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ON THE EXISTENCE OF $\mathscr{C}$-CONFORMAL CHANGES OF
RIEMANN-FINSLER METRICS

By

Csaba VINCZE (Debrecen)

Abstract. The notion of $\mathscr{C}$-conformality was introduced by M.
HASHIGUCHI in [1]. He proved for some special Finsler manifolds that
the existence of a $\mathscr{C}$-conformal change implies that the manifold is
Riemannian (at least locally).

In this note we show that Hashiguchi’s result is valid without
any extra condition. This means that the existence of a $\mathscr{C}$-conformal
change of the metric can be interpreted as a new sufficient condition
for a Finsler manifold to be Riemannian.

1. Preliminaries

1.1. Throughout the paper we use the terminology and conventions
described in [3]. Now we briefly summarize the basic notations:

(i) $M$ is an $n(\geq 2)$ -dimensional, $C^{\infty}$ , connected, paracompact manifold,
$C^{\infty}(M)$ is the ring of real-valued smooth functions on $M$.

(ii) $\pi$ : $TM\rightarrow M$ is the tangent bundle of $M,$ $\pi_{0}$ : $\mathscr{T}M\rightarrow M$ is the bundle of
nonzero tangent vectors.

(iii) $X(M)$ denotes the $C^{\infty}(M)$ -module of vector fields on $M$.
(iv) $\iota_{X},$ $\mathscr{L}_{X}(X\in X(M))$ and $d$ are the symbols of the insertion operator, the

Lie derivative (with respect to $X$ ) and the exterior derivative, respectively.
(v) $X^{v}(TM)$ denotes the $C^{\infty}(TM)$ -module of vertical vector fields on $TM$.

$C\in X^{v}(TM)$ is the Liouville vector field, $J$ denotes the vertical endomorphism (for
the definitions see e.g. [2]).

The vertical lift of a function $\alpha\in C^{\infty}(M)$ and of a vector field $X\in X(M)$ is
denoted by $\alpha^{v}$ and $X^{v}$ , respectively; we recall that $\alpha^{v}$ is nothing but the function
$\alpha\circ\pi$ .
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1.2. Horizontal Endomorphisms

DEFINITION. A $C^{\infty}(TM)$ -linear map $h:X(TM)\rightarrow X(TM)$ (i.e. a $(1, 1)-$

tensor or a vector l-form on $TM$ ) is said to be a horizontal endomorphism on $M$

if it satisfies the following conditions:

(HE1) $h$ is smooth over $\mathscr{T}M$ ;

(HE2) $h$ is a projector, i.e. $h^{2}=h$ ;

(HE3) $Kerh=X^{v}(TM)$ .

Any horizontal endomorphism $h$ determines a vector l-form, i.e. a mapping
$F:X(TM)\rightarrow X(TM)$ such that

(1) $F\circ h=-J$ , $F\circ J=h$ .

$F$ is called the almost complex structure associated with $h$ . The horizontal lift
of a vector field $X\in X(M)$ (with respect to h) is $X^{h}$ $:=FX^{v}$ .

1.3. Finsler Manifolds

DEFINITION. Let a function $E:TM\rightarrow R$ be given. The pair $(M, E)$ , or
simply $M$, is said to be a Finsler manifold with energy function $E$ if the following
conditions are satisfied:

(FO) $\forall v\in \mathscr{T}M:E(v)>0$ , $E(O)=0$ ;

(F1) $E$ is of class $C^{1}$ on $TM$ and smooth on $\mathscr{T}M$ ;

(F2) $CE=2E$ , i.e., $E$ is homogeneous of degree 2;

(F3) the fundamental form $\omega:=dd_{J}E$ is symplectic.

The mapping

(2) $g$ : $X^{v}(\mathscr{T}M)\times X^{v}(\mathscr{T}M)\rightarrow C^{\infty}(\mathscr{T}M)$ ,

$(JX,JY)\rightarrow g(JX,JY)$ $:=\omega(JX, Y)$

is a well-defined, nondegenerate symmetric bilinear form which is called the
Riemann-Finsler metric of $(M, E)$ . If $g$ is positive definite then we speak of a
positive definite Finsler manifold.

It is well-known that any Finsler manifold has a canonical horizontal
endomorphism $h$ , the so-called Barthel endomorphism. Using the prolonged metric
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(3) $gh^{;X(\mathscr{T}M)}\times X(\mathscr{T}M)\rightarrow C^{\infty}(\mathscr{T}M)$

(X, $Y$ ) $\rightarrow g_{h}(X, Y)$ $:=g(JX, JY)+g(vX, vY)$ ,

$v:=1-h$ (the “vertical projector”), the well-known first Cartan tensor $\mathscr{C}$ can be
defined by the formula

(4) $\omega(\mathscr{C}(X, Y),$ $Z$ ) $=\frac{1}{2}(\mathscr{L}_{JX}J^{*}gh)(Y, Z)$

( $J^{*}$ is the adjoint operator of $J;[2]$ ). It is easy to check that $\mathscr{C}$ has the following
properties:

(5) $\mathscr{C}$ is semibasic;

(6) its lowered tensor $\mathscr{C}_{b}$ defined by the formula

$\mathscr{C}_{b}(X, Y, Z):=g(\mathscr{C}(X, Y),$ $JZ$ ) is totally symmetric;

(7) $\forall X,$ $Y,$ $Z\in X(M)$ : $\mathscr{C}_{b}(X^{h}, Y^{h}, Z^{h})=\frac{1}{2}X^{v}g(Y^{v}, Z^{v})$ .

Consider a smooth function $\varphi$ : $TM\rightarrow R$ . Since the fundamental form $\omega$ is
symplectic, there exists a unique vector field $grad\varphi\in X(\mathscr{T}M)$ such that

$\iota_{grad\varphi}\omega=d\varphi$ ;

this vector field is called the gradient of $\varphi$ .

2. An 0bservation on Homogeneous Functions

REMARK 1. Let $k\in Z$ . We recall that a function $f$ : $R^{n}\rightarrow R$ is called positive
homogeneous of degree $k$ if for any vector $v\in R^{n}\backslash \{0\}$ and positive real number $t$ ,
we have

$f(tv)=t^{k}f(v)$ .

It is easy to check that if $f$ : $R^{n}\rightarrow R$ is positive homogeneous of degree $0$ and
continuous at the point $0\in R^{n}$ then $f$ is a constant function.

PROPOSITION 1. Let us select a subspace $W$ of dimension $n-1$ and a nonzero
vector $q$ of $R^{n}(n\geq 2)$ such that

$R^{n}=W\oplus\{tq|t\in R\}=:W\oplus \mathscr{L}(q)$ .

Suppose that a function $f$ : $R^{n}\rightarrow R$ has the following properties:
(i) it is positive homogeneous of degree $0$ ;
(ii) it is continuous at the points $q,$ $-q$ ;
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(iii) for any point $a\in W\backslash \{0\}$ and scalar $t\in R$

$f(a+tq)=f(a)$ .

Then $f$ is constant on $R^{n}\backslash \{0\}$ .

PROOF. Consider the function $f_{1}$ $:=f\uparrow W\backslash \{0\}$ . Let $c:N\rightarrow W\backslash \{0\},$ $n\rightarrow c_{n}$

be a sequence such that

$\lim_{n\rightarrow\infty}c_{n}=0$ .

Then

$\lim_{n\rightarrow\infty}f_{1}(c_{n})=\lim_{n\rightarrow\infty}f(c_{n})^{(i}=^{ii)}\lim_{n\rightarrow\infty}f(c_{n}+q)=f(q)$ ,

since $f$ is continuous at the point $q\in R^{n}\backslash \{0\}$ . This means that $f(q)$ is the limit of
the function $f_{1}$ at $O\in W$ and, consequently, the extended function

$\tilde{f}_{1}$ : $W\rightarrow R$ , $a\rightarrow\tilde{f_{1}}(a)$ $:=\left\{\begin{array}{l}f_{l}(a)\\f(q)\end{array}\right.$ $(a\neq 0)(a=0)$

is continuous at the point $0\in W$ and it preserves the homogenity property of the
function $f$ Therefore, by Remark 1, $\tilde{f}_{1}$ is constant and in any point $a\in W\backslash \{0\}$ ,

(8) $f(a)=\tilde{f_{1}}(a)=\tilde{f}_{1}(0)=f(q)$ .

Using the relation (8), with the choice $b=a+tq$ , where $a\in W\backslash \{0\},$ $t\in R$ , we
have

(9) $f(b)=f(a+tq)^{(iii)(8)}=f(a)=f(q)$ .

To end the proof, it is enough to check that

(10) $f(q)=f(-q)$ .

This is almost trivial:

$f(q)=\lim_{n\rightarrow\infty}f_{1}(c_{n})=\lim_{n\rightarrow\infty}f(c_{n})^{(i}=^{ii)}\lim_{n\rightarrow\infty}f(c_{n}-q)=f(-q)$ ,

since $f$ is continuous at the point $-q\in R^{n}\backslash \{0\}$ . $\square $

3. $\mathscr{C}$-Conformal Changes of Riemann-Finsler Metrics

DEFINITION ([3]). Let $(M, E)$ and $(M,\tilde{E})$ be Finsler manifolds with Riemann-
Finsler metrics $g$ and $\tilde{g}$ , respectively; $g$ and $\tilde{g}$ are said to be conformal equivalent
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if there exists a positive smooth function $\varphi$ : $TM\rightarrow R$ satisfying the condition
$\tilde{g}=\varphi g$ .

This function $\varphi$ is called the scale function or the proportionality function.

LEMMA 1 (Knebelman’s observation; [3]). The scale function between con-
formally equivalent Riemann-Finsler metrics is a vertical lift, i.e. it can always be
written in the form

$\varphi=\exp\circ\alpha^{v}$ $:=\exp\circ\alpha\circ\pi$ ,

where $\alpha\in C^{\infty}(M)$ .

PROPOSITION 2 and definition ([6]). If a Finsler manifold $(M, E)$ with the
Riemann-Finsler metric $g$ and a function $\alpha\in C^{\infty}(M)$ are given, then $\tilde{g}:=\varphi g$

$(\varphi=\exp\circ\alpha^{v})$ is the Riemann-Finsler metric of the Finsler mamfold $(M,\tilde{E})$ , where
$\tilde{E}=\varphi E$ .

In this case we speak of $a$ conformal change of the metric $g$ .

DEFINITION. Consider a Finsler manifold $(M, E)$ . A conformal change
$\tilde{g}=\varphi g(\varphi=\exp\circ\alpha^{v}, \alpha\in C^{\infty}(M))$ is said to be $\mathscr{C}$-conformal at a point $p\in M$ if
the following conditions are satisfied:

$(\mathscr{C}1)$ $(d\alpha)_{p}\neq 0$ , i.e., $\alpha$ is regular at the point $p$ ;

$(\mathscr{C}2)$ $\iota_{Fgrad\alpha^{\iota}}\mathscr{C}=0$ ,

where $F$ is the almost complex structure associated with the Barthel endo-
morphism of $(M, E)$ .

PROPOSITION 3 ([4]). Let $(M, E)$ be a Finsler manifold and $\alpha\in \mathscr{C}^{\infty}(M)$ . Then
the following assertions are equivalent:

(i) $\iota_{Fgrad\alpha^{v}}\mathscr{C}=0$ ,
(ii) $grad\alpha^{v}$ is a vertical fifl, $i.e.$ , there exists a vector field $X\in X(M)$ such that

(11) $grad\alpha^{v}=X^{v}$ .

LEMMA 2 and definition. Consider a Finsler mamfold $(M, E)$ and let us
suppose that the change $\tilde{g}=\varphi g(\varphi=\exp\circ\alpha^{v}, \alpha\in C^{\infty}(M))$ is $\mathscr{C}$-conformal at a
point $p\in M$ . Let $\sigma\in X(M)$ be an arbitrary vector field with the property $\sigma(p)\neq 0$

which obviously implies that $\sigma$ is nonvanishing over a connected open neighbourhood
$U$ of $p$ . Then the mapping
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$\langle, \rangle$ : $X(U)\times X(U)\rightarrow c\propto(U)$ ,

$(Y, Z)\rightarrow\langle, \rangle(Y, Z)=:\langle Y, Z\rangle$ $:=g(Y^{v}, Z^{v})\circ\sigma$

is a (pseudo-) Riemannian metric. This metric is called the osculating Riemannian
metric along $\sigma$ .

If, in addition, $grad_{U}\alpha\in X(U)$ is the gradient of the function $\alpha$ with respect to
$\langle, \rangle$ then

(12) $(grad_{U}\alpha)^{v}=grad\alpha^{v}$ .

PROOF. Let $X\in X(M)$ be the vector field determined by the formula (11).
Then for any vector field $Y\in X(U)$ ,

\langle X, $Y\rangle$
$:=g(X^{v}, Y^{v})\circ\sigma^{(1}=^{1)}g(grad\alpha^{v}, Y^{v})\circ\sigma$

$=\omega(grad\alpha^{v}, Y^{h})\circ\sigma=(Y^{h}\alpha^{v})\circ\sigma$

$=(Y\alpha)^{v}\circ\sigma=(Y\alpha)\circ\pi\circ\sigma=Y\alpha$ ,

hence $ X=grad_{U}\alpha$ , and consequently

$(grad_{U}\alpha)^{v}=grad\alpha^{v}$ . $\square $

REMARK 2. In the sequel we shall fix the vector field $X$ determined by the
formula (11) as $\sigma$ in Lemma 2. (Note that the regularity property $(\mathscr{C}1)$ implies
that $X(p)\neq 0.)$

Therefore, the osculating Riemannian metric $\langle, \rangle$ will be considered as a
mapping

$\langle, \rangle$ : $X(U)\times X(U)\rightarrow C^{\infty}(U)$ ,

$(Y, Z)\rightarrow\langle, \rangle(Y, Z)=:\langle Y, Z\rangle$ $:=g(Y^{v}, Z^{v})\circ X$ ,

where $U$ is a fixed connected open neighbourhood of the point $p$ such that for
any $q\in U,$ $X(q)\neq 0$ .

PROPOSITION 4. Consider a Finsler manifold $(M, E)$ with the Riemann-Finsler
metric $g$ and let us suppose that the change $\tilde{g}=\varphi g(\varphi=\exp\circ\alpha^{v}, \alpha\in C^{\infty}(M))$ is
$\mathscr{C}$-conformal at a point $p\in M$ . If $W\subset TpM$ is a subspace of dimension $n-1$ such
that $TpM=W\oplus \mathscr{L}(X(p))$ then for any tangent vector $w\in W\backslash \{0\}$ and $t\in R$ ,

$g(Y^{v},Z^{v})(w+tX(p))=g(Y^{v}, Z^{v})(w)$ .
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Consequenfly, for any vector fields $Y,$ $Z\in X(M)$ , the function $g(Y^{v}, Z^{v})$ is
constant on $TpM\backslash \{0\}$ .

PROOF. For the sake of brevity, consider the parametric line
$\ell$ : $t\in R\rightarrow\ell(t):=w+tX(p)\in TpM$ ,

where $w\in W\backslash \{0\}$ is an arbitrary fixed tangent vector. Now let us define a
function $\Theta$ as follows:

$\Theta$ : $t\in R\rightarrow\Theta(t)$ $:=g(Y^{v}, Z^{v})\circ\ell(t)\in R$ .

If $(\pi^{-1}(U), (x^{j},y^{l})_{i=1}^{n})$ is the chart induced by a chart $(U, (u^{j})_{i=1}^{n})$ on $M$ then
we have

$\Theta^{\prime}(t)=(\frac{\partial}{\partial x^{i}})_{(r)}\ell^{\prime}(g(Y^{v}, Z^{v}))\cdot(x^{l}\circ\ell)^{\prime}(t)+(\frac{\partial}{\partial y^{i}})_{f(t)}(g(Y^{v}, Z^{v}))\cdot(y^{j}\circ\ell)^{\prime}(t)$ .

Here, for any $i\in\{1, \ldots, n\}$ and $t\in R$ ,

$x^{l}ol(t)=u^{j}o\pi ol(t)=u^{l}o\pi(w+tX(p))=u^{i}(p)$ ,

i.e., $ x^{j}\circ\ell$ is constant, and so for any $t\in R,$ $(x^{j}\circ\ell)^{\prime}(t)=0$ .
On the other hand

$y^{j}\circ\ell(t)=y^{i}(w+tX(p))=w^{i}+tX^{j}(p)$ ,

therefore

$\Theta^{\prime}(t)=(\frac{\partial}{\partial y^{i}})_{\ell^{\prime}(l)}(g(Y^{v}, Z^{v}))\cdot(y^{j}o\ell)^{\prime}(t)=X^{j}(p)\cdot(\frac{\partial}{\partial y^{i}})_{l(\iota)}(g(Y^{v}, Z^{v}))$

$=X^{i}\circ\pi(\ell(t))(\frac{\partial}{\partial y^{i}})_{l(f)}(g(Y^{v}, Z^{v}))=(X^{v}g(Y^{v}, Z^{v}))\circ\ell(t)$

$(7)=2\mathscr{C}_{b}(X^{h}, Y^{h}, Z^{h})\circ\ell(t)=2\mathscr{C}_{b}(FX^{v}, Y^{h}, Z^{h})\circ\ell(t)$

$(11)(\Psi 2)=2\mathscr{C}_{b}(Fgrad\alpha^{v}, Y^{h}, Z^{h})\circ\ell(t)=0$

and, consequently, $\Theta$ is also a constant function.
Thus for any real number $t\in R$ ,

$\Theta(t)=\Theta(O):\Leftrightarrow g(Y^{v}, Z^{v})(w+tX(p))=g(Y^{v}, Z^{v})(w)$ .

According to Proposition 1, this means that the function $g(Y^{v}, Z^{v})$ is
constant on $TpM\backslash \{0\}$ , namely for any tangent vector $v\in TpM\backslash \{0\}$ ,

$g(Y^{v}, Z^{v})(v)=g(Y^{v}, Z^{v})(X(p))=\langle Y, Z\rangle(p)$ . $\square $
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REMARK 3. Without loss of generality we can obviously assume that
$\alpha(p)=0$ under a $\mathscr{C}$-conformal change $\tilde{g}=\varphi g(\varphi=\exp\circ\alpha^{v}, \alpha\in C^{\infty}(M))$ at the
point $p$ . If, in addition, the Finsler manifold $(M, E)$ is positive definite, then it is
natural to consider the tangent space $TpN,$ $N:=\alpha^{-1}(0)$ , as the subspace $W$ in
Proposition 4.

THEOREM 1. Let $(M, E)$ be a Finsler mamfold. If there exists a $\mathscr{C}$-conformal
change $\tilde{g}=\varphi g(\varphi=\exp\circ\alpha^{v}, \alpha\in C^{\infty}(M))$ at a point $p\in M$ , then $(M, E)$ is locally
Riemannian, more precisely,

$g(Y^{v}, Z^{v})=\langle Y, Z\rangle\circ\pi=\langle Y, Z\rangle^{v}$ ,

where $\langle, \rangle$ is the osculating Riemannian metric defined over $U$.

$PR\infty F$ . It is enough to mention that if $\tilde{g}=\varphi g$ is a $\mathscr{C}$-conformal change
at the point $p\in M$ then it is also such a change for any point $q\in U$ . (Note that
the assumption $X(q)\neq 0$ implies the regularity property $(d\alpha)_{q}\neq 0$ for any point
$q\in U.)$

Therefore, the theorem is a direct consequence of Proposition 4. $\square $
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