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HOMOGENEITY OF $\mathscr{K}(Q)$

By

Henryk MICHALEWSKI

Abstract. We prove that $\mathscr{K}(Q)$ is a topological group and char-
acterize $\mathscr{K}(Q)$ as a first-category, zero-dimensional, separable, met-
rizable space of which every non-empty clopen subset is $\Pi_{1}^{1}$ -complete.
In particular we answer a question of Fujita and Taniyama ([5]).
With the additional assumption of Analytic Determinacy it was
proved in [5] that $\mathscr{K}(Q)$ is a homogeneous space.

All spaces under consideration are separable and metrizable. Basic topo-
logical notions can be found in [4] and basic notions from descriptive set theory
can be found in [6].

The rationals $Q$ are identified with the set { $x\in 2^{\omega}$ : $\exists n\in\omega\forall k\in\omega,$ $k\geq n$

$x_{k}=0\}$ . The spaces $\mathscr{K}(Q)$ and $\mathscr{K}(2^{\omega})$ are defined as the spaces of all nonempty
compact subsets of $Q$ (resp. $2^{\omega}$ ) with the Vietoris topology. A space $X$ is of the
first category in itse $lf$ if there exists a family $\{X_{n}\}_{n\in N}$ of closed, nowhere dense
subsets of $X$ , such that $X=\bigcup_{n\in N}X_{n}$ .

Our fundamental auxiliary result is the following theorem of van Engelen:

THEOREM 1 [2, LEMMA 3.1] Let spaces $X,$ $Y$ be zero-dimensional and first
$ca$tegory in itself, such that every nonempty clopen subset of the space $X$ (resp.

of Y) contains a closed copy of the space $Y$ (resp. $X$). Then $X$ and $Y$ are
homeomorphic.

Our first result is the following theorem:

THEOREM 2 $\mathscr{K}(Q)$ is a topological group.
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Before the proof we should introduce some notions from descriptive set
theory. In a remark below is given an altemative proof of homogeneity of $\mathscr{K}(Q)$ ,

which does not refer to descriptive set theory. However, the other proof does not
give information that $\mathscr{K}(Q)$ is a topological group.

We define the family $\Pi_{1}^{1}(2^{\omega})$ as the family of all coanalytic subsets of $2^{\omega}$ . A
subset $C\subset 2^{\omega}$ is $\Pi_{1}^{1}$ -complete if $C\in\Pi_{1}^{1}(2^{\omega})$ and for every $A\in\Pi_{1}^{1}(2^{\omega})$ there exists
a continuous function $f:2^{\omega}\rightarrow 2^{\omega}$ , such that $x\in A$ iff $f(x)\in C$ . The function
$f$ will be called a reduction of $A$ to $C$ . For every $\Pi_{1}^{1}$ -complete $C\subset 2^{\omega}$ and
$A\in\Pi_{1}^{1}(2^{\omega})$ we can find a reduction, which is injective. The idea how to construct
the injection starting from an ordinary reduction can be extracted from the proof
of Lemma 3 in [8], and Steel refers to it as to a trick of Henderson. This result
is also stated in [7] as Theorem 4. We can summarize these remarks in the
following:

PROPOSITION. For every $\Pi_{1}^{1}$ -complete $C\subset 2^{\omega}$ and $A\in\Pi_{1}^{1}(2^{\omega})$ there exists an
injective reduction of $A$ to $C$ . In particular, this reduction is a closed embedding
of $A$ into $C$ .

The following theorem of Hurewicz give us an example of a $\Pi_{1}^{1}$ -complete set:

THEOREM 3 [6, ex. 33.5]. The space $\mathscr{K}(Q)\subset ff(2^{\omega})$ is $\Pi_{1}^{1}$ -complete. $\blacksquare$

The $PR\infty F$ OF THEOREM 2 consists of five parts:
1. Let $\omega^{<\omega}$ be the set of finite sequences of non-negative integers, endowed

with the structure of Kleene-Brouwer linear order $([6, 2.G])$ (one can find an
order isomorphism of $\omega^{<\omega}$ and {$x\in R:x$ rational, $x\leq 0$ }). Let us observe that
$WO(\omega^{<\omega})=$ { $A\subset\omega^{<\omega}$ : $A$ is well-ordered} with topology inherited from the
space $2^{\omega^{<\omega}}$ is a topological group with respect to the operation of symmetric
difference. In particular it is a homogeneous space.

2. $WO(\omega^{<\omega})\subset 2^{\omega^{<\omega}}$ belongs to $\Pi_{1}^{1}(2^{\omega^{<\omega}})$ and moreover it is a $\Pi_{1}^{1}$ -complete
set according to Theorem 27.1 and Proposition 2.12 from [6].

3. CLAIM 1. Every nonempty clopen subset of $WO(\omega^{<\omega})$ contains a closed
copy of $\ovalbox{\tt\small REJECT}^{\prime}(Q)$ .

PROOF. Let $A_{1}$ and $A_{2}$ be finite disjoint subsets of $\omega^{<\omega}$ and let $W=$

$\{A\subset\omega^{<\omega} : A_{1}\subset A, A_{2}\cap A=\otimes\}$ . It is enough to show, that $W\cap WO(\omega^{<\omega})$

contains a closed copy of $\mathscr{K}(Q)$ .
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First we will prove, that $WO(\omega^{<\omega})\cap W$ is $\Pi_{1}^{1}$ -complete. Let us define
$i:2^{\omega^{<\omega}}\rightarrow W,$ $i(A)=(A\cup A_{1})\backslash A_{2}$ . The function $i$ is continuous and has the
property that for every $A\in 2^{\omega^{<\omega}}$

$A\in WO(\omega^{<\omega})$ iff $i(A)\in W0(\omega^{<\omega})$

Consequently $WO(\omega^{<\omega})\cap W$ is $\Pi_{1}^{1}$ -complete.
Since $\mathscr{K}(Q)$ belongs to $\Pi_{1}^{1}$ , the Proposition implies that exists a closed copy

of $\ovalbox{\tt\small REJECT}^{\prime}(Q)$ in $WO(\omega^{<\omega})\cap W$ .

4. CLAIM 2. Every nonempty clopen subset of $\mathscr{K}(Q)$ contains a closed copy
of $W0(\omega^{<\omega})$ .

PROOF. Let $W_{0},$ $\ldots W_{n}$ be subsets of $2^{\omega}$ . We define $\langle W_{0}, \ldots W_{n}\rangle=$

{ $K\in \mathscr{M}^{\prime}(2^{\omega}):K\subset\bigcup_{k=0}^{n}W_{k}$ and for every $k=0,$ $\ldots n,$ $ K\cap W_{k}\neq\otimes$ }.
The family $\mathscr{B}=$ { $\langle W_{0},$ $\ldots W_{n}\rangle$ : $W_{k}\subset 2^{\omega}$ clopen, $k=0,$ $\ldots n$ } is a base of

$\ovalbox{\tt\small REJECT}^{\prime}(2^{\omega})$ consisting of clopen sets. We fix $W=\langle W_{0}, \ldots W_{n}\rangle\in \mathscr{B}$ , where $W_{0},$ $\ldots W_{n}$

are nonempty clopen sets in $2^{\omega}$ .
It is enough to check that $W\cap \mathscr{K}(Q)$ contains a closed copy of $WO(\omega^{<\omega})$ .

We fix points $x_{1}\in W_{1}\cap Q,$
$\ldots,$

$x_{n}\in W_{n}\cap Q$ and $s\in 2^{<\omega},$ $n_{0}=length(s)$ such that
$[s]=\{x\in 2^{\omega} : x|n_{0}=s\}$ is contained in $W_{0}$ and $x_{1}\not\in[s],$ $\ldots x_{n}\not\in[s]$ .

We define for $x\in 2^{\omega},$ $(s^{\cap}x)\in 2^{\omega}$ as follows: for $n\in\omega,$ $n<n_{0},$ $(s^{\cap}x)(n)=s(n)$

and for $n\geq n_{0},$ $(s^{\cap}x)(n)=x(n-n_{0})$ . Subsequently we define for $K\subset 2^{\omega}$ a new
set $s^{\cap}K=\{s^{\cap}x:x\in K\}\subset 2^{\omega}$ .

Now, let us define a continuous injection $i:\mathscr{K}(2^{\omega})\rightarrow W$ by the formula
$i(K)=(s^{\cap}K)\cup\{x_{1}, \ldots x_{n}\}$ . This function has the property, that for every $ K\in$

$\mathscr{K}(2^{\omega})$ holds $i(K)\in \mathscr{K}(Q)$ iff $K\in \mathscr{K}(Q)$ .
Function $i$ is a reduction of $\mathscr{K}(Q)$ to $\mathscr{K}(Q)\cap W$ . Existence of the reduction

together with Theorem 3 imply that $W\cap \mathscr{K}^{\sim}(Q)$ is $\Pi_{1}^{1}$ -complete.
Since $WO(\omega^{<\omega})$ belongs to $\Pi_{1}^{1}$ , we can apply the Proposition.

5. CLAIM 3. $WO(\omega^{<\omega})$ is of the first category in itself.

PROOF. Since $WO(\omega^{<\omega})$ belongs to $\Pi_{1}^{1}(2^{\omega^{<\omega}})$ , it has the Baire property
([6, Corollary 29.14]). On the other hand it is an ideal on $\omega^{<\omega}$ . Hence $WO(\omega^{<\omega})$

is of the first category in $2^{\omega^{<\omega}}$ , because every ideal with the Baire property, which
contains all finite subsets of $2^{\omega^{<\omega}}$ is of the first category in $2^{\omega^{<\omega}}$ . Since $WO(\omega^{<\omega})$

is dense in $2^{\omega^{<\omega}}$ , it is first category in itself.
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Now we can apply Theorem 1 and obtain a homeomorphism between the
topological group $WO(\omega^{<\omega})$ and $\mathscr{K}(Q)$ . $\blacksquare$

Let us point out that a part of the above reasoning can be generalized in the
following:

THEOREM 4. Let $X$ be of the first category in $2^{\omega}$ and such that intersection of
every nonempty clopen subset of $2^{\omega}$ with $X$ is $\Pi_{1}^{1}$ -complete. Then $X$ and $\ovalbox{\tt\small REJECT}^{\prime}(Q)$ are
homemorphic. $\blacksquare$

REMARK 1. We sketch an altemative proof of homogeneity of $\mathscr{K}(Q)$ . A
space $X$ is strongly homogeneous if every nonempty clopen set in $X$ is homeo-
morphic to $X$ itself. The altemative proof is based on the following result of van
Engelen:

THEOREM 5 [2, THEOREM 4.1]. Let a space $X$ be zero-dimensional, first
category in itself and such that every nonemp $ty$ clopen subset of the space $X$

contains a closed copy of X. Then $X$ is strongly homogeneous. $\blacksquare$

We will need one more theorem, which motivates the notion of strong
homogeneity:

THEOREM 6 [3, THEOREM 1.9.1]. If a space $X$ is zero-dimensional and strongly
homogeneous, then $X$ is homogeneous. $\blacksquare$

THEOREM 7. The space $\mathscr{K}(Q)$ is strongly homogeneous.

Theorems 6 and 7 give us the promised homogeneity of $\mathscr{K}^{\sim}(Q)$ .

PROOF OF THEOREM 7. Let us observe that $\ovalbox{\tt\small REJECT}^{r}(Q)$ is first category in itself.
Indeed, $\mathscr{K}(Q)\subset\bigcup_{q\in Q}F_{q}$ where $F_{q}=\{K\in \mathscr{K}(2^{\omega}):q\in K\}$ are closed and no-
where dense in $\mathscr{K}(2^{\omega})$ . Since $\mathscr{K}(Q)$ is dense in $2^{\omega}$ , the intersections $F_{q}\cap \mathscr{K}(Q)$

are closed and nowhere dense in $\mathscr{K}(Q)$ .
Let $W$ be a clopen subset of $\ovalbox{\tt\small REJECT}^{\prime}(2^{\omega})$ defined as in the proof of Theorem 2,

Claim 2. According to Theorem 5, to prove strong homogeneity of $\mathscr{M}^{\prime}(Q)$ , it is
sufficient to check that $W\cap ff(Q)$ contains a closed copy of $ff(Q)$ .

Appropriate embedding is given by the function $i$ from the proof of Theorem
2, Claim 2. The space $\mathscr{K}(2^{\omega})$ is compact, hence $i$ is a closed map and $i[\mathscr{K}(Q)]$ is
a closed copy of $\mathscr{K}(Q)$ in $W\cap \mathscr{K}(Q)$ . This finishes the proof. $\blacksquare$
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REMARK 2. Let $\mathscr{K}_{\leq\aleph_{()}}(2^{\omega})=$ { $K\in \mathscr{K}(2^{\omega}):K$ is at most countable}. The-
orem 27.5 from [6] shows that $\chi_{\leq\aleph_{()}}(2^{\omega})$ is a $\Pi_{1}^{1}$ -complete subset of $X(2^{\omega})$ .

We are going to show that every nonempty clopen set of $\chi_{\leq\aleph_{0}}(2^{\omega})$ is
$\Pi_{1}^{1}$ -complete.

Let $W$ be a clopen subset of $\mathscr{K}(2^{\omega})$ defined as in the proof of Theorem 2,
Claim 2. It is enough to verify, that there exists a reduction of $\mathscr{K}_{\leq\aleph_{0}}(2^{\omega})$ to
$W\cap \mathscr{K}\leq\aleph_{0}(2^{\omega})$ . It is easy to check, that function $i$ defined in the proof of
Theorem 2, Claim 2 is suitable.

Lemma 1.2 of [5] shows that the set $G$ of all nonempty compact subsets of $2^{\omega}$

without isolated points is dense $G_{\delta}$ in $\mathscr{K}(2^{\omega})$ . $\mathscr{K}_{\leq\aleph_{0}}(2^{\omega})$ is disjoint with $G$ , hence
it is first-category subset of $ff(2^{\omega})$ . Moreover, $\ovalbox{\tt\small REJECT}^{\prime}\leq\aleph_{0}(2^{\omega})$ is dense in $\mathscr{K}(2^{\omega})$ , thus
of the first category in itself.

Finally, Theorem 4 imply that the spaces $\ovalbox{\tt\small REJECT}^{\prime}(Q),$ $ff_{\leq\aleph_{0}}(2^{\omega})$ and $WO(\omega^{<\omega})$

are homeomorphic and in particular, that each of them is homogenous.
The main aim of this remark is to point out an analogy between the last

observation and the following result of R. Cauty:

THEOREM 8 [1, THEOREM 1.4]. The space $\chi_{\leq\aleph_{0}}(I)$ of countable compact
subsets of the interval I with the Vietoris topology is homeomorphic with the space
$\mathscr{D}=$ { $f\in \mathscr{C}(I):f$ is everywhere $d_{l}fferentiable$ } endowed with the topology of
umform convergence.

The space $\mathscr{D}$ is a vector space and in particular a topological group. It
implies that $\mathscr{K}_{\leq\aleph_{0}}(I)$ is homogeneous.
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