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COUNTING ARGUMENTS FOR HOPF ALGEBRAS OF
LOW DIMENSION

By

Nicol\’as ANDRUSKIEWITSCH and Sonia NATALE

Abstract. Let $k$ be an algebraically closed field of characteristic $0$ .
We show that all Hopf algebras of dimension 15, 21 or 35 over $k$

are necessarily semisimple. We also prove that Hopf algebras of
dimension 25 or 49 are either semisimple or pointed. This concludes
the full classification of Hopf algebras of the above mentioned
dimensions. We also classify pointed Hopf algebras of dimension
$pq^{2}$ , where $p\neq q$ are prime numbers, and semisimple Hopf algebras
of dimension 45.

\S 0. Introduction

In the last years there has been an intense activity in classification problems
of finite dimensional Hopf algebras over an algebraically closed field $k$ of char-
acteristic $0$ . Many results have been found, containing mainly the semisimple case
and the pointed non-semisimple case. The question of classifying all Hopf algebras
of a fixed dimension, posed by I. Kaplansky in 1975, was solved in the Ph. D.
thesis of R. Williams for dimension $\leq 11[W]$ . An altemative proof of this result
appears in [S1]. Apart from these, the complete classification is known only when
the dimension is a prime number $p$ ; in this case there is only one isomorphism
type, represented by the group algebra of the cyclic group of order $p[Z]$ .

In this paper we develope some ideas about the coradical filtration of a finite
dimensional Hopf algebra, starting from a description that appears in an un-
published work of W. Nichols. These allow us to prove the following Theorem.
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THEOREM 0.1. (a). A Hopf algebra of dimension 15 or 35 is semisimple and
isomorphic to the group algebra of a cyclic group.

(b). A Hopf algebra of dimension 21 is semisimple and isomorphic to either
$kZ/(21),$ $kG$ or $k^{G}$ , where $G$ is the only (up to isomorphisms) non-abelian group of
order 21.

(c). Let $H$ be a Hopf algebra of dimension $m^{2}$ , where $m=5$ or 7. Then $H$ is
either semisimple or pointed. Thus $H$ is isomorphic to $kZ/(m^{2})$ or $kZ/(m)\oplus$

$Z/(m)$ , if $H$ is semisimple; or to a Taft algebra $T(\xi)\simeq T(\xi)^{*}$ where $\xi$ is a
primitive m-th. root of unity, if $H$ is pointed.

Let $\xi$ be a primitive m-th. root of unity. We recall that the Taft algebra $T(\xi)$

is defined as the algebra on two generators $x$ and $g$ , satisfying the relations

$x^{m}=0$ , $g^{m}=1$ , $gx=\xi xg$ .

The Hopf algebra structure in $T(\xi)$ is determined by

$\Delta(g)=g\otimes g$ , $\Delta(x)=1\otimes x+x\otimes g$ ,

$\epsilon(x)=0$ , $\epsilon(g)=1$ ,

$\mathscr{S}(g)=g^{-1}$ , $\mathscr{S}(x)=-xg^{-1}$

It is known that $T(\xi)$ is a pointed non-semisimple Hopf algebra of dimension $m^{2}$

whose proper Hopf subalgebras are semisimple and contained in $k\langle g\rangle$ . Also, we
have $T(\xi)\simeq T(\xi)^{*}$ and $T(\xi)\simeq T(\xi^{\prime})$ if and only if $\xi=\xi^{\prime}$ .

The paper is organized as follows: in \S 1 we give a proof of the results of
Nichols on the coradical filtration and a series of consequences of them. In
section 2 we present some results on the possibilities for the dimensions of certain
terms of the coradical filtration. We devote section 3 to prove Theorem 0.1 using
the methods described in the previous sections.

We include an Appendix where we present the classification of pointed Hopf
algebras of dimension $pq^{2}$ , where $p\neq q$ are prime numbers; we use for this
the “Lifting principle” from [AS2]. We also prove here that a semisimple Hopf
algebra of dimension 45 is necessarily trivial.

Our references for the theory of Hopf algebras are [Sw], [Mo], [Sch]. The
notation for Hopf algebras is standard: $\Delta,$ $\mathscr{S},$ $\epsilon$ , denote respectively the comul-
tiplication, the antipode, the counit; we use Sweedler notation but dropping the
summation symbol. Throughout $k$ denotes an algebraically closed field of char-
acteristic zero.
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\S 1. Remarks on the Coradical Filtration

Let $C$ be a coalgebra over $k$ . We denote by $\hat{C}$ the set of isomorphism types
of simple left C-comodules and by $G(C)$ the set of group-like elements in $C$. We
shall consider the coradical filtration of $C$,

$ C_{0}\subset C_{1}\subset\cdots$ ;

so that $C_{0}$ is the coradical of $C$ . We have $C_{0}\simeq\oplus_{\tau\in\hat{C}}C_{\tau}$ , where $C_{\tau}$ is a simple
subcoalgebra of dimension $d_{\tau}^{2},$ $d_{\tau}\in Z$ . It is convenient to introduce the notation

$C_{0,d}$
$:=\bigoplus_{\tau\in\hat{C}:d_{\tau}=d}C_{\tau}$

;

for instance $C_{0,1}=kG(C)$ and $C_{0,2}$ is the sum of all 4-dimensional simple sub-
coalgebras of $C$ .

We have $C_{n}=((JacC^{*})^{n+1})^{\perp},$ $n\geq 0$ , where Jac $C^{*}$ denotes the Jacobson
radical of $C^{*}$ and for any subspace $V$ of $C^{*},$ $V^{\perp}\subseteq C$ is the anihilator of $V$ in $C$,
$i.e.,$ $V^{\perp}=\{c\in C : \langle v, c\rangle=0, \forall v\in V\}$ . See [Mo, 5.2.9].

We shall denote by $V_{\tau}$ (resp., $V_{\tau^{*}}$ ) the simple left (resp. right) C-comodule
corresponding to $\tau\in\hat{C}$ . As usual, for $g,$ $h\in G(C),$ $\mathscr{P}_{g,h}(C)$ denotes the space of
$(g, h)$ -skew primitive elements of $C$ :

$\mathscr{P}_{g,h}(C)$ $:=\{x\in C : \Delta(x)=x\otimes g+h\otimes x\}$ ;

a skew primitive element $x\in \mathscr{P}_{g,h}(C)$ will be called trivial if it belongs to the
linear span of $g-h$ .

By a $C_{0}$-bicomodule we understand a vector space endowed with left and
right $C_{0}$ -coactions $p_{L}$ : $M\rightarrow C_{0}\otimes M$ and $\rho_{R}$ : $M\rightarrow M\otimes C_{0}$ such that $(\rho_{L}\otimes id)\rho_{R}$

$=(id\otimes p_{R})\rho_{L}$ . Any $C_{0}$ -bicomodule is a direct sum of simple $C_{0^{-}}sub$-bicomodules
and a simple $C_{0}$ -bicomodule is of the form $V_{\tau}\otimes V_{\mu}^{*}$ and has dimension $d_{\tau}d_{\mu}$ for
some $\tau,\mu\in\hat{C}$ . If $M$ is a $C_{0}$ -bicomodule, we set $M^{\tau,\mu}$ for the isotypic component
of type $V_{\tau}\otimes V_{\mu}^{*}$ .

We want to state a description of the coradical filtration due to Nichols, see
[W]. Let $C$ be a coalgebra; then its coradical is coseparable because $k$ is alge-
braically closed. By [Mo, Th. 5.4.2] there exists a coalgebra projection $\pi$ of $C$ onto
$C_{0}$ ; let $ I:=ker\pi$ . Then $C$ is a $C_{0}$ -bicomodule via $\rho_{L}$ $:=(\pi\otimes id)\Delta$ : $C\rightarrow C_{0}\otimes C$
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and $\rho_{R}$ $:=(id\otimes\pi)\Delta$ : $C\rightarrow C\otimes C_{0}$ . Clearly, $I$ and $C_{n},$ $n\geq 0$ , are sub-bicomodules
of $C$ . Let $P_{n}$ be the sequence of subspaces defined recursively by

$P_{0}=0$ ,

$P_{1}=\{x\in C:\Delta(x)=p_{L}(x)+p_{R}(x)\}=\Delta^{-1}(C_{0}\otimes I+I\otimes C_{0})$ ,

$P_{n}=\{x\in C:\Delta(x)-\rho_{L}(x)-p_{R}(x)\in\sum_{1\leq i\leq n-1}P_{j}\otimes P_{n-i}\}$ , $n\geq 2$ .

LEMMA 1.1 (W. Nichols). $P_{n}=C_{n}\cap I$ .

PROOF. By induction on $n$ , the case $n=0$ being trivial. The inclusion $ P_{n}\subseteq$

$C_{n}\cap I$ follows from the induction hypothesis: indeed, clearly $P_{n}\subseteq C_{n}$ and if
$x\in P_{n}$ then

$\Delta(x)=(\pi\otimes id)\Delta(x)+(id\otimes\pi)\Delta(x)+\sum_{i}x_{j}\otimes x_{n-i}$ ,

for some $x_{j}\in P_{i},$ $1\leq l\leq n-1$ . Applying $\pi\otimes\pi$ , we obtain

$\Delta(\pi(x))=(\pi\otimes\pi)\Delta(x)=(\pi\otimes\pi)\Delta(x)+(\pi\otimes\pi)\Delta(x)=2(\pi\otimes\pi)\Delta(x)$ ,

since by induction $P_{j}=C_{j}\cap I\subseteq I$ , for all $i=1,$
$\ldots,$

$n-1$ . Hence, $(\pi\otimes\pi)\Delta(x)=0$

and $\pi(x)=0$ ; so that $x\in C_{n}\cap I$ .
Conversely, let $x\in C_{n}\cap I$ . Then $\Delta(x)=\sum_{0\leq i\leq n}x_{j}\otimes y_{j}$ with $x_{j}\in C_{l},$ $ y_{j}\in$

$C_{n-i}$ . It is clear that $C_{j}=C_{0}\oplus(C_{j}\cap I)$ ; accordingly we write $x_{i}=x_{i,0}+x_{i,+}$ with
$x_{i,0}\in C_{0},$ $x_{i,+}\in C_{j}\cap I$ and similarly for the $y_{j}\prime s$ . It follows that

$\Delta(x)-p_{L}(x)-\rho_{R}(x)=\sum_{0\leq i\leq n}x_{i,+}\otimes y_{i,+}-\sum_{0\leq i\leq n}x_{i,0}\otimes y_{i,0}$
;

but the term $\sum_{1\leq i\leq n-1}x_{i,0}\otimes y_{i,0}$ is $0$ since $x\in I$ . Hence $x\in P_{n}$ by induction. $\square $

Observe that Lemma 1.1 implies that $P_{n}$ is a $C_{0^{-}}sub$-bicomodule of $I$, for all
$n\geq 0$ . The following Lemma relates the structure of $P_{1}$ with the first term of the
coradical filtration of $C$ .

LEMMA 1.2 (W. Nichols). The first term of the coradical filtration can be
expressed as

$C_{1}=\sum_{\tau,\mu\in\hat{C}}C_{\tau}\wedge C_{\mu}$
and $C_{\tau}\wedge C_{\mu}=C_{\tau}\oplus C_{\mu}\oplus P_{1}^{\tau,\mu}$ (only one simple

coalgebra if $\tau=\mu$).

We stress that $P_{1}^{\tau,\mu}$ is not intrinsic since it depends on the projection $\pi$ .
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PROOF. Clearly $P_{1}^{\tau,\mu}=\{x\in P_{1} : \Delta(x)\in C_{\tau}\otimes C+C\otimes C_{\mu}\}\subseteq C_{\tau}\wedge C_{\mu}\subseteq C_{1}$ . By
Lemma 1.1, $C_{1}=C_{0}\oplus P_{1}=(\oplus_{\tau}C_{\tau})\oplus(\oplus_{\tau,\mu}P_{1}^{\tau,\mu})\subseteq\sum_{\tau,\mu}C_{\tau}\wedge C_{\mu}$ . The claim
follows. $\square $

Assume in what follows that $C=H$ is a finite dimensional Hopf algebra.
Then $\mathscr{S}(C_{\tau})$ is a simple subcoalgebra which we denote by $C_{\tau^{d}}$ ; if $g\in G(H)$

then $g.C_{\tau}$ and $C_{\tau}.g$ are also simple subcoalgebras which we denote by $C_{g.\tau},$ $C_{\tau.g}$

respectively.

COROLLARY 1.3. $\dim P_{1}^{\tau,\mu}=\dim P_{1}^{\mu^{d},\tau^{d}}=\dim P_{1}^{g.\tau,g\mu}=\dim P_{1}^{\tau.g,\mu.g}$ for any
$g\in G(H)$ .

PROOF. As $\mathscr{S}(C_{\tau}\wedge C_{\mu})=C_{\mu^{d}}\wedge C_{\tau^{d}},$ $g.(C_{\tau}\wedge C_{\mu})=C_{g.\tau}\wedge C_{g.\mu}$ and $(C_{\tau}\wedge C_{\mu}).g$

$=C_{\tau.g}\wedge C_{\mu.g}$ , the claim follows from Lemma 1.2. $\square $

COROLLARY 1.4. If I is a direct sum of one-dimensional $H_{0^{-}}sub$-bicomodules
then $H_{1}=H_{0}+\sum_{g,h\in}{}_{G(H)}P_{g,h}(H)$ . $\square $

Consider the right action –: $H^{*}\otimes H\rightarrow H^{*}$ given by $\alpha-h=\langle\alpha_{1}, h\rangle\alpha_{2}$ ,
$\forall h\in H,$ $\alpha\in H^{*}$ .

Let $\int\in H^{*}$ be a non-zero left integral and let $g0\in G(H)$ be the distinguished
group-like element, so that

$\alpha\int=\langle\alpha, 1\rangle\int$ and $\int\alpha=\langle\alpha, g_{0}\rangle\int$ , $\forall\alpha\in H^{*}$ .

We shall assume in what follows that $H$ is not cosemisimple, or equivalently,
that $\langle\int, 1\rangle=0$ ; in particular $\int^{2}=0$ and if $g\in G(H)$ , also $(\int-g)^{2}=\int^{2}-g=0$ .

Observe that if $C\neq k1$ is a simple subcoalgebra of $H$, and if $c\in C$ , then

$\{\int,$ $c\}1=\langle\int,$ $c_{2}\rangle c_{1}\in C\cap k1$ ,

whence $\int|_{C}=0,$ $i.e.,$ $\int$ belongs to the anihilator of $H_{0},$ $H_{0}^{\perp}=JacH^{*}$ .
Let $g\in G(H)$ . Since the left (and right) multiplication by $g$ is a coalgebra

automorphism of $H$, it preserves $H_{0}$ . This implies that also $\int-g$ belongs to
Jac $H^{*}$ .

Also, for all $\alpha\in H^{*}$ , we have

$\alpha(\int-g)=\langle\alpha, g^{-1}\rangle\int-g$ , and $(\int-g)\alpha=\langle\alpha, g^{-1}g_{0}\rangle\int-g$ .
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Hence $k(\int-g)$ is a two-sided ideal of $H^{*}$ and $k(\int-g)\subseteq JacH^{*}$ . Moreover,
since distinct group-like elements are linearly independent and the map $H\rightarrow H^{*}$ ,
$h\mapsto\int-h$ , is injective, the ideals $k(\int-g)$ and $k(\int-g^{\prime})$ are distinct if $g\neq g^{\prime}$ .

LEMMA 1.5. Let $H$ be a non-cosemisimple finite dimensional Hopf algebra. Let
$L=(\int-kG(H))^{\perp}$ Then $L\subseteq H$ is a subcoalgebra of $H$ containing $H_{0}$ and there
is an $H_{0}$ -bicomodule decomposition

$H=L\oplus\bigoplus_{j=1}^{s}I_{j}$ ,

where $s=|G(H)|$ and $I_{j}$ are one-dimensional $H_{0^{-}}sub$-bicomodules of $I,$ $\forall j=1,$
$\ldots,$

$s$ .

PROOF. Call $L_{g}:=ker\int-g\subseteq H$ . Then $\forall g\in G(H),$ $L_{g}$ is a subcoalgebra
of $H$ of codimension 1 containing $H_{0}$ . Also, $L_{g}\neq L_{g}/$ if $g\neq g^{\prime}$ . Index $G(H)$ in
the form $G(H)=\{1=g_{1}, \ldots, g_{s}\}$ , where $s=|G(H)|$ , and write $L_{j}:=L_{g_{j}}$ . Denote
also by $L^{(j)}$

$:=\bigcap_{1\leq i\leq j}L_{l}$ . Then $L^{(j)}$ is a subcoalgebra of $H$ and $H_{0}\subseteq L^{(j)},$ $\forall j$ . In
particular, $(L^{(j)})_{0}=H_{0}$ , and $L^{(j)}=H_{0}\oplus I^{(j)}$ , where $I^{(j)}=ker\pi|_{L^{(j)}}$ . This gives
a descending chain of $H_{0^{-}}sub$-bicomodules

$I^{(s)}\subseteq I^{(s-1)}\subseteq\cdots\subseteq I^{(1)}\subseteq I$ ,

such that $co\dim(I^{(j)}, I^{(j-1)})=1$ , for all $j=1,$
$\ldots,$

$s$ , where $I^{(0)}=I$ . Hence, there
exist one-dimensional $H_{0^{-}}sub$-bicomodules $I_{j},$ $j=1,$

$\ldots,$
$s$ , such that $I^{(j-1)}=$

$I^{(j)}\oplus I_{j}$ . We thus obtain

$H=(\int-kG(H))^{\perp}\oplus\bigoplus_{j=1}^{s}I_{j}$ ,

as claimed. $\square $

Combining Lemma 1.5 with Corollary 1.4, we obtain

COROLLARY 1.6. Let $H$ be a non-cosemisimple finite dimensional Hopf
algebra. Suppose that $\dim H-\dim H_{0}=|G(H)|$ . Then $\mathscr{P}_{g,h\rightarrow}\supset k(g-h)$ , for some
$g,$ $h\in G(H)$ . $\square $

LEMMA 1.7. Let $H$ be a non-cosemisimple finite dimensional Hopf algebra.
(i). Suppose that $\mathscr{P}_{g,h}=k(g-h)$ , for all $g,$ $h\in G(H)$ . Then $\int-kG(H)\subseteq$

$($Jac $H^{*})^{2}$ . In particular, $|G(H)|\leq\dim H-\dim H_{1}$ .
(ii). If $H_{1}=H$ then $H$ has a non-trivial skew primitive element.
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Note that part (ii) of the Lemma above implies, since $H$ is finite dimensional,
that if $H=H_{1}$ then $G(H)$ is non-trivial.

PROOF. (i). Suppose that $\int-kG(H)$ is not contained in $($Jac $H^{*})^{2}$ . Then
$\langle\int, H_{1}\rangle\neq 0$ . In the notation of Lemma 1.5, this implies that $I_{1}$ is an $H_{0^{-}}$

sub-bicomodule of $H_{1}\cap I$ , which in tum implies the claim.
(ii). Suppose that $H_{1}=H$ . Then the subcomodules $I_{j}$ in Lemma 1.5 are

necessarily contained in $P_{1}$ , and thus spanned by non-trivial skew primitive
elements of H. $\square $

Let $M$ and $N$ be non-negative integers such that $M$ divides $N$ and let $\xi\in k^{\times}$

be a primitive M-th. root of unity. Consider the algebra $K_{\mu}(N, \xi)$ , generated by
elements $x$ and $g$ with relations

$x^{M}=\mu(1-g^{M})$ , $g^{N}=1$ , $gx=\xi xg$ ,

where $\mu=0$ , if $M=N$ , and $\mu\in\{0,1\}$ , if $M\neq N$ . The formulas

$\Delta(g)=g\otimes g$ , $\Delta(x)=1\otimes x+x\otimes g$ ,

$\epsilon(x)=0$ , $\epsilon(g)=1$ ,

$\mathscr{S}(g)=g^{-1}$ , $\mathscr{S}(x)=-xg^{-1}$ ,

determine a Hopf algebra structure in $K_{\mu}(N, \xi)$ . It follows from [AS2, Thm. 5.5]
that the dimension of $K_{\mu}(N, \xi)$ is $MN$ . If $M=N$ , then $K_{\mu}(N, \xi)\simeq T(\xi)$ , where
$T(\xi)$ is the Taft algebra corresponding to $\xi$ .

Note that $k\langle g^{M}\rangle$ is a central Hopf subalgebra of $K_{\mu}(N, \xi)$ and there is a
short exact sequence of Hopf algebras $0\rightarrow k\langle g^{M}\rangle\rightarrow K_{\mu}(N, \xi)\rightarrow\pi T(\xi)\rightarrow 1$ .

Also, $K_{\mu}(N, \xi)$ is a non-semisimple pointed Hopf algebra over $k$ , whose
coradical filtration is

$K_{\mu}(N, \xi)_{n}=\bigoplus_{0\leq i\leq N-1}kg^{j}x^{n}$ , $0\leq n\leq M-1$ .

Variations of the following Proposition appear in [N], [AS1], [S2].

PROPOSITION 1.8. Let $H$ be a non-semisimple finite dimensional Hopf algebra
over $k$ . Suppose that $k(g-h)\rightarrow\subset \mathscr{P}_{g,h}$ , for some $g,$ $h\in G(H)$ . Then $H$ contains a
Hopf subalgebra $K$ isomorphic to $K_{\mu}(N, \xi)$ , for some root of unity $\xi\in k$ , and some
$\mu\in\{0,1\}$ .

In particular, $lf\dim H$ is free of squares, then $H$ does not contain non-trivial
skew primitive elements.



194 Nicol\’as ANDRUSKIEWITSCH and Sonia NATALE

PROOF. We may assume that $k(g-1)\subsetneq \mathscr{P}_{g,1}$ , for some $1\neq g\in G(H)$ . Thus,
the cyclic group $\Gamma=\langle g\rangle$ acts on $\mathscr{P}_{g,1}$ by conjugation and there exists a character
$\chi\in\hat{\Gamma}$ and a non-zero $x\in \mathscr{P}_{g,1}-kG(H)$ such that $gxg^{-1}=\chi(g)x$ .

The subalgebra $ K:=k\langle g, x\rangle$ of $H$ is hence a Hopf subalgebra satisfying

$(^{*})$ $\Delta(g)=g\otimes g$ , $\Delta(x)=x\otimes g+1\otimes x$ , $gx=\xi xg$ ,

where $\xi=\chi(g)$ . Moreover, $\xi$ is a root of unity in $k$ and $\xi\neq 1$ , since otherwise, $K$

would be a commutative Hopf subalgebra of $H$ not contained in the coradical of
$H$, which is not possible. Let $M$ be the order of $\xi$ and let $N$ be the order of $g$ , so
that $M$ divides $N$.

The relations in $(^{*})$ , together with the quantum binomial formula, imply that
$\Delta(x^{M})=x^{M}\otimes g^{M}+1\otimes x^{M}$ and $g^{M}x^{M}=x^{M}g^{M}$ . Thus the subalgebra $k\langle g^{M}, x^{M}\rangle$

is a commutative Hopf subalgebra and therefore it is contained in $H_{0}$ . It then
follows that $x^{M}=\mu(1-g^{M})$ ; if $M=N$ we may take $\mu=0$ , while if $\mu\neq 0$ and
$M\neq N$ , we can normalize $x$ so that $\mu=1$ . We have then a Hopf algebra surjection
$p:K_{\mu}(N, \xi)\rightarrow K$ .

By choice of $N$, the restriction of $p$ to the coradical of $K_{\mu}(N, \xi)$ is injective;
since $x\neq 0$ , it is not difficult to show that the restriction of $p$ to $K_{\mu}(N, \xi)_{1}$ is also
injective. Hence $p$ is injective [Mo].

The last part of the Proposition follows from [NZ]. $\square $

\S 2. Some General Results

In this section we give some results on the possible dimensions of the terms
of the coradical filtration of a finite dimensional Hopf algebra $H$.

LEMMA 2.1. (i). The order of $G(H)$ divides the dimension of $H_{n},$ $n\geq 0$ and
of $H_{0,d},$ $d\geq 1$ .

(ii). If $H$ is neither pointed nor semisimple, then $\dim H-|G(H)|\geq 6$ . If
moreover $|G(H)|>1$ is odd, then $\dim H-|G(H)|\geq 11$ .

PROOF. (i). All the $H_{n}$ , as well as the $H_{0,d}$ , are left $(kG(H), H)$ -Hopf
modules by means of the comultiplication of $H$ and the left multiplication by
elements of $G(H)$ . Hence [NZ] applies.

(ii). We have $\dim H>\dim H_{0}=|G(H)|+\sum_{d\geq 2}\dim H_{0,d}>|G(H)|$ . That
is, $|G(H)|<|G(H)|+4<\dim H$ . The case of codimension 5 is discarded by
Lemma 2.2 below. If $|G(H)|$ is odd and $H_{0,2}\neq 0$ then $\dim H_{0,2}\geq 4|G(H)|\geq 12$ .
This implies the second claim: indeed, we have now $|G(H)|<|G(H)|+9<$
$\dim H$ and the case of codimension 10 follows again by Lemma 2.2. $\square $
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LEMMA 2.2 [S1]. If $H$ is not cosemisimple, $\dim H_{0}+1<\dim H$ .

We give an altemative proof that uses Lemma 1.5.

PROOF. Suppose that $H$ is not cosemisimple and $\dim H_{0}+1=\dim H$ ; in
particular, $H=H_{1}$ . By Lemma 1.7-(ii), $H$ contains a non-trivial skew primitive
element and a fortiori a non-trivial group-like element $g$ , since it is finite dimen-
sional. By Lemma 2.1-(i), the order of $g$ divides both $\dim H_{0}$ and $\dim H$ . This is
a contradiction that finishes the proof of the Lemma. $\square $

REMARK. The preceeding Lemma can be proved without using [NZ], as
follows: suppose that $\dim H_{0}+1=\dim H$ . Write $H=H_{0}\oplus I$ as in \S 1, where $I$ is
the kemel of the coalgebra projection $H\rightarrow H_{0}$ . Since $I$ is coideal in $H,$ $\Delta I\subseteq$

$I\otimes H+H\otimes I$ . On the other hand, since clearly $H=H_{1},$ $\Delta I\subseteq H_{0}\otimes H+$

$H\otimes H_{0}$ . Thus, $\Delta I\subseteq H_{0}\otimes I+I\otimes H_{0}$ . Writting $I=kx,$ $x\in I$ , we have

$\Delta(x)=x\otimes b+a\otimes x$ ,

for some $a,$ $b\in H_{0}$ . Let $0\neq\int\in H^{*}$ be a left integral in $H^{*}$ . Then we have
$\langle\int, H_{0}\rangle=0$ . We may assume that $\langle\int, x\rangle=1$ .

Let now $\alpha\in H^{*}$ , so that $\alpha\int=\langle\alpha, 1\rangle\int and\int\alpha=\langle\alpha, g_{0}\rangle\int$ , where $g_{0}\in H$ is
the distinguished group-like element. Specializing in $x$ , we have

$\langle\alpha, a\rangle=\langle\alpha\int,$ $x\rangle=\langle\alpha, 1\rangle\{\int,$ $ x\}=\langle\alpha, 1\rangle$ ,

and

$\langle\alpha, b\rangle=\langle\int\alpha,$ $ x\rangle=\langle\alpha, g_{0}\rangle$ .

Hence $a=1,$ $b=g_{0}$ and $\Delta(x)=1\otimes x+x\otimes g0$ . Also, $go\neq 1$ since $H$ is finite
dimensional and the characteristic of $k$ is zero.

Now write $g_{0}x=y+tx$ , where $y\in H_{0}$ and $t\in k$ . So that $\Delta(g0^{x})=\Delta y+$

$t(1\otimes x+x\otimes go)$ and on the other hand, $\Delta(g_{0}x)=\Delta(go)\Delta(x)=g0\otimes g0x+g0x\otimes g_{0}^{2}$ .
This implies that

$\Delta y=g0\otimes g_{0}x+g0x\otimes g_{0}^{2}-t(1\otimes x+x\otimes g_{0})$

$=g_{0}\otimes y+y\otimes g_{0}^{2}+t(g_{0}\otimes x+x\otimes g_{0}^{2}-1\otimes x-x\otimes g_{0})$ .

But $\Delta y\in H_{0}\otimes H_{0}$ , then $t=0$ .
Thus $g0^{x=y}\in H_{0}$ and since left multiplication by $g_{0^{-1}}$ is a coalgebra auto-

morphism of $H,$ $g_{0^{-1}}H_{0}=H_{0}$ ; in particular $x=g_{0}^{-1}g0^{\chi}\in H_{0}$ which is an absurd.
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LEMMA 2.3. (i). Let $P_{n}$ be as in \S 1. Then $H_{n}=H_{0}\oplus P_{n}$ and $|G(H)|$ divides
$\dim P_{n},$ $\forall n$ .

(ii). Suppose that $H$ does not contain any non-trivial skew primitive element.
Suppose that any simple subcoalgebra of $H$ has dimension 1 or $n^{2}$ , where $n>1$ is a
fixed integer. Then $n$ divides $\dim P_{1}$ .

If moreover every irreducible $H_{0^{-}}sub$-bicomodule of $P_{1}$ has dimension $n$ , then
$n|G(H)|$ divides $\dim P_{1}$ .

The assumption that $H$ does not contain any non-trivial skew primitive
element is fulfilled, for instance, if either $\dim H$ is free of squares (by Proposition
1.8) or $\dim H=p^{2},$ $p$ prime, and $H$ is not pointed.

PROOF. Part (i) is an easy but useful consequence of Lemma 2.1.
If $H$ does not contain any non-trivial skew primitive element, then any simple

$H_{0^{-}}sub$-bicomodule of $P_{1}$ has dimension $n$ or $n^{2}$ , whence $n$ divides $\dim P_{1}$ . If any
such sub-bicomodule has dimension $n$ , then Corollary 1.3 implies that $n|G(H)|$

divides $\dim P_{1}$ . Hence part (ii) follows. $\square $

LEMMA 2.4. If $H$ is pointed non-semisimple then $\dim H$ is divisible by $p^{2}$ for
some prime number $p$ .

$PR\infty F$ . This follows at once from the Theorem of Taft-Wilson (see $e.g$ .
[Mo, 5.4.1]) and Proposition 1.8. $\square $

LEMMA 2.5 [Z]. If $H$ is not semisimple and $\dim H$ is odd, then either $G(H)$ or
$G(H^{*})$ is non-trivial.

PROOF. Since the dimension of $H$ is odd, Radford’s formula for $\mathscr{S}^{4}$ implies
that $H$ and $H^{*}$ can not be both unimodular; this implies the Lemma. See $e.g$ .
[Sch], [AS1, Lemma 2.2]. $\square $

LEMMA 2.6. (i). Let $H$ be a non-cosemisimple Hopf algebra whose dimension
is not divisible by 4. Then $H_{1}\neq H$ .

(ii). Let $H$ be a non-cosemisimple non-pointed Hopf algebra of dimension $3r$ ,

where $r$ is an integer not divisible by 4. Then the order of $G(H)$ is not equal to $r$ .

PROOF. (i). Assume that $H_{1}=H$ . By Lemma 1.7, $H$ has a non-trivial skew-
primitive element. Therefore $H$ contains a Hopf subalgebra $K$, of dimension $NM$,
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as in Proposition 1.8, where $M$ and $N$ are integers such that $M$ divides $N$. Now,
$K_{1}=K\cap H_{1}=K$ by [Mo, 5.2.12]. Then, since the coradical filtration of $K$ has
$M$ terms, we have $M=2$ and 4 divides $\dim H$ , which is a contradiction.

(ii). Assume that the order of $G(H)$ equals $r$ . By assumption and using
Lemma 2.1, we find that $\dim H_{0}=2r$ and $H=H_{1}$ . Now (i) applies. $\square $

\S 3. Proof of Theorem 0.1

The proof of Theorem 0.1 will be carried out case by case. We will need the
following Lemma.

LEMMA 3.1. Let $p$ and $q$ be prime numbers and let $H$ be a Hopf algebra of
dimension $pq$ over $k$ .

(i). [EG], [GW], [Ma]. If $H$ is semisimple, then $H$ is either commutative or
cocommutative.

(ii). If $p=q$ and $H$ is pointed non-semisimple, then $\check{H}$ is isomorphic to a Taft
algebra $T(\xi)$ , for some primitive p-th. root of unity $\xi\in k$ . $\square $

An altemative proof of part (i) of Lemma 3.1, in the case where $p$ and $q$

are distinct odd prime numbers, is given in [Na]. Part (ii) has been found
independently by W. Nichols, W. Chin, D. Stefan and the first author. See [AS1]
for a proof.

In what follows, $H$ will denote a Hopf algebra of the prescribed dimension.
We shall assume that $H$ is neither pointed nor cosemisimple. By Lemma 2.5, we
may also assume that $G(H)\neq 1$ .

DIMENSION 15. By Lemma 2.6-(ii), $|G(H)|\neq 5$ . Assume that $|G(H)|=3$ .
Since $\dim H_{0}-3$ should be a sum of squares greater than 1, we discard all
the possibilities except $\dim H_{0}=12$ . In this case, $H_{1}=H$ and this contradicts
Lemma 2.6-(i). $\square $

DIMENSION 21. By Lemma 2.6, $|G(H)|\neq 7$ . If $|G(H)|=3$ then arguing as
for dimension 15, we eliminate all possibilities except $\dim H_{0}=12$ or 15.

If $|G(H)|=3$ and $\dim H_{0}=15$ then $\dim H_{1}=18$ , by Lemmas 2.1 and 2.6-(i).
Thus, $\dim P_{1}=3$ . But $H_{0}$ is the direct sum of $kG(H)$ and three simple coalgebras
of dimension 4. This contradicts Lemma $(2.3)-(ii)$ .

If $|G(H)|=3$ and $\dim H_{0}=12$ then $\dim H_{1}=15$ or 18, by Lemmas 2.1 and
2.6-(i). Then $\dim P_{1}=3$ or 6. But in this case, the simple subcoalgebras of $H$

have either dimension 1 or 9. Then Lemma 2.3-(ii) applies. $\square $
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DIMENSION 25. We can assume that $|G(H)|=5$ and $\dim H_{0}=10,15$ or
20; but neither 5 nor 10 nor 15 can be expressed as sums of squares greater
than 1. $\square $

DIMENSION 35. $|G(H)|=7$ is not possible since 7 divides $\dim H_{0,d}$ for all $d$.
If $|G(H)|=5$ then arguing as for 15 we eliminate all the cases except $\dim H_{0}$

$=25$ . Necessarily, $\dim H_{1}=30,$ $\dim P_{1}=5$ and $H_{0}$ is a direct sum of 1- or 4-
dimensional simple coalgebras. Hence Lemma 2.3-(ii) applies. $\square $

DIMENSION 49. We reduce by analogous considerations as above to the
case $|G(H)|=7,$ $\dim H_{0}=35$ and $H_{0}$ is the direct sum of $kG(H)$ and seven
4-dimensional simple coalgebras. By Lemma 1.5, $\dim H_{1}=42$ ; hence $P_{1}$ has
dimension 7. Now Lemma 2.3-(ii) applies again. $\square $

Appendix

In this section, we classify Hopf algebras under some additional hypothesis.
Let $p$ and $q$ be different prime numbers. Let $j=1$ or $pr,$ $1\leq r\leq q-1$ and

let $\mu=0$ or 1, such that $\mu=0$ when $j\neq 1$ . Let $\omega$ be a root of 1 such that the
order of $\omega$ is $q$ if $j=1$ , and $q$ divides the order of $\omega$ if $j\neq 1$ . Let $\mathscr{A}(\omega, j, \mu)$ be
the algebra generated by elements $g$ and $x$ with relations

$g^{pq}=1$ , $x^{q}=\mu(1-g^{q})$ , $gx=\omega xg$ .

Then $\mathscr{A}(\omega, j,\mu)$ is a pointed Hopf algebra over $k$ , where the comultiplication is
defined by

$\Delta(g)=g\otimes g$ , $\Delta(x)=x\otimes 1+g^{j}\otimes x$ .

LEMMA A. 1. Let $p$ and $q$ be $d_{l}fferent$ prime numbers. Let $H$ be a pointed non-
semisimple Hopf algebra of dimension $pq^{2}$ . Then $G(H)$ is a cycfic group of order
$pq$ and $H$ is isomorphic to exactly one of the Hopf algebras in the following list:

(i) $\mathscr{A}(\tau, 1,0),$ $\tau$ a primitive q-th. root of 1.
(ii) $\mathscr{A}(\tau, 1,1),$ $\tau$ a primitive q-th. root of 1.
(iii) $\mathscr{A}(\omega,pr, 0),$ $1\leq r\leq q-1$ , where $\omega$ is a fixed primitive pq-th. root of 1.
(iv) $\mathscr{A}(\tau, p, 0)\simeq T(\tau)\otimes kZ/p$ , where $\tau$ is a primitive q-th. root of 1.
Conversely, all the Hopf algebras in the list have dimension $pq^{2}$ .

That is, there are $4(q-1)$ isomorphism classes of pointed Hopf algebras of
dimension $pq^{2}$ over $k$ .
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PROOF. It follows from [AS2, Thm. 5.5] that the Hopf algebras in the list
have dimension $pq^{2}$ .

Suppose now that $H$ is a pointed non-semisimple Hopf algebra of dimension
$pq^{2}$ . We shall apply the lifting principle in [AS2]. First, $|G(H)|\neq q$ , resp. $p$ by
[AS3, Th. 1.3], for $q$ , resp. $p$ , odd, or [ $N$ , Th. 4.2.1] for $q=2$ ; respectively, $p=2$ .
Assume now that $|G(H)|=q^{2}$ . By [AS1, Prop. 3.1] $q^{3}$ divides $\dim H$ , which is
impossible.

Assume finally that $|G(H)|=pq$ . Let $R$ be the diagram of $H$ as in [AS2]; $R$ is
a braided Hopf algebra in the category of Yetter-Drinfeld modules over $G(H)$ of
dimension $q$ .

By the Taft-Wilson Theorem, there exists $0\neq x\in \mathscr{P}_{1,u}(H)-kG(H)$ . We can
assume that $uxu^{-1}=\xi x$ where $\xi$ is a root of 1 of order $N$. Then $N^{2}$

divides $\dim H$ , so that $N=q$ . This shows that $ R=k\langle\overline{x}\rangle$ , being $\overline{x}$ the class of $x$ in
gr $H$ (see [AS2]), because both have the same dimension $q$ . This implies in tum
that $u$ is central and hence that $G(H)$ is abelian and cyclic. It follows now readily
that $H$ is generated by $g$ and $x$ , where $g$ is a group-like of order $pq,$ $x$ is a $(u, 1)$

skew primitive and $gxg^{-1}=\chi(g)x,$
$\chi$ a character of the cyclic group generated by

$g$ and $\xi=\chi(u)$ has order $q$ . Looking at the different possibilities for the orders of
$u$ and $\chi$ , we see that $H$ is isomorphic to either of the Hopf algebras above. $\square $

Remarks on the Hopf algebras in the list. (a). All the Hopf algebras in the list
can be presented as suitable extensions of Taft algebras and group algebras.

(b). It is not difficult to see that the dual of $\mathscr{A}(\tau, 1,0)$ is isomorphic to a
Hopf algebra of type (iii).

(c). The Hopf algebra $\mathscr{B}(\tau):=(\mathscr{A}(\tau, 1,1))^{*}$ is not pointed, cf. [Ra]. More
precisely, it is shown in $loc$. $cit$ . that the coalgebra structure of $\mathscr{R}(\tau)$ is $ T_{\tau}\oplus$

$C_{q}\oplus C_{q}\oplus\cdots\oplus C_{q},$ $p-1$ direct summands $C_{q}\simeq M_{q}(k)^{*}$

All known examples of non-semisimple Hopf algebras of dimension $pq^{2}$ over
$k$ are either pointed or else dual of pointed Hopf algebras. The following Lemma
gives insight into this question.

LEMMA A.2. Let $p$ and $q$ be different prime numbers. Let $H$ be a non-
semisimple Hopf algebra of dimension $pq^{2}$ . Suppose that the coradical of $H$ is a
Hopf subalgebra. Then $H$ is pointed.

PROOF. Suppose on the contrary that $H_{0}$ is not a group algebra. Then
necessarily $H_{0}\simeq k^{F}$ as Hopf algebras, where $F$ is the unique (up to isomor-
phisms) non-abelian group of order $pq$ . Consider the coradical filtration of $H$.
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The associated graded coalgebra gr $H$ is a Hopf algebra whose coradical is
isomorphic to $k^{F}$ . Moreover, gr $H$ is isomorphic to a biproduct gr $H=R\#k^{F}$ ,

where $R$ is a braided Hopf algebra over $k^{F}$ . Then $($gr $H)^{*}$ is a non-semisimple
Hopf algebra of dimension $pq^{2}$ and $($gr $H)^{*}\simeq R^{*}\#kF$ . Hence, $($gr $H)^{*}$ is a pointed
Hopf algebra of dimension $pq^{2}$ . This contradicts Lemma A.1. $\square $

LEMMA A.3. A semisimple Hopf algebra $H$ of order 45 is necessarily trivial.

PROOF. From the decomposition of $H$ into simple subcoalgebras and [NR],

we read $45=|G(H)|+\sum_{j=3}^{6}n_{j}j^{2}$ . Then $G(H)$ is non-trivial, by an easy calculation.
The case $|G(H)|=5$ is also impossible; for, 5 should divide $n_{3},$ $n_{4}$ and $n_{6}$ by
Lemma 2.1. So all these numbers should be $0$ ; but then 25 should divide 40, a
contradiction. We discard similarly the cases $|G(H)|=3$ or 15. Let us finally
assume that $|G(H)|=|G(H^{*})|=9$ . Let $\lambda\in kG(H)$ be a normalized integral; then
$\lambda$ is an idempotent in $R(H^{*})$ , hence $\lambda=\Lambda+\sum_{j}e_{i}$ where $\Lambda$ is a normalized
integral and the $e_{j}\prime s$ are primitive idempotents in $R(H^{*})$ . Hence $ H\lambda=k\Lambda\oplus$

$(\oplus_{j}He_{j})$ . Taking dimensions and using that $ H\lambda$ is the representation induced
from the trivial representation of $kG(H)$ , we see that $5=1+\sum\dim He_{i}$ . But
$\dim He_{i}$ divides 45 by the class equation so it is either 1 or 3. Therefore at least
one of the $\dim He_{j}$ is 1; but then there exists a non-trivial central group-like element
in $H^{*}$ , see $e.g$ . [Sch, Lemma 4.14] and $H$ is an extension of Hopf algebras. By
[Na], $H$ is trivial. $\square $
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