+]0|| u(t', M, }
for any u(t,x) € C™([0, T); L{(R")), where p(1) = pyt+ po.

We remark that when P is oo-hyperbolic, that is hyperbolic in the sense of
Gaérding, a priori estimate of P was derived by G. Peyser [10], [11]. Applying
Mheorem 1.1, we can solve the Cauchy problem for semi-linear equations and
investigate the propagation of the analyticity of the solutions.

For s > 1 and open set B = R", we denote by y,{f}(B) the set of all functions
satisfying the following condition: there exists a constant C > 0 such that

|Du(x)| < Clajt*p"

for any x € B and a € N". Put y)(B) =} _, y)(B) and y¥}(B) = N0 »(B).

For Q, an open domain of C”, we denote by (0(Q2) the set of all holomorphic
functions in Q.

For an open set B in R" and an open domain Q in C”, we denote by
y,(f)(B; 0(2)) the set of all functions which are in Gevrey class with respect to
x-variables and uniformly holomorphic with respect to z-variables, in the fol-
lowing sense: for any K € Q there exists a constant Cx > 0 such that

DS (x,2)] < Cgp™ ot

for all xe B and z e K.
We consider the following semi-linear Cauchy problem in (0,7) x R”":

{ P(D)u(t,x) = F(t,x, Hu) (1.1)

D/u(0,x) = uj(x) j=0,...,m—1,

where F(t,x,z) is complex-valued function. Set u©® (¢, x) = Z;Zgl(it)j ui(x)/j.
The function

F:[0,T] xR"xQ— C,

where Q is open in C™ and contains the origin, is assumed to satisfy the
following conditions:
(Al)s: F(t,x,z) is continuous in z, belongs to Gevrey class yf,s])(R”) with
respect to x and belongs to ((Q) with respect to z. ‘
(A2);: There exists a constant ¢, > 0 such that

F(t,-, Hu9(1,-)) e H (R™).

agr, s
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Then we get the following local existence theorem and investigate the propagation
of analyticity of the solutions.

THEOREM 1.2. Let 1 < s < sy and an integer | > 2n + 1. Assume that P be sy-
hyperbolic and F(t,x,z) satisfying (Al); and (A2). If uj(x) belong to HGIN(R”)
and Hu®(t,x) runs in a compact set contained by Q, then there exist T, € (0,T)
such that there exists a solution of the Cauchy problem (1.1) with T = T,.

THEOREM 1.3. Let 1 < s < sy and | be suffciently large. Assume that P is so-
hyperbolic and F(t,x,z) satisfies (Al); and (A2),, and besides assume that there
exists u(t,x) e C™([0, T}; L2(R™)) a solution of Cauchy problem (1.1) with initial
data uj(x) € L2(R"). Then if all initial values u;(x) are analytic, that is there exists
r> 0 such that for j=0,1,... m-—1,

|Dyuj(x)| < r1#)o! (1.2)
for all xe R" and o.€ N", then there exists r' > 0 such that

IDZu(t,x)] < r'|«|! (1.3)
for any (t,x) €[0,T] x R" and o€ N".

Several resluts of the propagation of analyticity are known for non-linear
hyperbolic equations. S. Alinhac and G. Métivier [1] studied for strictly hyperbolic
case. S. Spagnolo treated a second order degenerate hyperbolic equations and
M. Cicognani and L. Zanghirati treated a higher order hyperbolic equations with
constant multiplicity. P. D’Ancona and S. Spagnolo investigated the prop-
agation of analyticity for non-uniformly symmetrizable systems and K. Kajitani
and K. Yamaguti treated uniformly symmetrizable systems.

2. Preliminaries

In this section, we mention the fundamental properties for Gevrey classes.
Throughout the paper, we denote |- || = -||;2g" and ||- ||,y =l - ||lg:, that is
Sobolev’s norm. For v(x) = (v1(x),...,vm(x)) we denote ||v|| = ||vi]| + - + ||vm]|-
We introduce the semi-norms for y,(,s)(B) and y,(f)(B;@(Q)) as follows: for

(s) B
ue YP ( )3

|D2u(x)|p
Iulp’s’B = sup —x's—,
xeB,aeN" lOC|

and for f ey (B;0(Q)),
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|D3f (x,2)|p™
|flp,s, BK — sup *

xeB,zeK,aeN" IO(l!s ’

where K is a compact set of Q. Now, we state some well-known facts of their
classes.

LEemMMmA 2.1. (i) Let a(x)eyf,s)(B). Then for any p' € (0,p) and ae N",
D?a(x) belongs to )é,s)(B) and there exists positive constants C and o = a(p,p’,s)
such that

|D3aly 58 < Cldl

p,s,B = Ia“SJ—l“l’

p.sB

where C is independent of p,p’ and a.

(i) Let f(x,z) be in y$(B;0(Q)), v;(x) in v(B) for j=1,...,m. Set
v(x) = (01(x), ..., 0m(x)) and [v|,, g =2 "Vl ;5 Assume that v(x) runs in
K, a compact set of Q, for all xe B. Then, there exists a constant 73 =

03(01,02,pk, 1, |V],, 5 g), Where py is the convergence radius of f(x, -), such that
f(x,v(x)) e y((,? (B) and satisfies

|f("v('))|a3,s,B < Cn,m‘flal,s,B;K’

where C, ,, depends only on the dimensions n and m.

For m € R we denote by S™ the usual symbol class of order m, and introduce
the semi-norms as follows: for a € S™

laf (x, €)|

m _
lali™ = ol

x,éeR” Jarpi<t D"
where a%‘}% (x, &) means Dfaga(x, £). Next we define the symbols of Gevrey class
in R". For s> 1 and 4 > 0, we denote by y;S™ the set {a € S"; satisfying that

for any /e N,
()
al™ = lag (x, )47
sl R wrpi<t (EYTTH| B

and let y*S™ = (1), 74S”. We note that yfj)(R") is contained in y;S™(R").
For p >0 we define ¢<P>"" by

o},

ep<Dx>1/Su(x) _ (2n)—nJ eixé+l7<f>l/sﬁ(é) dé

n
X

m
for ue prs.
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Let A(2,¢) = p(0)<EYYS, where p(1) is a positive decreasing function on [0, T7.
We denote by eACk([0, T]; H') the set of functions satisfying e?()P>"u(z, x) €
ck([o, T); HY).

LEMMA 2.2. (i) Assume that |l is large enough. Then there exisits a constant
C; such that
<
Juollgs, < Cilulgg 10l

or any u,ve H' | where C; is independent of u and v.
y . P

.. Dr /s ] ! .
(i) P> maps from H, to H,_, continuously.

1) a pseudo-differential operator a(x,D,) € y’S™ maps from H ! to H' "
D, S P, S
continuously.
(iv) Let ap(x,Dx)=e‘p<D-‘>l/Ja(x,Dx)e/’w*)m for aeyiS™. If |p|<
(48n2/5)"'4'/s then a,(x,Dy) belongs to S™ and satisfies

la,|” < Gl

where C; is independent of a.
v) If |p| < (48n2/5)"'A'/5 then

||au|al{S < Cn|a|A,s,R"“u”Hp{S

for any a(x) € y)(R") and ue Hp{s(R").
The proof of this lemma is given in Proposition 2.3 of [6].

3. A Priori Estimate

We shall derive a priori estimate in Gevrey class Hp{ J(R") for s-hyperbolic
equation. Since all H,,_; are s-hyperbolic with respect to (1,0,0,...,0), there is a
C > 0 such that

IIm 7,4 ;(&)] < CLEYY/S for all £e R” (3.1)

for j=1,....m—k, and k=0,...,m.
Put u(t, x) = eP<P>""y(1, x), where p(f) = p;t + po and we define i(z, &) by
the Fourier transform of u(z,x) with respect to x. Then we have

e? P> p(D, D Yu(t, x) = P(D, + ip; (D>, D1)o(t, x).
So,
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I (Hp—i(Ds + ip1 <OV, E)0(2, ) Hi1 (Ds + ip1 <O, E)6(1,€) }

m—k
= Im{ { (D, + ip;(EYYS — Tm—k,j(é)):l 0(,€)
j=1
m—k
JCEIRDY {H(Dz +ip <G — zm-k,j@))} B, «:)}
I=1 [j#1

1 lam—k 2
=g =R g

=1

[H(D, +ipy (Y - rm_k,,-(é))} 8(, &)

j#1

—k

+(m =k (p<EY VS — T T 1(E))
1

3

N

2
. (3.2)

X

!H(Dt +ipy YV — rm_k,,-(é»} 8(1,%)

J#l

Since [3.1), for any C, > 0 there exists a negative constant p; such that to
any k=1,... mand j=1,... m—k,
pr<E —Tm Ty ;(£) < —Co<EY, (33)
for all £ e R". Put

Kn(t,&) = |P(D, + ip <EXY*, &)d(t, &),

m—k+1 2

Kpik(t,8) =(m—k+1)7" Y

=1

[H(Dz +ip1<&) — Tm—k+1,j(f)] b(z, &)

J#1

for k=1,... m.
We note that by virtue of Schwarz’ inequality,

Kok (t,&) = [Hpg(D; + ip <EXV5, (1, (0 < k < m). (3.4)

From and [3.3), we have
1

[\

%Z Kok (1,€) + mCo<E° Y~ Ko i(1,€)
=1 k=1

< —Im{ (Hn k(D1 + ipy <O/, )01, ) Hnosr (i + ip1 <O, o(1,8) }.

Multiplying <(£>? and integrating with respect to ¢ over R" both sides,



328 Yasuo Yuzawa
3o | @S Knat 8 dgmCo | @HOWY Knk(t€) d
2 0t R! — R" k=1

< =Y im | (€O (Hookardl0, ) o i (1, D) d

< | @Y Kaulre) de
R k=1

- ImJ n{<é>2’P(D, +ip KN, E)D(t, &) Hin-1 (Ds + ip <Y, &)t 5)} de

Therefore, if Cy is sufficiently large,

10 2
3 71 ©F L K1)
< IKEY'P(D,+ i (O, 030D | <OFY Kt e
k=1

By virtue of Gronwall’s inequality, we have [Theorem 1.1.
We note that if u;(x) =0, then 3777, >°7) P u(0, )|y =0.
Po-§

COROLLARY 3.1. Consider the following Cauchy problem in [0,T] x R":
D/u(0,x) =uj(x) j=0,....,m—1. '

For any T >0 there exists A(t,E) = (pit + po)<EDYS such that there exists a
unique solution of this problem in e C™([0,T); H'(R")) for any f(t,x)e
e*C([0, T); H'(R")) and uj(x) € H, (R").

4. Local Existence Theorem

In this section, we shall prove by using standard contraction
mapping method.

At first, we shall prove this theorem in the case all u;(x) = 0:

P(D)u(t,x) = G(t,x, Hu)
Dlu(0,x)=0 j=0,...,m—1.
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We define for 77 € (0,7] and M > 0,

Xrom = {u(t, x); Hu(t,x) € eAC([O, Tl];Hl(R") and

lully, = sup [|e?@P>" Hu(s, x)|| ) < M,
e, ) ®

where p(z) is given by [Theorem 1.1, depending on T7.

LEMMA 4.1. Let an integer | be large enough. Assume that G(t,x,z) satisfies
the following conditions:

(Bl): there exsists a  constant p; >0 such that G(t,x,z)€
C (o, Tl];y,(fl) (R"; 0(Q))), where Q is open neighborhood of the origin in C™.

(B2)s: there exists a constant u, > 0 such that G(t,x,0) € C([0, T1]; HLZ,S(R”)).

Then there exist constants M > 0 and Ty > 0 such that G(t,x,w(t,x)) belongs
to eAC([0, T1]; H'(R™)) for any w(t,x) in X1, m, where A = (prt + po)<{Dx>Y* is
given in Theorem 1.1.

ProOF. Let K be a compact neighborhood of the origin contained in Q.
Since G satisfies the conditions (B1);, there exisits a constant pg such that for any
|z| < pg, G can expand into power series of z:

G(t,x,z) = G(¢t,x,0) + Z%(@:G)(r, x,0)z%.
a>0 7

By virtue of Sobolev’s lemma, we pick M >0 small enough, hence that
|Hw(t, x)| < pg for any (z,x) € [0, T1] x R". Then,

1 o o
HBAG(I, ) HW(Z, ))”(l) =< IleAG(t7 70)“(1) + ZE{ ”eA(az G)(ta aO) ) (HW([, )) ”(l)

>0 7

(4.2)

From the assumption (B2), and [Lemma 2.2, we pick py > 0 and 77 > 0 small
enough, if necessary, hence that ||eAG(t,-,O)||(,) is bounded and moreover,

le*(22G)(2,,0) - (Hw(t,))*[ly < Cal (B2G)(2,*, 0)l g, rlle™ (HW(2, )"l

— ol —1
< GGty Mo s mrsx ok CF e Hw(e, )1

~ o
M
< Cn,-l (_—> Ole(t? * ')lag,s,R";K.

Pk
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Therefore we pick M small enough again, if necessary, hence that the right hand
side of (4.2) converges. Thus the proof of is finished. |

For we X7, » we denote an operator ® from Xz, 5 to e*C™([0, Ty]; H'(R"))
by ®(w) =u which is a solution of the following Cauchy problem,

P(D)u(t,x) = G(t,x, Hw) 43)
Diu(0,x) =0 j=0,...,m—1. '
From [Corollary 3.] and [Lemma 4.1, we have a unique solution in
eAC™((0, T\); H'(R™)). Moreover,
LEMMA 4.2. There exist T, € (0,T1]| and M > 0 such that
(i) @ is a mapping from X1, p into itself.
(i)
® (D ! < 1 /
[0(0) ~ )Ly, < 510 =2l
for any v,v' € X1, M.
PrOOF. Let v belong to X7, i and u be ®(v). From and

Lemma 4.1,

!
e Hu(t, )y < Cs | 1€4G(- o)l af

t
< Cui L{IIeAG(t’, SOl + Gy Vo s mmek}

for any te€[0,77]. Therefore we pick 7>¢€(0,77] small enough, then
leAG(z, x, Hv)l| ;) < M for all ve X, u, so that (i) is proved. Similarly,

le® (@(v) — @)l

T
J 0

< CTflo - v'|ly,,,

IA

dt’

1
eAJ V,G(t', x, Hv' + 6(Hv — Hv")) d6 - (Hv — Hv')
O]

0

where C is independent of 7,. Then choose small 7, again, if necessary,
CT, < 1/2. Thus the proof of (ii) is finished. [ |
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Hence, there exists a unique solution of Cauchy problem (4.1) in X7, s by
virtue of the fixed point theorem. In order to solve the general case, the Cauchy
problem (1.1), we change the unknown function w(¢, x) = u(t,x) — !9 (¢, x). Then
we can reduce the problem (1.1) to (4.3) by the next Lemma. Thus the proof of
is finished.

LeMMA 4.3. Assume that F(t,x,z) satisfies the conditions (Al); and (A2);.
Then there exsist constants T' >0 and M > 0 such that for any w(t,x) € X1/ u,
G(t,x,z) = F(t,x,z +w(t,x)) satisfies the conditions (Bl); and (B2); in Lemma
4.1.

In order to prove Lemma 4.3, we essentially use Lemma 2.1. We omit the
proof of this lemma.

5. Propagation of Analyticity

We introduce semi-norms in C([fo, ;]; L3(R")). Let an integer N >2 and a
real numbel r € (0,1]. We denote

| DEul| g rFI=2

o, p(t!).s

ul’y' = sup
| N t'e(to,11],2<| Bl <N (A1)

for ue C([to, t1]; L>(R")), where p(f) is a positive decreasing function, I3(k) =
Jok!k=? for k> 1 and I3(0) = 4. We can pick 4y such that

> (;')r2<|“’l + ) (jo — o)) < Da(lo] + k)

a' <a

for any ke N and aeN". In brief we write |u|, y = ||’y if there is no

confusion.

LEemMMA 5.1. Let vieC([to,tl];Lsz(R")), i=1,...,n and we denote vF =
vlﬁ‘vgz---v,/f" for Be N". Then there is a constant Cy > 0 such that
(i) for 2< Bl <N,

-1 1Bl-1
08,y < G ( sup nv(t',-)nH;;;)s+r2\v|,,N) ol

n<t'<y

and
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(i) for |B] > N,

-1 181~J
|Uﬂ|r,N < C(')ﬂ| sup ( sup lo(t', )|l g, )
2<j<N \ p<t'<y p(t').s

foe|—1
<8 3 (s ol + PNl ) Tel
2<|a| <N n<t'<y ot s

+ sup sup [lo(t, Mg Y
2<j<N \ <<y pt'),s

where constant Cy depends only on the dimension n.
(iii) Let a € Y\ (R™), that is an entire function, and v € L%(R"™), then for any
re(0,1] and N > 2,

|a(x)v(x) |r,N = Cnlalp’, 1I,R" lvlr,N?

where p' = max{5r,n(p(0)/24)°} and the constant C, depends only on the di-
mension n.

The proof of this lemma can be seen K. Kajitani and K. Yamaguti [7]. The
last term in the right hand side of (iii) of is lacked in Lemma 3.1

in [7]
Now, we shall prove Theorem 1.3. From the assumption, for any ¢ > 0 there

is © > 0 such that
||U(t, ) - u(ktv )”H’(‘f)l <e¢
plt).s

for t e [kt,(k+ )7}, k=0,1,...,[T/t]) — 1 and t € [T /1], T], where [x] stands for
the greatest integer not greater than x. From the assumption [1.2), there exist
constants C > 0 and r; > 0 such that

1Dz Hu® ke, )l ggr, < Cry ™ot
plkt), s
Put u(t, x) = u(t, x) — u® (¢, x). Then
Pu(t,x) = F(t,x, Hu(t,x)) — Pul® (¢, x) = F(t,x, Ho(t,x) + Hu® (2, x)) = Pul9 (1, x).

We define G(t,x,z) = F(t,x,z + Hu9(t,x)) — Pu®(z,x), and by [Lemma 4.3,
G(t,x,z) satisfies (B1); and (B2);. To differentiate both sides, then we have

PD?u(t, x) = DX(F(t, x, Ho(t, x) + Hu®(1,x))) - PD3u(1,),
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and we denote G, by the right hand side. Now D,jv(O,x) =0for j=0,1,...,m—1,

therefore from we obtain

t
le*HD0(e, )l < | M Galt, 9l (51)
for any t € [0,1], where A = p(£)<Dy>'/* is given by Theorem 1.1. For simplicity

we write [|ul|(,,), = lle*ul|. By virtue of [Lemma 5.1, for any 2 <a <N,
”D)oc(F(tv K Hl)(t, ) + Hu(O)(t’ ))“(p(t))
< [|DZF(t, -, Hu® (2, )l 0o

+ > BIDA(OPF (2, HuO (2, ) (Ho(t, ) ) pio
p>0

< rz<|a|)r—“‘+2{1F<z, L HUO(2,))],
+ Zﬁ'_ll(afF)(t7 ) Hu(O)(ta '))(Hv(t’ '))plr,N
p>0
< r2<|a|>r-*“'+2{|F<t, CHUO (1, )],
+ Zﬂ'_llazﬁF(za '7Hu(0)(t7 '))lvl,l,R"l(Hv>ﬁ|r,N
£>0
- Fz(locl)r““'“{lF(t, CHUO(1, )], v

o<|pl<2  2<|BlsN  |BI>N

+C{ S+ D D, }ﬁ!—wafF(r,-,Hu<0><r,->>|vl,1,Rn|<Hu>ﬂ|,

,N}

where v > max{5r,n(p(0)/24)°}. From the assumption, for fixed ¢, there exists
a compact set K = Q such that {Hu®(¢,x);x € R"} = K. Then by Lemma 4.3,

there exists a constant v, > 0 such that
0PF (&, -, Hi® (1, )], 1w < GalF (8, )1, BV

for any f e N™. For sufficiently small ¢, we have



334 Yasuo Yuzawa
IDLF(2,-, Ho(t,-) + Hul (2, )|

< rz(|a1>r-'“'+2{|F(r,-,Hu<°><t,->)|,,N

+C{Z+ Z z} |ﬂl|F (85 Moy 1, R k| (V) |rN}

IBl=1  2<|BI<N |BI>N

< r2(|a‘)r_|al+2{|F(ta 'aHu(O)(ta '))Ir,N + C’llF(t’ ) ')|v2,l,R";K

- -1 -1
Hol, y+ > v e + 2| Hol, )P | Hol,
2<|BI<N

+ Z vl—lﬁlc(l)ﬂl—lelﬁl—Z{ z (8+rlevlr,N)M—I‘Hvlr,N +82}}

|B|>N 2<|yl€N

< r2(|ai)r_lal+2{|F(tv "Hu(o)(t’ '))lr,N + CrI1|F(t’ B ')lvz,l,R";K

N-1
X Z(s + r2|Hvlr,N)j|HUlr,N}'

j=0
Here we choose r = r(t) = rpe™!, where 0 < ro < 1. Denote

yn(t) = sup r(t')|Hv|, . v,

0<t' <t

where

oh,w= sup  {IDfllg, r(e) L))

0<t'<t,2<|Bi<N

Then,
ID2F (2, -, Ho(t,-) + Hu® (2,)) | 0

N-1
< I“2(|°‘|)r—|°‘|+2{cl (1 +) (e +yN(t))lev|r(t),N) },

/=0

where C, = |F(t,, Hi'Y(1,))|, v + Co|F(t,-,)|,,.1 g.x- Thus from [5.1),

t N-1 )
|Hv|,(h § < CJO (1 + Z(8+yN(tl))j|Hvlr(t’),N) dt’,
=0
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then

t N-1 )
() < € | () + X e+ om () owte) ) ar.
0 =0
From this inequality, we have yy(f) < ¢ for t € [0, 7], if we choose ro > 0 small
enough. In fact, assume that there is #; € [0, 7] such that yy(7;) = ¢ and yn(f) <e
for te (0,#;). Since yy(0) =0, we have #; > 0. It follows from that

t

ya(t) < C(i‘o + Jo i _lzgyN(t’)> dr'.

for t€[0,1). We note that the constants C, ¢ and ry can be chosen independent
of N. Therefore we obtain yy(f) < Crgexp(Ct/(1 —2¢)) for te[0,t). This
contradicts yy(#;) = ¢, if we choose rp > 0 small enough.

Thus we can get yyn(f) <e¢ for re[0,7]. By induction, there is a constant
r' >0 such that |D%(t,x)| < Cr'™|a|! for (z,x) €[0,7] x R" and consequently
is proved.
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